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Abstract

In this thesis, we are interested in numerically preserving stationary solutions of balance
laws. We start by developing finite volume well-balanced schemes for the system of Fuler
equations and the system of Magnetohydrodynamics (MHD) equations with gravitational
source term. Since fluid models and kinetic models are related, this lead us to investigate
Asymptotic Preserving (AD) schemes for kinetic equations and their ability to preserve
stationary solutions. Kinetic models typically have a stiff term, thus[AD schemes are needed
to capture good solutions of the model. For such kinetic models, equilibrium solutions are
reached after large time. Thus we need a new technique to numerically preserve stationary
solutions for[AD schemes. We find a criterion for Stationary Preserving (SB) schemes for
kinetic equations which states, that [AD schemes under a particular discretization are also
[SB. In an attempt to mimic our result for kinetic equations in the context of fluid models,
for the isentropic Euler equations we developed an [AB scheme in the limit of the Mach
number going to zero. Our[AB scheme is proven to have a[SH property under the condition
that the pressure is a function of the density and the latter is obtained as a solution of an
elliptic equation. The properties of the schemes we developed and its criteria are validated

numerically by various test cases from the literature.
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Zusammenfassung

In dieser Arbeit interessieren wir uns fir numerisch erhaltende stationdre Losungen
von Erhaltungsgleichungen. Wir beginnen mit der Entwicklung von well-balanced Finite-
Volumen Verfahren fir das System der Euler-Gleichungen und das System der [MHD-
Gleichungen mit Gravitationsquell term. Da Stromungsmodelle und kinetische Modelle
miteinander verwandt sind, untersuchen wir asymptotisch erhaltende (AP) Verfahren fiir
kinetische Gleichungen und ihre Fdahigkeit, stationdre Losungen zu erhalten. Kinetische
Modelle haben typischerweise einen steifen Term, so dass[AD Verfahren erforderlich sind,
um gute Losungen des Modells zu erhalten. Bei solchen kinetischen Modellen werden Gle-
ichgewichtslosungen erst nach langer Zeit erreicht. Daher benotigen wir eine neue Tech-
nik, um stationdre Losungen fir [AD Verfahren numerisch zu erhalten. Wir finden ein
Kriterium fir stationdr-erhaltende (SP) Verfahren fir kinetische Gleichungen, das besagt,
dass[AD Verfahren unter einer bestimmten Diskretisierung auch[SH sind. In dem Versuch
unser Ergebnis fir kinetische Gleichungen im Kontext von Stromungsmodellen nachzuah-
men, haben wir fir die isentropen Euler-Gleichungen ein[ABR Verfahren fir den Grenzw-
ert der Mach-Zahl gegen Null, entwickelt. Unser[AB Verfahren hat nachweislich eine [SD
Figenschaft unter der Bedingung, dass der Druck eine Funktion der Dichte ist und let-
ztere als Losung einer elliptischen Gleichung erhalten wird. Die Eigenschaften des von uns
entwickelten und seine Kriterien werden anhand verschiedener Testfalle aus der Literatur

numerisch validiert.
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Chapter 1

Introduction

The models

Partial Differential Equations (PDEI]): A partial differential equation is an equation
that imposes relations between partial derivatives of a function of more than one variable.
The function is the unknown to be found. Partial differential equations are largely used
in applied mathematics, physics and engineering. The equations play a big role in the
modern scientific understanding of sound, heat, diffusion, electrostatics, electrodynamics,
thermodynamics, fluid dynamics, elasticity, general relativity, and quantum mechanics, etc.
There are three types of partial differential equations: hyperbolic, parabolic and elliptic. In
this thesis we focus on hyperbolic partial differential equations. The solutions of hyperbolic
equations are “wave-like”, such that perturbations of the initial or the boundary data travel
along the characteristics of the equation.

Fluid Mechanics: Fluid Mechanics is a division of physics concerned with the mechanics
of the fluid under internal and external forces. It studies fluids in their static or dynamic
states. Fluid dynamics is a subsection of fluid mechanics that decscribes the flow of fluids
(liquids and gases) and it is divided into two other subsections: aerodynamics, the study
of air and other gases in motion, and hydrodynamics, the study of liquids in motion. The
solution to a fluid dynamics problem typically involves the calculation of various physical
properties of the fluid, such as flow velocity, pressure, density, and temperature, as functions
of space and time. In this thesis three fluid models are considered. The first model is the
system of Euler equations with gravitational source term which we will introduce in chapter
2. This system is widely studied because of its importance in modelling physical phenomena
such as astrophysical and atmospheric phenomena including supernova explosions [51],
climate modelling, and weather forecasting [13]. A special case of the Euler equations are

the isentropic Euler equations which we will also see in chapter 4. The system of [MHDI



equations, defined in chapter 2, is a combination of the Euler equations of fluid dynamics
and Maxwell’s equations of electromagnetism. A gravitational source term is added to the
ideal equations in this work.

