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Fakultät für Mathematik und Informatik

Institut für Mathematik

Betreuer: Prof. Dr. Christian Klingenberg

Prof. Dr. Rony Touma



2



Abstract

In this thesis, we are interested in numerically preserving stationary solutions of balance

laws. We start by developing finite volume well-balanced schemes for the system of Euler

equations and the system of Magnetohydrodynamics (MHD) equations with gravitational

source term. Since fluid models and kinetic models are related, this lead us to investigate

Asymptotic Preserving (AP) schemes for kinetic equations and their ability to preserve

stationary solutions. Kinetic models typically have a stiff term, thus AP schemes are needed

to capture good solutions of the model. For such kinetic models, equilibrium solutions are

reached after large time. Thus we need a new technique to numerically preserve stationary

solutions for AP schemes. We find a criterion for Stationary Preserving (SP) schemes for

kinetic equations which states, that AP schemes under a particular discretization are also

SP. In an attempt to mimic our result for kinetic equations in the context of fluid models,

for the isentropic Euler equations we developed an AP scheme in the limit of the Mach

number going to zero. Our AP scheme is proven to have a SP property under the condition

that the pressure is a function of the density and the latter is obtained as a solution of an

elliptic equation. The properties of the schemes we developed and its criteria are validated

numerically by various test cases from the literature.
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Zusammenfassung

In dieser Arbeit interessieren wir uns für numerisch erhaltende stationäre Lösungen

von Erhaltungsgleichungen. Wir beginnen mit der Entwicklung von well-balanced Finite-

Volumen Verfahren für das System der Euler-Gleichungen und das System der MHD-

Gleichungen mit Gravitationsquell term. Da Strömungsmodelle und kinetische Modelle

miteinander verwandt sind, untersuchen wir asymptotisch erhaltende (AP) Verfahren für

kinetische Gleichungen und ihre Fähigkeit, stationäre Lösungen zu erhalten. Kinetische

Modelle haben typischerweise einen steifen Term, so dass AP Verfahren erforderlich sind,

um gute Lösungen des Modells zu erhalten. Bei solchen kinetischen Modellen werden Gle-

ichgewichtslösungen erst nach langer Zeit erreicht. Daher benötigen wir eine neue Tech-

nik, um stationäre Lösungen für AP Verfahren numerisch zu erhalten. Wir finden ein

Kriterium für stationär-erhaltende (SP) Verfahren für kinetische Gleichungen, das besagt,

dass AP Verfahren unter einer bestimmten Diskretisierung auch SP sind. In dem Versuch

unser Ergebnis für kinetische Gleichungen im Kontext von Strömungsmodellen nachzuah-

men, haben wir für die isentropen Euler-Gleichungen ein AP Verfahren für den Grenzw-

ert der Mach-Zahl gegen Null, entwickelt. Unser AP Verfahren hat nachweislich eine SP

Eigenschaft unter der Bedingung, dass der Druck eine Funktion der Dichte ist und let-

ztere als Lösung einer elliptischen Gleichung erhalten wird. Die Eigenschaften des von uns

entwickelten und seine Kriterien werden anhand verschiedener Testfälle aus der Literatur

numerisch validiert.
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Chapter 1

Introduction

The models

Partial Differential Equations (PDE): A partial differential equation is an equation

that imposes relations between partial derivatives of a function of more than one variable.

The function is the unknown to be found. Partial differential equations are largely used

in applied mathematics, physics and engineering. The equations play a big role in the

modern scientific understanding of sound, heat, diffusion, electrostatics, electrodynamics,

thermodynamics, fluid dynamics, elasticity, general relativity, and quantum mechanics, etc.

There are three types of partial differential equations: hyperbolic, parabolic and elliptic. In

this thesis we focus on hyperbolic partial differential equations. The solutions of hyperbolic

equations are “wave-like”, such that perturbations of the initial or the boundary data travel

along the characteristics of the equation.

Fluid Mechanics: Fluid Mechanics is a division of physics concerned with the mechanics

of the fluid under internal and external forces. It studies fluids in their static or dynamic

states. Fluid dynamics is a subsection of fluid mechanics that decscribes the flow of fluids

(liquids and gases) and it is divided into two other subsections: aerodynamics, the study

of air and other gases in motion, and hydrodynamics, the study of liquids in motion. The

solution to a fluid dynamics problem typically involves the calculation of various physical

properties of the fluid, such as flow velocity, pressure, density, and temperature, as functions

of space and time. In this thesis three fluid models are considered. The first model is the

system of Euler equations with gravitational source term which we will introduce in chapter

2. This system is widely studied because of its importance in modelling physical phenomena

such as astrophysical and atmospheric phenomena including supernova explosions [51],

climate modelling, and weather forecasting [13]. A special case of the Euler equations are

the isentropic Euler equations which we will also see in chapter 4. The system of MHD
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equations, defined in chapter 2, is a combination of the Euler equations of fluid dynamics

and Maxwell’s equations of electromagnetism. A gravitational source term is added to the

ideal MHD equations in this work.

Kinetic theory of gases: In chapter 3, several kinetic models are considered. They

describe a gas as a large number of identical submicroscopic particles (atoms or molecules),

all of which are in constant, rapid, and random motion. Their size is assumed to be

much smaller than the average distance between the particles. Kinetic models describe

the time evolution of probability density distribution of particles that travel freely for a

certain distance, and then change their directions due to collision or scattering. They

usually include a transport term that takes into account the movement of the particles,

and integral terms that take into account the scattering, tumbling or colliding.

Numerical Methods

Solving partial differential equations is a broad topic in applied mathematics. However,

finding exact solutions for these equations is not always possible. There is, correspondingly,

a vast amount of modern mathematical and scientific research on methods to numerically

approximate solutions of certain partial differential equations using computers. A numerical

method for partial differential equations is a mathematical tool designed to find numerical

solutions for the equation. The implementation of a numerical method with an appropriate

convergence check in a programming language is called a numerical algorithm. Computing

a numerical solution is finding the discrete version of the continuous solution of the PDE

via a numerical algorithm.

Finite Volume (FV) Central Scheme: To design a numerical scheme, one has to con-

sider time and space. A finite volume method is a reformulation of Godunov’s method for

the spatial discretization and is based on averaging the conserved variables in each cell and

approximating the fluxes between the cells. We use finite volume central schemes as base

scheme in chapter 2 which relies on the fact that central schemes are easy to implement and

robust finite volume schemes that avoid the time consuming process of solving Riemann

problems arising at the cell interfaces. Furthermore, central schemes have proven to be effi-

cient schemes for the simulation of systems of hyperbolic conservation laws. Nessyahu and

Tadmor [57] have introduced the Nessyahu-Tadmor (NT) scheme, a non-oscillatory central

finite volume scheme that is based on evolving piecewise linear numerical solution on two

staggered grids. Useful extensions of the NT scheme to multi-space dimensions followed in

[6, 36, 45, 7, 8, 42, 75]. These extensions were successfully used to solve problems arising

in aerodynamics, hydrodynamics, and magnetohydrodynamics [8, 22, 72, 74].
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In order to avoid switching between an original and a staggered grid in the NT-type schemes,

Unstaggered Central (UC) schemes for hyperbolic systems of conservation laws were devel-

oped in [44, 71], where the numerical solution is evolved on a single grid. The UC schemes

were then extended to hyperbolic balance laws such as shallow water equations on variable

waterbeds, Ripa systems, and Euler with gravity systems [78, 76, 77, 72]. The main goal of

the UC schemes is to evolve the numerical solution on a single grid and to use a staggered

ghost grid in an intermediate step, followed by a back projection step, see figure 2.3.

Schemes for Kinetic Models: Three different AP schemes for three different kinetic

models are considered in chapter 3. Developing the three AP schemes is not a focus of

this thesis as they are taken from the literature. However, their SP property and whether

they satisfy the proposed criterion or not are evaluated in this thesis. The three schemes

are parity equations-based scheme for the neutron transport equation, Unified Gas Kinetic

Scheme (UGKS) for the chemotaxis kinetic model, and IMEX scheme with the Penalization

method for the Boltzmann equation

Marker and Cell (MAC) Schemes: A finite difference staggered approached, suggested

by Goudon et al. [34] is chosen in chapter 4. The staggered discretization follows the prin-

ciples of MAC schemes [38]. The idea of MAC is to place the variables of the system in

different locations on the grid. The detailed description of the method can be found in

chapter 4.

Properties of the Numerical Methods

Well-balanced Schemes: Of particular interest are stationary solutions of the PDE.

Those solutions need to be taken into account in the discretization of the scheme. We define

well-balanced schemes as schemes that are designed to preserve a prior known stationary

solution. One example of these solutions is the case of zero velocity called hydrostatic

equilibrium. One way to fulfil the well-balanced requirement of the numerical scheme is

by designing the discretization in the source term in the balance law by following that of

the divergence of the flux function. There are several methods to develop a well-balanced

scheme that all require that the steady state is known or given. Several attempts were

previously made for designing well-balanced schemes for balance laws [10, 78, 21, 23, 81,

82, 85, 35, 79, 64, 11, 9, 24, 25, 50, 19, 80, 20].

Asymptotic Preserving Schemes: The parameter ε which is the Knudsen number (for

kinetic models), is the ratio of the mean free path and the domain typical length scale

[53]. This parameter pops up in the equations after rescaling, creating a stiff term where

it is located. A similar parameter for the fluid models (Mach number) also appears in the
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equations after rescaling, leaving stiff terms behind. Numerical schemes do not behave well

when such parameter exists. This is because when ε goes to zero it causes very small time

steps. Hence, AP schemes that allow very small values of this parameter become popular in

this area. A numerical scheme is AP if when the parameter goes to zero in the discretized

scheme, it converges to a good discretization of the corresponding limit model. The aim

of AP schemes is to discretize the stiff term of the equation implicitly, which leads to an

Implicit-Explicit (IMEX) discretization of the model. The main advantage of AP schemes

is that their stability and convergence are independent of the parameter.

Stationary Preserving Schemes For schemes such as AP schemes, the solution after

some time reaches a quasi-stationary state, meaning numerically that the difference between

the global equilibrium and the solution after finite time is smaller than machine precision.

Which means the steady solution is not given and is not known. For this reason, more than

well-balancing, we need a discretization that preserves any state that might show up as

time evolves. Thus, it is of interest to have a numerical scheme that maintains stationary

solutions up to machine precision. We call such schemes SP schemes. A scheme is SP if

the following two requirements are satisfied:

• The discrete stationary solution provides a good approximation for the steady state

solution;

• Starting from a discrete stationary solution, the solution of the time evolutionary

problem does not change.

Numerically, one can test that the time evolutionary problem converges to a discrete sta-

tionary solution after finite time, and their difference is smaller than machine precision.

Organization of The Thesis

Chapter 1 provides a background for the topics covered in this thesis with a review of

prior works. In chapter 2, we present one-dimensional (1D) and two-dimensional (2D)

well-balanced central schemes with applications to the Euler and MHD equations with

gravitational source term. Then we present three schemes for kinetic models in chapter 3.

The three schemes are proven to satisfy a common criterion. In chapter 4, an AP scheme

for the isentropic Euler equations with gravitational source term is developed and then

proven under certain conditions to be SP. And finally, we conclude by proposing some

future work.
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Chapter 2

Well-balanced Central Schemes with

the Subtraction Method

2.1 Introduction

As mentioned in the introduction, the first task in my project was to develop a well-

balanced, unstaggered, second-order, finite volume central scheme for the Euler equations

with gravitational source term via a subtraction method [48]. A normal extension was to

apply the obtained scheme to the system of MHD equations with gravitational source term

[49]. The developed numerical schemes avoid solving Riemann problems at the cell inter-

faces and avoid switching between an original and a staggered grid. Their main feature is

that they are capable of preserving any steady state up to machine accuracy by updating

the numerical solution in terms of a relevant given reference solution. The methodology

proposed results in a well-balanced scheme capable of capturing any steady state. In this

work we follow a special reconstruction in the conservative variables that will fulfil the

well-balanced requirement and will allow a proper capture of the steady states. This well-

balanced approach will be blended with the unstaggered central finite volume scheme for

hyperbolic systems of conservation laws [71]. The proposed method follows the reconstruc-

tion method developed by Berberich, Chandrashekar and Klingenberg [10]. It consists of

evolving the error function between the vector of conserved variables and a given steady

state, instead of evolving the vector of conserved variables. Our scheme is then imple-

mented and used to solve classical problems from the recent literature. We consider the

Courant–Friedrichs–Lewy (CFL) convergence condition for our numerical scheme. It en-

forces an upper bound on the time step, otherwise the explicit scheme produces irrelevant

results. In sections 2.2 and 2.3, we present the 1D and 2D schemes for general balance

laws respectively. The discretization is proven to be Total Variation Diminishing (TVD)
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in section 2.4. We apply the developed schemes to the 1D and 2D Euler and then to the

2D MHD system in section 2.5.

2.2 1D Unstaggered Well-balanced FV Central Scheme

In this section we develop a new 1D unstaggered well-balanced central scheme for balance

laws. The proposed method follows the reconstruction method introduced in [10]. Consider

the 1D balance law given byut + f(u)x = S(u, x), x ∈ Ω ⊂ R, t > 0

u(x, 0) = u0(x)
(2.1)

where u is the vector of conserved variables, f(u) is the flux function and S(u, x) is the

source term. We consider for our computational domain Ω an interval of the real axis,

and we partition it using the control cells defined to be the subintervals Ci =
[
xi− 1

2
, xi+ 1

2

]
of equal width ∆x = xi+ 1

2
− xi− 1

2
and centered at the nodes xi. We also define the dual

ghost cells Di+ 1
2
= [xi, xi+1] with centers xi+ 1

2
= xi +

∆x
2
. The main and the staggered 1D

grids are illustrated in figure (2.1). The time-step will be denoted by ∆t, and for a positive

integer n we set tn+1 = tn + ∆t. We assume that the numerical solution un
i at time tn is

x

Ci

[ ]
Di+ 1

2

[ ]
xi−1 xi− 1

2
xi xi+ 1

2
xi+1 xi+ 3

2
xi+2

Figure 2.1: The 1D grid partitioned into control cells Ci =
[
xi− 1

2
, xi+ 1

2

]
and dual cells

Di+ 1
2
= [xi, xi+1] .

known at the nodes xi where un
i is used to approximate the exact solution u(xi, t

n). We

start the derivation of our numerical scheme by first assuming that ũ is a given stationary

solution of system (2.1), and we follow the reconstruction approach [10] as follows. Let

∆u = u− ũ, we substitute u = ∆u+ ũ in the balance law in system (2.1),

(∆u+ ũ)t + f(∆u+ ũ)x = S(∆u+ ũ, x), (2.2)

and taking into account that ũ is a stationary solution, this results in,

(∆u)t + f(∆u+ ũ)x = S(∆u+ ũ, x). (2.3)
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On the other hand, since ũ is a stationary solution of (2.2), then the balance law reduces

to,

f(ũ)x = S(ũ, x) (2.4)

Subtracting (2.4) from (2.3) leads to,

(∆u)t + [f(∆u+ ũ)− f(ũ)]x = S(∆u+ ũ, x)− S(ũ, x). (2.5)

But since S(ũ, x) is a linear functional in terms of the conserved variables, then equation

(2.5) simplifies to,

(∆u)t + [f(∆u+ ũ)− f(ũ)]x = S(∆u, x). (2.6)

Our proposed numerical scheme follows a classical finite volume construction; we define the

piecewise linear interpolants that approximate the exact solution ∆u(x, tn) on the cells Ci

as follows:

Li(x, t
n) = ∆un

i + (x− xi)(∆un
i )

′, ∀x ∈ Ci (2.7)

where (∆un
i )

′ is a limited numerical spatial derivative approximating ∂∆u
∂x

(xi, t
n) obtained

using the (MC-θ) limiter (2.8). The numerical base scheme evolves a piecewise linear

solution Li(x, t), in each cell Ci, that approximates the analytic solution ∆u(x, t) with

∆un
i =

1

∆x

∫
Ci

Li(x, t
n) dx ≈ 1

∆x

∫
Ci

∆u(x, tn) dx.

Before proceeding with the presentation of the numerical scheme we introduce some nota-

tions that will be used throughout the remaining of the chapter. In order to approximate

the spatial numerical derivatives, the (MC-θ) limiter is considered which is defined as

(∆un
i )

′ = minmod

[
θ
∆un

i −∆un
i−1

∆x
,
∆un

i+1 −∆un
i−1

2∆x
, θ

∆un
i+1 −∆un

i

∆x

]
(2.8)

where θ is a parameter that takes any value 1 < θ < 2, while the minmod function is

defined as:

minmod(a, b, c) =

sign(a)min{|a|, |b|, |c|}, if sign(a) = sign(b) = sign(c)

0, Otherwise.
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Next, we integrate (2.6) over the domain Rn
i+ 1

2

= Di+ 1
2
× [tn, tn+1]:

∫∫
Rn

i+1
2

(∆u)t + [f(∆u+ ũ)− f(ũ)]xdR =

∫∫
Rn

i+1
2

S(∆u, x)dR. (2.9)

We apply Green’s formula to the double integral on the left-hand side of equation (2.9),

which allows us to change the double integral into a line integral by the following formula:∫∫
R

(
∂Q

∂x
− ∂P

∂y

)
dxdy =

∮
R

(Pdx+Qdy),

with ∂Q
∂x

= [f(∆u+ ũ)− f(ũ)]x and ∂P
∂y

= −(∆u)t. Equation (2.9) writes as:

∮
∂Rn

i+1/2

[f(∆u+ ũ)− f(ũ)]dt−∆udx =

∫ tn+1

tn

∫ xi+1

xi

S(∆u, x)dxdt, (2.10)

where the boundary of the rectangle Rn
i+1/2 is ∂Rn

i+1/2 = [xi, xi+1] ∪ [tn, tn+1] ∪ [xi+1, xi] ∪
[tn+1, tn] plotted in figure 2.2. Dividing the line integral over the four segments, we get:

x

t

tn

tn+1

xi xi+1

∂Rn
i+1/2

Figure 2.2: The boundary ∂Rn
i+1/2 (dashed) in the space-time plane.
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∫ xi+1

xi

[
[f((∆u+ ũ)(x, tn))− f(ũ(x, tn))]dt−∆u(x, tn)dx

]
+

∫ tn+1

tn

[
[f((∆u+ ũ)(xi+1, t))− f(ũ(xi+1, t))]dt−∆u(xi+1, t)dx

]
+

∫ xi

xi+1

[
[f((∆u+ ũ)(x, tn+1))− f(ũ(x, tn+1))]dt−∆u(x, tn+1)dx

]
+

∫ tn

tn+1

[
[f((∆u+ ũ)(xi, t))− f(ũ(xi, t))]dt−∆u(xi, t)dx

]
=

∫ tn+1

tn

∫ xi+1

xi

S(∆u, x)dxdt (2.11)

Splitting the integrals and rearranging them simplifies equation (2.11)to:

−
∫ xi+1

xi

∆u(x, tn)dx+

∫ tn+1

tn
[f((∆u+ ũ)(xi+1, t))− f(ũ(xi+1, t))]dt

+

∫ xi+1

xi

∆u(x, tn+1)dx−
∫ tn+1

tn
[f((∆u+ ũ)(xi, t))− f(ũ(xi, t))]dt

=

∫ tn+1

tn

∫ xi+1

xi

S(∆u, x)dxdt (2.12)

The following integrals are approximated using second-order quadratures,∫ xi+1

xi

∆u(x, tn)dx = ∆xLi(xi+ 1
2
, tn) = ∆x∆un

i+ 1
2
,

and ∫ xi+1

xi

∆u(x, tn+1)dx = ∆xLi(xi+ 1
2
, tn+1) = ∆x∆un+1

i+ 1
2

.

Finally, the calculations on the left-hand side of equation (2.12) yield,

∆un+1
i+ 1

2

= ∆un
i+ 1

2
− 1

∆x

[∫ tn+1

tn
{f((∆u+ ũ)(xi+1, t))− f((∆u+ ũ)(xi, t))} dt

]

+
∆t

∆x
f(ũ(xi+1))−

∆t

∆x
f(ũ(xi)) +

1

∆x

∫ tn+1

tn

∫ xi+1

xi

S(∆u, x)dxdt. (2.13)

The flux integrals in equation (2.13) are estimated using the midpoint quadrature rule as

follows:
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∫ tn+1

tn
f((∆u+ ũ)(xi, t))dt ≈ f((∆u+ ũ)

n+ 1
2

i )∆t,

∫ tn+1

tn
f((∆u+ ũ)(xi+1, t))dt ≈ f((∆u+ ũ)

n+ 1
2

i+1 )∆t.

Plugging these integrals in equation (2.11), leads to:

∆un+1
i+ 1

2

= ∆un
i+ 1

2
− ∆t

∆x
[f(∆u

n+ 1
2

i+1 + ũi+1)− f(ũi+1)− f(∆u
n+ 1

2
i + ũi) + f(ũi)]

+
1

∆x

∫ tn+1

tn

∫ xi+1

xi

S(∆u, x)dxdt.

(2.14)

The forward projection step of ∆un
i onto the staggered grid is calculated using Taylor

expansion of ∆u(x, tn) in space, using the fact that ∆u(x, tn) is approximated by a linear

function Li(x, t
n) i.e. ∆u(x, tn)≈Li(x, t

n) in the cells of centers xi and xi+1,∫ xi+1

xi

∆u(x, tn)dx =

∫ x
i+1

2

xi

∆u(x, tn)dx+

∫ xi+1

i+ 1
2

∆u(x, tn)dx,

=
∆x

2
Li(xi+ 1

4
, tn) +

∆x

2
Li(xi+ 3

4
, tn),

=
∆x

2

(
∆un

i + (xi+ 1
4
− xi)(∆un

i )
′
)
+

∆x

2

(
∆un

i+1 + (xi+ 3
4
− xi+1)(∆un

i+1)
′
)
,

=
∆x

2

(
∆un

i +∆un
i+1

)
+

∆x2

8

(
(∆un

i )
′ − (∆un

i+1)
′) .

Hence,

∆un
i+ 1

2
=

1

2

(
∆un

i +∆un
i+1

)
+

∆x

8

(
(∆un

i )
′ − (∆un

i+1)
′
)

(2.15)

where (∆un
i )

′
is the numerical derivative of ∆u(xi, t

n) calculated using the MC-θ limiter.

The predicted values ∆u
n+ 1

2
i appearing in equation (2.14) are obtained at the intermediate

time tn+
1
2 using a first-order Taylor expansion in time and the balance law (2.2).

The first-order Taylor expansion in time is:

∆u(x, t) ≈ ∆u(x, a) + ∆t
2
∆ut(x, a), for any a and t.

For a specific point xi,

∆u(xi, t) ≈ ∆u(xi, a) +
∆t
2
∆ut(xi, a).

Let a = tn,

∆u(xi, t) ≈ ∆u(xi, t
n) + ∆t

2
∆ut(xi, t

n),

then let t = tn+
1
2 .
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Hence,

∆u(xi, t
n+ 1

2 ) ≈ ∆u(xi, t
n) +

∆t

2
∆ut(xi, t

n),

∆u
n+ 1

2
i ≈ ∆un

i +
∆t

2
[−[f(∆u+ ũ)− f(ũ)]x|(xi,tn) + [S(∆u, x)]|(xi,tn)].

which can be written as,

∆u
n+ 1

2
i = ∆un

i +
∆t

2

[
−(fn

i )
′

∆x
+

f̃i
′

∆x
+ Sn

i

]
(2.16)

where (fn
i )

′ and f̃i
′
are the spacial numerical derivatives of f = f(∆u + ũ) and f̃ = f(ũ),

respectively. Sn
i is the discretized source term at time tn.

On the other hand, the integral of the source term in (2.14) is discretized using the midpoint

quadrature rule with respect to time and space,∫ tn+1

tn

∫ xi+1

xi

S(∆u, x)dxdt ≈ ∆t

∫ xi+1

xi

S(∆un+ 1
2 , x)dx,

≈ ∆t∆x

S(∆u
n+ 1

2
i ) + S(∆u

n+ 1
2

i+1 )

2

 .

Finally, the projection step of ∆un+1
i+ 1

2

back onto the original grid is calculated using Taylor

expansions in space in the same way the forward projection step (2.15) was computed:

∆un+1
i =

1

2
(∆un+1

i− 1
2

+∆un+1
i+ 1

2

) +
∆x

8
((∆un+1

i− 1
2

)
′ − (∆un+1

i+ 1
2

)
′
). (2.17)

Equation (2.17) gives the solution of the balance law at the next time on the original grid.

The Geometry of the UC scheme and that of the NT scheme is given in figure 2.3. We see

how both schemes avoid dealing with Riemann problems at the interfaces. While the NT

scheme evolves the solution on two grids, the UC scheme evolves the solution on a single

grid.
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x

u

un
i

un
i+1

un+1
i+ 1

2

xi− 1
2

xi xi+ 1
2

xi+1 xi+ 3
2

x

u

un
i−1

un
i

un
i+1

un+1
i− 1

2 un+1
i+ 1

2

un+1
i

xi− 3
2

xi−1 xi− 1
2

xi xi+ 1
2

xi+1 xi+ 3
2

Figure 2.3: Geometry of the 1D NT scheme (left) and of the 1D UC scheme (right).

To complete the presentation of the 1D scheme, we still need to demonstrate that it is

capable of capturing any stationary solution up to machine accuracy. Without any loss of

generality, we assume that the updated solution satisfies un
i = ũi, i.e., ∆un

i = 0 at time

t = tn. Performing one iteration using the proposed numerical scheme, one can show that:

1. ∆u
n+ 1

2
i = 0.

2. ∆un+1
i+ 1

2

= 0.

3. ∆un+1
i = 0.

The proof of 2 and 3 follows immediately after 1 is established. We start by showing 1.

The prediction step (2.16) leads to,

∆u
n+ 1

2
i = ∆un

i +
∆t

2

[
−f ′(∆un

i + ũi)

∆x
+

f ′(ũi)

∆x
+ S(∆un

i , x)

]
. (2.18)

But since ∆un
i = 0, then we obtain,

∆u
n+ 1

2
i =

∆t

2

[
−f ′(ũi)

∆x
+

f ′(ũi)

∆x

]
.

Hence, ∆u
n+ 1

2
i = 0; the proof of points 2 and 3 follows immediately. We conclude that the

updated numerical solution un+1
i remains stationary up to machine precision.

2.3 2D Unstaggered Well-balanced FV Central Scheme

In this section we extend the proposed well-balanced scheme we derived in section 2.2 to

the case of the 2D balance laws, using the reconstruction technique developed in [10]. The
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well-balanced property of the proposed 2D scheme is presented at the end of this section.

We consider the 2D balance law:Ut + F (U)x +G(U)y = S(u, x, y), (x, y) ∈ Ω ⊂ R2, t > 0.

U(x, y, 0) = U0(x, y),
(2.19)

where U is the vector of conserved variables, F (U), G(U) are the fluxes in the x- and

y- directions, respectively, and S(u, x, y) is the source term. We consider a Cartesian

domain decomposition of the computational domain Ω where the control cells are the

rectangles Ci,j =
[
xi− 1

2
, xi+ 1

2

]
×
[
yj− 1

2
, yj+ 1

2

]
centered at the nodes (xi, yj). We define

the dual staggered cells Di+ 1
2
,j+ 1

2
= [xi, xi+1] × [yj, yj+1] centered at (xi+ 1

2
, yj+ 1

2
) where

xi+ 1
2
= xi +

∆x
2

and yj+ 1
2
= yj +

∆y
2
, where ∆x = xi+ 1

2
− xi− 1

2
and ∆y = yj+ 1

2
− yj− 1

2
. The

visualization of the 2D grids is given in figure 2.4. Before proceeding with the derivation of

(xi− 1
2
, yj− 1

2
)

(xi, yj)

(xi−1, yj+1) (xi+1, yj+1)

(xi+1, yj−1)(xi−1, yj−1)

Figure 2.4: The cells of the main grid Ci,j (blue cell) and of the staggered grid
Di− 1

2
,j− 1

2
(green cell).

the 2D numerical method, and for convenience, we introduce the average value notations:

ρi,j+ 1
2
=

ρi,j + ρi,j+1

2
, ρi+ 1

2
,j =

ρi,j + ρi+1,j

2
, ρi,(j) =

ρi,j+ 1
2
+ ρi,j− 1

2

2

ρ(i),j =
ρi+ 1

2
,j + ρi− 1

2
,j

2
, [[ρ]]i,j+ 1

2
= ρi,j+1 − ρi,j

[[ρ]]i+ 1
2
,j = ρi+1,j − ρi,j, [[ρ]]i,(j) = ρi,j+ 1

2
− ρi,j− 1

2
, [[ρ]](i),j = ρi+ 1

2
,j − ρi− 1

2
,j.

