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Abstract Simulations of cosmic structure formation address multi-scale, multi-
physics problems of vast proportions. These calculations are presently at the fore-
front of today’s use of supercomputers, and are important scientific drivers for the
future use of exaflop computing platforms. However, continued success in this field
requires the development of new numerical methods that excel in accuracy, robust-
ness, parallel scalability, and physical fidelity to the processes relevant in galaxy and
star formation. In the EXAMAG project, we have worked on improving and apply-
ing the astrophysical moving-mesh code AREPO with the goal to extend its range
of applicability. We have also worked on developing new, powerful high-order dis-
continuous Galerkin schemes for astrophysics, on more efficient solvers for gravity,
and on improvements of the accuracy of the treatment of ideal magnetohydrody-
namics. In this context, we have also studied the applied mathematics required for
higher-order discretization on dynamically moving meshes, thereby providing the
foundations for much more efficient and accurate methods than are presently in use.
Finally, we have worked towards publicly releasing two major communicty codes,
AREPO and GADGET-4, which represent the state-of-the-art in the field.
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1 Introduction

Hydrodynamical simulations of galaxy formation have significantly matured over
recent years and now enable successful predictions of the build-up of the galaxy
population starting from cosmological initial conditions left behind by the Big Bang.
These simulations can track the non-linearly coupled evolution of both baryons and
dark matter, in principle fully accounting for their mutual influence on each other
and yielding rich predictions for galaxy properties, the diffuse gas in the circum-
galactic and intergalactic media, and cosmic dark matter clustering. Provided that
such hydrodynamic simulations can be pushed to sufficiently large volumes, they
provide the most powerful approach for forecasting non-linear cosmological observ-
ables related to clustering in different regimes and at different epochs. However, it is
extremely challenging to include all the relevant physics, and tomake the simulations
accurate, fast, and scalable enough to be able to exploit the full capacity of today’s
supercomputers. The EXAMAGproject has been aiming to advance novel numerical
methodologies for astrophysical simulations, and to apply them right away to timely
research questions in astrophysics. A particular focus has been on magnetic field
predictions, and the development of higher-order methods.

In this project review, we report a subset of the results obtained within the EXA-
MAG project. In Section 2 we describe the IllustrisTNG simulations, the currently
most advanced set of magentohydrodynamical simulations of galaxy formation, as
well as the Auriga simulations, which focus on predictions for our own Milky Way
galaxy, in particular on the structure and origin of its magnetic field. In Section 3,
we turn to our recent developments of discontinous Galerkin hydro- and magne-
tohydrodynamics. We also give a short description of some of our methodological
advances in combining the idea of fully dynamic, unstructured meshes with high-
order discontinuous Galerkin approaches to hydrodynamics. We also report on the
application of these higher order methodologies to the problem of driven isothermal
turbulence, where these methods prove to be particularly powerful. We then recount
in Section 4 some of our work on the performance and accuracy of the two cosmo-
logical hdyrodynamical simulations codes GADGET-4 and AREPO, both of which
we have prepared for public release to the community as part of this project. Finally,
we summarize and give an outlook in Section 5.

2 The IllustrisTNG and Auriga simulations

The AREPO code (Springel, 2010) introduced a different approach from the ones
so far commonly adopted in astrophysics to evolve gas on a computer (smoothed
particle hydrodynamics, SPH, and Eulerian mesh-based methods, typically utilizing
adaptive mesh refinement, AMR). It employs a moving, unstructured mesh where,
like AMR, the volume of space is discretized into many individual cells, but similar
to SPH, these cells move with time, adapting to the flow of gas in their vicinity. As
a result, the mesh itself, constructed through a Voronoi tessellation of space, has no
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Fig. 1 Thin projections through the TNG100 simulation, showing (from top to bottom) the gas
density field, the metallicity, the magnetic field strength, the dark matter density, and the stellar
density.

preferred directions or regular grid-like structure, and is highly spatially adaptive,
making it ideal, in particular, for studying galaxy formation.