Kinetic theory of gases: In chapter 3, several kinetic models are considered. They
describe a gas as a large number of identical submicroscopic particles (atoms or molecules),
all of which are in constant, rapid, and random motion. Their size is assumed to be
much smaller than the average distance between the particles. Kinetic models describe
the time evolution of probability density distribution of particles that travel freely for a
certain distance, and then change their directions due to collision or scattering. They
usually include a transport term that takes into account the movement of the particles,

and integral terms that take into account the scattering, tumbling or colliding.

Numerical Methods

Solving partial differential equations is a broad topic in applied mathematics. However,
finding exact solutions for these equations is not always possible. There is, correspondingly,
a vast amount of modern mathematical and scientific research on methods to numerically
approximate solutions of certain partial differential equations using computers. A numerical
method for partial differential equations is a mathematical tool designed to find numerical
solutions for the equation. The implementation of a numerical method with an appropriate
convergence check in a programming language is called a numerical algorithm. Computing
a numerical solution is finding the discrete version of the continuous solution of the PDE
via a numerical algorithm.

Finite Volume (EV]) Central Scheme: To design a numerical scheme, one has to con-
sider time and space. A finite volume method is a reformulation of Godunov’s method for
the spatial discretization and is based on averaging the conserved variables in each cell and
approximating the fluxes between the cells. We use finite volume central schemes as base
scheme in chapter 2 which relies on the fact that central schemes are easy to implement and
robust finite volume schemes that avoid the time consuming process of solving Riemann
problems arising at the cell interfaces. Furthermore, central schemes have proven to be effi-
cient schemes for the simulation of systems of hyperbolic conservation laws. Nessyahu and
Tadmor [57] have introduced the Nessyahu-Tadmor (NTJ) scheme, a non-oscillatory central
finite volume scheme that is based on evolving piecewise linear numerical solution on two
staggered grids. Useful extensions of the [NT] scheme to multi-space dimensions followed in
[6], 136, 45], [7, 8, 42| [75]. These extensions were successfully used to solve problems arising

in aerodynamics, hydrodynamics, and magnetohydrodynamics [8, 22, [72), [74].
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In order to avoid switching between an original and a staggered grid in the NT-type schemes,
Unstaggered Central ([UC]) schemes for hyperbolic systems of conservation laws were devel-
oped in [44] [7T], where the numerical solution is evolved on a single grid. The [UC] schemes
were then extended to hyperbolic balance laws such as shallow water equations on variable
waterbeds, Ripa systems, and Euler with gravity systems [78, [76] [77, [72]. The main goal of
the [UC] schemes is to evolve the numerical solution on a single grid and to use a staggered
ghost grid in an intermediate step, followed by a back projection step, see figure [2.3]
Schemes for Kinetic Models: Three different [AP] schemes for three different kinetic
models are considered in chapter 3. Developing the three [AP] schemes is not a focus of
this thesis as they are taken from the literature. However, their property and whether
they satisfy the proposed criterion or not are evaluated in this thesis. The three schemes
are parity equations-based scheme for the neutron transport equation, Unified Gas Kinetic
Scheme ([UGKS]) for the chemotaxis kinetic model, and [MEX]scheme with the Penalization
method for the Boltzmann equation

Marker and Cell (MAC]) Schemes: A finite difference staggered approached, suggested
by Goudon et al. [34] is chosen in chapter 4. The staggered discretization follows the prin-
ciples of MAC] schemes [38]. The idea of [MAC is to place the variables of the system in
different locations on the grid. The detailed description of the method can be found in

chapter 4.