We follow the same strategy as in section 2.2; we assume that Ũ is a given stationary

solution of system (2.19) and we define ∆U = U− Ũ. We substitute U = ∆U+ Ũ in the
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balance law (2.19), we obtain:

(∆U)t + F (∆U+ Ũ)x +G(∆U+ Ũ)y = S(∆U+ Ũ, x, y). (2.20)

On the other hand, since Ũ is a stationary solution, then balance law in (2.19) reduces to

F (Ũ)x +G(Ũ)y = S(Ũ, x, y). (2.21)

Subtracting equation (2.21) from equation (2.20), we obtain

(∆U)t + [F (∆U+ Ũ)−F (Ũ)]x + [G(∆U+ Ũ)−G(Ũ)]y = S(∆U+ Ũ, x, y)− S(Ũ, x, y).

(2.22)

Using the fact that the source term S(u, x, y) in equation (2.19) is linear in terms of the

conserved variables, then equation (2.22) reduces to

(∆U)t + [F (∆U+ Ũ)− F (Ũ)]x + [G(∆U+ Ũ)−G(Ũ)]y = S(∆U, x, y). (2.23)

The proposed numerical scheme consists of evolving the balance law in equation (2.23)

instead on evolving the balance law in system (2.19). The numerical solution U will be

then obtained using the formula U = ∆U+ Ũ. The numerical scheme that we shall use to

evolve ∆U(x, y, t) follows a classical finite volume approach; it evolves a piecewise linear

function Li,j(x, y, t) defined on the control cells Ci,j and used to approximate the analytic

solution ∆U(x, y, t) of system (2.19). Without any loss of generality we can assume that

∆Un
i,j is known at time tn and we define Li,j(x, y, t

n) on the cells Ci,j as follows.

Li,j(x, y, t
n) = ∆Un

i,j + (x− xi)
(∆Un

i,j)
′

∆x
+ (y − yj)

(∆Un
i,j)

′

∆y
, ∀(x, y) ∈ Ci,j,

where
(∆Un

i,j)
′

∆x
and

(∆Un
i,j)

′

∆y
are limited numerical gradients approximating ∂∆U

∂x
and ∂∆U

∂y
,

respectively, at the point (xi, yj, t
n). The MC-θ limiter (2.8) is used to avoid spurious

oscillations. Next, we integrate the balance law (2.23) on the rectangular box Rn
i+ 1

2
,j+ 1

2

=

Di+ 1
2
,j+ 1

2
× [tn, tn+1],

∫∫∫
R

i+1
2 ,j+1

2

(∆U)t + [F (∆U+ Ũ)− F (Ũ)]x + [G(∆U+ Ũ)−G(Ũ)]ydR

=

∫∫∫
R

i+1
2 ,j+1

2

S(∆U, x, y)dR. (2.24)
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We use the fact that ∆U is approximated using piecewise linear interpolants similar to

Li,j on the cells Ci,j; following the derivation of the unstaggered central schemes in [71],

equation (2.24) is rewritten as:

∆Un+1
i+ 1

2
,j+ 1

2

= ∆Un
i+ 1

2
,j+ 1

2
− 1

∆x∆y

∫∫∫
R

i+1
2 ,j+1

2

[F (∆U+ Ũ)− F (Ũ)]x

+ [G(∆U+ Ũ)−G(Ũ)]ydR +
1

∆x∆y

∫∫∫
R

i+1
2 ,j+1

2

S(∆U, x, y)dR. (2.25)

For the flux integrals, we apply the divergence theorem that changes the volume integral

into surface integral. Equation (2.25) becomes then:

∆Un+1
i+ 1

2
,j+ 1

2

= ∆Un
i+ 1

2
,j+ 1

2
− 1

∆x∆y

∫ tn+1

tn

∫
∂Rxy

[F (∆U+ Ũ)− F (Ũ)] · nxdAdt

− 1

∆x∆y

∫ tn+1

tn

∫
∂Rxy

[G(∆U+ Ũ)−G(Ũ)] ·nydAdt+
1

∆x∆y

∫∫∫
R

i+1
2 ,j+1

2

S(∆U, x, y)dR

(2.26)

where Rxy = [xi, xi+1]× [yi, yi+1], and n = (nx, ny) is the outward pointing unit normal at

each point on the boundary ∂Rxy(the boundary of Rxy), see figure 2.5.

Next, we approximate the integrals I =
∫ tn+1

tn

∫
∂Rxy

[F (∆U + Ũ) − F (Ũ)].nxdxdydt and

J =
∫ tn+1

tn

∫
∂Rxy

[G(∆U+ Ũ)−G(Ũ)].nydxdydt.

(xi, yj) (xi+1, yj)

(xi+1, yj+1)(xi, yj+1)
n = (0, 1)

n = (0,−1)

n = (1, 0)n = (−1, 0)

Figure 2.5: The boundary ∂Rxy and the outward pointing unit vector n = (nx, ny) on
each part of the boundary.
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I =

∫ tn+1

tn

∫
∂Rxy

[F (∆U+ Ũ)− F (Ũ)] · nxdxdydt

=

∫ tn+1

tn

∫ yj+1

yj

[F ((∆U+ Ũ)(xi+1, y, t))− F (Ũ(xi+1, y, t))] · 1dy

+

∫ tn+1

tn

∫ xi

xi+1

[F ((∆U+ Ũ)(x, yj+1, t))− F (Ũ(x, yj+1, t))] · 0dx

+

∫ tn+1

tn

∫ yj

yj+1

[F ((∆U+ Ũ)(xi, y, t))− F (Ũ(xi, y, t))] · −1dy

+

∫ tn+1

tn

∫ xi+1

xi

[F ((∆U+ Ũ)(x, yj, t))− F (Ũ(x, yj, t))] · 0dx

An approximation of each integral using the midpoint rule leads to:

I =
∆t∆y

2

[
[F ((∆U+ Ũ)(xi+1, yj, t

n+ 1
2 ))− F (Ũ(xi+1, yj, t

n+ 1
2 ))]

+ [F ((∆U+ Ũ)(xi+1, yj+1, t
n+ 1

2 ))− F (Ũ(xi+1, yj+1, t
n+ 1

2 ))]
]

− ∆t∆y

2

[
[F ((∆U+ Ũ)(xi, yj, t

n+ 1
2 ))− F (Ũ(xi, yj, t

n+ 1
2 ))]

+ [F ((∆U+ Ũ)(xi, yj+1, t
n+ 1

2 ))− F (Ũ(xi, yj+1, t
n+ 1

2 ))]
]
.

Hence,

I =
∆t∆y

2

[
[F ((∆U+ Ũ)

n+ 1
2

i+1,j)− F (Ũ
n+ 1

2

i+1,j)] + [F ((∆U+ Ũ)
n+ 1

2
i+1,j+1)− F (Ũ

n+ 1
2

i+1,j+1)]

− [F ((∆U+ Ũ)
n+ 1

2
i,j )− F (Ũ

n+ 1
2

i,j )]− [F ((∆U+ Ũ)
n+ 1

2
i,j+1)− F (Ũ

n+ 1
2

i,j+1)]
]
.

Similar approximation for J implies,

J =
∆t∆x

2

[
[G((∆U+ Ũ)

n+ 1
2

i,j+1)−G(Ũ
n+ 1

2

i,j+1)] + [G((∆U+ Ũ)
n+ 1

2
i+1,j+1)−G(Ũ

n+ 1
2

i+1,j+1)]

− [G((∆U+ Ũ)
n+ 1

2
i,j )−G(Ũ

n+ 1
2

i,j )]− [G((∆U+ Ũ)
n+ 1

2
i+1,j)−G(Ũ

n+ 1
2

i+1,j)]
]
.
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Hence equation (2.26) becomes,

∆Un+1
i+ 1

2
,j+ 1

2

= ∆Un
i+ 1

2
,j+ 1

2

− ∆t

2∆x

[
[F ((∆U+ Ũ)

n+ 1
2

i+1,j)− F (Ũ
n+ 1

2

i+1,j)] + [F ((∆U+ Ũ)
n+ 1

2
i+1,j+1)− F (Ũ

n+ 1
2

i+1,j+1)]

− [F ((∆U+ Ũ)
n+ 1

2
i,j )− F (Ũ

n+ 1
2

i,j )]− [F ((∆U+ Ũ)
n+ 1

2
i,j+1)− F (Ũ

n+ 1
2

i,j+1)]
]

− ∆t

2∆y

[
[G((∆U+ Ũ)

n+ 1
2

i,j+1)−G(Ũ
n+ 1

2

i,j+1)] + [G((∆U+ Ũ)
n+ 1

2
i+1,j+1)−G(Ũ

n+ 1
2

i+1,j+1)]

− [G((∆U+ Ũ)
n+ 1

2
i,j )−G(Ũ

n+ 1
2

i,j )]− [G((∆U+ Ũ)
n+ 1

2
i+1,j)−G(Ũ

n+ 1
2

i+1,j)]
]

+
1

∆x∆y

∫∫∫
R

i+1
2 ,j+1

2

S(∆U, x, y)dR (2.27)

The integral of the source term is being approximated using the midpoint quadrature rule

both in time and space:∫∫∫
R

i+1
2 ,j+1

2

S(∆U, x, y)dR ≈ ∆t∆x∆yS(∆U
n+ 1

2
i,j ) + S(∆U

n+ 1
2

i+1,j) + S(∆U
n+ 1

2
i,j+1) + S(∆U

n+ 1
2

i+1,j+1)

4

 . (2.28)

The forward projection step in equation (??) consists of projecting the solution at time tn

onto the staggered grid. It is performed using linear interpolations in two space dimensions

in addition to Taylor expansions in space; we obtain:

∆Un
i+ 1

2
,j+ 1

2
=

1

2
(∆U

n

i+ 1
2
,j +∆U

n

i,j+ 1
2
)

− ∆x

16
([[∆Un,x]]i+ 1

2
,j + [[∆Un,x]]i+ 1

2
,j+1)

− ∆y

16
([[∆Un,y]]i,j+ 1

2
+ [[∆Un,y]]i+1,j+ 1

2
). (2.29)

Here, ∆Un,x and ∆Un,y are the spatial partial derivatives of ∆Un that are approximated

by a limited numerical gradient using the (MC-θ) limiter (2.8).
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Finally, the evolution step (2.27) at time tn+1 on the staggered nodes can be written as,

∆Un+1
i+ 1

2
,j+ 1

2

= ∆Un
i+ 1

2
,j+ 1

2

− ∆t

2
[Dx

+F (∆U
n+ 1

2
i,j + Ũi,j)−Dx

+F (Ũi,j) +Dx
+F (∆U

n+ 1
2

i,j+1 + Ũi,j+1)

−Dx
+F (Ũi,j+1)]

− ∆t

2
[Dy

+G(∆U
n+ 1

2
i,j + Ũi,j)−Dy

+G(Ũi,j) +Dy
+F (∆U

n+ 1
2

i+1,j + Ũi+1,j)

−Dy
+G(Ũi+1,j)]

+ ∆t.S(∆U
n+ 1

2
i,j ,∆U

n+ 1
2

i+1,j,∆U
n+ 1

2
i,j+1,∆U

n+ 1
2

i+1,j+1). (2.30)

Here Dx
+ and Dy

+ are the forward differences given by,

Dx
+F (Ui,j) =

F (Ui+1,j)−F (Ui,j)

∆x
, Dy

+F (Ui,j) =
F (Ui,j+1)−F (Ui,j)

∆y
.

The predicted values in equation (2.30) are generated at time tn+
1
2 using a first order Taylor

expansion in time in addition to the balance law (2.19):

∆U
n+ 1

2
i,j = ∆Un

i,j +
∆t

2

[
−
(F n

i,j)
′

∆x
+

F̃ ′
i,j

∆x
−

(Gn
i,j)

′

∆y
+

G̃′
i,j

∆y
+ Sn

i,j

]
, (2.31)

where
(Fn

i,j)
′

∆x
,
F̃ ′
i,j

∆x
,
(Gn

i,j)
′

∆y
and

G̃′
i,j

∆y
denote the approximate spatial partial of F̃ = F (Ũ), F =

F (∆U + Ũ), G̃ = G(Ũ), and G = G(∆U + Ũ), respectively. Here also we limit the spatial

numerical derivatives using the MC-θ limiter to avoid spurious oscillations.

Finally we apply a back projection step similar to the one in (2.29). In order to retrieve

the solution at the time tn+1 on the original cells Ci,j, we obtain

∆Un+1
i,j =

1

2
(∆U

n+1

i,j− 1
2
+∆U

n+1

i,j+ 1
2
)

− ∆x

16
([[∆Un+1,x]](i),j− 1

2
+ [[∆Un+1,x]](i),j+ 1

2
)

− ∆y

16
([[∆Un+1,y]]i− 1

2
,(j) + [[∆Un+1,y]]i+ 1

2
,(j)), (2.32)

where ∆Un+1,x
i,j and ∆Un+1,y

i,j denote the spatial partial derivatives of the numerical solution

obtained at time tn+1 and node (xi, yj) approximated using a limited numerical gradient.

To complete the presentation of the numerical scheme, we need to verify the well-balanced

property of the proposed scheme and to show that it is capable of maintaining stationary

solutions of the Euler system with gravitational source term.

Suppose that the numerical solution obtained at time t = tn satisfies Un
i,j = Ũi,j, i.e.,
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∆Un
i,j = 0. Performing one iteration using the proposed numerical scheme, one can show

that:

1. ∆U
n+ 1

2
i,j = 0.

2. ∆Un+1
i+ 1

2
,j+ 1

2

= 0.

3. ∆Un+1
i,j = 0.

In fact, it is straight forward to establish 2 and 3 once 1 is established. We will present the

proof of 1 only.

The prediction step (2.31) leads to

∆U
n+ 1

2
i,j = ∆Un

i,j +
∆t

2

[
−

F ′(∆Un
i,j + Ũi,j)

∆x
+

F ′(Ũi,j)

∆x

−
G′(∆Un

i,j + Ũi,j)

∆y
+

G′(Ũi,j)

∆y
+ S(∆Un

i,j, x, y)

]
. (2.33)

But since ∆Un
i,j = 0, then we obtain,

∆U
n+ 1

2
i,j =

∆t

2

[
−F ′(Ũi,j)

∆x
+

F ′(Ũi,j)

∆x
− G′(Ũi,j)

∆y
+

G′(Ũi,j)

∆y

]
.

Hence, ∆U
n+ 1

2
i,j = 0. Therefore, we conclude that the updated numerical solution remains

stationary up to machine precision.

2.4 TVD Property of the Proposed Numerical Scheme Applied

to Scalar Conservation Law

In this section we establish the Total Variation Diminishing (TVD) property of our proposed

numerical schemes. To prove that the scheme is TVD , one needs to prove that TV (u(t+

∆t)) ≤ TV (u(t)).

Let the scalar conservation law,

ut + f(u)x = 0. (2.34)
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As in (2.1) and (2.19), we will discretize the equation,

∆ut + h(∆u)x = 0, (2.35)

where ∆u = u− ũ and h(∆u) = f(∆u+ ũ)−f(ũ) and ũ a time independent reference solu-

tion. Using our unstaggered central scheme, the numerical solution of the scalar equation

(2.35) is updated at time tn+1 as follows: First, we apply a forward projection step,

∆un
i+ 1

2
=

1

2

(
∆un

i +∆un
i+1

)
+

∆x

8

(
(∆un

i )
′
−
(
∆un

i+1

)′)
, (2.36)

Then, we predict the solution values at time tn+
1
2 with the aid of the predictor step,

∆u
n+ 1

2
i = ∆un

i −
∆t

2
[(hn

i )
′
]. (2.37)

Next, we apply the time evolution step

∆un+1
i+ 1

2

= ∆un
i+ 1

2
− λ

[
h(∆u

n+ 1
2

i+1 )− h(∆u
n+ 1

2
i )

]
. (2.38)

Finally, we apply the backward projection step

∆un+1
i =

1

2

(
∆un+1

i− 1
2

+∆un+1
i+ 1

2

)
+

∆x

8

((
∆un+1

i− 1
2

)′

−
(
∆un+1

i+ 1
2

)′)
. (2.39)

Theorem: 1 Assume that the numerical spatial derivatives be chosen as,

0 ≤ ∆u
′

i.sgn(∆ui+1 −∆ui) ≤ Cst∆u.

∣∣∣∣minmod

(
∆ui+1 −∆ui

∆x
,
∆ui −∆ui−1

∆x

)∣∣∣∣ ,
0 ≤ h

′

i.sgn(∆ui+1 −∆ui) ≤ Csth.

∣∣∣∣minmod

(
∆ui+1 −∆ui

∆x
,
∆ui −∆ui−1

∆x

)∣∣∣∣ ,
with Cst∆u = α and the following CFL condition holds,

λ.max|a(ui)| ≤ β

where

β = λ
Csth
Cst∆u

≤
√
4 + 4α− α2 − 2

2α
.

and α < 4 (for β > 0). Then the scheme satisfies the TVD property.
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Proof: Inspired by the TVD proof in [57] and [39], one can say that it is sufficient to

prove that |Ai| ≤ 1
2
and |Ci+ 1

2
| ≤ 1

2
with Ai =

∆x
8

((
∆un+1

i− 1
2

)′

−
(
∆un+1

i+1
2

)′)
(
∆un+1

i+1
2

−∆un+1

i− 1
2

) and Ci+ 1
2

=

λ

[
h(∆u

n+1
2

i+1 )−h(∆u
n+1

2
i )

]
−∆x

8

(
(∆un

i )
′
−(∆un

i+1)
′)

∆un
i+1−∆un

i
.

First, we show that |Ai| ≤ 1
2
,

∆x

8

∣∣∣∣∣∣∣
(
∆un+1

i− 1
2

)′

−
(
∆un+1

i+ 1
2

)′

(
∆un+1

i+ 1
2

−∆un+1
i− 1

2

)
∣∣∣∣∣∣∣

≤ ∆x

8
max


∣∣∣∣∣∣∣

(
∆un+1

i− 1
2

)′

(
∆un+1

i+ 1
2

−∆un+1
i− 1

2

)
∣∣∣∣∣∣∣ ,
∣∣∣∣∣∣∣

(
∆un+1

i+ 1
2

)′

(
∆un+1

i+ 1
2

−∆un+1
i− 1

2

)
∣∣∣∣∣∣∣
 ≤ α

8
≤ 1

2
. (2.40)

Next, we show that |Ci+ 1
2
| ≤ 1

2
,

∣∣∣∣∣∣
λ
[
h(∆u

n+ 1
2

i+1 )− h(∆u
n+ 1

2
i )

]
− ∆x

8

(
(∆un

i )
′
−
(
∆un

i+1

)′)
∆un

i+1 −∆un
i

∣∣∣∣∣∣
≤ λ

∣∣∣∣∣∣h(∆u
n+ 1

2
i+1 )− h(∆u

n+ 1
2

i )

∆un
i+1 −∆un

i

∣∣∣∣∣∣+ ∆x

8

∣∣∣∣∣(∆un
i )

′
−
(
∆un

i+1

)′
∆un

i+1 −∆un
i

∣∣∣∣∣
≤ λ

∣∣∣∣∣∣h(∆u
n+ 1

2
i+1 )− h(∆u

n+ 1
2

i )

∆u
n+ 1

2
i+1 −∆u

n+ 1
2

i

∣∣∣∣∣∣ .
∣∣∣∣∣∣∆u

n+ 1
2

i+1 −∆u
n+ 1

2
i

∆un
i+1 −∆un

i

∣∣∣∣∣∣+ ∆x

8

∣∣∣∣∣(∆un
i )

′
−
(
∆un

i+1

)′
∆un

i+1 −∆un
i

∣∣∣∣∣
(2.41)

From the CFL condition, one concludes that,

λ

∣∣∣∣∣∣h(∆u
n+ 1

2
i+1 )− h(∆u

n+ 1
2

i )

∆u
n+ 1

2
i+1 −∆u

n+ 1
2

i

∣∣∣∣∣∣ ≤ β. (2.42)

Next, from the predictor step ∆u
n+ 1

2
i , the second absolute value to the right-hand side of
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inequality (2.41) is bounded by∣∣∣∣∣∣∆u
n+ 1

2
i+1 −∆u

n+ 1
2

i

∆un
i+1 −∆un

i

∣∣∣∣∣∣ =
∣∣∣∣∣∆un

i+1 − ∆t
2
h

′
i+1 −∆un

i +
∆t
2
h

′
i

∆un
i+1 −∆un

i

∣∣∣∣∣
=

∣∣∣∣∣∆un
i+1 −∆un

i − ∆t
2
(h

′
i+1 − h

′
i)

∆un
i+1 −∆un

i

∣∣∣∣∣
≤ 1 +

∆t

2

∣∣∣∣∣ h
′
i+1 − h

′
i

∆un
i+1 −∆un

i

∣∣∣∣∣ ≤ 1 +
∆t

2
max

(∣∣∣∣∣ h
′
i+1

∆un
i+1 −∆un

i

∣∣∣∣∣ ,
∣∣∣∣ h

′
i

∆un
i+1 −∆un

i

∣∣∣∣
)

≤ 1 +
λ

2
Csth ≤ 1 +

αβ

2
. (2.43)

Finally, we have

∆x

8

∣∣∣∣∣(∆un
i )

′
−
(
∆un

i+1

)′
∆un

i+1 −∆un
i

∣∣∣∣∣ ≤ ∆x

8
max

(∣∣∣∣∣
(
∆un

i+1

)′
∆un

i+1 −∆un
i

∣∣∣∣∣ ,
∣∣∣∣∣ (∆un

i )
′

∆un
i+1 −∆un

i

∣∣∣∣∣
)

≤ α

8
. (2.44)

Performing the following term-by-term operations, (2.42)×(2.43)+(2.44) results in,

∣∣∣∣∣∣
λ
[
h(∆u

n+ 1
2

i+1 )− h(∆u
n+ 1

2
i )

]
− ∆x

8

(
(∆un

i )
′
−
(
∆un

i+1

)′)
∆un

i+1 −∆un
i

∣∣∣∣∣∣
≤ β(1 +

1

2
αβ) +

1

8
α ≤ 1

2
, (2.45)

This follows from the definition of β, and we conclude that,

|Ci+ 1
2
| ≤ 1

2
. (2.46)
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The total variation in the updated solution is now,

TV (∆u(t+∆t)) =
∑
i

|∆ui+1(t+∆t)−∆ui(t+∆t)| ,

≤
∑
i

∣∣∣∆un+1
i+ 3

2

−∆un+1
i+ 1

2

∣∣∣ ∣∣∣∣12 + Ai+1

∣∣∣∣+ ∣∣∣∆un+1
i+ 1

2

−∆un+1
i− 1

2

∣∣∣ ∣∣∣∣12 − Ai

∣∣∣∣ ,
=
∑
i

∣∣∣∆un+1
i+ 1

2

−∆un+1
i− 1

2

∣∣∣ ,
≤
∑
i

∣∣∣∆un
i+1 −∆un

i

∣∣∣∣∣∣1
2
− Ci+ 1

2

∣∣∣+ ∣∣∣∆un
i+1 −∆un

i

∣∣∣∣∣∣1
2
+ Ci− 1

2

∣∣∣,
=
∑
i

∣∣∣∆un
i+1 −∆un

i

∣∣∣ =∑
i

|∆ui+1(t)−∆ui(t)| = TV (∆u(t)),

here we followed a re-indexing step twice. We conclude that

TV (u(t+∆t))− TV (u(t)) = TV (∆u(t+∆t) + ũ)− TV (∆u(t) + ũ),

≤ TV (∆u(t+∆t)) + TV (ũ)− TV (∆u(t))− TV (ũ),

= TV (∆u(t+∆t))− TV (∆u(t)) ≤ 0.

Hence,

TV (u(t+∆t)) ≤ TV (u(t)).

□

Theorem 1 states that the scheme is TVD in the scalar case, which assures, according to

the Lax-Wendroff theorem [54] , the convergence of the scheme to a weak solution of the

conservation law in the scalar case.

2.5 Numerical Results

In this section, we implement the proposed well-balanced numerical schemes and use them

to solve classical problems from the recent literature. The main property of the proposed

schemes will be tested when we consider numerical experiments featuring stationary solu-

tions. In all test cases, we will consider an ideal gas with γ = 1.4 and a parameter value

θ = 1.5 for the limiter. The CFL condition is set to 0.485.
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2.5.1 Application to the 1D Euler system with gravitational source term

2.5.1.1 The model

The 1D Euler system with gravitational source term is given by:ut + f(u)x = S(u, x), x ∈ Ω ⊂ R, t > 0.

u(x, 0) = u0(x),
(2.47)

where

u =

 ρ

ρu

E

 , f(u) =

 ρu

ρu2 + p

(E + p)u

 , S(u) =

 0

−ρϕx

−ρuϕx

 .

Here, ρ is the fluid density, u is the velocity, p is the pressure and E = 1
2
ρu2 + p

γ−1
is the

non-gravitational energy which includes the kinetic and internal energy of the fluid. The

gravitational potential ϕ = ϕ(x) is a given function and γ is the ratio of specific heats. In

the absence of the gravitational source term, system (2.47) reduces to a hyperbolic system

of conservation laws with a complete set of real eigenvalues and a corresponding set of

linearly independent eigenvectors.

2.5.1.2 1D isothermal equilibrium

We start our numerical experiments by verifying that the numerical scheme is capable of

preserving any steady state at the discrete level. We consider for our first test case the

isothermal equilibrium problem with a linear gravitational field ϕx = g = 1 previously

considered in [78]. The numerical solution is computed on 200 grid points of the interval

[0,1]. The final time is t = 0.25. The equilibrium at the PDE level is defined such that,

ut = 0. The isothermal equilibrium state is given by:

ρ(x) = ρ0exp(−
ρ0g

p0
x),

u(x) = 0,

p(x) = p0exp(−
ρ0g

p0
x).

The above formulas for ρ, u, and p ensure that ut = 0 at the PDE level. However, we need

to prove that un+1 = un, in order to prove that the equilibrium is preserved numerically.

Here we set ρ0 = 1, p0 = 1. The reference solution ũ chosen in this experiment is exactly
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the isothermal equilibrium state. The results are illustrated in figure 2.6 where we plot

the numerical solution at t = 0.25 and we compare it to the exact solution. This figure

shows that the equilibrium is exactly preserved and a perfect match between the computed

solution and the exact one is observed. Note that in [78], this equilibrium needed a very

specific well-balanced strategy to be preserved. To test the ability of the scheme to capture

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 x

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

Numerical solution

Exact solution

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 x

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

 
u

Numerical solution

Exact solution

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 x

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

 E

Numerical solution

Exact solution

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 x

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 P

Numerical solution

Exact solution

Figure 2.6: 1D isothermal equilibrium: density (top left), momentum (top right), energy
(bottom left), pressure (bottom right) at time t = 0.25.

perturbations around the equilibrium, a small perturbation is added to the initial pressure.

Hence, it is now given as:

p(x) = p0exp(−
ρ0g

p0
x) + ηexp(−100

ρ0g

p0
(x− 0.5)2),

where η = 0.01. The perturbation will be calculated at each time by the following formula,

k(x) = p(x)− p0exp(−
ρ0g

p0
x).
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In figure 2.7 we plot the perturbation k obtained at time t = 0.25 and we compare it to

the initial perturbation on 200 grid points. Outflow boundary conditions are applied. The

plots show that the proposed numerical scheme is capable of capturing small perturbations.

The order of convergence of the proposed numerical scheme is calculated using the L1-norm

for the density, pressure and the energy components and the obtained results are reported

in Table.2.1.
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Figure 2.7: 1D isothermal equilibrium: profile of the initial perturbation (dashed curve)
and the perturbation at the final time t = 0.25 (dotted curve).

N L1-error ρ Order L1-error p Order L1-error E Order

200 2.7651× 10−6 — 3.7978× 10−6 — 9.9488× 10−6 —

400 7.3147× 10−7 1.89 1.0297× 10−6 1.88 2.5750× 10−6 1.95

800 1.7659× 10−7 2.05 2.4007× 10−7 2.10 6.0035× 10−7 2.19

Table 2.1: 1D isothermal equilibrium: L1-error and order of convergence.

2.5.1.3 1D moving equilibrium

Next, we verify that the proposed numerical scheme is capable of preserving moving equi-

librium states. We consider the test case previously presented in [80]. A nonlinear gravita-

tional field ϕ(x) = exp(x)(−exp(x)+ γ(exp(−γx)) is considered. The numerical solution is

computed at time t = 10 on 200 grid points of the interval [0,1]. The moving equilibrium
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state is given by:

ρ(x) = ρ0exp(−
ρ0g

p0
x),

u(x) = exp(x),

p(x) = exp(−ρ0g

p0
x)γ.