Our ground-breaking “Illustris” hydrodynamical calculation of galaxy formation
(Vogelsberger et al., 2014) demonstrated the utility of the approach for simulations
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Fig. 2 The matter autocorrelation function for different mass components in our high-resolution
TNG300 simulation at redshift z = 0, see Springel et al. (2018). We show results for stellar matter,
gas, dark matter, black holes, and all the matter, as labelled. The linear theory correlation function
is shown in grey for comparison.

of structure formation. For the first time ever, it reproduced the observed morpho-
logical mix of galaxies and its dependence on stellar mass. Over the past years we
have undertaken significant efforts to improve the underlying physics models (espe-
cially with respect to magnetic fields, and the processes regulating star formation
through energetic feedback from supernovae and black holes), and the accuracy and
scalability of the numerical algorithms (for example by developing a hierarchical
local time-stepping algorithm for gravity). These efforts culminated in the simulation
projects IllustrisTNG and Auriga.

The Next Generation (TNG) Illustris project1 built on the technical and scientific
achievements of its predecessor and pushed this line of research further. In particu-

1 http://www.tng-project.org
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Fig. 3 Faraday rotation maps as seen by an external observer for three of the Auriga simulations.
The top and bottom panels show face-on and edge-on Faraday rotation maps due to the magnetic
fields in three different simulated disk galaxies Au-23, Au-24, and Au-27 (Pakmor et al., 2018).
These predictions compare well to observations of real galaxies such as M51.

lar, it has improved upon Illustris by including our newly developed accurate solver
for ideal magnetohydrodynamics (Pakmor et al., 2014, 2016b), and by extending
the dynamic range and resolution of the simulated galaxies and haloes significantly
through an ambitious suite of simulations carried out on the Hazel-Hen supercom-
puter at the High-Performance Computing Center Stuttgart (HLRS) with the help
of two large compute-time grants by the Gauss Centre for Supercomputing (GCS).
We have considered three different box sizes, roughly 300, 100, and 50 Mpc on a
side, and computed extensive resolution studies for each of them, yielding three
series or runs, entitled TNG300, TNG100, and TNG50. The calculations used up
to 24000 cores, required 100 TB RAM, and produced 660 TB of science data. A
visual impression of one of these simulation is given in Figure 1. As an illustrative
result, we show the clustering statistics of different matter components at the present
epoch in TNG300 in Figure 2 (Springel et al., 2018). The calculation is able to probe
deeply into the non-linear regime, over a very large dynamic range, thereby allowing
predictions both for the internal structure of galaxies as well as their large-scale
clustering patterns.

The scientific analysis of the IllustrisTNG simulations has started in 2018 and
has already led to many important results for a vast range of scientific questions
(e.g. Springel et al., 2018; Nelson et al., 2018a; Pillepich et al., 2018; Torrey et al.,
2018; Marinacci et al., 2018), demonstrating the great utility of these methods.
At the time of this writing, the TNG simulations have already produced 67 journal
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publications, and about 80 additional papers are currently in preparation by a network
of international collaborators. In December 2018, we publicly released the data of
TNG100 and TNG300 (Nelson et al., 2018b), with TNG50 to follow in a year’s time,
which will further amplify the scientific use of the simulations.

The Auriga simulations (Grand et al., 2017) use a very similar physics and
numerical model as IllustrisTNG, but “zoom-in” on individual Milky Way-sized
galaxies that are studied with much higher resolution. A particular focus here has
been on understanding the origin of the magnetic fields in galaxies, and on predicting
their present structure as well as their built-up over cosmic time. In Pakmor et al.
(2017) we have shown that the magnetic fields grow exponentially at early times
owing to a small-scale dynamo with an e-folding time of roughly 100 Myr in the
centre of haloes until saturation occurs around redshift z = 2−3, when the magnetic
energy density reaches about 10 per cent of the turbulent energy density with a
typical strength of 10 − 50 µG. Outside the galactic centres, differential rotation in
the discs leads to linear amplification of the magnetic fields that typically saturates
around z = 0.5 − 0. The final radial and vertical variations of the magnetic field
strength can be well described by two joint exponential profiles, and are in good
agreement with observational constraints.