Properties of the Numerical Methods

Well-balanced Schemes: Of particular interest are stationary solutions of the PDE.
Those solutions need to be taken into account in the discretization of the scheme. We define
well-balanced schemes as schemes that are designed to preserve a prior known stationary
solution. One example of these solutions is the case of zero velocity called hydrostatic
equilibrium. One way to fulfil the well-balanced requirement of the numerical scheme is
by designing the discretization in the source term in the balance law by following that of
the divergence of the flux function. There are several methods to develop a well-balanced
scheme that all require that the steady state is known or given. Several attempts were
previously made for designing well-balanced schemes for balance laws [10, [78] 21} 23] 8T,
82), [R5, 351 [79], 641, 111, 9], 241, 251 50, [19] 80, 20].

Asymptotic Preserving Schemes: The parameter ¢ which is the Knudsen number (for
kinetic models), is the ratio of the mean free path and the domain typical length scale
[53]. This parameter pops up in the equations after rescaling, creating a stiff term where

it is located. A similar parameter for the fluid models (Mach number) also appears in the

3



equations after rescaling, leaving stiff terms behind. Numerical schemes do not behave well
when such parameter exists. This is because when £ goes to zero it causes very small time
steps. Hence, [APlschemes that allow very small values of this parameter become popular in
this area. A numerical scheme is [AP]if when the parameter goes to zero in the discretized
scheme, it converges to a good discretization of the corresponding limit model. The aim
of [AP] schemes is to discretize the stiff term of the equation implicitly, which leads to an
Implicit-Explicit (IMEX]) discretization of the model. The main advantage of [AP] schemes
is that their stability and convergence are independent of the parameter.

Stationary Preserving Schemes For schemes such as [AP| schemes, the solution after
some time reaches a quasi-stationary state, meaning numerically that the difference between
the global equilibrium and the solution after finite time is smaller than machine precision.
Which means the steady solution is not given and is not known. For this reason, more than
well-balancing, we need a discretization that preserves any state that might show up as
time evolves. Thus, it is of interest to have a numerical scheme that maintains stationary
solutions up to machine precision. We call such schemes schemes. A scheme is if

the following two requirements are satisfied:

e The discrete stationary solution provides a good approximation for the steady state

solution;

e Starting from a discrete stationary solution, the solution of the time evolutionary

problem does not change.

Numerically, one can test that the time evolutionary problem converges to a discrete sta-

tionary solution after finite time, and their difference is smaller than machine precision.

Organization of The Thesis

Chapter 1 provides a background for the topics covered in this thesis with a review of
prior works. In chapter 2, we present one-dimensional (ID]) and two-dimensional (2D))
well-balanced central schemes with applications to the Euler and [IMHD! equations with
gravitational source term. Then we present three schemes for kinetic models in chapter 3.
The three schemes are proven to satisfy a common criterion. In chapter 4, an [AP] scheme
for the isentropic Euler equations with gravitational source term is developed and then
proven under certain conditions to be SPl And finally, we conclude by proposing some

future work.



Chapter 2

Well-balanced Central Schemes with
the Subtraction Method

2.1 Introduction

As mentioned in the introduction, the first task in my project was to develop a well-
balanced, unstaggered, second-order, finite volume central scheme for the Euler equations
with gravitational source term via a subtraction method [48]. A normal extension was to
apply the obtained scheme to the system of equations with gravitational source term
[49]. The developed numerical schemes avoid solving Riemann problems at the cell inter-
faces and avoid switching between an original and a staggered grid. Their main feature is
that they are capable of preserving any steady state up to machine accuracy by updating
the numerical solution in terms of a relevant given reference solution. The methodology
proposed results in a well-balanced scheme capable of capturing any steady state. In this
work we follow a special reconstruction in the conservative variables that will fulfil the
well-balanced requirement and will allow a proper capture of the steady states. This well-
balanced approach will be blended with the unstaggered central finite volume scheme for
hyperbolic systems of conservation laws [71]. The proposed method follows the reconstruc-
tion method developed by Berberich, Chandrashekar and Klingenberg [10]. It consists of
evolving the error function between the vector of conserved variables and a given steady
state, instead of evolving the vector of conserved variables. Our scheme is then imple-
mented and used to solve classical problems from the recent literature. We consider the
Courant—Friedrichs—Lewy (CELl) convergence condition for our numerical scheme. It en-
forces an upper bound on the time step, otherwise the explicit scheme produces irrelevant
results. In sections and [2.3] we present the and schemes for general balance
laws respectively. The discretization is proven to be Total Variation Diminishing (TVDI)

5



in section [2.4] We apply the developed schemes to the and Euler and then to the
[MHDI system in section [2.5