ρ0 = 1 and p0 = 1 are given. The considered reference solution in this case is the equilibrium

state itself. Figure 2.8 shows that the density, velocity, energy and pressure are exactly

preserved at time t = 10. The curves are exactly on top of each other which ensures that

the steady state is perfectly preserved with zero error.
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Figure 2.8: 1D moving equilibrium: profile of the density (top left), velocity (top right),
energy (bottom left), and pressure (bottom right) obtained at time t = 10.
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2.5.1.4 1D shock tube problem

We consider for our next experiment the shock tube problem with a linear gravitational

field with ϕx = g = 1, which was previously considered in [78]. The computational domain

is the interval [0,1]. Reflecting boundary conditions are considered. The reference solution

ũ considered in this experiment is the isothermal equilibrium. Notice here that we are

not solving steady state problems, so any other smooth solution could be considered. The

initial conditions are given by:

ρ(x) =

1, if x ≤ 0.5,

0.125, otherwise,

u(x) = 0,

p(x) =

1, if x ≤ 0.5,

0.1, otherwise.

The numerical solution is computed on 100, 200, and 400 grid points at the final time

t = 0.2. The obtained results are reported in figure 2.9, where we show the profile of the

density, velocity, energy, and pressure. The obtained results are in perfect agreement with

those appearing in the literature.

2.5.2 Application to the 2D Euler system with gravitational source term

2.5.2.1 The model

The 2D Euler system with gravitational source term is given by:Ut + F (U)x +G(U)y = S(U), (x, y) ∈ Ω ⊂ R2, t > 0.

U(x, y, 0) = U0(x, y),
(2.48)

where

U =


ρ

ρu1

ρu2

E

 , F (U) =


ρu1

ρu2
1 + p

ρu1u2

(E + p)u1

 , G(U) =


ρu2

ρu1u2

ρu2
2 + p

(E + p)u2

 ,
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Figure 2.9: 1D shock tube problem: density (top left), velocity (top right), energy (bottom
left), pressure (bottom right) at time t = 0.2.

and

S(U) =


0

−ρϕx

−ρϕy

−ρuϕx − ρvϕy

 .

Here ρ is the fluid density, u1 and u2 are the velocity components in the x- and y- directions,

respectively, p is the pressure and E = 1
2
ρ(u2

1 + u2
2) +

p
γ−1

is the non-gravitational energy

which includes the kinetic and internal energy of the fluid. The gravitational potential

ϕ = ϕ(x, y) is a given function and γ is the ratio of specific heats. Similar to the 1D

case, and in absence of the gravitational source term, the system reduces to a hyperbolic

system of conservation laws with real eigenvalues and a complete set of linearly independent

eigenvectors.

In this section we apply the 2D well-balanced unstaggered central scheme we developed

29



in section 2.3 and we solve the classical 2D Euler system with gravitational source term

featuring stationary solutions and other equilibrium states.

The discretization of the intergral of the source term,

S(∆U
n+ 1

2
i,j ,∆U

n+ 1
2

i+1,j,∆U
n+ 1

2
i,j+1,∆U

n+ 1
2

i+1,j+1) = (S1, S2, S3, S4)

with

S1 = 0.

S2 = −g1[
(∆ρ)

n+ 1
2

i+1,j+1 + (∆ρ)
n+ 1

2
i+1,j + (∆ρ)

n+ 1
2

i,j+1 + (∆ρ)
n+ 1

2
i,j

4
].

S3 = −g2[
(∆ρ)

n+ 1
2

i+1,j+1 + (∆ρ)
n+ 1

2
i+1,j + (∆ρ)

n+ 1
2

i,j+1 + (∆ρ)
n+ 1

2
i,j

4
].

S4 = −g1[
(∆ρu)

n+ 1
2

i+1,j+1 + (∆ρu)
n+ 1

2
i+1,j + (∆ρu)

n+ 1
2

i,j+1 + (∆ρu)
n+ 1

2
i,j

4
]

− g2[
(∆ρv)

n+ 1
2

i+1,j+1 + (∆ρv)
n+ 1

2
i+1,j + (∆ρv)

n+ 1
2

i,j+1 + (∆ρv)
n+ 1

2
i,j

4
].

For ϕx = g1 and ϕy = g2.

2.5.2.2 2D isothermal equilibrium

The first numerical experiment we consider aims to validate the well-balanced property of

the proposed 2D scheme. We consider the isothermal equilibrium state problem [20, 80,

78]. This experiment is a direct extension of the 1D experiment previously considered in

subsection 2.5.1.2. The initial conditions correspond to a stationary state and are given

by:

ρ(x, y) = ρ0exp(−
ρ0
p0
(g1x+ g2y)),

u1(x, y) = 0,

u2(x, y) = 0,

p(x, y) = p0exp(−
ρ0
p0
(g1x+ g2y).

(2.49)

ρ0 = 1.21 and p0 = 1 are given. The gravitational potential is linear with ϕx = g1 = 1

and ϕy = g2 = 1. The computational domain is the square [0, 1]2 discretized using 60× 60

grid points. We apply the 2D scheme and compute the numerical solution at the final time
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t = 0.25. Figure 2.10 shows the profile of the density and the energy.
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Figure 2.10: 2D isothermal equilibrium: density (left), energy (right) obtained at the
final time t = 0.25.

2.5.2.3 Unidirectional equilibrium perturbation

In this test case we extend the 1D perturbation problem to the 2D case where both the

equilibrium state and the perturbation are initially set along the x or the y-axis. Whenever

set in the x-direction [78], the equilibrium state and the pressure perturbation are given

by:

ρ(x, y) = exp(−x)),

u1(x, y) = 0,

u2(x, y) = 0,

p(x, y) = exp(−x) + ηexp(−100(x− 0.5)2).

Similar initial data are defined if the perturbation is set in the y-direction. The perturbation

will be calculated at each time by the following formula,

k(x, y) = p(x, y)− exp(−x).

The numerical solution is computed at time t = 0.25 using our proposed numerical scheme

with η = 0.001. The obtained results are reported in figure 2.12. The observed profiles

are similar to those of the 1D case, as well as those reported in the literature. Figure

2.11 shows a comparison between cross sections of the pressure of the 2D problem (with

perturbations set in the x- and y- directions) and the corresponding one of the 1D problem.
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All three curves are in perfect match. The L1-norm for the density component and the

order of convergence of the numerical scheme are reported in table 2.2.
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Figure 2.11: Unidirectional equilibrium perturbation: 1D/2D comparison of the pressure
perturbation k at time t = 0.25.

N L1-error ρ Order

2002 2.8461× 10−7 —

4002 7.0611× 10−8 2.01

8002 1.6840× 10−8 2.06

Table 2.2: Unidirectional equilibrium perturbation: L1-error and order of convergence.

2.5.2.4 2D moving equilibrium

This test case is an extension of the 1D moving equilibrium problem to the 2D case; it

is meant to verify that the proposed numerical scheme is capable of preserving 2D steady

states with non-zero velocities. The initial coefficients are given by:

ρ(x, y) = ρ0exp(−
ρ0g

p0
(x+ y)),

u1(x, y) = exp(x+ y),

u2(x, y) = exp(x+ y),

p(x, y) = exp(−ρ0g

p0
(x+ y))γ.

ρ0 = 1, p0 = 1, and g = 1. We consider a nonlinear gravitational potential given by

ϕ(x, y) = exp(x+y)(−exp(x+y)+γ(exp(−γ(x+y))). The numerical solution is computed

at the final time t = 0.25. The equilibrium is preserved exactly and a 1D/2D comparison
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Figure 2.12: Unidirectional equilibrium perturbation: initially along x (top left), at t =
0.25 along x (top right), initially along y (bottom left), at t = 0.25 along y (bottom right).

is held on the density component at the final time in figure 2.13. The comparison shows a

perfect match, thus confirming the potential of the proposed scheme to handle stationary

equilibria.

2.5.2.5 2D shock tube problem

We consider for our last experiment the 2D sod shock tube problem. As in the 1D case,

the reference solution Ũ is the isothermal equilibrium solution (2.49). We consider first

the flow along the x-direction with the linear gravitational field with ϕx = g1 = 1 and
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Figure 2.13: 2D moving equilibrium: the density at time t = 0.25 with 1D /2D x-cross
section (left) and 1D /2D y-cross section (right).

ϕy = g2 = 0; the initial data are given by:

ρ(x, y) =

1, if x ≤ 0.5,

0.125, otherwise.

u1(x, y) = 0 = u2(x, y).

p(x, y) =

1, if x ≤ 0.5,

0.1, otherwise.

The computational domain is the square [0, 1]2 discretized using 400× 10 grid points. In a

similar way, we define the initial data along the y-direction, where the same computational

domain is discretized using 10 × 400 grid points. The numerical solution is computed at

the final time t = 0.2 using the proposed well-balanced scheme. The obtained numerical

results are reported in figure 2.14 where we present a comparison between cross sections

of the 2D problem set along the x- and y- directions for the density, velocity, energy and

pressure and the corresponding solution of the 1D problem. A perfect match between the

plots is observed and the obtained results are in perfect agreement with corresponding ones

appearing in the literature.
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Figure 2.14: 2D shock tube problem: 1D-2D comparison density (top left), velocity (top
right), energy (bottom left), pressure (bottom right) at time t = 0.2.

2.5.3 Application to the 2D MHD equations with gravitational source term

2.5.3.1 The model

Ideal Magnetohydrodynamics (MHD) equations model problems in physics and astro-

physics. The MHD system is a combination of the Navier-Stokes equations of fluid dy-

namics and the Maxwell equations of electromagnetism. A gravitational source term is

added to the ideal MHD equations in two space dimensions in order to model more compli-

cated problems arising in astrophysics and solar physics such as modeling wave propagation

in idealized stellar atmospheres [65, 12]. The system of MHD equations with gravitational

source term in two space dimensions is given by:Ut + F (U)x +G(U)y = S(U), (x, y) ∈ Ω ⊂ R2, t > 0.

U(x, y, 0) = U0(x, y),
(2.50)
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where

U =



ρ

ρu1

ρu2

ρu3

E

B1

B2

B3


, F (U) =



ρu1

ρu2
1 +Π11

ρu1u2 +Π12

ρu1u3 +Π13

Eu1 + u1Π11 + u2Π12 + u3Π13

0

Λ2

−Λ3


,

G(U) =



ρu2

ρu2u1 +Π21

ρu2
2 +Π22

ρu2u3 +Π23

Eu2 + u1Π21 + u2Π22 + u3Π23

−Λ3

0

Λ1


, S(U) =



0

0

−ρϕx

0

−ρu2ϕx

0

0

0


.

Here ρ is the fluid density, ρu is the momentum with u = (u1, u2, u3), p is the pressure,

B = (B1, B2, B3) is the magnetic field, and E is the kinetic and internal energy of the fluid

given by the following equation E = p
γ−1

+ 1
2
ρ|u|2+ 1

2
|B|2 with γ the ratio of specific heats.

ϕ = ϕ(x) with ϕx = g is the gravitational potential and it is a given function. Λ = u×B,

Π11,Π22 and Π33 are the diagonal elements of the total pressure tensor and Π12,Π13 and

Π23 are the off-diagonal tensor are given by the following formulas:

Πii = p+ 1
2
(B2

j +B2
k −B2

i ) and Πij = −1
2
BiBj, for i, j, k = 1, 2, 3.

To determine the time-step using the CFL condition, we present the eigenvalues of the flux

jacobian in the x-direction,

λ1 = u1 − cf , λ2 = u1 − b1, λ3 = u1 − cs, λ4 = u1, λ5 = u1, λ6 = u1 + cs, λ7 = u1 + b1,

λ8 = u1+cf . The eigenvalues of the flux jacobian in the y-direction are analogously defined.

Here,

cf =

√
1

2

(
a2 + b2 +

√
(a2 + b2)2 − 4a2b21

)
, (2.51)

and

cs =

√
1

2

(
a2 + b2 −

√
(a2 + b2)2 − 4a2b21

)
, (2.52)
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are respectively the fast and slow wave speed with a =
√

γp
ρ

is the sound speed and

b =
√
b21 + b22 + b23 with bi = Bi√

ρ
, i ∈ {1, 2, 3}. For additional reading on the hyperbolic

analysis of the system, readers are refered to [32, 60]

The conservation of momentum is exposed to Lorentz force from the magnetic field and

to gravitational force. In addition, the conservation of the total energy (internal, kinetic

and magnetic) has the gravitational potential energy as a source term. A list of numerical

experiments has been considered in order to verify the robustness and accuracy of our

method in the case of the system of MHD equations. The time-step is computed with a

CFL number equals to 0.485. The MC-θ limiter (2.8) is used with θ = 1.5.

2.5.3.2 Constrained Transport Method (CTM)

From electromagnetic theory, the magnetic field B must be solenoidal i.e. ∇ ·B = 0 at all

times. The divergence-free constraint on the magnetic field reflects the fact that magnetic

mono-poles have not been observed in nature. The induction equation for updating the

magnetic field imposes the divergence on the magnetic field. Hence, a numerical scheme

for the MHD equations should maintain the divergence-free property of the discrete mag-

netic field at each time-step. Numerical schemes usually fail to satisfy the divergence-free

constraint and numerical instabilities and unphysical oscillations may be observed [70].

Several methods were developed to overcome this issue. The projection method, in which

the magnetic field is projected into a zero divergence field by solving an elliptic equation

at each time step [15]. Another procedure is the Godunov-Powell procedure [61, 63, 30],

where the Godunov-Powell form of the system of the MHD equations is discretized instead

of the original system. The Godunov-Powell system has the divergence of the magnetic

field as a part of the source term. Hence, divergence errors are transported out of the

domain with the flow. A third approach is the CTM [14, 62, 27]. The CTM was modified

from its original form to the case of staggered central schemes [4]. It was later extended

to the case of unstaggered central schemes [73]. In this work we consider the version of

CTM developed in [73]. At the end of each iteration, we apply the CTM corrections to the

magnetic field components. Starting from a magnetic field that satisfies the divergence-free

constraint ∇ ·Bn
i,j = 0, we would like to prove ∇ ·Bn+1

i,j = 0. The discrete divergence using
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central differences at time tn is given by,

∇ ·Bn
i,j =

(
∂Bx

∂x

)n

i,j

+

(
∂By

∂y

)n

i,j

=
(Bx)

n
i+1,j − (Bx)

n
i−1,j

2∆x
+

(By)
n
i,j+1 − (By)

n
i,j−1

2∆y

= 0.

The vector of conserved variables Un+1 is computed by the numerical scheme, but ∇.Bn+1
i,j

might not be zero. Therefore, we compute the magnetic field Bn+1
i,j by discretizing the

induction equation at the cell centers of Ci,j,

∂

∂t

(
Bx

By

)
− ∂

∂x

(
0

Ω

)
+

∂

∂y

(
Ω

0

)
= 0,

where Ω = (−u×B)z = −uxBy+uyBx. Hence, the discretization of the induction equation

is the following, 
(Bx)

n+1

i+1
2 ,j+1

2

−(Bx)
n

i+1
2 ,j+1

2

∆t
+

Ω
n+1

2

i+1
2 ,j+3

2

−Ω
n+1

2

i+1
2 ,j− 1

2

2∆y
= 0,

(By)
n+1

i+1
2 ,j+1

2

−(By)
n

i+1
2 ,j+1

2

∆t
−

Ω
n+1

2

i+3
2 ,j+1

2

−Ω
n+1

2

i− 1
2 ,j+1

2

2∆x
= 0.

Then, (Bx)
n+1
i+ 1

2
,j+ 1

2
= (Bx)

n
i+ 1

2
,j+ 1

2
− ∆t

2∆y

(
Ω

n+ 1
2

i+ 1
2
,j+ 3

2

− Ω
n+ 1

2

i+ 1
2
,j− 1

2

)
,

(By)
n+1
i+ 1

2
,j+ 1

2
= (By)

n
i+ 1

2
,j+ 1

2
+ ∆t

2∆x

(
Ω

n+ 1
2

i+ 3
2
,j+ 1

2

− Ω
n+ 1

2

i− 1
2
,j+ 1

2

)
.

(2.53)

Now, we compute Ω
n+ 1

2

i+ 1
2
,j+ 1

2

using the numerical solution computed at time tn and tn+1 in

order to obtain second order of accuracy in time,

Ω
n+ 1

2

i+ 1
2
,j+ 1

2

=
1

2

[
Ωn+1

i+ 1
2
,j+ 1

2

+ Ωn
i+ 1

2
,j+ 1

2

]
,

=
1

2

[
Ωn+1

i+ 1
2
,j+ 1

2

+
Ωn

i,j + Ωn
i+1,j + Ωn

i,j+1 + Ωn
i+1,j+1

4

]
.
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Next, we calculate ∇.(B)n+1
i+ 1

2
,j+ 1

2

∇.(B)n+1
i+ 1

2
,j+ 1

2

=
(Bx)

n+1
i+ 3

2
,j+ 1

2
− (Bx)

n+1
i− 1

2
,j+ 1

2

2∆x︸ ︷︷ ︸
=I

+
(By)

n+1
i+ 1

2
,j+ 3

2
− (By)

n+1
i+ 1

2
,j− 1

2

2∆y︸ ︷︷ ︸
=J

. (2.54)

We compute now I and J as

I =
(Bx)

n+1
i+ 3

2
,j+ 1

2
− (Bx)

n+1
i− 1

2
,j+ 1

2

2∆x
,

=
1

2∆x

[
(Bx)

n
i+1,j + (Bx)

n
i+2,j+1 + (Bx)

n
i+2,j + (Bx)

n
i+1,j+1

4
− ∆t

2∆y

(
Ω

n+ 1
2

i+ 3
2
,j+ 3

2

− Ω
n+ 1

2

i+ 3
2
,j− 1

2

)
−

(Bx)
n
i−1,j + (Bx)

n
i,j+1 + (Bx)

n
i,j + (Bx)

n
i−1,j+1

4
+

∆t

2∆y

(
Ω

n+ 1
2

i− 1
2
,j+ 3

2

− Ω
n+ 1

2

i− 1
2
,j− 1

2

)]
.

J =
(By)

n+1
i+ 1

2
,j+ 3

2
− (By)

n+1
i+ 1

2
,j− 1

2

2∆y
,

=
1

2∆y

[
(By)

n
i,j+1 + (By)

n
i+1,j+1 + (By)

n
i+1,j+2 + (By)

n
i,j+2

4
+

∆t

2∆x

(
Ω

n+ 1
2

i+ 3
2
,j+ 3

2

− Ω
n+ 1

2

i− 1
2
,j+ 3

2

)
−

(By)
n
i,j−1 + (By)

n
i+1,j−1 + (By)

n
i+1,j + (By)

n
i,j

4
− ∆t

2∆x

(
Ω

n+ 1
2

i+ 3
2
,j− 1

2

− Ω
n+ 1

2

i− 1
2
,j− 1

2

)]
.

The sum of I and J is,

I + J =
1

8∆x

[
(Bx)

n
i+1,j − (Bx)

n
i−1,j + (Bx)

n
i+2,j+1 − (Bx)

n
i,j+1

+ (Bx)
n
i+2,j − (Bx)

n
i,j + (Bx)

n
i+1,j+1 − (Bx)

n
i−1,j+1

]
+

∆t

4∆x∆y

[ (
−Ω

n+ 1
2

i+ 3
2
,j+ 3

2

+ Ω
n+ 1

2

i+ 3
2
,j+ 3

2

)
+
(
Ω

n+ 1
2

i+ 3
2
,j− 1

2

− Ω
n+ 1

2

i+ 3
2
,j− 1

2

)
+
(
Ω

n+ 1
2

i− 1
2
,j+ 3

2

− Ω
n+ 1

2

i− 1
2
,j+ 3

2

)
+
(
Ω

n+ 1
2

i− 1
2
,j− 1

2

− Ω
n+ 1

2

i− 3
2
,j− 1

2

) ]
+

1

8∆y

[
(By)

n
i,j+1 − (By)

n
i,j−1 + (By)

n
i+1,j+1 − (By)

n
i+1,j−1

+ (By)
n
i+1,j+2 − (By)

n
i+1,j + (By)

n
i,j+2 − (By)

n
i,j

]
.
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Hence,

I + J =
1

4

[
(Bx)

n
i+1,j − (Bx)

n
i−1,j

2∆x
+

(By)
n
i,j+1 − (By)

n
i,j−1

2∆y

+
(Bx)

n
i+2,j+1 − (Bx)

n
i,j+1

2∆x
+

(By)
n
i+1,j+2 − (By)

n
i+1,j

2∆y

+
(Bx)

n
i+2,j − (Bx)

n
i,j

2∆x
+

(By)
n
i,j+2 − (By)

n
i,j

2∆y

+
(Bx)

n
i+1,j+1 − (Bx)

n
i−1,j+1

2∆x
+

(By)
n
i+1,j+1 − (By)

n
i+1,j−1

2∆y

]
, (2.55)

and the divergence of the magnetic field on the staggered grid ∇ · (B)n+1
i+ 1

2
,j+ 1

2

reduces to,

∇ · (B)n+1
i+ 1

2
,j+ 1

2

=
1

4

[
∇ ·Bn

i,j +∇ ·Bn
i+1,j+1 +∇ ·Bn

i+1,j +∇ ·Bn
i,j+1

]
= 0. (2.56)

Finally, we compute the magnetic field on the main grid Bn+1
i,j as the average of its values

on the staggered grid,

Bn+1
i,j =

1

4

[
Bn+1

i+ 1
2
,j+ 1

2

+Bn+1
i+ 1

2
,j− 1

2

+Bn+1
i− 1

2
,j+ 1

2

+Bn+1
i− 1

2
,j− 1

2

]
.

Hence,

∇ ·Bn+1
i,j = 0. (2.57)

2.5.3.3 2D Shock tube problem

For the first numerical test case, we consider a shock tube problem for the system of ideal

MHD equations extracted from [5]. The simulation takes place over the computational do-

main [−1, 1]× [0, 1]. U = [ρ, u1, u2, u3, B2, B3, p] is initially given as U = [1, 0, 0, 0,
√
4, 0, 1]

for x < 0.5 and U = [0.125, 0, 0, 0,−
√
4, 0, 0.1] for x > 0.5 and B1 = 0.75

√
4. This test

case features seven discontinuities. It was originally introduced for the non-scaled MHD

equations [5]. Hence, removing π from the initial data makes it a valid test case for the

scaled MHD equations. We compute the solution at the final time t = 0.25 on 400 × 400

grid. Because the numerical divergence at the final time was zero, there was no need to

apply the CTM. The cross sections in figure 2.15 show a very good agreement with the

results in the literature. In order to investigate the effect of the CTM on the computed

solution, we did a convergence study in figure (2.16) while applying the CTM. As it is very
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clear in the figures above, applying the CTM for the UC schemes has a small smearing out

effect on the solution.
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Figure 2.15: 2D shock tube problem: cross sections of the 8 components at time t = 0.25.
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Figure 2.16: 2D shock tube problem: cross sections of the 8 components at time t = 0.25
on 200×200 (dashed line) and 400 × 400 (solid red line) and 800 × 800 (solid black line)
grid points.

2.5.3.4 Four stages Ideal MHD Riemann problem

This test case is considered to prove the ability of our scheme to solve ideal MHD problems

and preserve the divergence-free constraint. The initial data consist of four constant states
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[5, 73] . The initial four constant states are given as follows,

(ρ, u1, u2, p) =



(1, 0.75, 0.5, 1) if x > 0 and y > 0

(2, 0.75, 0.5, 1) if x < 0 and y > 0

(1,−0.75, 0.5, 1) if x < 0 and y < 0

(3,−0.75,−0.5, 1) if x > 0 and y < 0

(2.58)

with an initial uniform magnetic field B = (2, 0, 1). The numerical solution is computed in

the square [−1, 1]× [−1, 1] on 400×400 grid points.

Figure 2.17: Four stages Riemann problem: ρ with CTM (left) and without CTM (right)
at the final time t = 0.8.

Figure 2.18: Four stages Riemann Problem: divB with CTM (left) and without CTM
(right) at the final time t = 0.8.

Figure 2.17 illustrates the density at the final time tf = 0.8 with and without applying
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constrained transport treatment to the magnetic field components. Similar comparison on

the divergence of the magnetic field is illustrated in figure 2.18. The results highlight the

robustness of the numerical scheme in the sense that even without treatment we are able to

show numerical simulation while other schemes simply blow up without special treatment

of the magnetic field.

2.5.3.5 MHD vortex

For our third test case, we consider the MHD vortex for the homogeneous ideal MHD

equations [10]. The initial data represent a moving stationary solution of the system of

the ideal MHD equations and are given by, r2 = x2 + y2, ρ = 1, u1 = u0 − κp exp(
1−r2

2
)y,

u2 = v0+κp exp(
1−r2

2
)x, u3 = 0, B1 = −mp exp(

1−r2

2
)y, B2 = −mp exp(

1−r2

2
)x, B3 = 0, and

p = 1 +
(

m2
p

2
(1− r2)− κ2

p

2

)
. We set the parameters mp = 1, κp = 1, u0 = 0, and v0 = 0.

The vortex is advected through the domain [−5, 5]× [−5, 5] with a velocity (u0, v0). Steady

state boundary conditions are used in this test case. In figure 2.19, we present the pressure

profile at the final time t = 100 2π√
eκp

≈ 1003.14
κp

on different grids. The steady state gets

preserved exactly as the background solution Ũ is the vortex itself.
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Figure 2.19: MHD vortex: pressure profile at the final time on different grid points.

2.5.3.6 Hydrodynamic wave propagation

The aim of this test case is to test the well-balanced property of the subtraction method by

simulating a steady state solution under hydrodynamic wave propagation. The experiment

is carried out in two steps. The first step is to check that the subtraction method preserves

the steady state. The initial data are the hydrodynamic steady state in the computational

domain [0, 4]× [0, 1].

ρ(x, y) = ρ0 exp(−
y

H
), p(x, y) = p0 exp(−

y

H
),u = 0,B = 0. (2.59)
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With H = p0
gρ0

= 0.158, p0 = 1.13 and g = 2.74. The subtraction method preserves the

hydrodynamic steady state exactly after choosing the reference solution Ũ at the steady

state itself. Figure 2.20 shows a very simple comparison of the density and the energy

cross section at t = 0 and the final time t = 1.8. The second step is to add perturbation

to the steady state as a time dependent sinusoidal wave that propagates from the bottom

boundary of the vertical velocity and exits from the top one. The wave formula is as the

following,

un
2i,{0,−1}

= exp(−100(xi,{0,−1} − 1.9)2)c sin(6πtn). (2.60)

The bottom boundary is a localized piston at x = 1.9. Figure 2.21 shows the profile of the

wave at the final time t = 1.8 for c = 0.003 (left) and for c = 0.3 (right) for 800 × 200

grid points. The waves propagate in both cases from bottom to top under the effect of the

pressure and gravity forces. The case where c = 0.003 models a small perturbation and

c = 0.3 models a stronger wave. The results are in a very good agreement with the ones in

[30]. More importatntly they match the results of the most accurate (third order) of the

three schemes compared in [30]. Hence, the scheme is well-balanced in the sense that it

preserves the steady state and can capture its perturbations.
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Figure 2.20: Hydrodynamic wave propagation: a comparison of the cross sections of the
density ρ (left) and the energy E (right) initially and at the final time t = 1.8.

2.5.3.7 MHD wave propagation

In this test case, we model propagating waves that not only undergo the effects of pressure

and gravity, but also that of the magnetic field. The test case is extracted from [30]. We

consider the magnetohydrodynamic steady state defined as,
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Figure 2.21: Hydrodynamic wave propagation: wave profile u2 for c = 0.003 (left) and
c = 0.3 (right) at the final time t = 1.8.