We have extended the observational comparisons by computing synthetic Faraday
rotation maps due to the magnetic fields (Pakmor et al., 2018), for different observer
positions within and outside the simulated galaxies. We find that the strength of
the Faraday rotation of our simulated galaxies for a hypothetic observer at the solar
circle is broadly consistent with the Faraday rotation seen for the Milky Way. The
same holds for an observer outside the galaxy and the observed signal of the nearby
spiral galaxy M51, see Figure 3. However, we also find that the structure of the
synthetic all-sky Faraday rotation maps vary strongly with azimuthal position along
the solar circle. This represents a severe obstacle for attempts to reconstruct the
global magnetic field of the Milky Way from Faraday rotation maps alone without
including additional observables.

3 Discontinuous Galerkin hydrodynamics for astrophysical
applications

TheAREPOcode is based on a second order finite volumemethod on amovingmesh.
An important part of the EXAMAG project was to develop a higher order method
for AREPO, for which we have chosen to use a discontinuous Galerkin (DG) method
due to the significant promise this class of methods holds for high performance
computing. Here the hydrodynamic or magnetohydrodynamic partial differential
equations are written in a weak form to construct a finite element method. On each
cell, the solution and the test functions are approximated by appropriate polynomials.
Note that in neighbouring cells this approximation need not be continuous across
cell boundaries. The jumps between neighboring cells are taken into account by a
numerical flux function based on an approximate Riemann solver which provides
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stability to the method. The time discretisation is performed using a Runge-Kutta
method. For more details, see Shu (2014).

Using the discontinuous Galerkin (DG) method brings with it the following
advantages:

• DG works naturally on unstructured meshes which makes it suitable for adaptive
meshes with hanging nodes and for a moving mesh methods.

• DG can be made to work for any order of accuracy with a compact stencil and
provides spectral-type accuracy.

• DG is extremely local in data communication, thus ideally suited for efficient
parallelization on current computer hardware.

Due to these advantages and also the ability of DG to compute convection dom-
inated problems in a stable and accurate manner, the EXAMAG project worked
towards adopting DG methods for astrophysical applications. Our efforts in this di-
rection followed two main paths that will be presented in the following subsections.
First, in Section 3.1, we describe the discontinuous Galerkin method on a Cartesian
mesh with automatic mesh refinement for both the Euler and magnetohydrodynam-
ics equations. Then, in Section 3.2, the discontinuous Galerkin method on a moving
mesh is discussed. Finally, in Section 3.3 we present some results on turbulence
simulations with higher order numerics.

3.1 The discontinuous Galerkin method on a Cartesian mesh with
automatic mesh refinement

In a collaboration with the EXA-DUNE project (Peter Bastian, Heidelberg) we im-
plemented a two-dimensional hydrodynamics code in the DUNE framework with
total variation bounded and positivity preserving limiters. A mesh refinement trig-
gered by the limiting criteria was also built in, see Gallego et al. (2014).

In Gallego et al. (2016), we developed a code based on the DG method for
compressible flows to incorporate and test shock indicators that can determine which
cells need limiting. We showed that the choice of variables that are limited can have
a major influence on accuracy; limiting the characteristic variables was compared
to limiting the conserved variables, with the former being better able to control
oscillations. These limiters were then combined with a shock indicator, yielding the
ability to solve complex flow problems in a more efficient and accurate manner since
the costly limiters need not be applied everywhere.

These investigations provided the foundations for our implementation of the
discontinuousGalerkin approach in a new branch of theAREPO code called TENET,
as presented in Schaal et al. (2015). This version of the code supports adaptive mesh
refinement (AMR) and is able to maintain high-order accuracy at AMR refinement
boundaries, unlike finite-volume approaches that typically fall-back to first order
there. As an illustrative example, Figure 4 depicts a simulation of a Kelvin-Helmholtz
instability using TENET. In Schaal et al. (2015) we have also shown that DG has
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Figure 11. High-resolution Kelvin-Helmholtz simulation with fourth order DG and adaptive mesh refinement at time t = 0.8. The simulation starts with 642

cells (level 6) and refines down to level 12, corresponding to an e↵ective resolution of 40962. We illustrate the AMR levels in Fig. 12. The mesh refinement
approach renders it possible to resolve fractal structures created by secondary billows on top of the large-scale waves. Furthermore, as can be seen in the
bottom panel, the solution within every cell contains rich information, consisting of a third order polynomial. A movie of the simulation until t = 2 may be
accessed online: http://youtu.be/cTRQP6DSaqA