2.2 Unstaggered Well-balanced [FV] Central Scheme

In this section we develop a new unstaggered well-balanced central scheme for balance
laws. The proposed method follows the reconstruction method introduced in [10]. Consider
the MD] balance law given by

w+ f(u), =5uwz), z€QCR t>0
u(x,0) = ug(z)

(2.1)

where u is the vector of conserved variables, f(u) is the flux function and S(u,z) is the
source term. We consider for our computational domain 2 an interval of the real axis,
and we partition it using the control cells defined to be the subintervals C; = [%%Ji +%]

of equal width Azx = ;.1 — x;_ 1 and centered at the nodes z;. We also define the dual

1
3 (2

ghost cells D; 1 = [, xi41] with centers z,, 1=z + 22, The main and the staggered 1D
grids are illustrated in figure (2.1). The time-step will be denoted by At, and for a positive

integer n we set "' = ¢" + At. We assume that the numerical solution u?" at time t" is

—_—
Ti-1 i1 X Liyl Tit1 Liy3 Tit2

C; Di+l

2

Figure 2.1: The 1D grid partitioned into control cells C; = [5%7%7% +%] and dual cells

DH% = [z, wia]

known at the nodes x; where u} is used to approximate the exact solution u(z;,t"). We
start the derivation of our numerical scheme by first assuming that u is a given stationary
solution of system (2.1)), and we follow the reconstruction approach [10] as follows. Let

Au = u — 1, we substitute u = Au + u in the balance law in system ({2.1)),
(Au+ua); + f(Au+ua), = S(Au+q,xz), (2.2)
and taking into account that u is a stationary solution, this results in,
(Au); + f(Au+1), = S(Au+u,z). (2.3)

6



On the other hand, since u is a stationary solution of (2.2), then the balance law reduces

to,
f(@), = S(u,z) (2.4)
Subtracting from leads to,
(Au); + [f(Au+1) — f(0)], = S(Au+u,z) — S(a,z). (2.5)

But since S(u, z) is a linear functional in terms of the conserved variables, then equation

simplifies to,
(Au), + [f(Au+u) — f(0)], = S(Au,z). (2.6)

Our proposed numerical scheme follows a classical finite volume construction; we define the
piecewise linear interpolants that approximate the exact solution Au(z,t"™) on the cells C;

as follows:

Li(x,t") = Aul + (x — z;)(Au}), Vze; (2.7)

where (Aul)’ is a limited numerical spatial derivative approximating E?—I“(:Ui, t™) obtained

using the (MC-6) limiter (2.8). The numerical base scheme evolves a piecewise linear

solution £;(x,t), in each cell C;, that approximates the analytic solution Au(z,t) with

1
Au”?

— [ i@y d
i = Ciﬁz(x, ) dx

N — Au(z,t") dx.

A7, Butn)

Before proceeding with the presentation of the numerical scheme we introduce some nota-
tions that will be used throughout the remaining of the chapter. In order to approximate

the spatial numerical derivatives, the (MC-6) limiter is considered which is defined as

Aui — Au? | Au}, — Aui
Ax ’ 2Azx

n n
Aujy, — Au;
Az

(Aul)’ = minmod {6 .0 (2.8)

where 6 is a parameter that takes any value 1 < 6 < 2, while the minmod function is
defined as:

| sign(a)min{|al, |, |}, if sign(a) = sign(b) = sign(c)
minmod(a, b, ¢) =
0, Otherwise.



Next, we integrate 1} over the domain R, = D1 x [t t"]:
2

/ / (O @)~ @an = / /  sauan 2.9)

We apply Green’s formula to the double integral on the left-hand side of equation (£2.9)),

which allows us to change the double integral into a line integral by the following formula:

[, (52 5 ) et = (pae+ Qan,

with a_g = [f(Au+ 1) — f(a)], and %—1; = —(Au);. Equation (2.9) writes as:

tn+1

j[ [f(Au+ @) — f(@)]dt — Aude = / " S(Aw, 2)dadt, (2.10)
OR T;

T
i+1/2 ¢

where the boundary of the rectangle R, , is OR}, o = [zi, zia] U [t7, " U [0, 2] U
[t" 1 ¢"] plotted in figure . Dividing the line integral over the four segments, we get:

t
N
mn
aRi—H/Q
. I e Q
1 1
I :
! 1
! 1
1 1
1 1
1 1
tn ® L, 1
® g > T
X; Tit1

Figure 2.2: The boundary OR}, ,, (dashed) in the space-time plane.