ρ(x, y) = ρ0 exp(−
y

H
), p(x, y) = p0 exp(−

y

H
),u = 0,B = (0, µ, 0),∇ ·B = 0. (2.61)

Where µ is a parameter that takes different values for each part of the experiment. The

waves model a perturbation of the steady state that starts from the bottom boundary of

the normal velocity as the following,

un
i,{0,1} =


Bi,{0,1}
|Bi,{0,1}|

c sin(6πtn) for x ∈ [0.95, 1.05],

0 Otherwise,
(2.62)

with c = 0.3. The computational domain is [0, 2] × [0, 1]. We use the wave propagation

boundary conditions suggested in [30]. These boundaries are periodic boundaries in the

x-direction for U and p and Neumann type boundary conditions in the y-direction as the

following,

ρni,1 = ρni,2e
∆y
H , ρni,0 = ρni,1e

∆y
H

ρni,ny−1 = ρni,ny−2e
−∆y
H , ρni,ny = ρni,ny−1e

−∆y
H

for 1 ≤ i ≤ nx. Similar boundaries for the momentum ρu and the pressure p. Energy

boundaries are computed from the pressure. For the magnetic field boundaries, we simply

copy the data from the cell before. We present the profile of the velocity in the direction

of the magnetic field,

uB =< u,B > /|B|, (2.63)
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at the final time t = 0.54 for different values of µ. As µ increases, the effect of the magnetic

field on the propagating wave increases. The wave profile gets compressed as the magnetic

field takes higher values. The plasma parameter is given by β = 2p
B2 [30]. It measures the

relative strength of the thermal pressure to the magnetic field, and is crucial in determining

the dynamics of the plasma. The β-isolines are illustrated in black and the lines of the

magnetic field are illustrated in white. The parameter β indicates the effects of the pressure

and the magnetic field on the propagating wave such that, for β > 1, the region is pressure

dominated, while for β < 1, the region is magnetic field dominated. In figure 2.22, the

profile of the velocity in the direction of the magnetic field, in the case of µ almost zero, is

illustrated, which is exactly the velocity in the y-direction in this case. The wave propagates

freely along the computational domain taking a radial profile in the absence of the magnetic

field on 400 × 200 grid points. Figure 2.23, shows the profile of the propgating wave under

the effect of a stronger magnetic field for µ = 1 on 400 × 200 grid points without applying

CTM. In addition, figure 2.23 presents the divergence of the magnetic field which is clearly

not zero. On the other hand, we present the same results with applying CTM on 1200

× 600 grid points in figure 2.24. Applying the CTM results in a zero discrete divergence

of the magnetic field up to machine precision. Another effect of applying the CTM is the

diffusion we see in figure 2.24, which was resolved by evolving the solution on a finer grid.

Additionally, we present the velocity in the direction perpendicular to the magnetic field

in figure 2.25 for µ = 1 at different times.

Our results, obtained with the second order scheme, are comparable with the results in

[30], obtained with third order schemes, which ensures the robustness of our scheme and

its capability of solving physically challenging problems, such as wave propagation under

the effect of pressure and gravity.

0.5 1 1.5

0.2

0.4

0.6

0.8

-0.3 -0.15 0 0.15 0.3 0.45 0.6 0.75

Figure 2.22: MHDwave propagation: velocity in a direction parallel to the magnetic field
uB =< u,B > /|B| for µ = 0 on 400 × 200 grid points at the final time t = 0.54.
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Figure 2.23: MHDwave propagation: velocity in a direction parallel to the magnetic field
uB =< u,B > /|B| for µ = 1 on 400 × 200 grid points at the final time t = 0.54 without
CTM.

2.6 Conclusion

In conclusion, we develop 1D and 2D second order unstaggered finite volume central schemes

for general balance laws. The proposed scheme is capable of preserving any type of known

equilibrium states due to a special reformulation that computes the numerical solution

in terms of a specific reference state. Applications to the systems of Euler and MHD

equations with gravitational source term are presented in the numerical results section. A

comparison between the obtained numerical results and the corresponding literature ensure

the robustness and the accuracy of the developed schemes. In this work, we chose the CTM

as a procedure to clean the divergence of the magnetic field. We realized that, it has a

smearing out effect on the solution especially in the physically challenging test cases. For

this reason, the CTM it is applied dynamically whenever needed. Meaning that, in the

test cases where the numerical divergence is zero at the final time or where no numerical

instabilities has been observed, we do not apply it. This leaves us with a second order well-

balanced finite volume numerical scheme that captures solutions of the MHD equations

and satisfies the divergence-free constraint.
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Figure 2.24: MHD wave propagation: velocity in a direction parallel to the magnetic field
uB =< u,B > /|B| for µ = 1 on 1200 × 600 grid points at the final time t = 0.54 with
CTM.
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Figure 2.25: MHD wave propagation: velocity perpendicular to the magnetic field
u⊥B =< (u1, u2), (−B2, B1) > /|B| for µ = 1 on 400 × 200 grid points at different times.
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Chapter 3

Asymptotic and Stationary

Preserving Schemes for Kinetic

equations

3.1 Introduction

After working on well-balancing techniques for the Euler equations. We started looking at

possibilities to generalize the well-balancing approach. Digging deeper into the derivation

of the Euler equations, we noticed a connection between the Euler equations and the kinetic

models such that, rescaled kinetic models (as we will see in the following sections) converge

to fluid equations. When the average distance between two successive velocity changes is

small, i.e., the mean free path is small, one has to use resolved space and time steps that are

less than the mean free path. Moreover, the probability density function in kinetic models

depends not only on space and time, but also on velocity. The high dimensionality and the

small mean free path led to an extremely high computational cost, and AP schemes that

allow mean free path independent meshes became popular in the last decades.

AP schemes were first proposed [52, 53] for the neutron transport equation and have been

successfully extended to a lot of applications, we refer to the review paper [68] for more

discussions. Different AP schemes have been developed for various kinetic models, including

the neutron transport equation [2, 46, 52, 56], the velocity jump model for E.Coli chemotaxis

[16, 1], and the Boltzmann equation [29, 83, 17, 43]. The Knudsen number ε is the ratio

of the mean free path and the domain typical length scale [53]. To prove that a scheme

is AP, one has to show that when the Knudsen number goes to zero in the discretized

scheme, it converges to a good discretization of the corresponding limit model. The main

advantage of AP schemes is that their stability and convergence are independent of the
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Knudsen number. For such models, since the equilibrium is not known at the begining, it

can only be reached after a certain amount of time, which means it is not known and cannot

be initially given as the well-balanced techniques require. Moreover, as the parameter in

the equation takes a new value, a new equilibrium pops up. Hence, the common well-

balanced techniques will not be useful here and the need for stationary preserving schemes,

as mentioned before, arises. The investigation first adressed two questions: how can we

see the SP property for the corresponding AP schemes; and how can we project what we

understand at the kinetic level back to the fluid level. Our key observation is that, as far

as the Maxwellian of the distribution function of an AP scheme can be updated explicitly,

the second requirement of the SP property is satisfied immediately. Our proof of the SP

property is independent of ε and applicable whenever the discretization linearly depends

on the Maxwellian of the collision operator. Numerically, one can check that the time

evolutionary problem converges to a discrete stationary solution after finite time, and their

difference is smaller than machine precision. In the subsequent part, we will consider three

different classes of AP schemes for which one can prove their SP properties as examples

on which our criterion applies. Once we are able to show that for an AP scheme, the

space and velocity discretization of the stationary equation provides a good approximation

to the steady state solution for all ε, and the Maxwellian of the distribution function is

updated explicitly, the SP property follows immediately. To show the universality of our

observation, we test different kinetic models for different AP schemes, as listed in Table

3.1.

For this aim, we considered three schemes for three different kinetic models in sections 3.2,

3.3 and 3.4; see table 3.1. We tried to prove the SP property for each scheme separately and

a useful conclusion has been drawn [26]. In each section, we present the kinetic model and

its corresponding AP scheme with the SP property followed by some numerical evidence.

For the velocity space in the numerical test cases, the standard Gaussian quadrature set is

used.

Kinetic Model Scheme

Neutron transport equation Parity-equations based

Chemotaxis kinetic model UGKS

Boltzmann equation IMEX Penalization method

Table 3.1: A list of kinetic models together with their corresponding schemes.
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3.2 Parity equations-based scheme for the Neutron transport

equation

In this section we check the parity equations-based AP scheme for the neutron transport

equation in [68, 69]. This scheme is then proven to be SP as well.

3.2.1 The neutron transport equation

Consider the1D neutron transport equation:

∂tf +
1

ε
v · ∇xf =

σT

ε2
(
1

2

∫ 1

−1

fdv′ − f)− σa(
1

2

∫ 1

−1

fdv′) + q (3.1)

with x ∈ [xL, xR] and v ∈ [−1, 1]. f = f(t, x, v) is the particle distribution function and v

is the particle velocity. We present the scheme for a simplified neutron transport equation

with σT = 1, σa = 0 , q = 0. The extension to more general cases does not add any

difficulties.

3.2.2 Discretization of the model

When σT = 1, σa = 0 , q = 0 in (3.1), the parity equations-based scheme in [69] can be

summarized by the following steps:

• Rewrite (3.1) into two equations. For v ≥ 0,

ε∂tf(v) + v∂xf(v) =
1

ε

(
1

2

∫ 1

−1

fdv − f(v)

)
,

ε∂tf(−v)− v∂xf(−v) =
1

ε

(
1

2

∫ 1

−1

fdv − f(−v)

)
.

(3.2)

• Introduce the even and odd parities that are

r(t, x, v) =
1

2
[f(t, x, v) + f(t, x,−v)], j(t, x, v) =

1

2ε
[f(t, x, v)− f(t, x,−v)].

• Add and subtract the equations in (3.2) and rewrite them into the following diffusive

relaxation system,

∂tr + v∂xj = − 1

ε2
(r − ρr),

∂tj + ηv∂xr = − 1

ε2
[j + (1− ϵ2η)v∂xr],

(3.3)
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where ρr =
∫ 1

0
rdv′ and η = η(ε) is such that, 0 ≤ η ≤ 1

ε2
in order to guarantee the

positivity of η(ε) and (1− ϵ2η(ε)) so the problem remains well-posed uniformly in ε.

η is chosen as η(ε) = min(1, 1
ε
).

• Split the equations (3.3) into two steps:

– Relaxation step: ∂tr = − 1
ϵ2
(r − ρr),

∂tj = − 1
ϵ2
[j + (1− ϵ2η)v∂xr].

– Transport step: ∂tr + v∂xj = 0,

∂tj + ηv∂xr = 0.

• Discretize the two steps as follows:

– For the transport step, we use an explicit first order upwind scheme on its

diagonal form such that r
n+ 1

2
i = rni − v ∆t

∆x
Dujni ,

j
n+ 1

2
i = jni − ηv ∆t

∆x
Durni .

(3.4)

where Dufn
i = fn

i+1 − fn
i and Dcfn

i =
fn
i+1−fn

i−1

2
are the upwind and the central

spatial differences respectively.

– For the relaxation step, we use an implicit backward Euler method that writes
rn+1
i −r

n+1
2

i

∆t
= − 1

ε2
(rn+1

i − ρn+1
ri

),

jn+1
i −j

n+1
2

i

∆t
= − 1

ε2
(jn+1

i + (1− ϵ2η)vDc

∆x
rn+1
i ).

By integrating the above first equation over V we find, ρn+1
ri

= ρ
n+ 1

2
ri . Then,rn+1

i = Ar
n+ 1

2
i +Bρ

n+ 1
2

ri ,

jn+1
i = Aj

n+ 1
2

i −B(1− ε2η)vDc

∆x
rn+1
i ,

(3.5)

with A and B being defined as:

A = ε2

ε2+∆t
and B = ∆t

ε2+∆t
.
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The fully space-time discretized parity equations-based AP scheme is given by the transport

step (3.4) and the relaxation step (3.5). The boundary conditions for r and j are the same

as in [69] and are obtained using the following relations:

r + εj|x=xL
= FL(v) and r − εj|x=xR

= FR(v) (3.6)

when ε << 1, j can be approximated by,

j = −v∂xr (3.7)

from the second equation in (3.3). Hence, the boundary conditions for r and j are,

r − εv∂xr|x=xL
= FL(v) and r + εv∂xr|x=xR

= FR(v) (3.8)

j = −v∂xr (3.9)

where FL(v) and FR(v) are the inflow boundary conditions of f . The AP proof of the

scheme has previously been done [69], [68], [16].

3.2.3 SP Property

The purpose of this section is to prove that the scheme has the SP property. As mentioned

in the introduction, the scheme has to meet two requirements. The first requirement is

satisfied when an AP discretization of the steady state equation is provided. The proof is

given in Appendix B. For the second requirement, we need to prove that starting from a

discrete stationary solution, the solution of the time evolutionary problem does not change.

Plugging (3.4) in (3.5) and using the fact that ρ
n+ 1

2
r = ρn+1

r , the equations for updating

rn+1 and jn+1
i can be written as:

rn+1
i − rni
∆t

+ v
Du

∆x
jni = − 1

ε2
(rn+1

i − ρn+1
ri

), (3.10a)

jn+1
i − jni

∆t
+ ηv

Du

∆x
rni = − 1

ε2
(jn+1

i + (1− ε2η)v
Dc

∆x
rn+1
i ). (3.10b)

A discrete stationary solution to (3.10) are rni and jni that satisfies:

v
Du

∆x
jni = − 1

ε2
(rni − ρnri), (3.11a)

ηv
Du

∆x
rni = − 1

ε2
[jni + (1− ε2η)v

Dc

∆x
rni ]. (3.11b)
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Lemma: 2 When rni and jni are solutions of the steady state equation discretization (3.11),

then rn+1
i = rni and jn+1

i = jni . Hence the parity equations-based scheme satisfies the second

requirement of the SP property.

Proof: • For r: Since ρnri =
∫ 1

0
rni , inserting (3.11a) in (3.10a) and integrating over

[0, 1] yields ρn+1
r = ρnr .

Using (3.11a) and ρn+1
r = ρnr , (3.10a) gives

rn+1
i − rni
∆t

− 1

ε2
(rni − ρnri) = − 1

ε2
(rn+1

i − ρnri).

Hence,

(
1

∆t
+

1

ϵ2
)(rn+1

i − rni ) = 0.

and then rn+1
i = rni .

• For j: Using rn+1 = rn, (3.10b) becomes

jn+1
i − jni

∆t
+ ηv

Du

∆x
rni = − 1

ϵ2
[jn+1

i + (1− ϵ2η)v
Dc

∆x
rni ]. (3.12)

From (3.11b), (3.12) writes,

jn+1
i − jni

∆t
− 1

ϵ2
[jni + (1− ϵ2η)v

Dc

∆x
rni ] = − 1

ϵ2
[jn+1

i + (1− ϵ2η)v
Dc

∆x
rni ].

Then,

(
1

∆t
+

1

ϵ2
)(jn+1

i − jni ) = 0

and thus jn+1
i = jni .

□

Using this Lemma, the scheme satisfies both requirements of the SP property as mentioned

in the bullet points in the introduction. This is because, starting from a discrete stationary

solution, our discretization of the time evolutionary problem does not change this discrete

stationary solution. This way we have shown that our parity equations-based scheme (which

is AP) has both the AP and SP properties.
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3.2.4 Numerical results

To validate the AP and SP properties of the parity equations-based scheme, we use the

same initial and boundary conditions as problem 1 in section 6 in [69]. The initial condition,

given by the distribution function is f(x, v, t = 0) = 0, and the computational domain is

x ∈ [0, 1]. The boundary conditions are as in (3.8) and (3.9) with

FL(v) = 1 and FR(v) = 0.

This data are consistent as can be seen by (3.8) and (3.9). The mesh and time step sizes

are respectively ∆x = 0.025 and ∆t = 0.0002 with the S16 Gaussian quadrature points for

the velocity. In figure 3.1, we plot the density at time t = 0.05 for ε = 10−2, ε = 10−3,

ε = 10−6 and compare it to its diffusion limit. The curves get close to each other when ε

gets very small. The curve corresponding to ε = 10−6 is exactly on top of the curve of the

diffusion limit equation. This verifies the AP property. Furthermore, we plot in figure 3.2

the time evolution of the distance between the numerical stationary solution ρsr and the

numerical solution ρr of the time evolutionary equation given by the L∞ norm

||ρr − ρsr||∞ = max
j

{ρrj − ρsrj}.

One can see that this distance does not change after we reach the steady state. After that

we give the norm at discrete times in Table 3.2 where we also show that the SP property

is valid for all ε << 1. Figure 3.2 and Table 3.2 indicate that the SP property is well

satisfied.
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Figure 3.1: Neutron Transport: Left: the density ρr at time t = 0.05 for ε = 10−2,
ε = 10−3, ε = 10−6 and the solution of the diffusion limit equation; right: a zoomed part
of the left plot.
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Figure 3.2: Neutron Transport: time evolution of the L∞-norm of the difference between
the solution and the stationary solution in the time interval [0,8] for ε = 10−8.

T 0 2 4 6 8

L∞ 0.995 1.051× 10−3 1.683× 10−6 2.696× 10−9 4.120× 10−12

T 0 2 4 6 8

L∞ 1 9.111× 10−4 1.263× 10−6 1.752× 10−9 2.176× 10−12

Table 3.2: Neutron Transport: L∞-norm of the difference between the solution and the
stationary solution in the time interval [0,8] for ε = 10−2 (top) and ε = 10−8 (bottom).

3.3 UGKS scheme for the chemotaxis kinetic model

In this section we first extend the UGKS in [56, 83, 84] to the time evolutionary chemotaxis

model, then show its AP and SP properties. The AP scheme is derived by Min Tang and

Casimir Emako.

3.3.1 The chemotaxis kinetic model

The chemotaxis kinetic model models bacteria that undergo run and tumble process as

mentioned in [40, 66, 67]. During the run phase, bacteria move along a straight line and

change their directions during the tumble phase. This is called the velocity jump process

and can be modeled by the Othmer-Dunbar-Alt model that writes [3, 58]:∂tf + 1
ε
v · ∇xf = 1

ε2
[ 1
|V |

∫
V
(1 + εϕ(v′ · ∂xS))f(v′)dv′ − (1 + εϕ(v · ∂xS))f(v)],

∂tS −D∆S + αS = βρ, ρ(x, t) := 1
|V |

∫
V
f(v)dv·

(3.13)
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Here f(x, v, t) is the probability density function at time t, position x and moving with

velocity v; ϕ is an odd decreasing function such that ϕ(−u) = −ϕ(u); S(x, t) is the concen-

tration of a chemical substance where the parameters D, α, β are positive constants; ε is

the Knudsen number. When ϕ = 0, the chemotaxis kinetic model reduces to the neutron

transport equation. As ε → 0, f(x, v, t) converges to ρ0(x, t), where ρ0(x, t) solves the

following Keller-Segel equation [18, 41, 59]:∂tρ0 =
1
3
∆ρ0 +∇(( 1

|V |

∫
V
vϕ(v∂xS)dv)ρ0),

∂tS −D∆S + αS = βρ0.
(3.14)

3.3.2 Discretization of the model

Before discussing about the more complex equation for f , we first discretize the equation

for the chemical concentration S. Let Sn
i ≈ S(xi, t

n), the following centered finite difference

method is used to update S:

Sn+1
i − Sn

i

∆t
= D

Sn+1
i+1 − 2Sn+1

i + Sn+1
i−1

∆x2
− αSn+1

i + βρni . (3.15)

After Sn+1
i is obtained, we approximate ∂xS

n+1 by a piecewise constant function such that

∂xS(x, t
n+1) ≈ ∂xS(xi+ 1

2
, tn+1) ≈

Sn+1
i+1 − Sn+1

i

∆x
:= σi+ 1

2
, for ∀x ∈ [xi, xi+1). (3.16)

The UGKS is a finite volume approach for discretizing the kinetic equation of f . By

integrating the chemotaxis kinetic model (3.13) over [xi− 1
2
, xi+ 1

2
]× [tn, tn+1]×V and letting

fn
i = 1

∆x

∫ x
i+1

2
x
i− 1

2

f(x, v, tn) dx, ρni = 1
|V |

∫
V
fn
i dv, the total density ρn+1

i and density fluxes

fn+1
i is updated as follows

ρn+1
i − ρni
∆t

+
F n
i+ 1

2

− F n
i− 1

2

∆x
= 0, (3.17)

fn+1
i − fn

i

∆t
+

Φn
i+ 1

2

− Φn
i− 1

2

∆x
=

1

ε2
(
ρn+1
i − fn+1

i

)
+

1

ε

(
1

| V |

∫
V

ϕ(v′σi+ 1
2
)fn

i (v
′) dv′ − ϕ(vσi+ 1

2
)fn

i

)
. (3.18)
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Here the numerical fluxes are given by

Φn
i+ 1

2
=

1

ε∆t

∫ tn+1

tn
vf(xi+ 1

2
, v, t) dt,

F n
i+ 1

2
=

1

|V |

∫
V

( 1

ε∆t

∫ tn+1

tn
vf(xi+ 1

2
, v, t) dt

)
dv·

(3.19)

It is important to note that σi+ 1
2
approximates ∂xS in the interval [xi, xi+1), while f

n
i is the

average density over the cell [xi− 1
2
, xi+ 1

2
). This choice is important to obtain the correct

advection term in the limit Keller-Segel model when ε becomes small. We use discrete

ordinate method for the velocity discretization, but for simplicity, we write the scheme in

continuous velocity. The most crucial step for UGKS is to determine Φn
i+ 1

2

and F n
i+ 1

2

. The

details are listed below:

• Find the approximation of f(xi+ 1
2
, v, t). The 1D chemotaxis model (3.13) can

be rewritten as:

∂tf +
1 + εϕ(v∂xS

ε)

ε2
f +

v

ε
∂xf =

1

ε2
T 1f, (3.20)

where (T 1f)(x, t) :=
1

| V |

∫
V

(
1 + εϕ(v′∂xS)

)
f(x, v′, t)dv′. Consider the interval

[xi, xi+1), multiplying both sides of (3.20) by exp

(
(1+εϕ(vσ

i+1
2
)

ε2
t

)
yields

d

dt

[
f(x+

v

ε
t, v, t) exp

(
(1 + εϕ(vσi+ 1

2
)

ε2
t

)]
=

T 1f(x, t)

ε2
exp

(
(1 + εϕ(vσi+ 1

2
)

ε2
t

)
.

Integrating the above equation over (tn, t) yields to,

f(xi+ 1
2
, v, t) = f(xi+ 1

2
− v

ε
(t− tn), v, tn) exp

(
−
(1 + εϕ(vσi+ 1

2
)

ε2
(t− tn)

)

+
1

ε2

∫ t

tn
T 1f(xi+ 1

2
− v

ε
(t− s), s) exp

(
−
(1 + εϕ(vσi+ 1

2
)

ε2
(t− s)

)
ds.

(3.21)

This is an exact expression for f(xi+ 1
2
, v, t) that will be used to determine Φn

i+ 1
2

, F n
i+ 1

2

in (3.19). At this stage, we need to approximate f(x, v, tn) and (T 1f)(x, t) on the

right hand side of (3.21). f is approximated by a piecewise constant function and
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T 1f by a piecewise linear function as follows:

f(x, v, tn) =

fn
i , x < xi+ 1

2
,

fn
i+1, x > xi+ 1

2
,

T 1f(x, t) =

T 1fn
i+ 1

2
+ δLT 1fn

i+ 1
2
(x− xi+ 1

2
), x < xi+ 1

2
,

T 1fn
i+ 1

2
+ δRT 1fn

i+ 1
2
(x− xi+ 1

2
), x > xi+ 1

2
.

Here, T 1fn
i+ 1

2

, δLT 1fn
i+ 1

2

, and δRT 1fn
i+ 1

2

are defined by:



T 1fn
i+ 1

2
:=

1

| V |

∫
V −

(1 + εϕ(vσi+ 1
2
))fn

i+1 +
1

| V |

∫
V +

(1 + εϕ(vσi+ 1
2
))fn

i ,

δLT 1fn
i+ 1

2
:=

T 1fn
i+ 1

2

− T 1fn
i

∆x/2
,

δRT 1fn
i+ 1

2
:=

T 1fn
i+1 − T 1fn

i+ 1
2

∆x/2
,

with V + = V ∩ R+ and V − = V ∩ R−.

Substituting the above approximations into equation (3.21) yields an expression for

f(xi+ 1
2
, v, t) such that:

For v > 0,

f(xi+ 1
2
, v, t) = fn

i exp

(
−
(1 + εϕ(vσi+ 1

2
)

ε2
(t− tn)

)
+

T 1fn
i+ 1

2

1 + εϕ(vσi+ 1
2
)

×

(
1− exp

(
−
(1 + εϕ(vσi+ 1

2
)

ε2
(t− tn)

))
+ vε

δLT 1fn
i+ 1

2

(1 + εϕ(vσi+ 1
2
))2

×

[(
1 +

1 + εϕ(vσi+ 1
2
)

ε2
(t− tn)

)
exp

(
−
(1 + εϕ(vσi+ 1

2
)

ε2
(t− tn)

)
− 1

]
,

(3.22)

and for v < 0,

f(xi+ 1
2
, v, t) = fn

i+1 exp

(
−
(1 + εϕ(vσi+ 1

2
)

ε2
(t− tn)

)
+

T 1fn
i+ 1

2

1 + εϕ(vσi+ 1
2
)

×

(
1− exp

(
−
(1 + εϕ(vσi+ 1

2
)

ε2
(t− tn)

))
+ vε

δRT 1fn
i+ 1

2

(1 + εϕ(vσi+ 1
2
))2

×

[(
1 +

1 + εϕ(vσi+ 1
2
)

ε2
(t− tn)

)
exp

(
−
(1 + εϕ(vσi+ 1

2
)

ε2
(t− tn)

)
− 1

]
.

(3.23)
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• Determine Φn
i+ 1

2

, F n
i+ 1

2

. The flux Φn
i+ 1

2

(v) in (3.19) can be approximated by

Φi+ 1
2
(v) = Avfn

i+1 +BvT 1fn
i+ 1

2
+ Cv2δRT 1fn

i+ 1
2
, for v < 0,

Φi+ 1
2
(v) = Avfn

i +BvT 1fn
i+ 1

2
+ Cv2δLT 1fn

i+ 1
2
, for v > 0,

(3.24)

where the coefficients A(v, ε,∆t), B(v, ε,∆t), and C(v, ε,∆t) can be determined ex-

plicitly, such that

A(v, ε,∆t) : =
ε

∆t
(
1 + εϕ(vσi+ 1

2
)
) (1− exp

(
−

1 + εϕ(vσi+ 1
2
)

ε2
∆t
))

,

B(v, ε,∆t) : =
1

ε(1 + εϕ(vσi+ 1
2
))

− ε

∆t(1 + εϕ(vσi+ 1
2
))2

(
1− exp

(
−

1 + εϕ(vσi+ 1
2
)

ε2
∆t
))

,

C(v, ε,∆t) : =
2ε2

∆t(1 + εϕ(vσi+ 1
2
))3

(
1− exp

(
−

1 + εϕ(vσi+ 1
2
)

ε2
∆t
))

− 1

(1 + εϕ(vσi+ 1
2
))2

(
1 + exp

(
−

1 + εϕ(vσi+ 1
2
)

ε2
∆t
))

.

(3.25)

Furthermore, F n
i+ 1

2

in (3.19) is given by

F n
i+ 1

2
=

1

|V |

∫
V −

Avfn
i+1dv +

1

|V |

∫
V +

Avfn
i dv +

1

|V |
T 1fn

i+ 1
2

∫
V

vBdv

+
1

|V |
δRT 1fn

i+ 1
2

∫
V −

Cv2dv +
1

|V |
δLT 1fn

i+ 1
2

∫
V +

Cv2dv·

(3.26)

This concludes the construction of the scheme.

3.3.3 SP Property

The UGKS scheme has to meet the two requirements of the SP property. The AP discretiza-

tion of the steady state equation is given in Appendix C. For the second requirement, we

assume that we start from a steady state solution, that at the discrete level satisfies,

Φn
i+ 1

2

− Φn
i− 1

2

∆x
=

1

ε2
(ρni − fn

i ) +
1

ε

(
1

|V |

∫
V

ϕ(v′σi+ 1
2
)fn

i (v
′) dv′ − ϕ(vσi+ 1

2
)fn

i

)
. (3.27)
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Integrating equation (3.27) over v yields

F n
i+ 1

2

− F n
i− 1

2

∆x
= 0,

From (3.17) one can deduce that,

ρn+1
i = ρni , (3.28)

which indicates that the macroscopic density is preserved. Using (3.27), the equation of

updating fn+1 in (3.18) can be written as,

fn+1
i − fn

i

∆t
=

1

ε2

(
(ρn+1

i − ρni )− (fn+1
i − fn

i )
)
.

Then from (3.28),

(
1 +

∆t

ϵ2
)
(fn+1

i − fn
i ) = 0,

which gives fn+1
i = fn

i . This concludes the SP property of the UGKS.

3.3.4 Numerical results

Parameters in equation (3.13) are chosen as in Gosse [33] such that,

χS = 1, D = 15, β = 60, α = 3.

and ϕ is of the form

ϕ(u) = −χS tanhu.

The computational domain is set to be x ∈ [−1, 1]. We impose specular boundary condi-

tions for f and Dirichlet conditions for S. The initial density distribution is composed of

two bumps located at x = ±0.65 given by:

f(x, v, 0) = 5(exp(−10(x− 0.65)2 − 20(v + 0.45)2) + exp(−10(x+ 0.65)2 − 20(v − 0.45)2)).

We use ∆x = 2/500 for the space discretization and v ∈ [−1, 1] with the S32 Gaussian

quadrature points for the velocity. The limiting scheme of the UGKS is an explicit solver

for the diffusion equation. Therefore, to ensure the stability of the numerical scheme, the

61



time step ∆t is chosen as below

∆t =

{
0.5∆x2, for ε < ∆x,

0.5ε∆x, else.