MNRAS 000, 1–23 (2015)

Fig. 4 A Kelvin-Helmholtz simulation with fourth order DG and adaptive mesh refinement (see
Schaal et al., 2015). The simulation starts with 642 cells, and refines in selected regions to an
effective resolution of 40962. As can be seen in the bottom panel (white markers indicate regions
that are enlarged in subsequent panels), the solution within every cell contains rich information,
consisting of a third order polynomial.

significant advantages over a finite volume method. Given the same accuracy target,
a higher order DG method requires fewer grid points than a finite volume method,
allowing for much faster run times, especially for smooth solutions. The higher
order DG method of TENET is also better in computing discontinuous solutions,
although the numerical techniques for identifying regions where a limiter has to be



Simulations of the magnetic universe 9

applied are intricate and still not fully mature. We also showed that the DG approach
automatically conserves angular momentum in smooth regions which is beneficial
for many astrophysical problems involving rotating objects.

We next worked towards adding magnetic fields, leading to the model of ideal
magnetohydrodynamics in fully compressible flows. The system of ideal magneto-
hydrodynamical equations poses additional challenges for numerical simulations,
mainly due to the need to preserve the divergence-free condition on the magnetic
field, which requires specialized techniques. In Chandrashekar and Klingenberg
(2016) we developed an entropy stable finite volume scheme based on a symmetrized
version of the MHD equations. A numerical flux is given which allows for the con-
struction of an entropy conservative and entropy stable scheme. It is demonstrated
how this new scheme is robust for MHD simulations due to its entropy framework,
in spite of the divergence condition not being explicitly satisfied. In Chandrashekar
et al. (2018) this approach was extended to an explicit high order Runge-Kutta dis-
continuous Galerkin method. This methodology is then combined with techniques
used to control oscillations near discontinuities, similar to Gallego et al. (2016),
where these techniques were introduced for the hydrodynamical case. We assessed a
different approach for the divergence constraint in Klingenberg et al. (2017a), where
post- and pre-processing methods are suggested in order to numerically maintain the
divergence free constraint.

Finally, in Guillet et al. (2019) we implemented high-order MHD in the AREPO
code using two different approaches for maintaining the divergence constraint, a lo-
cally divergence-free basis combinedwith Powell terms for stability, and a hyperbolic
divergence cleaning method. Two new numerical ingredients were introduced in the
DG scheme: a non-linear limiting procedure for the magnetic field, and a different
discretization of the Powell terms, which was found to be a key aspect for stability
and accuracy of the method. The beneficial properties of the DG method found for
hydrodynamical simulations were also confirmed by Guillet et al. (2019) for the
MHD case. The resulting scheme shows lower advection errors and better Galilean
invariance than a finite volume scheme, and hence constitutes a very promising ap-
proach for more realistic applications in an astrophysical context. In Figure 5, we
show as an example the DG simulation of a two-dimensionalMHD blast wave, which
is a particularly challenging test case in terms of maintaining positive solutions. In
Figure 6, we demonstrate the convergence of our DG algorithms when applied to a
smooth isodensity MHD vortex problem that is advected at different angles through
a periodic domain. Our numerical solutions reproduce to good accuracy the expected
convergence orders for orders 2 to 6, both for a locally divergence-free basis and a
Legendre basis.

3.2 The discontinuous Galerkin method on a moving mesh

In a parallel endeavour, we have investigated in EXAMAG the general problem of
extending higher-order methods to unstructured meshes that move along with the
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Density Magnetic pressure Mach number

Figure 16. Two-dimensional MHD blast test problem. The density, magnetic pressure and Mach number contours are shown on a 2562 grid using the third-order
Powell scheme.
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Figure 17. Slices across y = 2/3 in the MHD blast wave test problem, fol-
lowing Hopkins & Raives (2016), shown here for the DG-3 Powell scheme.
We do not observe any of the dramatic errors noted by these authors on their
tests with Powell terms.

front. These negative pressures are successfully but aggressively
corrected by our positivity limiter, and although the computation
does not crash, the resulting fields show damage. Similar issues have
been noted and worked on by a number of authors (e.g. Mignone &
Tzeferacos 2010; Tricco & Price 2012; Susanto 2014; Tricco et al.
2016); we come back to this issue and possible solutions in the
discussion.