In order to verify the AP property of our scheme, the total densities ρ at time t = 1 are

displayed in figure 3.3 for different values of ε ranging from 10−2 to 10−6. In order to check
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Figure 3.3: Chemotaxis: left, the density ρ at time t = 1 for ε =
10−2, 10−3, 10−4, 10−5, 10−6; right, a zoomed part of the left plot.

the SP property, we give the time evolution of the L∞-norm of the difference between the

solution and the stationary solution in the time interval [0,100] in Table 3.3 for ε = 1 and

ε = 10−3. These results ensure that the SP property is independent of ε.

T 0 30 60 65 100

L∞ 0.9064 8.260× 10−7 3.767× 10−11 7.474× 10−12 1.662× 10−12

T 0 5 10 50 100

L∞ 0.6493 3.024× 10−7 2.064× 10−9 2.199× 10−10 1.476× 10−10

Table 3.3: Chemotaxis: L∞-norm of the difference between the solution and the stationary
solution in the time interval [0,100] for ε = 1 (top) and ε = 10−3 (bottom).

3.4 IMEX scheme with the Penalization method for the

Boltzmann equation

In this section, we consider the penalization method developed in [29] for the Boltzmann

equation. This method together with an IMEX discretization of the equation give an AP
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scheme for the Boltzmann equation. One can find the AP proof in [29]. Here we show that

the penalization method is not only AP but also SP. In [31], the authors propose a multistep

high order IMEX AP scheme for the BGK model and the Boltzmann equation. The scheme

is originally developed for the BGK model and then extended by the penalization method

to the Boltzmann equation. One can think of the scheme proposed in [31] as the high

order version of the scheme in [29]. The authors prove that the IMEX AP scheme, without

penalization, is SP uniformly in ε. Our criterion can be applied successfully to the high

order IMEX AP scheme in [31] after penalization. Our proof, in contrast to theirs, requires

the linear dependence of the Maxwellian of the collision operator.

3.4.1 The Boltzmann equation

The Boltzmann equation describes the time evolution of the density distribution of gas

particles. It is given by

∂tf + v · ∇xf =
Q(f)

ε
.

Here f(x, v, t) is the probability density distribution of particles at time t, position x and

with velocity v. Q is the Boltzmann collision operator where only binary interactions are

considered. Let (v, v∗) and (v′, v′∗) be respectively the velocities of the two colliding particles

before and after the collision related byv′ = 1
2
((v − v∗)− |v − v∗|σ),

v′∗ =
1
2
((v − v∗) + |v − v∗|σ).

With σ ∈ Sdv−1. Q is given by

Q(f)(v) =

∫
Rdv

∫
Sdv−1

B(|v − v∗|, cos θ)(f(v′∗)f(v′)− f(v∗)f(v))dσdv∗. (3.29)

The collision kernel B is a non-negative function given by B(|u|, cos θ) = Cλ|u|λ, where
u = (v−v∗)

|v−v∗| and cos θ = u · σ, for some λ ∈ [0, 1] and a constant Cλ > 0. For more details,

one can look at the Boltzmann equation description in [29]. ε is the dimensionless Knudsen

number and
∫
v
ω(v)Q(f)dv = 0 for ω(v) = (1, v, |v|2). The equilibrium distribution of Q is

the Maxwellian distribution Mρ,u,T , i.e. Q(Mρ,u,T ) = 0 and it is given by,

Mρ,u,T (v) =
ρ

(2πT )
dv
2

1

exp |v−u|2
2T

,

63



where ρ, u, and T are the density, velocity and temperature of the gas, and dv is the

dimension of the velocity space. As ε → 0, the zeroth, first and second moments of the

distribution function solve the Euler equations.

3.4.2 IMEX scheme with the Penalization method

The penalization method was originally developed in [29, 68]. The purpose is to split the

collision term of the Boltzmann equation into a stiff part and less stiff part. More precisely,

the Boltzmann equation is written in the following form:

∂tf + v · ∇xf =
Q(f)− P (f)

ε
+

P (f)

ε
,

where Q(f) is the Boltzmann collision operator and P (f) is a relaxation operator, namely

P (f) = β[Mρ,u,T (v) − f(v)], where β is a strictly positive parameter. P (f) has the same

equilibrium as Q(f). It satisfies
∫
v
P (f)ω(v)dv = 0 for ω(v) = (1, v, |v|2) and P (Mρ,u,T ) =

0. As in [29], βn is chosen to be 2πρn such that both operators P (f) and the full Boltzmann

operator Q(f) have the same loss term corresponding to the dissipative part.

The following IMEX discretization of the Boltzmann equation is proposed in [29]:

fn+1 − fn

∆t
+ v · ∇xf

n =
Q(fn)− P (fn)

ε
+

P (fn+1)

ε
. (3.30)

For the discretization of the Boltzmann operator, one can use a fast spectral Fourier-

Galerkin method [28], and for the transport part, a first or second order finite volume

scheme can be employed. This gives an AP discretization for the Boltzmann equation as

proven in [29].

3.4.3 SP property

Because we computed our numerical results in a space homogeneous set up, proving that

the discretization of the steady state equation is AP is unnecessary, knowing that the full

scheme is AP [29]. We only need to prove that starting from a discrete stationary solution,

the solution of the time evolutionary problem does not change. Suppose that the solution

satisfies the stationary equation at time tn, i.e.

v · ∇xf
n =

Q(fn)− P (fn)

ε
+

P (fn)

ε
. (3.31)
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It follows from the properties of the collision operator Q and the relaxation operator P

that: ∫
v

ω(v)v · ∇xf
n = 0, (3.32)

with ω(v) = (1, v, |v|2).
Now multiply (3.30) by ω(v) and integrate over the velocity space. Using the conservation

properties of Q, P and (3.32), one observes that the Maxwellian of the distribution function

is preserved. Substituting (3.31) in (3.30) gives,

fn+1 − fn

∆t
=

−P (fn)

ε
+

P (fn+1)

ε
.

Now, we plug in P by its defnition P (f) = β[Mρ,u,T (v)− f(v)],

fn+1 − fn

∆t
= −βn[Mn − fn]

ε
+

βn+1[Mn+1 − fn+1]

ε
.

Since Mn+1 = Mn and βn+1 = βn, fn+1 = fn and the steady state is preserved.

3.4.4 Numerical results

In this section, we consider the 2D Bose gas experiment 3.3 in [43] to test the AP and the

SP property of the penalization method presented in [29]. We solve the space homogeneous

quantum Boltzmann equation in 2D velocity space which is a special case of the classical

Boltzmann equation for a particular collision operator Qq.

∂tf =
Qq(f)− P (f)

ε
+

P (f)

ε
.

As defined in [43], the quantum collision operator is another version of the collision operator

(3.29) and given by

Qq(f)(v) =

∫
Rdv

∫
Sdv−1

B(|v − v∗|, cos θ)
(
f ′
∗f

′(1± θ0f)(1± θ0f∗)

− f∗f(1± θ0f
′)(1± θ0f

′
∗)
)
dσdv∗

where θ0 = hdv and h is the rescaled Planck constant. The upper sign corresponds to the

Bose gas, while the lower sign to the Fermi gas. In this experiment we consider the Bose

gas case. The idea can be extended to more general collision operators. Hence, scheme
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(3.30) is simplified to

fn+1 =
ε

ε+ βn+1∆t
fn +∆t

Qq(f
n)− P (fn)

ε+ βn+1∆t
+

βn+1∆t

ε+ βn+1∆t
Mn+1.

The initial distribution function is given as in [43],

f0(v) =
ρ0

4πT0

(
exp

(
−|v − u0|2

2T0

)
+ exp

(
−|v + u0|2

2T0

))
,

where ρ0 = 1, T0 = 3/8, and u0 = (1, 1/2). The computational domain is [−8, 8]2 with 64

grid points. The quantum Maxwellian [43] is given as,

Mq(v) =
1

θ0

1

z−1 exp |v−u|2
2T

− 1
,

where θ0 = 0.12, z = 0.001590, T = 1 is the temperature, and u = 0 is the macroscopic

velocity. In figure 3.4, we test the AP property of the penalization method. A cross section

of the distribution function for different values of ε is plotted on the left and a zoomed

part of the plot on the right. The curves get closer to each other as ε converges to 0

which implies the AP property. Next, we investigate the SP property. Figure 3.5 shows
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Figure 3.4: Boltzmann: cross section of the distribution function for different values of
ε(left) and a zoomed part of the plot(right).

contours of the 2D distribution function and the contour lines of the difference between

the distribution function f and its equilibrium at t = 200. We computed the L∞-norm

of the difference between f and its equilibrium in the time interval [0, 200] in figure 3.6
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as evidence that f converges exponentially to the equilibrium. Table 3.4 presents the L∞

norm of the distances between the time evolutionary simulation and the equilibrium at some

discrete times, where one can find exactly when the initial distribution function reaches its

equilibrium.
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Figure 3.5: Boltzmann: contours of the 2D distribution function (left) and the contour
lines of the difference between the distribution function and its equilibrium (right) at the
final time t = 200.
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Figure 3.6: Boltzmann: time evolution of the L∞-norm of the difference between the
distribution function f and its equilibrium in the time interval [0,200].

T 0 20 50 100 150 200

L∞ 0.5453 1.2× 10−3 6.581× 10−7 3.495× 10−12 7.619 ×10−13 5.623×10−13

Table 3.4: Boltzmann: L∞-norm of the difference between f and its equilibrium starting
from t=0 until the final time t=200 for ε = 1.
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3.5 Conclusion

Proving the SP property for the three AP schemes, leads neadly to a criterion, emphasising

that asymptotic preserving schemes with a discretization that linearly depends on the

Maxwellian are also SP [26]. We realized that the linear dependency on the Maxwellian in

the source term is the key to proving that the moments are being updated explicitly not

implicitly. This in turn is the key to proving ultimately that the updated solution at the

next time tn+1 does not change in the case of steady state solutions.
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Chapter 4

Asymptotic and Stationary

Preserving Schemes for the

Isentropic Euler Equations with

Gravitational Source Term

4.1 Introduction

The resulted criterion at the kinetic level causes us to consider how to translate this to the

fluid level. For this reason, we consider again a fluid model in this section and we try to

develop an AP scheme and investigate the relationship between AP and SP properties for

fluid models [47]. We start with a special case of the Euler system, namely the isentropic

Euler system. We extend the AP scheme developed by Goudon et al. for the isentropic

Euler equations to the case with gravitational source term. In section 4.2, we introduce

the model. We present the AP and SP semi-discrete numerical scheme in section 4.3 and

the fully-dicrete scheme in the one and 2D framework in section 4.4. Some numerical test

cases from the litrature to validate the properties of the scheme are considered in section

4.5.
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4.2 The Isentropic Euler Equations with Gravitational Source

Term

4.2.1 The model

The Isentropic Euler equations with gravitational source term is a special case of the Euler

equations (2.48) and is given by,

∂tρ+∇.(ρu) = 0,

∂t(ρu) +∇.(ρu⊗ u) +∇p(ρ) = −ρ∇ϕ.
(4.1)

Where ρ is the density, u is the velocity field, p is the pressure, and ρu is the momentum.

The pressure law is given by p(ρ) = Aργ, where A and γ are positive constants. ϕ is the

gravitational potential, a given function of space.

4.2.2 Scaling

One scales the equations (4.1) to describe the low Mach number (incompressible) limit.

Let x0, t0, ρ0, p0, u0 be a set of characteristic scales for the variables. The dimensionless

variables are then given by, x̂ = x
x0
, t̂ = t

t0
, ϕ̂ = ϕ

ϕ0
, ... with ϕ0 =

p0
ρ0
.

Substitute the variables in the equations,

1

t0
∂t̂(ρ̂ρ0) +

1

x0

∇.x̂(ρ̂ρ0ûu0) = 0,

1

t0
∂t̂(ρ̂ρ0ûu0) +

1

x0

∇.x̂(ρ̂ρ0ûu0 ⊗ ûu0) +
1

x0

∇x̂(p̂p0) = −(ρ̂ρ0)
1

x0

∇.x̂(ϕ̂ϕ0).
(4.2)

then,

ρ0
t0
∂t̂ρ̂+

ρ0u0

x0

∇.x̂(ρ̂û) = 0,

ρ0u0

t0
∂t̂(ρ̂û) +

ρ0u
2
0

x0

∇.x̂(ρ̂û⊗ û) +
p0
x0

∇x̂(p̂) = −ρ0ϕ0

x0

ρ̂∇.x̂ϕ̂.
(4.3)

Drop the hat,

ρ0
t0
∂tρ+

ρ0u0

x0

∇.(ρu) = 0,

ρ0u0

t0
∂t(ρu) +

ρ0u
2
0

x0

∇.(ρu⊗ u) +
p0
x0

∇p = −ρ0ϕ0

x0

ρ∇ϕ.
(4.4)
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Multiply by t0
ρ0

and use the fact that u0 =
x0

t0
,

∂tρ+∇.(ρu) = 0,

u0∂t(ρu) + u0∇.(ρu⊗ u) +
p0

ρ0u0

∇p = −ϕ0

u0

ρ∇ϕ.
(4.5)

So,

∂tρ+∇.(ρu) = 0,

∂t(ρu) +∇.(ρu⊗ u) +
p0

ρ0u2
0

∇p = −ϕ0

u2
0

ρ∇ϕ.
(4.6)

Then,

∂tρ+∇.(ρu) = 0,

∂t(ρu) +∇.(ρu⊗ u) +
1

ε2
∇p(ρ) = − 1

ε2
ρ∇ϕ.

(4.7)

are the non-dimensionalized equations with ε2 =
ρ0u2

0

P0
. Taking the gravitational source term

to the left-hand side and using the pressure law, system (4.7) is then,

∂tρ+∇.(ρu) = 0,

∂t(ρu) +∇.(ρu⊗ u) +
1

ε2
ρ∇W = 0.

(4.8)

With W = γ−1
γ

1
A
ργ−1 + ϕ.

4.2.3 The incompressible limit equations

The asymptotic expansion of the variables is given as,

ρ = ρ(0) + ερ(1) + ε2ρ(2) + ...

u = u(0) + εu(1) + ε2u(2) + ...

W = W (0) + εW (1) + ε2W (2) + ...
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The expansion of the product of two quantities can be seen as,

ρ∇W = (ρ(0) + ερ(1) + ε2ρ(2))∇(W (0) + εW (1) + ε2W (2)),

= ρ(0)∇W (0) + ε(ρ(0)∇W (1) + ρ(1)∇W (0)) + ε2(ρ(0)∇W (2) + ρ(1)∇W (1) + ρ(2)∇W (0)).

(4.9)

Compare O(1) terms in system (4.8),

∂tρ
(0) +∇.(ρ(0)u(0)) = 0,

∂t(ρ
(0)u(0)) +∇.(ρ(0)u(0) ⊗ u(0)) + ρ(0)∇W (2) + ρ(1)∇W (1) + ρ(2)∇W (0) = 0.

(4.10)

Compare O( 1
ε2
) terms then O(1

ε
) terms in system (4.8) and use ρ(0) ̸= 0 to deduce that

∇W (0) = 0 and ∇W (1) = 0. The fact that ρ(0) is stationary leads to,

∇.(ρ(0)u(0)) = 0,

∂t(u
(0)) + u(0)∇.u(0) +∇W (2) = 0.

(4.11)

(4.11) represents the incompressible isentropic Euler equations.

4.3 Semi-discrete Numerical Scheme

4.3.1 The scheme

Following the splitting technique introduced in [37] and used in [34], we split the divergence

in the density equation as well as the pressure and the gravitational source term in the

momentum equation. System (4.7) can be written as:

∂tρ+ α∇.(ρu) + (1− α)∇.(ρu) = 0,

∂t(ρu) +∇.(ρu⊗ u) +
1

ε2
∇
[
p(ρ)− a(t)A(1− γ − 1

γ

1

A
ϕ)ρ

]
+

1

ε2
a(t)A∇

[
(1− γ − 1

γ

1

A
ϕ)ρ

]
=

−1 + a(t)

ε2
ρ∇ϕ− a(t)

ε2
ρ∇ϕ.

(4.12)

We split the system into two steps,

∂tρ+ α∇.(ρu) = 0,

∂t(ρu) +∇.(ρu⊗ u) +
1

ε2
∇
[
p(ρ)− a(t)A(1− γ − 1

γ

1

A
ϕ)ρ

]
=

−1 + a(t)

ε2
ρ∇ϕ.

(4.13)
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and

∂tρ+ (1− α)∇.(ρu) = 0,

∂t(ρu) +
1

ε2
a(t)A∇

[
(1− γ − 1

γ

1

A
ϕ)ρ

]
= −a(t)

ε2
ρ∇ϕ.

(4.14)

The choice of the time dependent function a(t) > 0 depends on the hyperbolicity of the

system (4.13). The system (4.13) in its conservative form can be written as,

Ut + F (U)x +G(U)y = S(U), (4.15)

with U = (ρ, ρu, ρv), F (U) = (αρu, ρu2 +
p(ρ)−a(t)(1− γ−1

γ
1
A
ϕ)

ε2
, ρuv), G(U) = (αρv, ρuv, ρv2 +

p(ρ)−a(t)A(1− γ−1
γ

1
A
ϕ)

ε2
) and S(U) = (0, −1+a(t)

ε2
ρϕx,

−1+a(t)
ε2

ρϕy). The eigenvalues of the jacobian

matrix of F (U), the flux function along x, are λ1 = u, λ2 = u + c and λ3 = u − c with

c =

√
(1− α)u2 + α

p′(ρ)−a(t)A(1− γ−1
γ

1
A
ϕ)

ε2
. Similar calculations hold for the flux along y. We

choose a(t) = min
x

{
p′(ρ)

A(1− γ−1
γ

1
A
ϕ)

}
− l(t)ε2 with a choice of ϕ such that 0 ≤ γ−1

γ
1
A
ϕ < 1.

Where l(t) is a constant such that a(t) ≥ l(t)(1− ε2) > 0 for ε < 1. In the numerical tests

we choose l(t) = 0 or l(t) = 1. The existence of the function l(t) eliminates the spurious

oscillations that might appear for large ε, for more details, see [34]. Under this choice of

a(t) the wave speeds λ are real and positive. Thus, the system is hyperbolic.

Let ∆t be the time step, and for a positive integer n, we set tn+1 = tn +∆t. The two steps

can now be discretized as a slow explicit system,
ρ∗−ρn

∆t
+ α∇.(ρu)n = 0,

(ρu)∗−(ρu)n

∆t
+∇.(ρu⊗ u)n + 1

ε2
∇
[
p(ρ)− a(t)A(1− γ−1

γ
1
A
ϕ)ρ
]n

=
−1+and

ε2
ρn∇ϕ,

(4.16)

and a fast implicit system,
ρn+1−ρ∗

∆t
+ (1− α)∇.(ρu)n+1 = 0,

(ρu)n+1−(ρu)∗

∆t
+ 1

ε2
andA(1−

γ−1
γ

1
A
ϕ)∇ρn+1 = − and

ε2γ
ρn+1∇ϕ.

(4.17)
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The full semi-discrete system of equations can be viewed as,
ρn+1−ρn

∆t
+ α∇.(ρu)n + (1− α)∇.(ρu)n+1 = 0,

(ρu)n+1−(ρu)n

∆t
+∇.(ρu⊗ u)n + 1

ε2
∇
[
p(ρ)− a(t)A(1− γ−1

γ
1
A
ϕ)ρ
]n

+ 1
ε2
anA∇

[
(1− γ−1

γ
1
A
ϕ)ρn+1

]
= −1+an

ε2
ρn∇ϕ− an

ε2
ρn+1∇ϕ.

(4.18)

4.3.2 The AP property

In order to prove the AP property of the semi-discrete scheme we need to prove that as ε

goes to zero, (4.18) is a good discretization of the incompressible limit equation (4.11). We

will start by defining the well-prepared data. We reformulate the momentum equation in

(4.18) before the expansion, as at the PDE level. The momentum equation is discretized

as,

(ρu)n+1 − (ρu)n

∆t
+∇.(ρu⊗u)n+

1

ε2
∇
[
p(ρ)− a(t)A(1− γ − 1

γ

1

A
ϕ)ρ

]n
+

1

ε2
anA∇

[
(1− γ − 1

γ

1

A
ϕ)ρn+1

]
=

−1 + an

ε2
ρn∇ϕ− an

ε2
ρn+1∇ϕ. (4.19)

Similar to what has been done at the PDE level, we write the following two terms into,

•

1

ε2
anA∇

[
(1− γ − 1

γ

1

A
ϕ)ρn+1

]
+

an

ε2
ρn+1∇ϕ =

an

ε2
A(1− γ − 1

γ

1

A
ϕ)∇ρn+1 − an

ε2
ρn+1∇(

γ − 1

γ
ϕ)

+
an

ε2
ρn+1∇ϕ,

=
an

ε2

[
∇ρn+1A(1− γ − 1

γ

1

A
ϕ) + (1− γ − 1

γ
)ρn+1∇ϕ

]
,

=
an

ε2
ρn+1

[
∇ρn+1

A(1− γ−1
γ

1
A
ϕ)

ρn+1
+

1

γ
∇ϕ

]
,

=
an

ε2
ρn+1∇

[
M(ρn+1) +

1

γ
ϕ

]
,

=
an

ε2
ρn+1∇M(ρn+1) +

1

γ
∇ϕ.

with M(ρ) =
∫ ρ

a

A(1− γ−1
γ

1
A
ϕ)

ρ′
dρ

′
with a > 0 constant.
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•

1

ε2
∇
[
p(ρ)− a(t)A(1− γ − 1

γ

1

A
ϕ)ρ

]n
+

1− an

ε2
ρn∇ϕ

=
1

ε2
[γρn,γ−1A∇ρn − anA∇ρn(1− γ − 1

γ

1

A
ϕ) + anAρn∇(

γ − 1

γ

1

A
ϕ) + (1− an)ρn∇ϕ],

=
1

ε2
[γρn,γ−1A∇ρn + ρn∇ϕ− anA(1− γ − 1

γ

1

A
ϕ)∇ρn − anρn

1

γ
∇ϕ],

=
1

ε2
[γρn,γ−1A∇ρn + ρn∇ϕ− anA(1− γ − 1

γ

1

A
ϕ)∇ρn − anρn

1

γ
∇ϕ],

=
1

ε2
ρn[γρn,γ−2A∇ρn +∇ϕ− an

A(1− γ−1
γ

1
A
ϕ)∇ρn

ρn
− an

1

γ
∇ϕ],

=
1

ε2
ρn[∇N(ρn) +∇ϕ− an[∇M(ρn) +

1

γ
∇ϕ]].

with N(ρ) =
∫ ρ

a
Aγρ

′,γ−2dρ
′
with a > 0 constant.

Hence, the momentum equation can be rewritten as,

(ρu)n+1 − (ρu)n

∆t
+∇.(ρu⊗ u)n +

1

ε2
ρn[∇N(ρn) +∇ϕ− an[∇M(ρn) +

1

γ
∇ϕ]]

+
an

ε2
ρn+1∇[M(ρn+1) +

1

γ
ϕ] = 0. (4.20)

And the semi-discrete system of equations (4.18) can be rewritten as,
ρn+1−ρn

∆t
+ α∇.(ρu)n + (1− α)∇.(ρu)n+1 = 0,

(ρu)n+1−(ρu)n

∆t
+∇.(ρu⊗ u)n + 1

ε2
ρn[∇N(ρn) +∇ϕ− an[∇M(ρn) + 1

γ
∇ϕ]]

+an

ε2
ρn+1∇[M(ρn+1) + 1

γ
ϕ] = 0.

(4.21)

Definition 4.3.1 (ρ, u, v) are said to be well-prepared data if they satisfy,

• ρ = ρ(0)+ερ(1)+O(ε2) with ρ(0) =
(
A(1− γ−1

γ
1
A
ϕ)
) 1

γ−1
, and ρ(1) =

(
A(1− γ−1

γ
1
A
ϕ)
) 1

γ−1
.

i.e. ∇M(0) = −∇ 1
γ
ϕ, ∇N(0) = −∇ϕ, ∇M(1) = −∇ 1

γ
ϕ, and ∇N(1) = −∇ϕ.

• ∇.(ρ(0)u(0)) = 0.

Lemma: 3 Choose (ρ, u, v) to be well-prepared, then

1
ε2
ρn[∇N(ρn) +∇ϕ− an[∇M(ρn) + 1

γ
∇ϕ]]

75



is of order ε.

Proof: The expansions of M(ρ) and N(ρ) around ρ(0) are given as,

M = M(ρ(0)) + ερ(1)M
′
(ρ(0)) + ε2(ρ(2)M

′
(ρ(0)) + ρ(1)2

2
M

′′
(ρ(0))) +O(ε3).

N = N(ρ(0)) + ερ(1)N
′
(ρ(0)) + ε2(ρ(2)N

′
(ρ(0)) + ρ(1)2

2
N

′′
(ρ(0))) +O(ε3).

Using the expansion formula for the product (4.9),

ρn[∇N(ρn) +∇ϕ− an[∇M(ρn) + 1
γ
∇ϕ]]

ε2
=

ρn(0)[∇Nn
(0) +∇ϕ− an(0)[∇Mn

(0) +
1
γ
∇ϕ]]

ε2

+
ρn(0)[∇Nn

(1) +∇ϕ− an(0)[∇Mn
(1) +

1
γ
∇ϕ]− an(1)[∇Mn

(0) +
1
γ
∇ϕ]]

ε

+
ρn(1)[∇Nn

(0) +∇ϕ− an(0)[∇Mn
(0) +

1
γ
∇ϕ]]

ε

+ ρn(0)[∇Nn
(2) +∇ϕ− an(0)[∇Mn

(2) +
1

γ
∇ϕ]− an(1)[∇Mn

(1) +
1

γ
∇ϕ]− an(2)[∇Mn

(0) +
1

γ
∇ϕ]]

+ ρn(1)[∇Nn
(1) +∇ϕ− an(0)[∇Mn

(1) +
1

γ
∇ϕ]− an(1)[∇Mn

(0) +
1

γ
∇ϕ]]

+ ρn(2)[∇Nn
(0) +∇ϕ− an(0)[∇Mn

(0) +
1

γ
∇ϕ]] +O(ε).

But because the data are well-prepared,

ρn[∇N(ρn) +∇ϕ− an[∇M(ρn) + 1
γ
∇ϕ]]

ε2

= ρn(0)[∇Nn
(2) − an(0)∇Mn

(2)] +O(ε),

= ρn(0)[N
′
(ρ(0))∇ρ(2) + ρ(2)N

′′
(ρ(0))∇ρ(0) + ρ(1)N

′′
(ρ(0))∇ρ(1) +

ρ2(1)
2

N
′′′
(ρ(0))∇ρ(0)

− γM
′
(ρ(0))∇ρ(2) − γρ(2)M

′′
(ρ(0))∇ρ(0) − γρ(1)M

′′
(ρ(0))∇ρ(1) − γ

ρ2(1)
2

M
′′′
(ρ(0))∇ρ(0)] +O(ε),

= O(ε).

Which concludes the proof of the lemma and hence,

1
ε2
ρn[∇N(ρn) +∇ϕ− an[∇M(ρn) + 1

γ
∇ϕ]]

is of order ε. □
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Now we compare O( 1
ε2
) terms in the momentum equation in (4.21),

an(0)ρ
n+1
(0) ∇[Mn+1

(0) +
1

γ
ϕ] = 0,

but an(0) ̸= 0 and ρn+1
(0) ̸= 0,

∇Mn+1
(0) = −∇1

γ
ϕ,

M
′
(ρn+1

(0) )∇ρn+1
(0) = −1

γ
∇ϕ,

from the definition on M(ρ),

A(1− γ−1
γ

1
A
ϕ)

ρn+1
(0)

∇ρn+1
(0) = −1

γ
∇ϕ,

∇ρn+1
(0)

ρn+1
(0)

=
− 1

γ
∇ϕ

A(1− γ−1
γ

1
A
ϕ)

,

multiply by γ − 1,

(γ − 1)
∇ρn+1

(0)

ρn+1
(0)

=
−γ−1

γ
∇ϕ

A(1− γ−1
γ

1
A
ϕ)

,

(γ − 1)∇lnρn+1
(0) = ∇lnA(1− γ − 1

γ

1

A
ϕ),

∇lnρn+1,γ−1
(0) = ∇lnA(1− γ − 1

γ

1

A
ϕ),

hence,

lnρn+1,γ−1
(0) = lnA(1− γ − 1

γ

1

A
ϕ) + c,

ρn+1,γ−1
(0) = A(1− γ − 1

γ

1

A
ϕ),

ρn+1
(0) =

(
A(1− γ − 1

γ

1

A
ϕ)

) 1
γ−1

,

hence, ρ(0) constant in time. Compare O(1
ε
) terms in the momentum equation,

an(0)ρ
n+1
(0) ∇[Mn+1

(1) +
1

γ
ϕ] + (a(0)ρ(1) + a(1)ρ(0))∇[Mn+1

(0) +
1

γ
ϕ] = 0,

∇Mn+1
(1) = −∇1

γ
ϕ,
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Similar calculations as for ρ(0) lead to, ρ(1) =
(
A(1− γ−1

γ
1
A
ϕ)
) 1

γ−1
.