5.4 Divergence control problems

We now turn to test problems more specifically aimed at evaluating
the e�ciency of the divergence control, with a focus on the Powell
scheme. We have already discussed some aspects related to r·B in

some of the previous test problems; we now show the stability of
the Powell scheme and some consequences of its non-conservative
source terms.

On a general note, like Balsara & Spicer (1999b) we found
that problems with strong moving shocks, such as the blast or rotor
problems, are not necessarily the most stringent tests of divergence
control. Instead, colliding shocks whose convergence front is at rest
with respect to the grid—such as the rotated shock tube of Tóth
(2000) described in 5.4.3, or some shock-shock interactions in the
Orszag–Tang vortex of Section 5.3.3—proved to be much more
challenging tests of the divergence control scheme and its stability
in particular.

In addition to shock interactions, we found that smooth prob-
lems such as the simple advection of a magnetic field loop can also
be unstable with inappropriate discretizations of the Powell term,
and their smooth character makes it easier to follow the develop-
ment of the divergence instability. Without Powell source terms, the
instability usually grows faster with scheme order, as the numerical
di�usion at lower orders helps slow down the divergence runaway.

5.4.1 Loop advection

This test follows the advection of a magnetic field loop after Gardiner
& Stone (2005). On the periodic domain [�1, 1]2, the background
fluid has ⇢ = 1, p = 1, and a global advection velocity (vx, vy ) =
(2, 1) so that the ambient flow is not aligned with grid directions.
Letting r be the radial distance to the center of the box, the magnetic
field is initialized from a vector potential A = (0, 0, Az (r)) with
B = r ⇥ A. To define a magnetic field loop of radius r0 = 0.3, we
set Az (r) = max(0, A0(r0 � r)). Taking A0 = 10�3, we obtain a
very weakly magnetized configuration with a plasma � of order 106,
in which the magnetic field is essentially a passive scalar. For this
field configuration, the MHD current vanishes everywhere, except
at r = 0, and r = r0 where the corresponding current line and return
current tube are singular.

The aim of the test is to verify that the current loop is advected
without deformation or noise, and to monitor the time evolution and
dissipation rate of the total magnetic energy, following Gardiner &
Stone (2005); Stone et al. (2008).

As discussed in Gardiner & Stone (2005), the linearized dy-
namics of the magnetic field involves the diagonal derivatives

MNRAS 000, 1–32 (2017)

Fig. 5 A two-dimensional MHD blast wave test problem. The density, magnetic pressure andMach
number contours are shown on a 2562 grid using a third-order discontinuousGalerkin schemewhere
the MHD equations are written in symmetrized form using so-called Powell terms, see Guillet et al.
(2019).

flow. The original AREPO approach employed a second order finite volume scheme
for this purpose. As this works quite well and is able to improve the resolution of flow
features byminimizing numerical dissipation from advection, we pursued extensions
of this approach in three different directions.

The DG method can be proven to be entropy stable and convergent on a fixed
grid for a scalar conservation law. In a first line of investigation we wave shown
that the entropy stability is maintained on a moving mesh. This was demonstrated
in Klingenberg et al. (2017b) and Klingenberg et al. (2017c) for a semidiscrete
arbitrary Lagrangian-Eulerian discontinuous Galerkin method. In Klingenberg et al.
(2018) these ideas were extended to a fully discrete method. Numerical experiments
have confirmed these properties also for a multi-dimensional implementation of the
hydrodynamical equations.

The above studies were restricted to arbitrary Lagrangian-Eulerian discontinuous
Galerkin methods, where the grid needs no remeshing. In practice, one needs to
remesh the grid once in a while since otherwise the mesh quality degrades to such an
extent that the computations can break down. In Badwaik et al. (2019), a DGmethod
for 2-D Euler equations was developed on triangular grids and the mesh vertices are
moved in an almost Lagrangian manner. To maintain good mesh quality, only a local
remeshing was performed in regions where the mesh quality has become poor. As
an example, Figure 7 shows an isentropic vortex that is also advecting. Due to the
high shearing inside the vortex, the mesh would become heavily skewed with time,
but our remeshing scheme is able to maintain good mesh quality over long time
intervals.

Finally, we pursued a third direction. Would it be possible to use a moving mesh
composed of Voronoi cells, as employed by AREPO for a second order finite volume
method, also for a high order DG method? The difficulty here is that this type of
mesh is effectively remeshed everywhere at every time step, implying that the cell
connectivity and their topology can change during a timestep. This represents a
significant challenge for DG. Note that a higher order method is in particular high
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Fig. 6 Convergence of the MHD isodensity vortex problem computed for different DG orders.
Solution L2 errors are plotted for Bx (top row) and pressure (bottom row), for both a locally
divergence-free (LDF) basis with Powell terms (left column), and a Legendre basis with hyperbolic
cleaning (right column). Errors are measured at time t = 20 after the vortex has crossed the whole
computational domain. Dotted lines show theoretical slopes for convergence orders 2 to 6. Solid
and dashed lines correspond to errors for an advection angle α = 45◦ and α = 30◦, respectively.
The shaded area corresponds to a range of resolutions for which the vortex is resolved but not
over-resolved (see Guillet et al., 2019).

order in time, meaning it needs predictor steps between two consecutive time steps.
Thus the connectivity of a cell at one time step with the cell at the next time step is
needed, but a moving Voronoi cell may change the number of its sides during the
step. This leads to significant geometric complications in formulating a consistent
time evolution of the basis function expansion. The associated challenges were
successfully overcome in Gaburro et al. (2019), for the moment in two-dimensions
only. But it appears conceptually straightforward to generalize this solution to three
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(a) (b)

(c) (d)

Fig. 31 Isentropic vortex in 2-D: Mesh and pressure solution at various times (a) t = 0
(b) t = 6 (c) t = 12 (d) t = 20
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Fig. 7 A rotating isentropic vortex in two space dimensions: we show the mesh and the pressure
of the solution to the Euler equations at various times: (a) t = 0, (b) t = 6, (c) t = 12, and (d)
t = 20. Notice how the mesh quality does not deteriorate thanks to the local remeshing technique
described in Badwaik et al. (2019).

dimensions, therefore the path to a high order DG method in 3D using the moving
Voronoi mesh of AREPO is now open.

3.3 Turbulence simulations with higher order numerics

We have applied our hydrodynamic DG code developed in Schaal et al. (2015) to the
simulation of three-dimensional hydrodynamic subsonic turbulence (Bauer et al.,
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Fig. 8 Growth rate of the magnetic field strength in units of the eddy-turnover time ted =
L/(2M cs ) (top panel) and the ratio of the magnetic to the kinetic energy in the saturated state
(bottom panel) for isothermal turbulence in a uniform box for different numerical schemes and
spatial resolution. The turbulence is driven by purely solenoidal driving and saturates at a Mach
number of M ∼ 0.3. We compare different numerical schemes to control the divergence of the
magnetic field, including constrained transport (CT), Dedner cleaning, and Powell terms. Also, we
compare finite volume on a moving mesh (MM) with high-order DG on a Cartesian mesh.

2016). This allowed us to demonstrate that this DG implementation gives accurate
results at noticeably less computational cost than a finite volume method.
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Driven magnetohydrodynamical turbulence is an even richer physics problem,
which is of particular importance in a variety of astrophysical contexts, including
star formation in the interstellar medium, stellar atmospheres, and the X-ray emitting
gas in clusters of galaxies. In Pakmor et al. (2019, in prep), we have applied our
DG-MHD code developed in Guillet et al. (2019) to the problem of isothermal
turbulence in a uniform box, with the goal to test different numerical schemes for
preserving theMHD constraint, and for validating the effectiveness of the high-order
DG approach. Of particular interest is whether there are any systematic differences
between a constrained transport (CT) finite-volume MHD approach, which is able
to guarantee the divergence free constraint to machine precision at all times, and the
Powell and Dedner approaches for divergence control, for which we also have high
order DG formulations. It is sometimes suspected that CT may be required to obtain
truly accurate solutions for this problem. Reassuringly, our results, summarized in
Figure 8, do not support this view. The statistical properties of the quasi-stationary
turbulent flow are very consistent between the different schemes. As expected, the
growth rate of the turbulent dynamo increases with resolution and order of the
scheme.While the slope of this relation is similar for all schemes, there are interesting
differences in the absolute growth rate at a given resolution between the different
schemes. If anything, here CT appears slightly more dissipative than the Powell
approach. In contrast, the saturated magnetic energy does not seem to depend on the
resolution or scheme, provided a minimum resolution is used that again depends on
the scheme. Interestingly, here the Powell approach is able to numerically represent
a working dynamo already at lower resolution than the CT approach.