Now compare O(1) terms in the density equation in (4.18),

ρn+1
(0) − ρn(0)

∆t
+ α∇.(ρ(0)u(0))n + (1− α)∇.(ρ(0)u(0))n+1 = 0, (4.22)

Taking ρ(0) as time independent and supposing that the initial data are well prepared, then

ρ(0) =
(
A(1− γ−1

γ
1
A
ϕ)
) 1

γ−1
and equation (4.22) can be simplified to,

∇.(ρ(0)u(0))n+1 = 0. (4.23)

Compare O(1) terms in the momentum equation,

(ρ(0)u(0))
n+1 − (ρ(0)u(0))

n

∆t
+∇.(ρ(0)u(0) ⊗ u(0))

n + [an(0)ρ
n+1
(0) ∇[Mn+1

(2) +
1

γ
ϕ]

+ (an(0)ρ
n+1
(1) + an(1)ρ

n+1
(0) )∇[Mn+1

(1) +
1

γ
ϕ] + (an(0)ρ

n+1
(2) + an(1)ρ

n+1
(1) + an(2)ρ

n+1
(0) )∇[Mn+1

(0) +
1

γ
ϕ]] = 0.

Using the fact that ρ(0) is constant in time and ∇Mn+1
(0) = −∇ 1

γ
ϕ and ∇Mn+1

(1) = −∇ 1
γ
ϕ,

the equation simplifies to,

un+1
(0) − un

(0)

∆t
+ un

(0)∇.un
(0) + an(0)∇[Mn+1

(2) +
1

γ
ϕ] = 0.

From the definition of a(t) = min
x

{
p′(ρ)

A(1− γ−1
γ

1
A
ϕ)

}
− l(t)ε2, we deduce the following,

a(0) = min
x

{
p′(ρ(0))

A(1− γ−1
γ

1
A
ϕ)

}
= γ.

The expansions of M and w around ρ(0) are given by,

M = M(ρ(0)) + ερ(1)M
′
(ρ(0)) + ε2(ρ(2)M

′
(ρ(0)) + ρ(1)2

2
M

′′
(ρ(0))) +O(ε3).

w = w(ρ(0)) + ερ(1)w
′
(ρ(0)) + ε2(ρ(2)w

′
(ρ(0)) + ρ(1)2

2
w

′′
(ρ(0))) +O(ε3).

Note that,

W (ρ) =
γ

γ − 1
Aργ−1 + ϕ,

W (ρ) = w(ρ) + ϕ,

and

M(ρ) =

∫ ρ

0

A(1− γ−1
γ

1
A
ϕ)

ρ′ dρ
′
.
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So,

∇W (2) = ∇[ρ(2)w
′
(ρ(0)) +

ρ(1)2

2
w

′′
(ρ(0)) + ϕ],

= ∇ρ(2)w
′
(ρ(0)) + ρ(2)w

′′
(ρ(0))∇ρ(0) + ρ(1)∇ρ(1)w

′′
(ρ(0)) +

ρ(1)2

2
w

′′′
(ρ(0))∇ρ(0) +∇ϕ,

= ∇ρ(2)γργ−2
(0) + ρ(2)γ(γ − 2)ργ−3

(0) ∇ρ(0) + ρ(1)∇ρ(1)γ(γ − 2)ργ−3
(0) ∇ρ(0)

+
ρ(1)2

2
γ(γ − 2)(γ − 3)ργ−4

(0) ∇ρ(0) +∇ϕ.

On the other hand,

an(0)∇[Mn+1
(2) +

1

γ
ϕ]

= γ[∇ρ(2)M
′
(ρ(0)) + ρ(2)M

′′
(ρ(0))∇ρ(0) + ρ(1)∇ρ(1)M

′′
(ρ(0)) +

ρ(1)2

2
M

′′′
(ρ(0))∇ρ(0) +

1

γ
ϕ],

= ∇ρ(2)γργ−2
(0) + ρ(2)γ(γ − 2)ργ−3

(0) ∇ρ(0) + ρ(1)∇ρ(1)γ(γ − 2)ργ−3
(0) ∇ρ(0)

+
ρ(1)2

2
γ(γ − 2)(γ − 3)ργ−4

(0) ∇ρ(0) +∇ϕ.

Finally, the momentum limit equation is,

un+1
(0) − un

(0)

∆t
+ un

(0)∇.un
(0) +∇W n+1

(2) = 0. (4.24)

Hence, as ε goes to zero, discretization (4.18) becomes,

∇.(ρ(0)u(0))n+1 = 0,

un+1
(0) − un

(0)

∆t
+ un

(0)∇.un
(0) +∇W n+1

(2) = 0,
(4.25)

a good discretization of the incompressible limit equations (4.11) and the scheme (4.18) is

asymptotic preserving.

4.3.3 The SP property

In this section we prove that the developed AP scheme for the isentropic Euler equations

with gravitational source term is SP.

Theorem: 4 If the solution at time tn is stationary, i.e. Un = Un−1, where U = (ρ, ρu),

then it is stationary at the next time tn+1, i.e. Un+1 = Un.
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The semi-discrete scheme (4.18),
ρn+1−ρn

∆t
+ α∇.(ρu)n + (1− α)∇.(ρu)n+1 = 0,

(ρu)n+1−(ρu)n

∆t
+∇.(ρu⊗ u)n + 1

ε2
∇
[
p(ρ)− a(t)A(1− γ−1

γ
1
A
ϕ)ρ
]n

+ 1
ε2
anA∇

[
(1− γ−1

γ
1
A
ϕ)ρn+1

]
= −1+an

ε2
ρn∇ϕ− an

ε2
ρn+1∇ϕ.

(4.26)

Proof: Suppose that the solution is stationary at time tn, then the semi-discrete scheme

(4.26) can be written as,∇.(ρu)n = 0,

∇.(ρu⊗ u)n + 1
ε2
∇p(ρ)n = − 1

ε2
ρn∇ϕ.

(4.27)

We will first prove ρn+1 = ρn in (4.18). From the momentum equation,

(ρu)n+1 = (ρu)n +
an∆t

ε2
∇
[
A(1− γ − 1

γ

1

A
ϕ)ρn

]
− an∆t

ε2
∇
[
A(1− γ − 1

γ

1

A
ϕ)ρn+1

]
+

an∆t

ε2
ρn∇ϕ− an∆t

ε2
ρn+1∇ϕ.

Now, we substitute (ρu)n+1 by its value in the density equation in (4.26),

ρn+1 − ρn

∆t
+

an(1− α)∆t

ε2
∆

[
A(1− γ − 1

γ

1

A
ϕ)ρn

]
− an(1− α)∆t

ε2
∆

[
A(1− γ − 1

γ

1

A
ϕ)ρn+1

]
+

an(1− α)∆t

ε2
∇.(ρn∇ϕ)− an(1− α)∆t

ε2
∇.(ρn+1∇ϕ). = 0.

(4.28)

Hence,

ρn+1 − an(1− α)∆t2

ε2
∆

[
A(1− γ − 1

γ

1

A
ϕ)ρn+1

]
− an(1− α)∆t2

ε2
∇.(ρn+1∇ϕ)

= ρn − an(1− α)∆t2

ε2
∆

[
A(1− γ − 1

γ

1

A
ϕ)ρn

]
− an(1− α)∆t2

ε2
∇.(ρn∇ϕ).

(4.29)

Because ρ−an(1−α)∆t2

ε2
∇.(ρ∇ϕ) are linear first order components in ρ, the fact that ∆

[
A(1− γ−1

γ
1
A
ϕ)ρ
]

is elliptic, is enough to say that the full equation is elliptic. So, under appropriate boundary

conditions, the uniqueness of the solution of the elliptic equation results in ρn+1 = ρn .

However, we still need to prove that (ρu)n+1 = (ρu)n.
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Recall the equation for updating the momentum from (4.26),

(ρu)n+1 − (ρu)n

∆t
+∇.(ρu⊗ u)n +

1

ε2
∇
[
p(ρ)− a(t)A(1− γ − 1

γ

1

A
ϕ)ρ

]n
+

1

ε2
an∇

[
A(1− γ − 1

γ

1

A
ϕ)ρn+1

]
=

−1 + an

ε2
ρn∇ϕ− an

ε2
ρn+1∇ϕ.

But if ρn+1 = ρn, then,

(ρu)n+1 − (ρu)n

∆t
+∇.(ρu⊗ u)n +

1

ε2
∇
[
p(ρ)− a(t)A(1− γ − 1

γ

1

A
ϕ)ρ

]n
+

1

ε2
an∇

[
A(1− γ − 1

γ

1

A
ϕ)ρn

]
=

−1 + an

ε2
ρn∇ϕ− an

ε2
ρn∇ϕ.

and the momentum equation in system (4.27) holds at time tn. So,

(ρu)n+1 − (ρu)n

∆t
= 0,

Hence, (ρu)n+1 = (ρu)n .

This concludes the proof of the SP property of the scheme (4.18). □

4.4 Fully discrete Numerical Scheme

In order to complete the presentation of the numerical scheme, we still need space discretiza-

tion. In this work, we follow the staggered discretization on a Cartesian grid suggested by

Goudon et al. [34] which follows the principles of MAC schemes [38]. System (4.18) splits

into two systems, the slow explicit system:
ρ∗−ρn

∆t
+ α∇.(ρu)n = 0,

(ρu)∗−(ρu)n

∆t
+∇.(ρu⊗ u)n + 1

ε2
∇
[
p(ρ)− a(t)A(1− γ−1

γ
1
A
ϕ)ρ
]n

=
−1+and

ε2
ρn∇ϕ,

(4.30)

and the fast implicit system:
ρn+1−ρ∗

∆t
+ (1− α)∇.(ρu)n+1 = 0,

(ρu)n+1−(ρu)∗

∆t
+ 1

ε2
andA(1−

γ−1
γ

1
A
ϕ)∇ρn+1 = − and

ε2γ
ρn+1∇ϕ.

(4.31)

We will deal with each system separately in one and two space dimensions.
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4.4.1 The 1D numerical scheme

In the 1D setup, our computational domain Ω = [xL, xR], an interval of the real axis,

is partitioned into subintervals [xi, xi+1], for i ∈ {1, ..., N}. We define xi+ 1
2
= xi+xi+1

2
as

centers of the subintervals. Let ∆xi,∆xi+ 1
2
be the length of the interval [xi− 1

2
, xi+ 1

2
] and

[xi, xi+1] respectively. In our calculations, we set ∆xi = ∆xi+ 1
2
= ∆x.

The density ρ is evolved on the centers xi+ 1
2
of the primal cells. The velocity u is evaluated

on the points xi . The density on the edges of the primal mesh can be defined by averages,

ρi =
ρi+ 1

2
+ ρi− 1

2

2
. (4.32)

We start by presenting a discretization for the slow explicit system (4.30),
ρ∗
i+1

2

−ρn
i+1

2

∆t
+ α

[
Fi+1−Fi

∆x

]
= 0,

ρ∗i u
∗
i−ρni u

n
i

∆t
+

ζ
i+1

2
−ζ

i− 1
2

∆x
+ 1

ε2

Πn

i+1
2

−Πn

i− 1
2

∆x
=

−1+and
ε2

ρni
ϕ
i+1

2
−ϕ

i− 1
2

∆x
.

(4.33)

The flux terms in the density equation are computed with the following formula,

Fi = F+
i + F−

i = F+(ρi− 1
2
, ui) + F−(ρi+ 1

2
, ui),

with

F+(ρ, u) =


0 if u ≤ −c(ρ, u)

ρ
4c(ρ,u)

(v + c(ρ, u))2 if |u| ≤ c(ρ, u)

ρu if u ≥ c(ρ, u)

F−(ρ, u) =


ρu if u ≤ −c(ρ, u)

− ρ
4c(ρ,u)

(v − c(ρ, u))2 if |u| ≤ c(ρ, u)

0 if u ≥ c(ρ, u)

The flux terms in the momentum equation are computed as the following,

ζi+ 1
2
= uiF

+
i+ 1

2

+ ui+1F
+
i+ 1

2

,
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with

F±
i+ 1

2

=
1

2

(
F±
i + F±

i+1

)
.

Πi+ 1
2
is the modified pressure term at the node xi+ 1

2
and is defined as

Πi+ 1
2
= p
(
ρi+ 1

2

)
− adA

(
1− γ − 1

γ

1

A
ϕi+ 1

2

)
ρi+ 1

2
.

and is the discrete version of the time dependent function a(t) at time tn, defined as

and = min
i

{
p′(ρni )

A(1− γ−1
γ

1
A
ϕi)

}
− lε2.

The next step is to discretize the fast implicit system (4.31),
ρn+1

i+1
2

−ρ∗
i+1

2

∆t
+ (1− α)

[
(Fn+1)Up

i+1−(Fn+1)Up
i

∆x

]
= 0,

ρn+1
i un+1

i −ρ∗i u
∗
i

∆t
+

and
ε2
A(1− γ−1

γ
1
A
ϕi)

ρn+1

i+1
2

−ρn+1

i− 1
2

∆x
= − and

ε2γ
ρn+1
i

ϕ
i+1

2
−ϕ

i− 1
2

∆x
.

(4.34)

Here (F n+1)Up
i is the upwind flux function obtained as following,

(F n+1)Up
i = ρn+1

i− 1
2

[
un+1
i

]+ − ρn+1
i+ 1

2

[
un+1
i

]−
.

Where
[
X
]+

= |X|+X
2

. Now, in order to solve this implicit system we first write un+1
i from

the momentum equation in (4.34) as a function of ρn+1,

un+1
i =

1

ρn+1
i

[
ρ∗iu

∗
i −

∆tand
ε2

A(1− γ − 1

γ

1

A
ϕi)

ρn+1
i+ 1

2

− ρn+1
i− 1

2

∆x
− and∆t

ε2γ
ρn+1
i

ϕi+ 1
2
− ϕi− 1

2

∆x

]
. (4.35)

Substitute the flux terms by their values in the density equation,

ρn+1
i+ 1

2

− ρ∗
i+ 1

2

∆t
+

(1− α)

∆x

[
ρn+1
i+ 1

2

[
un+1
i+1

]+ − ρn+1
i+ 3

2

[
un+1
i+1

]− − ρn+1
i− 1

2

[
un+1
i

]+
+ ρn+1

i+ 1
2

[
un+1
i

]−]
= 0.

(4.36)
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Keeping in mind that
[
X
]+

= |X|+X
2

,

ρn+1
i+ 1

2

− ρ∗
i+ 1

2

∆t
+

(1− α)

∆x

[
ρn+1
i+ 1

2

|un+1
i+1 |+ un+1

i+1

2
− ρn+1

i+ 3
2

|un+1
i+1 | − un+1

i+1

2

− ρn+1
i− 1

2

|un+1
i |+ un+1

i

2
+ ρn+1

i+ 1
2

|un+1
i | − un+1

i

2

]
= 0. (4.37)

Rearranging the terms yields to,

ρn+1
i+ 1

2

− ρ∗
i+ 1

2

∆t
+

(1− α)

∆x

[
ρn+1
i+ 1

2

− ρn+1
i+ 3

2

2
|un+1

i+1 |+
ρn+1
i+ 1

2

+ ρn+1
i+ 3

2

2
un+1
i+1

+
ρn+1
i+ 1

2

− ρn+1
i− 1

2

2
|un+1

i | −
ρn+1
i+ 1

2

+ ρn+1
i− 1

2

2
un+1
i

]
= 0. (4.38)

However, from the definition of ρn+1
i , the equation can be rewritten into this

ρn+1
i+ 1

2

− ρ∗
i+ 1

2

∆t
+

(1− α)

∆x

[
ρn+1
i+ 1

2

− ρn+1
i+ 3

2

2
|un+1

i+1 |+ ρn+1
i+1 u

n+1
i+1

+
ρn+1
i+ 1

2

− ρn+1
i− 1

2

2
|un+1

i | − ρn+1
i un+1

i

]
= 0. (4.39)

Next, we substitute un+1
i by its value in the density equation,

ρn+1
i+ 1

2

− ρ∗
i+ 1

2

∆t
+

(1− α)

∆x

[
ρn+1
i+ 1

2

− ρn+1
i+ 3

2

2ρn+1
i+1

∣∣∣ρ∗i+1u
∗
i+1 −

∆tand
ε2

A(1− γ − 1

γ

1

A
ϕi+1)

ρn+1
i+ 3

2

− ρn+1
i+ 1

2

∆x
− and∆t

ε2γ
ρn+1
i+1

ϕi+ 3
2
− ϕi+ 1

2

∆x

∣∣∣
+
(
ρ∗i+1u

∗
i+1 −

∆tand
ε2

A(1− γ − 1

γ

1

A
ϕi+1)

ρn+1
i+ 3

2

− ρn+1
i+ 1

2

∆x
− and∆t

ε2γ
ρn+1
i+1

ϕi+ 3
2
− ϕi+ 1

2

∆x

)
+

ρn+1
i+ 1

2

− ρn+1
i− 1

2

2ρn+1
i

∣∣∣ρ∗iu∗
i −

∆tand
ε2

A(1− γ − 1

γ

1

A
ϕi)

ρn+1
i+ 1

2

− ρn+1
i− 1

2

∆x
− and∆t

ε2γ
ρn+1
i

ϕi+ 1
2
− ϕi− 1

2

∆x

∣∣∣
−
(
ρ∗iu

∗
i −

∆tand
ε2

A(1− γ − 1

γ

1

A
ϕi)

ρn+1
i+ 1

2

− ρn+1
i− 1

2

∆x
− and∆t

ε2γ
ρn+1
i

ϕi+ 1
2
− ϕi− 1

2

∆x

)]
= 0. (4.40)

84



The previous system of N nonlinear equations is to be solved using the Newton-Raphson

method. We are interested in solving the system f(x)=0 with

0 = [0.....0]T ,

x = [x1x2...xN ]
T =

[
ρn+1

3
2

ρn+1
5
2

...ρn+1
N+ 1

2

]T
,

f(x) = [f1(x)f2(x)...fN(x)]
T ,

where T denotes the transpose operator and fi(x) =

ρn+1
i+ 1

2

− ρ∗
i+ 1

2

∆t
+

(1− α)

∆x

[
ρn+1
i+ 1

2

− ρn+1
i+ 3

2

2ρn+1
i+1

∣∣∣ρ∗i+1u
∗
i+1 −

∆tand
ε2

A(1− γ − 1

γ

1

A
ϕi+1)

ρn+1
i+ 3

2

− ρn+1
i+ 1

2

∆x
− and∆t

ε2γ
ρn+1
i+1

ϕi+ 3
2
− ϕi+ 1

2

∆x

∣∣∣
+
(
ρ∗i+1u

∗
i+1 −

∆tand
ε2

A(1− γ − 1

γ

1

A
ϕi+1)

ρn+1
i+ 3

2

− ρn+1
i+ 1

2

∆x
− and∆t

ε2γ
ρn+1
i+1

ϕi+ 3
2
− ϕi+ 1

2

∆x

)
+

ρn+1
i+ 1

2

− ρn+1
i− 1

2

2ρn+1
i

∣∣∣ρ∗iu∗
i −

∆tand
ε2

A(1− γ − 1

γ

1

A
ϕi)

ρn+1
i+ 1

2

− ρn+1
i− 1

2

∆x
− and∆t

ε2γ
ρn+1
i

ϕi+ 1
2
− ϕi− 1

2

∆x

∣∣∣
−
(
ρ∗iu

∗
i −

∆tand
ε2

A(1− γ − 1

γ

1

A
ϕi)

ρn+1
i+ 1

2

− ρn+1
i− 1

2

∆x
− and∆t

ε2γ
ρn+1
i

ϕi+ 1
2
− ϕi− 1

2

∆x

)]
. (4.41)

After solving the system of nonlinear equations for ρn+1, (ρu)n+1 is recovered from the

momentum equation. The full presentation of the 1D scheme is summarized by the slow

step (4.33) together with the fast step (4.34).

4.4.2 The 2D numerical scheme

We discretize the computational domain Ω = [xL, xR] × [yL, yR] on a Cartesian 2D grid.

We define xi+ 1
2
= xi+xi+1

2
and yj+ 1

2
=

yj+yj+1

2
for i, j ∈ {1, ..., N}. Let ∆xi,∆xi+ 1

2
,∆yj,

and ∆yj+ 1
2
be the length of the interval [xi− 1

2
, xi+ 1

2
], [xi, xi+1], [yj− 1

2
, yj+ 1

2
], and [yj, yj+1]

respectively. In our calculations we will set ∆xi = ∆xi+ 1
2
= ∆x, and ∆yj = ∆yj+ 1

2
= ∆y.

The idea of MAC is to place the variables of the system in different locations on the grid.

The density ρ is evolved on the centers (xi+ 1
2
, yj+ 1

2
) of the primal cells. The velocity u in

the x-direction is evaluated on the points (xi, yj+ 1
2
), and the velocity v in the y-direction is

evaluated on the points (xi+ 1
2
, yj) as in figure 4.1. The density on the edges of the primal
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mesh can be defined by averages,

ρi,j+ 1
2
=

ρi+ 1
2
,j+ 1

2
+ ρi− 1

2
,j+ 1

2

2
,

ρi+ 1
2
,j =

ρi+ 1
2
,j+ 1

2
+ ρi+ 1

2
,j− 1

2

2
.

The numerical solution is evolved on the staggered grid and the fluxes are defined as in

Figure 4.1: MAC discretization.

[34]. We start by presenting a discretization for the slow explicit system (4.30),

ρ∗
i+1

2 ,j+1
2

−ρn
i+1

2 ,j+1
2

∆t
+ α

[
Fx

i+1,j+1
2

−Fx

i,j+1
2

∆x
+

F y

i+1
2 ,j+1

−F y

i+1
2 ,j

∆y

]
= 0,

ρ∗
i,j+1

2

u∗
i,j+1

2

−ρn
i,j+1

2

un

i,j+1
2

∆t
+

ζu,x
i+1

2 ,j+1
2

−ζu,x
i− 1

2 ,j+1
2

∆x
+

ζu,yi,j+1−ζu,yi,j

∆y

+ 1
ε2

Πn

i+1
2 ,j+1

2

−Πn

i− 1
2 ,j+1

2

∆x
=

−1+and
ε2

ρn
i,j+ 1

2

ϕ
i+1

2 ,j+1
2
−ϕ

i− 1
2 ,j+1

2

∆x
,

ρ∗
i+1

2 ,j
v∗
i+1

2 ,j
−ρn

i+1
2 ,j

vn
i+1

2 ,j

∆t
+

ζv,xi+1,j−ζv,xi,j

∆x
+

ζv,y
i+1

2 ,j+1
2

−ζv,y
i+1

2 ,j− 1
2

∆y

+ 1
ε2

Πn

i+1
2 ,j+1

2

−Πn

i+1
2 ,j− 1

2

∆y
=

−1+and
ε2

ρn
i+ 1

2
,j

ϕ
i+1

2 ,j+1
2
−ϕ

i+1
2 ,j− 1

2

∆y
.

(4.42)

The flux terms along the x- and the y- directions in the density equation are computed by

the following formulas,

F x
i,j+ 1

2
= F x,+

i,j+ 1
2

+ F x,−
i,j+ 1

2

= F+(ρi− 1
2
,j+ 1

2
, ui,j+ 1

2
) + F−(ρi+ 1

2
,j+ 1

2
, ui,j+ 1

2
),
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F x
i+1,j+ 1

2
= F x,+

i+1,j+ 1
2

+ F x,−
i+1,j+ 1

2

= F+(ρi+ 1
2
,j+ 1

2
, ui+1,j+ 1

2
) + F−(ρi+ 3

2
,j+ 1

2
, ui+1,j+ 1

2
),

F y

i+ 1
2
,j
= F y,+

i+ 1
2
,j
+ F y,−

i+ 1
2
,j
= F+(ρi+ 1

2
,j− 1

2
, vi+ 1

2
,j) + F−(ρi+ 1

2
,j+ 1

2
, vi+ 1

2
,j),

F y

i+ 1
2
,j+1

= F y,+

i+ 1
2
,j+1

+ F y,−
i+ 1

2
,j+1

= F+(ρi+ 1
2
,j+ 1

2
, vi+ 1

2
,j+1) + F−(ρi+ 1

2
,j+ 3

2
, vi+ 1

2
,j+1),

with

F+(ρ, u) =


0 if u ≤ −c(ρ, u)

ρ
4c(ρ,u)

(v + c(ρ, u))2 if |u| ≤ c(ρ, u)

ρu if u ≥ c(ρ, u)

F−(ρ, u) =


ρu if u ≤ −c(ρ, u)

− ρ
4c(ρ,u)

(v − c(ρ, u))2 if |u| ≤ c(ρ, u)

0 if u ≥ c(ρ, u)

The flux terms in the momentum equation along the x-direction are computed as follows,

ζu,x
i+ 1

2
,j+ 1

2

= ui,j+ 1
2
F x,+

i+ 1
2
,j+ 1

2

+ ui+1,j+ 1
2
F x,−
i+ 1

2
,j+ 1

2

,

= ui,j+ 1
2

F x,+

i,j+ 1
2

+ F x,+

i+1,j+ 1
2

2
+ ui+1,j+ 1

2

F x,−
i,j+ 1

2

+ F x,−
i+1,j+ 1

2

2
,

= ui,j+ 1
2

F+(ρi− 1
2
,j+ 1

2
, ui,j+ 1

2
) + F+(ρi+ 1

2
,j+ 1

2
, ui+1,j+ 1

2
)

2

+ ui+1,j+ 1
2

F−(ρi+ 1
2
,j+ 1

2
, ui,j+ 1

2
) + F−(ρi+ 3

2
,j+ 1

2
, ui+1,j+ 1

2
)

2
.

ζu,x
i− 1

2
,j+ 1

2

= ui−1,j+ 1
2
F x,+

i− 1
2
,j+ 1

2

+ ui,j+ 1
2
F x,−
i− 1

2
,j+ 1

2

,

= ui−1,j+ 1
2

F x,+

i−1,j+ 1
2

+ F x,+

i,j+ 1
2

2
+ ui,j+ 1

2

F x,−
i−1,j+ 1

2

+ F x,−
i,j+ 1

2

2
,

= ui−1,j+ 1
2

F+(ρi− 3
2
,j+ 1

2
, ui−1,j+ 1

2
) + F+(ρi− 1

2
,j+ 1

2
, ui,j+ 1

2
)

2

+ ui,j+ 1
2

F−(ρi− 1
2
,j+ 1

2
, ui−1,j+ 1

2
) + F−(ρi+ 1

2
,j+ 1

2
, ui,j+ 1

2
)

2
.
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ζu,yi,j = ui,j− 1
2
F y,+
i,j + ui,j+ 1

2
F y,−
i,j ,

= ui,j− 1
2

F y,+

i+ 1
2
,j
+ F y,+

i− 1
2
,j

2
+ ui,j+ 1

2

F y,−
i+ 1

2
,j
+ F y,−

i− 1
2
,j

2
,

= ui,j− 1
2

F+(ρi+ 1
2
,j− 1

2
, vi+ 1

2
,j) + F+(ρi− 1

2
,j− 1

2
, vi− 1

2
,j)

2

+ ui,j+ 1
2

F−(ρi+ 1
2
,j+ 1

2
, vi+ 1

2
,j) + F−(ρi− 1

2
,j+ 1

2
, vi− 1

2
,j)

2
.

ζu,yi,j+1 = ui,j+ 1
2
F y,+
i,j+1 + ui,j+ 3

2
F y,−
i,j+1,

= ui,j+ 1
2

F y,+

i+ 1
2
,j+1

+ F y,+

i− 1
2
,j+1

2
+ ui,j+ 3

2

F y,−
i+ 1

2
,j+1

+ F y,−
i− 1

2
,j+1

2
,

= ui,j+ 1
2

F+(ρi+ 1
2
,j+ 1

2
, vi+ 1

2
,j+1) + F+(ρi− 1

2
,j− 1

2
, vi− 1

2
,j)

2

+ ui,j+ 3
2

F−(ρi+ 1
2
,j+ 3

2
, vi+ 1

2
,j+1) + F−(ρi− 1

2
,j+ 3

2
, vi− 1

2
,j+1)

2
.