4 Performance and public release of the two cosmological
hdyrodynamical simulation codes GADGET-4 and AREPO

As part of EXAMAG, we have also developed a memory efficient and fast N-
body/hydrodynamical code, GADGET-4, which is primarily intended for extremely
large simulations of cosmic structure formation (Gpc3 volumes), targeting cosmolog-
ical applications. GADGET-4 (Springel et al., 2019, in prep) represents a complete
rewrite of the successful and widely used GADGET code (Springel, 2005), using
C++ and numerous refined algorithms. For example, it supports a variety of addi-
tional gravity solvers, among them a high-order fast multipole method, as well as
hierarchical local time-integration techniques.

The code is highly scalable, and can be run with two different approaches for
hybrid parallelization, either a mix of MPI and OpenMP parallelization, or a novel
shared memory parallelization model based on MPI-3 where one MPI rank is set
aside on each shared memory node to respond to communication requests fromMPI
processes on remote nodes with minimum latency, thereby realizing truly one-sided
communication independent of MPI progress engines. Within each node, the MPI
layer can be bypassed entirely through shared-memory accesses in this method.
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Fig. 9 Scaling of the GADGET-4 code for cosmological simulations of structure formation on
the SuperMUC-NG supercomputer. The scaling of the dominant tree calculation is excellent. The
long-range gravity is done through very large FFT grids, which are communication bound. Our
column-based parallel FFT (solid green) scales beyond the point where the number of MPI ranks
exceeds the number of mesh planes (vertical dotted line), but requires more transpose operations
than a slab-based algorithm (dashed green). For the largest number of nodes, two or more islands
of the machine are needed, reducing the available cross-sectional bandwidth, which impacts the
scaling behaviour of the communication heavy long-range gravity and domain decomposition.

Figure 9 shows the effectiveness of this approach on the SuperMUC-NGmachine
at the Leibniz Supercomputing Centre (LRZ) in a weak scaling test. The most
expensive part of the calculation, the computation of the short-range gravity with a
hierarchical multipole expansion (a tree algorithm) scales perfectly to 49152 cores
(1024 nodes on SuperMUC-NG), thanks to theMPI-3 parallelization schemes, which
is able to eliminate a mid-step synchronization point. The FFT-based calculation
of the long-range gravity is communication-bandwidth bound and shows poorer
scalability, as expected, but still stays subdominant overall. Here for the largest
problem sizes an additional scaling bottleneck is resolved by GADGET-4. For a
standard slab-based decomposition of the FFT (green dashed lines), there comes
a point when there are more MPI ranks than mesh planes (marked by the vertical
dotted line), at which point not only scalability ends, but also memory imbalance will
quickly grow. This impasse is overcome in GADGET-4 with a column-based parallel
FFT algorithm (green solid lines), which maintains scalability and memory balance
up to the largest foreseeable problem sizes in cosmology. However, this algorithm
requires twice asmany transpose operations, making it more costly for small problem
sizes where the slab-based approach is still viable. Like the parallel FFT, the domain
decomposition algorithm is also communication bound and thus deviates from ideal
scalability, but this part of GADGET-4 is fast enough to always stay subdominant.
We note that the alternative hybrid parallelization through a combination of MPI
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Fig. 10 The left panel shows a strong scaling test of the built-in FOF group finder in GADGET-4,
while the right panels shows the speed-up of the gravity calculation in GADGET-4 as a function
of the number of OpenMP threads employed when run in MPI-OpenMP hybrid mode. In the latter
example, a single MPI rank on a single node of Intel Xeon 6138 cluster was used. Even though the
node has two processors with 20 physical cores each, the OpenMP scaling extends well into the
second processor, despite the reduced memory bandwidth this entails. In practice, GADGET-4 is
best run with at least 2 MPI ranks per processor (corresponding to up to 10 OpenMP threads on
this cluster). In this regime, the OpenMP scaling is excellent.