Now, in a similar manner we compute the flux terms in the momentum equation along the

y-direction,

ζv,xi,j = vi− 1
2
,jF

x,+
i,j + vi+ 1

2
,jF

x,−
i,j ,

= vi− 1
2
,j

F x,+

i,j+ 1
2

+ F x,+

i,j− 1
2

2
+ vi+ 1

2
,j

F x,−
i,j+ 1

2

+ F x,−
i,j− 1

2

2
,

= vi− 1
2
,j

F+(ρi− 1
2
,j+ 1

2
, ui,j+ 1

2
) + F+(ρi− 1

2
,j− 1

2
, ui,j− 1

2
)

2

+ vi+ 1
2
,j

F−(ρi+ 1
2
,j+ 1

2
, ui,j+ 1

2
) + F−(ρi+ 1

2
,j− 1

2
, ui,j− 1

2
)

2
.

ζv,xi+1,j = vi+ 1
2
,jF

x,+
i+1,j + vi+ 3

2
,jF

x,−
i+1,j,

= vi+ 1
2
,j

F x,+

i+1,j+ 1
2

+ F x,+

i+1,j− 1
2

2
+ vi+ 3

2
,j

F x,−
i+1,j+ 1

2

+ F x,−
i+1,j− 1

2

2
,

= vi+ 1
2
,j

F+(ρi+ 1
2
,j+ 1

2
, ui+1,j+ 1

2
) + F+(ρi+ 1

2
,j− 1

2
, ui+1,j− 1

2
)

2

+ vi+ 3
2
,j

F−(ρi+ 3
2
,j+ 1

2
, ui+1,j+ 1

2
) + F−(ρi+ 3

2
,j− 1

2
, ui+1,j− 1

2
)

2
.
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ζv,y
i+ 1

2
,j+ 1

2

= vi+ 1
2
,jF

y,+

i+ 1
2
,j+ 1

2

+ vi+ 1
2
,j+1F

y,−
i+ 1

2
,j+ 1

2

,

= vi+ 1
2
,j

F y,+

i+ 1
2
,j
+ F y,+

i+ 1
2
,j+1

2
+ vi+ 1

2
,j+1

F y,−
i+ 1

2
,j
+ F y,−

i+ 1
2
,j+1

2
,

= vi+ 1
2
,j

F+(ρi+ 1
2
,j− 1

2
, vi+ 1

2
,j) + F+(ρi+ 1

2
,j+ 1

2
, vi+ 1

2
,j+1)

2

+ vi+ 1
2
,j+1

F−(ρi+ 1
2
,j+ 1

2
, vi+ 1

2
,j) + F−(ρi+ 1

2
,j+ 3

2
, vi+ 1

2
,j+1)

2
.

ζv,y
i+ 1

2
,j− 1

2

= vi+ 1
2
,j−1F

y,+

i+ 1
2
,j− 1

2

+ vi+ 1
2
,jF

y,−
i+ 1

2
,j− 1

2

,

= vi+ 1
2
,j−1

F y,+

i+ 1
2
,j−1

+ F y,+

i+ 1
2
,j

2
+ vi+ 1

2
,j

F y,−
i+ 1

2
,j−1

+ F y,−
i+ 1

2
,j

2
,

= vi+ 1
2
,j−1

F+(ρi+ 1
2
,j− 3

2
, vi+ 1

2
,j−1) + F+(ρi+ 1

2
,j− 1

2
, vi+ 1

2
,j)

2

+ vi+ 1
2
,j

F−(ρi+ 1
2
,j− 1

2
, vi+ 1

2
,j−1) + F−(ρi+ 1

2
,j+ 1

2
, vi+ 1

2
,j)

2
.

Πi+ 1
2
,j+ 1

2
is the modified pressure term at (xi+ 1

2
, yi+ 1

2
), and is defined as

Πi+ 1
2
,j+ 1

2
= p
(
ρi+ 1

2
,j+ 1

2

)
− adA

(
1− γ − 1

γ

1

A
ϕi+ 1

2
,j+ 1

2

)
ρi+ 1

2
,j+ 1

2
.

and is the discrete version of the time dependent function a(t) at time tn defined as

and = min
i,j

{ p′(ρn
i,j+ 1

2

)

A(1− γ−1
γ

1
A
ϕi,j+ 1

2
)

}
− lε2.

The next step is to discretize the fast implicit system (4.31),

ρn+1

i+1
2 ,j+1

2

−ρ∗
i+1

2 ,j+1
2

∆t
+ (1− α)

[
(Fn+1)Up,x

i+1,j+1
2

−(Fn+1)Up,x

i,j+1
2

∆x
+

(Fn+1)Up,y

i+1
2 ,j+1

−(Fn+1)Up,y

i+1
2 ,j

∆y

]
= 0,

ρn+1

i,j+1
2

un+1

i,j+1
2

−ρ∗
i,j+1

2

u∗
i,j+1

2

∆t
+

and
ε2
A(1− γ−1

γ
1
A
ϕi,j+ 1

2
)
ρn+1

i+1
2 ,j+1

2

−ρn+1

i− 1
2 ,j+1

2

∆x
=

− and
ε2γ

ρn+1
i,j+ 1

2

ϕ
i+1

2 ,j+1
2
−ϕ

i− 1
2 ,j+1

2

∆x
,

ρn+1

i+1
2 ,j

vn+1

i+1
2 ,j

−ρ∗
i+1

2 ,j
v∗
i+1

2 ,j

∆t
+

and
ε2
A(1− γ−1

γ
1
A
ϕi+ 1

2
,j)

ρn+1

i+1
2 ,j+1

2

−ρn+1

i+1
2 ,j− 1

2

∆y
=

− and
ε2γ

ρn+1
i+ 1

2
,j

ϕ
i+1

2 ,j+1
2
−ϕ

i+1
2 ,j− 1

2

∆y
.

(4.43)
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Here (F n+1)Up,x

i,j+ 1
2

and (F n+1)Up,y

i+ 1
2
,j
are the upwind fluxes obtained as following,

(F n+1)Up,x

i,j+ 1
2

= ρn+1
i− 1

2
,j+ 1

2

[
un+1
i,j+ 1

2

]+ − ρn+1
i+ 1

2
,j+ 1

2

[
un+1
i,j+ 1

2

]−
(F n+1)Up,y

i+ 1
2
,j
= ρn+1

i+ 1
2
,j− 1

2

[
vn+1
i+ 1

2
,j

]+ − ρn+1
i+ 1

2
,j+ 1

2

[
vn+1
i+ 1

2
,j

]−
Now, in order to solve this implicit system, we first write un+1

i,j+ 1
2

and vn+1
i+ 1

2
,j
as a function of

ρn+1, 

un+1
i,j+ 1

2

= 1
ρn+1

i,j+1
2

[
ρ∗
i,j+ 1

2

u∗
i,j+ 1

2

− and∆t

ε2
A(1− γ−1

γ
1
A
ϕi,j+ 1

2
)
ρn+1

i+1
2 ,j+1

2

ρn+1

i− 1
2 ,j+1

2

∆x

−and∆t

ε2γ
ρn+1
i,j+ 1

2

ϕ
i+1

2 ,j+1
2
−ϕ

i− 1
2 ,j+1

2

∆x

]
,

vn+1
i+ 1

2
,j
= 1

ρn+1

i+1
2 ,j

[
ρ∗
i+ 1

2
,j
v∗
i+ 1

2
,j
− and∆t

ε2
A(1− γ−1

γ
1
A
ϕi+ 1

2
,j)

ρn+1

i+1
2 ,j+1

2

−ρn+1

i+1
2 ,j− 1

2

∆y

−and∆t

ε2γ
ρn+1
i+ 1

2
,j

ϕ
i+1

2 ,j+1
2
−ϕ

i+1
2 ,j− 1

2

∆y

]
.

(4.44)

Substitute the velocities by their values in the density equation from (4.43),

ρn+1
i+ 1

2
,j+ 1

2

− ρ∗
i+ 1

2
,j+ 1

2

∆t
+(1−α)

(F n+1)Up,x

i+1,j+ 1
2

− (F n+1)Up,x

i,j+ 1
2

∆x
+

(F n+1)Up,y

i+ 1
2
,j+1

− (F n+1)Up,y

i+ 1
2
,j

∆y

 = 0.

(4.45)
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ρn+1
i+ 1

2
,j+ 1

2

− ρ∗
i+ 1

2
,j+ 1

2

∆t
+

(1− α)

∆x

[
ρn+1
i+ 1

2
,j+ 1

2

− ρn+1
i+ 3

2
,j+ 1

2

2ρn+1
i+1,j+ 1

2

∣∣∣ρ∗i+1,j+ 1
2
u∗
i+1,j+ 1

2

− ∆tand
ε2

A(1− γ − 1

γ

1

A
ϕi+1,j+ 1

2
)
ρn+1
i+ 3

2
,j+ 1

2

− ρn+1
i+ 1

2
,j+ 1

2

∆x
− and∆t

ε2γ
ρn+1
i+1,j+ 1

2

ϕi+ 3
2
,j+ 1

2
− ϕi+ 1

2
,j+ 1

2

∆x

∣∣∣
+
(
ρ∗
i+1,j+ 1

2
u∗
i+1,j+ 1

2
− ∆tand

ε2
A(1− γ − 1

γ

1

A
ϕi+1,j+ 1

2
)
ρn+1
i+ 3

2
,j+ 1

2

− ρn+1
i+ 1

2
,j+ 1

2

∆x

− and∆t

ε2γ
ρn+1
i+1,j+ 1

2

ϕi+ 3
2
,j+ 1

2
− ϕi+ 1

2
,j+ 1

2

∆x

)
+

ρn+1
i+ 1

2
,j+ 1

2

− ρn+1
i− 1

2
,j+ 1

2

2ρn+1
i,j+ 1

2

∣∣∣ρ∗i,j+ 1
2
u∗
i,j+ 1

2
− ∆tand

ε2
A(1− γ − 1

γ

1

A
ϕi,j+ 1

2
)
ρn+1
i+ 1

2
,j+ 1

2

− ρn+1
i− 1

2
,j+ 1

2

∆x

− and∆t

ε2γ
ρn+1
i,j+ 1

2

ϕi+ 1
2
,j+ 1

2
− ϕi− 1

2
,j+ 1

2

∆x

∣∣∣
−
(
ρ∗
i,j+ 1

2
u∗
i,j+ 1

2
− ∆tand

ε2
A(1− γ − 1

γ

1

A
ϕi,j+ 1

2
)
ρn+1
i+ 1

2
,j+ 1

2

− ρn+1
i− 1

2
,j+ 1

2

∆x

− and∆t

ε2γ
ρn+1
i,j+ 1

2

ϕi+ 1
2
,j+ 1

2
− ϕi− 1

2
,j+ 1

2

∆x

)]

+
(1− α)

∆y

[
ρn+1
i+ 1

2
,j+ 1

2

− ρn+1
i+ 1

2
,j+ 3

2

2ρn+1
i+ 1

2
,j+1

∣∣∣ρ∗i+ 1
2
,j+1

v∗
i+ 1

2
,j+1

− ∆tand
ε2

A(1− γ − 1

γ

1

A
ϕi+ 1

2
,j+1)

ρn+1
i+ 1

2
,j+ 3

2

− ρn+1
i+ 1

2
,j+ 1

2

∆y
− and∆t

ε2γ
ρn+1
i+ 1

2
,j+1

ϕi+ 1
2
,j+ 3

2
− ϕi+ 1

2
,j+ 1

2

∆y

∣∣∣
+
(
ρ∗
i+ 1

2
,j+1

v∗
i+ 1

2
,j+1

− ∆tand
ε2

A(1− γ − 1

γ

1

A
ϕi+ 1

2
,j+1)

ρn+1
i+ 1

2
,j+ 3

2

− ρn+1
i+ 1

2
,j+ 1

2

∆y

− and∆t

ε2γ
ρn+1
i+ 1

2
,j+1

ϕi+ 1
2
,j+ 3

2
− ϕi+ 1

2
,j+ 1

2

∆y

)
+

ρn+1
i+ 1

2
,j+ 1

2

− ρn+1
i+ 1

2
,j− 1

2

2ρn+1
i+ 1

2
,j

∣∣∣ρ∗i+ 1
2
,j
v∗
i+ 1

2
,j
− ∆tand

ε2
A(1− γ − 1

γ

1

A
ϕi+ 1

2
,j)

ρn+1
i+ 1

2
,j+ 1

2

− ρn+1
i+ 1

2
,j− 1

2

∆y

− and∆t

ε2γ
ρn+1
i+ 1

2
,j

ϕi+ 1
2
,j+ 1

2
− ϕi+ 1

2
,j− 1

2

∆y

∣∣∣
−
(
ρ∗
i+ 1

2
,j
v∗
i+ 1

2
,j
− ∆tand

ε2
A(1− γ − 1

γ

1

A
ϕi+ 1

2
,j)

ρn+1
i+ 1

2
,j+ 1

2

− ρn+1
i+ 1

2
,j− 1

2

∆y

− and∆t

ε2γ
ρn+1
i+ 1

2
,j

ϕi+ 1
2
,j+ 1

2
− ϕi+ 1

2
,j− 1

2

∆y

)]
= 0. (4.46)
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The previous system of N2 nonlinear equations is to be solved using the Newton-Raphson

method. We are interested in solving the system f(x)=0 with

0 = [0.....0]T ,

x = [x1x2...xN2 ]T =
[
ρn+1

3
2
, 3
2

...ρn+1
3
2
,N+ 1

2

ρn+1
5
2
, 3
2

...ρn+1
5
2
,N+ 1

2

...........ρn+1
N+ 1

2
, 3
2

...ρn+1
N+ 1

2
,N+ 1

2

]T
,

f(x) = [f1(x)f2(x)...fN2(x)]T ,
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where T denotes the transpose operator and f[(i−1)∗N+j](x) =

ρn+1
i+ 1

2
,j+ 1

2

− ρ∗
i+ 1

2
,j+ 1

2

∆t
+
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2
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2
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2
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2
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2
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2
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2
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1
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2
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2
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2
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2
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2
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2
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+
(
ρ∗
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2
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2
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1

A
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2
)
ρn+1
i+ 3

2
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2
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2
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2

∆x
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ε2γ
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2

ϕi+ 3
2
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2
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2
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2

∆x

)
+
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2
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2
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2
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2
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2
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2
)
ρn+1
i+ 1

2
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2
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2
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2

∆x
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+
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2
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2
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+
(
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2
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+
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. (4.47)
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After solving the system of nonlinear equations for ρn+1, (ρu)n+1 and (ρv)n+1 are recovered

from the momentum equations. The full presentation of the 2D scheme is summarized by

the slow step (4.42) together with the fast step (4.43).

4.4.3 The AP property for the 2D numerical scheme

The scheme (4.42)-(4.43) is AP if as ε goes to zero, the discretization becomes a good

approximation of the incompressible limit equations (4.11). We write the two systems

(4.42) and (4.43) in one system,
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i+1

2 ,j+1
2
−ϕ

i+1
2 ,j− 1

2

∆y
− and

ε2γ
ρn+1
i+ 1

2
,j

ϕ
i+1

2 ,j+1
2
−ϕ

i+1
2 ,j− 1

2

∆y
.

(4.48)

The asymptotic expansion of the variables can be written as,

ρn
i+ 1

2
,j+ 1

2
= ρ

(0),n

i+ 1
2
,j+ 1

2

+ ερ
(1),n

i+ 1
2
,j+ 1

2

+ ε2ρ
(2),n

i+ 1
2
,j+ 1

2

+ ...

un
i,j+ 1

2
= u

(0),n

i,j+ 1
2

+ εu
(1),n

i,j+ 1
2

+ ε2u
(2),n

i,j+ 1
2

+ ...

vn
i+ 1

2
,j
= v

(0),n

i+ 1
2
,j
+ εv

(1),n

i+ 1
2
,j
+ ε2v

(2),n

i+ 1
2
,j
+ ...
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As we did at the continuous and semi-discrete levels, we reformulate the momentum

equations in system (4.48) to the following,

ρn+1

i+1
2 ,j+1

2

−ρn
i+1

2 ,j+1
2

∆t
+ α

[
Fx

i+1,j+1
2

−Fx

i,j+1
2

∆x
+

F y

i+1
2 ,j+1

−F y

i+1
2 ,j

∆y

]
+(1− α)

[
(Fn+1)Up,x

i+1,j+1
2

−(Fn+1)Up,x

i,j+1
2

∆x
+

(Fn+1)Up,y

i+1
2 ,j+1

−(Fn+1)Up,y

i+1
2 ,j

∆y

]
= 0,

ρn+1

i,j+1
2

un+1

i,j+1
2

−ρn
i,j+1

2

un

i,j+1
2

∆t
+

ζu,x
i+1

2 ,j+1
2

−ζu,x
i− 1

2 ,j+1
2

∆x
+

ζu,yi,j+1−ζu,yi,j

∆y

+ 1
ε2
ρn
i,j+ 1

2

[
N ′(ρn

i,j+ 1
2

)Dx
i,j+ 1

2

ρ+Dx
i,j+ 1

2

ϕ− and [M
′(ρn

i,j+ 1
2

)Dx
i,j+ 1

2

ρ+ 1
γ
Dx

i,j+ 1
2

ϕ]
]

+
and
ε2
ρn+1
i,j+ 1

2

[M ′(ρn+1
i,j+ 1

2

)Dx
i,j+ 1

2

ρ+ 1
γ
Dx

i,j+ 1
2

ϕ] = 0,

ρn+1

i+1
2 ,j

vn+1

i+1
2 ,j

−ρ∗
i+1

2 ,j
v∗
i+1

2 ,j

∆t
+

ζv,xi+1,j−ζv,xi,j

∆x
+

ζv,y
i+1

2 ,j+1
2

−ζv,y
i+1

2 ,j− 1
2

∆y

+ 1
ε2
ρn
i+ 1

2
,j

[
N ′(ρn

i+ 1
2
,j
)Dy

i+ 1
2
,j
ρ+Dy

i+ 1
2
,j
ϕ− and [M

′(ρn
i+ 1

2
,j
)Dy

i+ 1
2
,j
ρ+Dy

i+ 1
2
,j
ϕ]
]

+
and
ε2
ρn+1
i+ 1

2
,j
[M ′(ρn

i+ 1
2
,j
)Dy

i+ 1
2
,j
ρ+ 1

γ
Dy

i+ 1
2
,j
ϕ] = 0.

(4.49)

Which is the same as,

ρn+1

i+1
2 ,j+1

2

−ρn
i+1

2 ,j+1
2

∆t
+ α

[
Fx

i+1,j+1
2

−Fx

i,j+1
2

∆x
+

F y

i+1
2 ,j+1

−F y

i+1
2 ,j

∆y

]
+(1− α)

[
(Fn+1)Up,x

i+1,j+1
2

−(Fn+1)Up,x

i,j+1
2

∆x
+

(Fn+1)Up,y

i+1
2 ,j+1

−(Fn+1)Up,y

i+1
2 ,j

∆y

]
= 0,

ρn+1

i,j+1
2

un+1

i,j+1
2

−ρn
i,j+1

2

un

i,j+1
2

∆t
+

ζu,x
i+1

2 ,j+1
2

−ζu,x
i− 1

2 ,j+1
2

∆x
+

ζu,yi,j+1−ζu,yi,j

∆y

+ 1
ε2
ρn
i,j+ 1

2

[
Dx

i,j+ 1
2

Nn +Dx
i,j+ 1

2

ϕ− and [D
x
i,j+ 1

2

Mn + 1
γ
Dx

i,j+ 1
2

ϕ]
]

+
and
ε2
ρn+1
i,j+ 1

2

[Dx
i,j+ 1

2

Mn+1 + 1
γ
Dx

i,j+ 1
2

ϕ] = 0,

ρn+1

i+1
2 ,j

vn+1

i+1
2 ,j

−ρ∗
i+1

2 ,j
v∗
i+1

2 ,j

∆t
+

ζv,xi+1,j−ζv,xi,j

∆x
+

ζv,y
i+1

2 ,j+1
2

−ζv,y
i+1

2 ,j− 1
2

∆y

+ 1
ε2
ρn
i+ 1

2
,j

[
Dy

i+ 1
2
,j
Nn +Dy

i+ 1
2
,j
ϕ− and [D

y

i+ 1
2
,j
Mn +Dy

i+ 1
2
,j
ϕ]
]

+
and
ε2
ρn+1
i+ 1

2
,j
[Dy

i+ 1
2
,j
Mn+1 + 1

γ
Dy

i+ 1
2
,j
ϕ] = 0.

(4.50)

with

Dx
i,j+ 1

2
ρ =

ρi+ 1
2
,j+ 1

2
− ρi− 1

2
,j+ 1

2

∆x
, Dy

i+ 1
2
,j
ρ =

ρi+ 1
2
,j+ 1

2
− ρi+ 1

2
,j− 1

2

∆y
,
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and

D̃x
i,j+ 1

2
M(ρ) = M ′(ρi,j+ 1

2
)Dx

i,j+ 1
2
ρ, D̃y

i+ 1
2
,j
M(ρ) = M ′(ρi+ 1

2
,j)D

y

i+ 1
2
,j
ρ.

By Taylor expansion,

M(ρi+ 1
2
,j+ 1

2
) = M(ρi,j+ 1

2
) + (ρi+ 1

2
,j+ 1

2
− ρi,j+ 1

2
)M ′(ρi,j+ 1

2
) + ...

M(ρi− 1
2
,j+ 1

2
) = M(ρi,j+ 1

2
) + (ρi− 1

2
,j+ 1

2
− ρi,j+ 1

2
)M ′(ρi,j+ 1

2
) + ...

Dx
i,j+ 1

2
M(ρ) =

Mi+ 1
2
,j+ 1

2
−Mi− 1

2
,j+ 1

2

∆x
≈ D̃x

i,j+ 1
2
M(ρ).

We define the well-prepared data as,

Definition 4.4.1 The discrete data of (ρ, u, v) are said to be well-prepared if they satisfy,

• ρn
i,j+ 1

2

= ρ
(0)

i,j+ 1
2

+ ερ
(1)

i,j+ 1
2

+ ε2ρ
(2),n

i,j+ 1
2

+ ... with ρ
(0)

i,j+ 1
2

=
(
A(1− γ−1

γ
1
A
ϕi,j+ 1

2
)
) 1

γ−1
and

ρ
(1)

i,j+ 1
2

=
(
A(1− γ−1

γ
1
A
ϕi,j+ 1

2
)
) 1

γ−1
are constant in time, i.e. D̃x

i,j+ 1
2

M (0),n = − 1
γ
Dx

i,j+ 1
2

ϕ,

D̃x
i,j+ 1

2

M (1),n = − 1
γ
Dx

i,j+ 1
2

ϕ, D̃x
i,j+ 1

2

N (0),n = −Dx
i,j+ 1

2

ϕ and D̃x
i,j+ 1

2

N (1),n = −Dx
i,j+ 1

2

ϕ.

• ρn
i+ 1

2
,j
= ρ

(0)

i+ 1
2
,j
+ ερ

(1)

i+ 1
2
,j
+ ε2ρ

(2),n

i+ 1
2
,j
+ ... with ρ

(0)

i+ 1
2
,j
=
(
A(1− γ−1

γ
1
A
ϕi+ 1

2
,j)
) 1

γ−1
and

ρ
(1)

i+ 1
2
,j
=
(
A(1− γ−1

γ
1
A
ϕi+ 1

2
,j)
) 1

γ−1
are constant in time, i.e. D̃y

i+ 1
2
,j
M (0),n = − 1

γ
Dy

i+ 1
2
,j
ϕ,

D̃y

i+ 1
2
,j
M (1),n = − 1

γ
Dy

i+ 1
2
,j
ϕ, D̃y

i+ 1
2
,j
N (0),n = −Dy

i+ 1
2
,j
ϕ and D̃y

i+ 1
2
,j
N (1),n = −Dy

i+ 1
2
,j
ϕ.

• ∇d.(ρ
(0)

i+ 1
2
,j+ 1

2

u
(0)

i+ 1
2
,j+ 1

2

) = 0.

Lemma: 5 Choose the discrete data of (ρ, u, v) to be well-prepared, then

1

ε2
ρn
i,j+ 1

2

[
D̃x

i,j+ 1
2
Nn +Dx

i,j+ 1
2
ϕ− and [D̃

x
i,j+ 1

2
Mn +

1

γ
Dx

i,j+ 1
2
ϕ]
]

(4.51)

is of order ε.

Proof: The expansions of M(ρ) and N(ρ) around ρ(0) are given as,

M(ρ) = M(ρ(0)) + ερ(1)M
′
(ρ(0)) + ε2(ρ(2)M

′
(ρ(0)) + ρ(1)2

2
M

′′
(ρ(0))) +O(ε3).

N(ρ) = N(ρ(0)) + ερ(1)N
′
(ρ(0)) + ε2(ρ(2)N

′
(ρ(0)) + ρ(1)2

2
N

′′
(ρ(0))) +O(ε3).
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Using the expansion formula for the product (4.9),

ρn
i,j+ 1

2

[
D̃x

i,j+ 1
2

Nn +Dx
i,j+ 1

2

ϕ− and [D̃
x
i,j+ 1

2

Mn + 1
γ
Dx

i,j+ 1
2

ϕ]
]

ε2
=

ρ
(0),n

i,j+ 1
2

[
D̃x

i,j+ 1
2

N (0),n +Dx
i,j+ 1

2

ϕ− a
(0),n
d [D̃x

i,j+ 1
2

M (0),n + 1
γ
Dx

i,j+ 1
2

ϕ]
]

ε2

+
ρ
(0),n

i,j+ 1
2

[
D̃x

i,j+ 1
2

N (1),n +Dx
i,j+ 1

2

ϕ− a
(0),n
d [D̃x

i,j+ 1
2

M (1),n + 1
γ
Dx

i,j+ 1
2

ϕ]

ε

−a
(1),n
d [D̃x

i,j+ 1
2

M (0),n + 1
γ
Dx

i,j+ 1
2

ϕ]
]

ε

+
ρ
(1),n

i,j+ 1
2

[
D̃x

i,j+ 1
2

N (0),n +Dx
i,j+ 1

2

ϕ− a
(0),n
d [D̃x

i,j+ 1
2

M (0),n + 1
γ
Dx

i,j+ 1
2

ϕ]
]

ε

+ ρ
(0),n

i,j+ 1
2

[
D̃x

i,j+ 1
2
N (2),n +Dx

i,j+ 1
2
ϕ− a

(0),n
d [D̃x

i,j+ 1
2
M (2),n +

1

γ
Dx

i,j+ 1
2
ϕ]

− a
(1),n
d [D̃x

i,j+ 1
2
M (1),n +

1

γ
Dx

i,j+ 1
2
ϕ]− a

(2),n
d [D̃x

i,j+ 1
2
M (0),n +

1

γ
Dx

i,j+ 1
2
ϕ]
]

+ ρ
(1),n

i,j+ 1
2

[
D̃x

i,j+ 1
2
N (1),n +Dx

i,j+ 1
2
ϕ− a

(0),n
d [D̃x

i,j+ 1
2
M (1),n +

1

γ
Dx

i,j+ 1
2
ϕ]

− a
(1),n
d [D̃x

i,j+ 1
2
M (0),n +

1

γ
Dx

i,j+ 1
2
ϕ]
]

+ ρ
(2),n

i,j+ 1
2

[
D̃x

i,j+ 1
2
N (0),n +Dx

i,j+ 1
2
ϕ− a

(0),n
d [D̃x

i,j+ 1
2
M (0),n +

1

γ
Dx

i,j+ 1
2
ϕ]
]
+O(ε).
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But because the data are well-prepared,

ρn
i,j+ 1

2

[
D̃x

i,j+ 1
2

Nn +Dx
i,j+ 1

2

ϕ− and [D̃
x
i,j+ 1

2

Mn + 1
γ
Dx

i,j+ 1
2

ϕ]
]

ε2

= ρ
(0),n

i,j+ 1
2

[
D̃x

i,j+ 1
2
N (2),n +Dx

i,j+ 1
2
ϕ− a

(0),n
d [D̃x

i,j+ 1
2
M (2),n +

1

γ
Dx

i,j+ 1
2
ϕ]
]
+O(ε),

= ρ
(0),n

i,j+ 1
2

[
D̃x

i,j+ 1
2
N (2),n − γD̃x

i,j+ 1
2
M (2),n

]
+O(ε),

= ρ
(0),n

i,j+ 1
2

[
N

′
(ρ

(0),n

i,j+ 1
2

)Dx
i,j+ 1

2
ρ(2),n + ρ

(2),n

i,j+ 1
2

N
′′
(ρ

(0),n

i,j+ 1
2

)Dx
i,j+ 1

2
ρ(0),n + ρ

(1),n

i,j+ 1
2

N
′′
(ρ

(0),n

i,j+ 1
2

)Dx
i,j+ 1

2
ρ(0),n

+
ρ2

(0),n

i,j+ 1
2

2
N

′′′
(ρ

(0),n

i,j+ 1
2

)Dx
i,j+ 1

2
ρ(0),n − γM

′
(ρ

(0),n

i,j+ 1
2

)Dx
i,j+ 1

2
ρ(2),n − γρ

(2),n

i,j+ 1
2

M
′′
(ρ

(0),n

i,j+ 1
2

)Dx
i,j+ 1

2
ρ(0),n

− γρ
(1),n

i,j+ 1
2

M
′′
(ρ

(0),n

i,j+ 1
2

)Dx
i,j+ 1

2
ρ(0),n − γ

ρ2
(0),n

i,j+ 1
2

2
M

′′′
(ρ

(0),n

i,j+ 1
2

)Dx
i,j+ 1

2
ρ(0),n

]
+O(ε),

= O(ε).

This concludes the proof of the lemma. Hence,

1

ε2
ρn
i,j+ 1

2

[
D̃x

i,j+ 1
2
Nn +Dx

i,j+ 1
2
ϕ− and [D̃

x
i,j+ 1

2
Mn +

1

γ
Dx

i,j+ 1
2
ϕ]
]

(4.52)

is of order ε. □

Similarly,

1

ε2
ρn
i+ 1

2
,j

[
D̃y

i+ 1
2
,j
Nn +Dy

i+ 1
2
,j
ϕ− and [D̃

y

i+ 1
2
,j
Mn +

1

γ
Dy

i+ 1
2
,j
ϕ]
]
, (4.53)

is of order ε.

Compare order O( 1
ε2
) terms in the momentum equation in the x-direction in (4.50),

a
(0),n
d ρ

(0),n+1

i,j+ 1
2

[D̃x
i,j+ 1

2
M (0),n +

1

γ
Dx

i,j+ 1
2
ϕ] = 0.

Because a
(0),n
d ̸= 0 and ρ

(0),n+1

i,j+ 1
2

̸= 0, then

(γ − 1)
Dx

i,j+ 1
2

ρ(0),n+1

ρ
(0),n+1

i,j+ 1
2

=
−γ−1

γ
Dx

i,j+ 1
2

ϕ

A(1− γ−1
γ

1
A
ϕi,j+ 1

2
)
.

(γ − 1)D̃x
i,j+ 1

2
ln ρ(0),n+1 = D̃x

i,j+ 1
2
lnA(1− γ − 1

γ

1

A
ϕ).
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Hence,

ρ
(0),n+1

i,j+ 1
2

=

(
A(1− γ − 1

γ

1

A
ϕi,j+ 1

2
)

) 1
γ−1

A similar conclusion is arrived at when comparing order O( 1
ε2
) terms in the momentum

equation in the y-direction in (4.50),

ρ
(0),n+1

i+ 1
2
,j

=

(
A(1− γ − 1

γ

1

A
ϕi+ 1

2
,j)

) 1
γ−1

From the above calculations, we deduce that ρ
(0)

i+ 1
2
,j+ 1

2

is independent of time.

Similarly, comparing O(1
ε
) terms in the momentum equation results ρ

(1)

i+ 1
2
,j+ 1

2

is time inde-

pendent.

Compare order O(1) terms in the density equation in (4.50) and use that ρ
(0)

i+ 1
2
,j+ 1

2

is time

independent,

α

(F n,(0))x
i+1,j+ 1

2

− (F n,(0))x
i,j+ 1

2

∆x
+

(F n,(0))y
i+ 1

2
,j+1

− (F n,(0))y
i+ 1

2
,j

∆y


+ (1− α)

(F n+1,(0))Up,x

i+1,j+ 1
2

− (F n+1,(0))Up,x

i,j+ 1
2

∆x
+

(F n+1,(0))Up,y

i+ 1
2
,j+1

− (F n+1,(0))Up,y

i+ 1
2
,j

∆y

 = 0.

Substitute the fluxes by their values,

α

[
(ρ(0)u(0))n

i+1,j+ 1
2

− (ρ(0)u(0))n
i,j+ 1

2

∆x
+

(ρ(0)v(0))n
i+ 1

2
,j+1

− (ρ(0)u(0))n
i+ 1

2
,j

∆y

]

+ (1− α)

(ρ(0)u(0))n+1
i+1,j+ 1

2

− (ρ(0)u(0))n+1
i,j+ 1

2

∆x
+

(ρ(0)v(0))n+1
i+ 1

2
,j+1

− (ρ(0)v(0))n+1
i+ 1

2
,j

∆y

 = 0.

Therefore,

α∇d.(ρ
(0)u(0))n

i+ 1
2
,j+ 1

2
+ (1− α)∇d.(ρ

(0)u(0))n+1
i+ 1

2
,j+ 1

2

= 0. (4.54)

Where ∇d. is the discrete divergence defined as,

∇d.(ρu)i+ 1
2
,j+ 1

2
=

(ρu)i+1,j+ 1
2
− (ρu)i,j+ 1

2

∆x
+

(ρv)i+ 1
2
,j+1 − (ρv)i+ 1

2
,j

∆y
.

The discrete well-prepared initial data provide ∇d.(ρ
(0)u(0))n

i+ 1
2
,j+ 1

2

= 0 ∀(i, j) which leads
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to,

∇d.(ρ
(0)u(0))n+1

i+ 1
2
,j+ 1

2

= 0, ∀(i, j). (4.55)

Compare order O(1) terms in the momentum equation in x-direction,

ρ
(0)

i,j+ 1
2

u
n+1,(0)

i,j+ 1
2

− ρ
(0)

i,j+ 1
2

u
n,(0)

i,j+ 1
2

∆t
+

ρ
(0)

i,j+ 1
2

Gu,x

i+ 1
2
,j+ 1

2

− ρ
(0)

i,j+ 1
2

Gu,x

i− 1
2
,j+ 1

2

∆x
+

ρ
(0)

i,j+ 1
2

Gu,y
i,j+1 − ρ

(0)

i,j+ 1
2

Gu,y
i,j

∆y

+a
(0),n
d ρ

(0),n

i,j+ 1
2

[D̃x
i,j+ 1

2
M (2),n+1+

1

γ
Dx

i,j+ 1
2
ϕ]+(a

(0),n
d ρ

(1)

i,j+ 1
2

+a
(1),n
d ρ

(0)

i,j+ 1
2

)[D̃x
i,j+ 1

2
M (1),n+1+

1

γ
Dx

i,j+ 1
2
ϕ]

+ (a
(0),n
d ρ

(2),n+1

i,j+ 1
2

+ a
(1),n
d ρ

(1)

i,j+ 1
2

+ a
(2),n
d ρ

(0),n+1

i,j+ 1
2

)[D̃x
i,j+ 1

2
M (0),n+1 +

1

γ
Dx

i,j+ 1
2
ϕ] = 0.

Using the fact that ρ(0) is constant in time and D̃x
i,j+ 1

2

M (0),n+1 = − 1
γ
Dx

i,j+ 1
2

ϕ and D̃x
i,j+ 1

2

M (1),n+1 =

− 1
γ
Dx

i,j+ 1
2

ϕ, the equation simplifies to,

u
n+1,(0)

i,j+ 1
2

− u
n,(0)

i,j+ 1
2

∆t
+

Gu,x

i+ 1
2
,j+ 1

2

−Gu,x

i− 1
2
,j+ 1

2

∆x
+

Gu,y
i,j+1 −Gu,y

i,j

∆y

+ a
(0),n
d [D̃x

i,j+ 1
2
M (2),n+1 +

1

γ
Dx

i,j+ 1
2
ϕ] = 0.

The expansions of M and w around ρ(0) are given by,

M = M(ρ(0)) + ερ(1)M
′
(ρ(0)) + ε2(ρ(2)M

′
(ρ(0)) + ρ(1)2

2
M

′′
(ρ(0))) +O(ε3).

w = w(ρ(0)) + ερ(1)w
′
(ρ(0)) + ε2(ρ(2)w

′
(ρ(0)) + ρ(1)2

2
w

′′
(ρ(0))) +O(ε3).

Note that,

W (ρ) =
γ

γ − 1
Aργ−1 + ϕ

W (ρ) = w(ρ) + ϕ

and

M(ρ) =

∫ ρ

0

A(1− γ−1
γ

1
A
ϕ)

ρ′ dρ
′
.
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Then,

a
(0),n
d [D̃x

i,j+ 1
2
M (2),n+1 +

1

γ
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i,j+ 1
2
ϕ]

= γD̃x
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(2)
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(1)2
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2

2
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(ρ

(0)
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2

)
)
+Dx
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2
ϕ,

= γDx
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2
ρ(2)M

′
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(0)
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2

) + γρ
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2

M
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2
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2
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2
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(0)
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2

)

+ γ
ρ
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2

2
M

′′′
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(0)
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2

)Dx
i,j+ 1

2
ρ(0) +Dx

i,j+ 1
2
ϕ,

= Dx
i,j+ 1

2
ρ(2)γρ

(0),γ−2

i,j+ 1
2

+ ρ(2)γ(γ − 2)ρ
(0),γ−3

i,j+ 1
2

Dx
i,j+ 1

2
ρ(0) + ρ

(1)

i,j+ 1
2

Dx
i,j+ 1

2
ρ(1)

γ(γ − 2)ρ
(0),γ−3

i,j+ 1
2

Dx
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2
ρ(0) +

ρ
(1)2

i,j+ 1
2

2
γ(γ − 2)(γ − 3)ρ

(0),γ−4

i,j+ 1
2

Dx
i,j+ 1

2
ρ(0) +Dx

i,j+ 1
2
ϕ,

= D̃x
i,j+ 1

2
w(2),n+1 +Dx

i,j+ 1
2
ϕ,

= D̃x
i,j+ 1

2
W (2),n+1,

≈ Dx
i,j+ 1

2
W (2),n+1,

=
W

(2),n

i+ 1
2
,j+ 1

2

−W
(2),n

i− 1
2
,j+ 1

2

∆x
.

Finally, the momentum limit equation in the x-direction is,

u
n+1,(0)

i,j+ 1
2

− u
n,(0)

i,j+ 1
2

∆t
+

Gu,x

i+ 1
2
,j+ 1

2

−Gu,x

i− 1
2
,j+ 1

2

∆x
+

Gu,y
i,j+1 −Gu,y

i,j

∆y
+

W
(2),n

i+ 1
2
,j+ 1

2

−W
(2),n

i− 1
2
,j+ 1

2

∆x
= 0.

(4.56)

Similar calculations are performed on the momentum equation in the y-direction,

v
n+1,(0)

i+ 1
2
,j

− v
n,(0)

i+ 1
2
,j

∆t
+

Gu,x

i+ 1
2
,j+ 1

2

−Gu,x

i− 1
2
,j+ 1

2

∆x
+

Gu,y
i,j+1 −Gu,y

i,j

∆y
+

W
(2),n

i+ 1
2
,j+ 1

2

−W
(2),n

i+ 1
2
,j− 1

2

∆y
= 0.

(4.57)

Hence, as ε goes to zero, discretization (4.50) becomes,
∇d.(ρ

(0)u(0))n+1
i+ 1

2
,j+ 1

2

= 0,

u
n+1,(0)

i,j+1
2

−u
n,(0)

i,j+1
2

∆t
+

Gu,x

i+1
2 ,j+1

2

−Gu,x

i− 1
2 ,j+1

2

∆x
+

Gu,y
i,j+1−Gu,y

i,j

∆y
+

W
(2),n

i+1
2 ,j+1

2

−W
(2),n

i− 1
2 ,j+1

2

∆x
= 0,

v
n+1,(0)

i+1
2 ,j

−v
n,(0)

i+1
2 ,j

∆t
+

Gu,x

i+1
2 ,j+1

2

−Gu,x

i− 1
2 ,j+1

2

∆x
+

Gu,y
i,j+1−Gu,y

i,j

∆y
+

W
(2),n

i+1
2 ,j+1

2

−W
(2),n

i+1
2 ,j− 1

2

∆y
= 0.

(4.58)

101



a good discretization of the incompressible limit equations (4.11) and the scheme (4.50) is

AP.
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4.5 Numerical Results

We validate the 1D and 2D numerical schemes in this section, with an interest in the AP

and the SP property of both schemes. Experiments are chosen for the isentropic Euler

equations with and without gravitational source term. Note that in the absence of the

gravitational source term, the scheme reduces to the AP scheme developed by Goudon et

al. [34]. As in [34], we choose α = ε2 and l = 0 in the definition of a(t) for all numerical

experiments.

4.5.1 1D test cases

4.5.1.1 1D Riemann problem

To validate the robustness of the numerical scheme, we extract from [34] a 1D Riemann

problem for different values of ε. The initial conditions are

ρ(x, 0) =

1 + ε2 if x < 0.5,

1 if x > 0.5,

u(x, 0) =

1− ε if x < 0.5,

1 + ε if x > 0.5,

The pressure is given by p(ρ) = Aργ with A = 1 and γ = 2. The solution is computed along

the interval [0, 1] over 200 grid points for δt = βδx, with β = 0.2, 0.1 or 0.01. To test the

AP property of the scheme, three differenet cases for different values of ε are considered.

The density and the velocity are illustrated at the final time T = 0.1 for ε =
√
0.99 and

β = 0.2 in figure 4.2, at the final time T = 0.05 for ε =
√
0.1 and β = 0.1 in figure 4.3,

and at the final time T = 0.007 for ε =
√
0.001 and β = 0.01 in figure 4.4. Note that

in the cases where ε is small (ε =
√
0.1 or

√
0.001), the AP scheme gives relevant results

for β = 0.2, while explicit scheme simply returns negative density. By adjusting β, the

AP scheme gives better results, and the explicit scheme returns positive density. For more

details about the comparison, please refer to section 3.1 in [34]. The plots are in prefect

match with the ones in the Literature. The solution can still be captured as ε gets smaller

which proves the AP property of the 1D scheme (4.33)-(4.34).
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Figure 4.2: 1D Riemann problem: density (left) and velocity (right) initially, and at the
final time Tfinal=0.1 for ε =

√
0.99 and β = 0.2.

4.5.1.2 1D steady state

As proven analytically, the AP scheme is also SP. For this purpose, we try to simulate a

steady state solution, and prove numerically that the scheme preserves such a state. One

example of a steady state for the isentropic Euler equations with gravitational source term

is ρ(x) =
(
A(1− γ−1

γ
1
A
ϕ(x))

) 1
γ−1

,

u(x) = 0.
(4.59)

With the pressure law given as p(ρ) = Aργ where A = 1 and γ = 1.4, and a gravitational

potential ϕ(x) = x. At the PDE level, (4.59) is a steady state solution. The computational

domain is the interval []0, 1] discretized over 200 grid points. We choose ε =
√
0.99 and

δt = βδx with β = 0.01. With the knowledge that the scheme should preserve the steady

state independent of the choice of ε. We run our simulations till the final time t = 0.1

and compare it to the steady state solution in figure 4.5. The density plot at the final

time lies exactly on top of the initial density. The velocity error is approximately 10−7 and

this error stays as it is as time increases, an indication that the scheme has reached the

numerical steady state. It is worth mentioning that no well-balancing treatment is applied

here. In other words, the AP schemes with their IMEX structure fulfill the need for any

SP treatment. At least for the isentropic Euler equations with gravitational source term,
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Figure 4.3: 1D Riemann problem: density (left) and velocity (right) initially, and at the
final time Tfinal=0.05 for ε =

√
0.1 and β = 0.1.

the SP property follows from the AP property.
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Figure 4.4: 1D Riemann problem: density (left) and velocity (right) initially, and at the
final time Tfinal=0.007 for ε =

√
0.001 and β = 0.01.

4.5.2 2D test cases

4.5.2.1 2D Riemann problem

An extension of the 1D Riemann Problem is considered in this section. The initial data

are given as

ρ(x, y, 0) =

1 + ε2 if x < 0.5,

1 if x > 0.5,

u(x, y, 0) =

1− ε if x < 0.5,

1 + ε if x > 0.5,

v(x, y, 0) = 0.

The 1D flow in 2D setup takes place in the direction of the horizontal velocity. The

computational domain is the square (0, 1) × (0, 1) divided into 200 × 200 grid points. A

comparison between the 1D results and the 2D cross sections is illustrated. The density

and the velocity are plotted at the final time T = 0.1 for ε =
√
0.99 and β = 0.2 in figure

4.6, at the final time T = 0.05 for ε =
√
0.1 and β = 0.1 in figure 4.7, and at the final time
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Figure 4.5: 1D steady state: profile of the density (left) and the momentum (right)
initially and at the final time t = 0.1 .

T = 0.007 for ε =
√
0.001 and β = 0.01 in figure 4.8. The results show the accuracy and

the robustness of the 2D scheme (4.42)-(4.43) as well as the AP property.
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Figure 4.6: 2D Riemann problem: density (left) and velocity (right) initially, and at the
final time Tfinal=0.1 for ε =

√
0.99 and β = 0.2.

4.5.2.2 2D steady state

In this section, we test the SP property of the 2D scheme. An extension of the 1D steady

state along the y-axis is considered

ρ(x, y) =

(
1−

(
γ − 1

γ

1

A

)
ϕ(x)

) 1
γ−1

, (4.60)

(4.61)

with zero velocity field u = 0 in the square (0, 1) × (0, 1), over 200×200 grid points, and

a gravitational potential ϕ(x, y) = x. A direct comparison between the 1D plots and the

2D cross sections is illustrated in figure 4.9. This test case proves that the 2D AP scheme

preserves steady states numerically without the need for any extra well-balancing, which

is a strong statement, suggesting that we can prove, so far (analytically and numerically),

for AP schemes for the isentropic Euler equations with gravitational source term.

4.5.2.3 2D translating vortex

A traveling vortex from [34] is considered in this section. The computational domain is the

square [0, 1]× [0, 1] discretized over 32×32 grid points with ε = 0.8 and δt = 5× 10−4. The
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Figure 4.7: 2D Riemann problem: density (left) and velocity (right) initially, and at the
final time Tfinal=0.05 for ε =

√
0.1 and β = 0.1.

initial data are given as

ρ(x, y, 0) = 110 +
ε2

(4π)2
f(r), (4.62)

u(x, y, 0) = ν0 + g(r)(0.5− y), (4.63)

v(x, y, 0) = ν1 + g(r)(x− 0.5), (4.64)

(4.65)

with

r = 4π((x− 0.5)2 + (y − 0.5)2))
1
2 ,

f(r) = (1.5)2δ(r)(k(r)− k(π)),

g(r) = 1.5(1 + cos(r))δ(r),

δ(r) = 1r<π.
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Figure 4.8: 2D Riemann problem: density (left) and velocity (right) initially, and at the
final time Tfinal=0.007 for ε =

√
0.001 and β = 0.01.

The pressure law is given as p(ρ) = 1
2
ρ2 and ν0 = 0.6, ν1 = 0. We compare our computed

numerical solution to the exact solution,

ρ(x, y, t) = ρ(x− ν0t, y − ν1t, 0), (4.66)

u(x, y, 0) = u(x− ν0t, y − ν1t, 0), (4.67)

v(x, y, 0) = v(x− ν0t, y − ν1t, 0). (4.68)

(4.69)

The vortex gets translated at speed (ν0, ν1), as one can see in figure 4.10. We present

initially and at the final time, the horizontal velocity in figure 4.11, and the vertical velocity

in figure 4.12. To avoid spurious oscillation, we set l in definition of a(t) to 1.

4.5.2.4 2D stationary vortex

For our last test case, we consider a stationary vortex for the system of isentropic Euler

equations with gravitational source term. The aim is to prove that our numerical scheme

is both SP, as for a fixed ε, the vortex is a stationary solution of the system and AP, as

the numerical solution becomes a solution of the incompressible version of the isentropic

Euler system as ε goes to zero. We take the vortex for the shallow water equations defined

in [55], and we change its initial data to fit the the rescaled shallow water equations. The
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Figure 4.9: 2D steady state: profile of the density (left) and the momentum (right)
initially and at the final time t = 0.1.

initial condistions are given as,

ρ(x, y, t) = 1− ε2

4
e2(1−r2) − ϕ(x, y), u(t, x, y) = ye1−r2 , v(t, x, y) = −xe1−r2 .

Here r2 = x2 + y2, ϕ(x, y) = 0.2e0.5(1−r2) is the gravitational potential. The pressure law

is p(ρ) = Aργ with A = 1
2
and γ = 2. The vortex rotates in the computational domain

(−1, 1) x (−1, 1) with steady state boundary conditions over 32 x 32 grid points. Figure

4.13 illustrates the profile of the velocity q =
√
u2 + v2 initially and at the final time for

ε = 10−1, 10−2, 10−3, 10−4. The significance of this test case lies in the fact that the scheme

preserves the steady state and at the same time converges as ε goes to zero. The result

ensures the ability of our numerical scheme to preserve steady states and to capture the

solution as ε gets smaller. This test case proves that the developed numerical scheme for

the system of isentropic Euler equations with gravitational source term is both SP and AP.

4.6 Conclusion

The proof of the SP property at the semi-discrete level clearly depends on the pressure law

and the fact that we are in the isentropic case. An AP scheme for the isentropic Euler

equations is SP under the condition that the pressure is a function of the density and that

the latter is obtained as a solution of an elliptic equation [47].
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Figure 4.10: Translating vortex: the initial (left) and final (middle) profile of the density
ρ, and a cross section (right) along y = 0.5 as a function of x− v0T .
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Figure 4.11: Translating vortex: the initial (left) and final (middle) profile of the hori-
zontal velocity u, and a cross section (right) along x = 0.5 + v0T as a function of y.
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Figure 4.12: Translating vortex: the initial (left) and final (middle) profile of the vertical
velocity v, and a cross section (right) along y = 0.5 as a function of x− v0T.
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Figure 4.13: Steady vortex: the velocity q =
√
u2 + v2 initially and at the final time for

different values of ε on 32 x 32 grid points.
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Chapter 5

Conclusion and Future Work

In this work we investigated the relationship between AP and SP property of a numerical

scheme for a parameterized model, such as kinetic equations and low Mach isentropic Euler

equations. In other words, we were curious about the long time behavior of a numerical

scheme, as well as its behavior as the rescaling parameter approaches zero.

The first aim of this thesis was to develop a well-balanced finite volume central scheme

for the system of Euler equations with gravitational source term using the subtraction

method, and to extend this well-balancing approach to the system of MHD equations with

gravitational source term. Which was succefully accomplished via the subtraction method

combined with the CTM in the case of the system of MHD equations.

The second aim was to investigate the SP property of numerical schemes for kinetic mod-

els, which became of big interest due to the fact that the Euler equations can be viewed

as the limit of the Boltzmann equation. The question was to investigate under which

circumstances AP schemes are SP. The aim was achieved after we introduced a criterion,

emphasising that AP schemes with a discretization that linearly depends on the Maxwellian

are also SP.

For our third aim, we were interested in projecting the relation between AP and SP schemes

for the kinetic models to fluid models. We considered the system of isentropic Euler equa-

tions as our first model. In this case, an AP scheme was developed and proven to have

the SP property under the condition that the pressure is a function of the density, and the

latter is obtained as a solution of an elliptic equation.

One interesting extension would be to look at this relation for the full low Mach Euler

equations with gravitational source term. Knowing that, in this case, the equation of state

is not just the pressure law, and the energy equation is involved. One may also try to find

a relation between the low Mach and SP property of the scheme under certain conditions.

To sum up, AP schemes, discretized in a particular way, should be capable of preserving any
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stationary solutions without any additional treatment. This holds true for kinetic models

and for hyperbolic balance laws.
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Chapter 6

Appendices

Appendix A. AP property of the UGKS

In this section, we provide a formal derivation of the AP property for the UGKS proposed

in (3.17)–(3.18). When ε goes to zero, asymptotic expansions of A,B, and C given in (3.25)

read A = O(ε), B = 1
ε
−ϕ(vσi+ 1

2
)+O(ε), C = −1+O(ε). The leading order term of (3.18)

yields fn+1
i = ρn+1

i + O(ε) and we only need to show that (3.17) satisfies the equation for

ρ in (3.14), at the discrete level. Suppose that fn
i = ρni +O(ε), then

T 1fn
i+ 1

2
=

1

2

(
ρni + ρni+1

)
+O(ε),

δLT 1fn
i+ 1

2
=

ρni+1 − ρni
∆x

+O(ε),

δRT 1fn
i+ 1

2
=

ρni+1 − ρni
∆x

+O(ε).

We deduce that the expansion of F n
i+ 1

2

reads:

F n
i+ 1

2
= −

ρni + ρni+1

2|V |

(∫
V

vϕ(vσi+ 1
2
)dv

)
−

ρni+1 − ρni
3∆x

+O(ε).

Therefore,

F n
i+ 1

2

− F n
i− 1

2

∆x
= −

ρni+1 − 2ρni + ρni−1

3(∆x)2
+
(
−
( 1

|V |

∫
V

vϕ(vσi+ 1
2
)dv
)ρni + ρni+1

2

+
( 1

|V |

∫
V

vϕ(vσi− 1
2
)dv
)ρni + ρni−1

2

)
+O(ε).

119



In the limit of ε → 0, the discretization (3.17) becomes

ρn+1
i − ρni
∆t

=
ρni+1 − 2ρni + ρni−1

3(∆x)2
+

(
1

|V |

(∫
V

vϕ(vσi+ 1
2
)dv

)
ρni + ρni+1

2

− 1

|V |

(∫
V

vϕ(vσi− 1
2
)dv

)
ρni + ρni−1

2

)
.

which is a consistent discretization of the equation for ρ in (3.14). Therefore, the proposed

scheme is AP after coupling with the discretization for S(x, t) in (3.15).

Appendix B. AP property of the stationary discretization of the

parity equations-based scheme

Consider the behavior of the scheme as ε → 0 for a stationary discretization of the fully

space-time discretized parity equations-based scheme. Equations (3.4) and (3.5) are then,

• Transport step: vDu

∆x
jni = 0

ηvDu

∆x
rni = 0

• Relaxation step: − 1
ε2
(rni − ρnri) = 0

− 1
ε2
(jni + (1− ε2η)vDc

∆x
rni = 0

Consider the relaxation step as ε → 0,

rni = ρnri jni = −vDc

∆x
ρnri

So,

v
Du

∆x
jni = 0∫ 1

0

v
Du

∆x
(−v

Dc

∆x
ρnri) = 0

DuDc

∆x2 ρnri

∫ 1

0

v2dv = 0

1

3

DuDc

∆x2 ρnri = 0
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which is a consistent discretization of the stationary equation of the diffusion limit. Hence,

the discretization of the stationary equation is AP.

Appendix C. AP property of the stationary discretization of

UGKS

In this section, we provide a formal derivation of the AP property of the stationary dis-

cretization of the UGKS which results from setting ρn+1 = ρn and fn+1 = fn in (3.17)–

(3.18),

F n
i+ 1

2

− F n
i− 1

2

∆x
= 0, (1)

Φn
i+ 1

2

− Φn
i− 1

2

∆x
=

1

ε2
(ρni − fn

i ) +
1

ε

(
1

| V |

∫
V

ϕ(v′σi+ 1
2
)fn

i (v
′) dv′ − ϕ(vσi+ 1

2
)fn

i

)
. (2)

Formulas A, B, and C given in (3.25) are time dependent, but when ε goes to zero,

asymptotic expansions of A,B, and C read A = O(ε), B = 1
ε
− ϕ(vσi+ 1

2
) + O(ε), C =

−1 + O(ε) which is time independent. Hence, choosing A,B, and C as in (3.25), for the

stationary discretization will not affect the AP proof. We only need to show that (1)

satisfies the stationary equation of the Keller-Segel equation (3.14) for ρ at the discrete

level. Suppose that fn
i = ρni +O(ε), then

T 1fn
i+ 1

2
=

1

2

(
ρni + ρni+1

)
+O(ε),

δLT 1fn
i+ 1

2
=

ρni+1 − ρni
∆x

+O(ε),

δRT 1fn
i+ 1

2
=

ρni+1 − ρni
∆x

+O(ε).

We deduce that the expansion of F n
i+ 1

2

reads:

F n
i+ 1

2
= −

ρni + ρni+1

2|V |

(∫
V

vϕ(vσi+ 1
2
)dv

)
−

ρni+1 − ρni
3∆x

+O(ε).
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Therefore,

F n
i+ 1

2

− F n
i− 1

2

∆x

=−
ρni+1 − 2ρni + ρni−1

3(∆x)2
+
(
−
( 1

|V |

∫
V

vϕ(vσi+ 1
2
)dv
)ρni + ρni+1

2

+
( 1

|V |

∫
V

vϕ(vσi− 1
2
)dv
)ρni + ρni−1

2

)
+O(ε).

In the limit of ε → 0, the discretization (1) becomes

ρni+1 − 2ρni + ρni−1

3(∆x)2
+

(
1

|V |

(∫
V

vϕ(vσi+ 1
2
)dv

)
ρni + ρni+1

2
−

1

|V |

(∫
V

vϕ(vσi− 1
2
)dv

)
ρni + ρni−1

2

)
= 0.

which is a consistent discretization of the stationary equation for ρ in (3.14). Therefore, the

proposed stationary discretization is AP after coupling with the discretization for S(x, t)

in (3.15).
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