and OpenMP yields very good thread scalability, see Figure 10 (right panel), but
shows slightly poorer overall scalability when the number of shared-memory nodes
becomes large due to losses in itsMPI communication algorithm (which still contains
a midstep synchronization point).

We have also developed new on-the-fly group finding and merger-tree building
techniques for GADGET-4 (which also scale well, see Fig. 10, left panel), as well as
sophisticated outputting strategies for light-cones and high angular resolution maps
of line-of-sight projections of various quantities, such as the total mass (for weak
lensing). These features are designed to support collisionless N-body simulations
with extreme particle numbers in the regime of 1012 particles and beyond, where the
huge data volume necessitates that post-processing calculations are done during the
simulation as much as possible to avoid the need for enormous disk storage capacity.
In fact, GADGET-4 in principle removes the need to produce any time-slices of
particle data, thereby eliminating a substantial obstacle to carry out semi-analytic
galaxy formation on merger trees based on simulations in the trillion particle regime.
Attempting this with the same approach as in the Millennium simulation (Springel
et al., 2005), where of order 100 time slices were produced and merger trees were
made in post-processing, would require 6 PB of particle storage, something that we
can completely avoid with the new code.

As a legacy of EXAMAG, both the GADGET-4 and AREPO codes are scheduled
for public release in 2019.Weinberger et al. (2019, in prep) introduces the community
version of the AREPO code, and provides an overview of the available functionality
as well an introduction of AREPO to new users. This is augmented with a suite of
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examples of different complexity, a test suite, and a support forum that is hosted
on the code’s website as a platform to ask questions about the code. A similar
release is planned for the GADGET-4 code (Springel et al., 2019, in prep). We hope
that this will foster an active and supportive user community that will contribute
to the further development of these highly parallel simulation codes, preparing for
their eventual use on exascale class computers, as envisioned by SPPEXA and its
EXAMAG subproject.

5 Summary and discussion

The primary research goals of the EXAMAGproject have been to develop newmath-
ematical methods and physics implementations in state-of-the-art hydrodynamical
codes, allowing them to be used for groundbreaking astrophysical research that can
make full use of the capabilities of current and emerging HPC platforms. Our ap-
proach consisted of leveraging a tight collaboration between applied mathematicians
and numerical astrophysicists, thereby allowing a quick transfer of new mathemati-
cal ideas into applications at the forefront of today’s supercomputer applications in
astrophysics and cosmology.

In hindsight, we feel that our strategy to immediately apply new numerical pro-
cedures in large application projects has been successful. This provided immediate
feedback on the most promising development directions, and thus allowed us to
iteratively improve codes used for production science on powerful supercomputers.
Our special focus on treatments of ideal magnetohydrodynamics has allowed us to
make significant progress on the physical fidelity of simulations of galaxy formation,
thereby making the IllustrisTNG and Auriga projects possible in the first place. The
MHD capability also provided the foundations for new solvers we developed for
anisotropic diffusive transport processes, relevant especially for cosmic rays (Pak-
mor et al., 2016a), thermal conduction (Kannan et al., 2016) and radiative transport
(Kannan et al., 2019).

There is no shortage of ideas for developing the performance and capabilities of
our AREPO, GADGET-4 and DG codes further in the future. Extending our DG-
MHD techniques to high-order methods for self-gravity and source terms such as
radiative cooling are an obvious direction. Other challenges lie in the technical as-
pects of parallelization, where especially the MPI-3 based shared-memory approach
that we have introduced in GADGET-4 looks particularly promising for adoption in
AREPO as well. It is clear that dedicated and sustained research efforts in numerical
method development remain the basis for future scientific progress in computational
astrophysics.
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