/$i+1 [[f((Au +u)(x,t")) — f(a(z,t"))]dt — Au(z, tn)dﬁ}

i

tn+1

+ /t [F((Au+ @) (i1, ) — (i1, 1))]dE — Au(zigy, t)da]

n

+/x [[F((Au+ @) (2, 741 — f(ia(z, "))]dt — Au(, 7+ da]

+ /Wl [[F((Au+ &) (a, 1) — f(a(a;,t))]dt — Au(ay, t)dz]

Titl
= / S(Au, z)dzdt (2.11)

tn
Splitting the integrals and rearranging them simplifies equation (2.11f)to:

tn+l

_ / T A, e + / F((Au+ @) (@ie1,1) = f(8lrisa, 1))t

n

of " Sl 7)o - / F((Au @) (i, 1)) = f(a(r 1)]dt

Tit1
/ S(Au, z)dzdt (2.12)

tTL

The following integrals are approximated using second-order quadratures,

Tit1
/ Au(z,t")dx = Axﬁl-(xi%, t") = AzAu}, 4,

i
and
Ti41

Au(z, t" ) dx = Axﬁi(xH%, ") = Aq:AuZﬁ.
2

Finally, the calculations on the left-hand side of equation (2.12)) yield,

| a0 - f((Au+a><xi,t>>}dt]

tn+1

1
Autl = A, — —
it+3 +r Az

AN At 1
+ el (loin) - T + 5o [

n

Tit1
/ S(Au, z)dzdt. (2.13)

The flux integrals in equation ([2.13) are estimated using the midpoint quadrature rule as

follows:



tn+1

/t F((Au+ @)z, 0))dt ~ F((Au+ @) )AL

n
tn+l

[ f@us @)~ f(au e+ a)a

n

Plugging these integrals in equation ([2.11]), leads to:

At n . o -
A = Aur s = LAWY ) — fie) - fAu] )+ f()]

gt Tiq1
/ S(Au, z)dzdt.

o/
xt’ﬂ

The forward projection step of Au} onto the staggered grid is calculated using Taylor

(2.14)

expansion of Au(z,t") in space, using the fact that Au(z,t") is approximated by a linear

function £;(z,t") i.e. Au(z,t")~L;(x,t") in the cells of centers x; and z;41,

Tit1 Tivl Tit1
/ Au(z, t")dz :/ Au(x,t")dx—i—/ Au(z,t")dz,

it

A A

_ 7% (242.17) + 7‘% (£42.17),

= S5 (A0 + (ry — @) (A ) + 55 (A, + (@ — vi) (Au,)')
Az N " Ax? s N

= (Aul- + Auiﬂ) + =5 ((Aui) — (AU-@'H)/) )

Hence,
n 1 n n ACC n /
Auf,y = 5 (A + Ay, ) + 2 (M) - (Au,)) (2.15)

where (Au?)" is the numerical derivative of Au(z;,t") calculated using the MC-6 limiter.
The predicted values AuZH% appearing in equation ([2.14)) are obtained at the intermediate
time "t 3 using a first-order Taylor expansion in time and the balance law .

The first-order Taylor expansion in time is:

Au(z,t) ~ Au(z,a) + S Aw(z,a), for any a and ¢.

For a specific point z;,

Au(z;, t) ~ Au(z;, a) + §EAu (2, a).

Let a = t™,

Au(z;,t) ~ Au(z;, t") + S AW (z;, t7),

then let ¢ = ¢"*z.

10



Hence,

A
Au(z;, t”+%) ~ Au(z;, t") + TtAut(mi, "),

A A S (A ) - (@),

(@itmy + [S(Au, )]

(wi,t7)]-

which can be written as,

-y,

2

+5r (2.16)

where (f7*)" and ﬁ-, are the spacial numerical derivatives of f = f(Au+ @) and f = f(@),
respectively. S is the discretized source term at time ¢".
On the other hand, the integral of the source term in ([2.14]) is discretized using the midpoint
quadrature rule with respect to time and space,

tn+1

Ti+1 Ti41 1
/ S(Au, x)dzdt ~ At/ S(Au™*t2, z)dz,
tm x; x

A

S(AuZ) + S(Au?)

~ AtAx ‘
2
Finally, the projection step of Au:‘:ll back onto the original grid is calculated using Taylor
2

expansions in space in the same way the forward projection step ([2.15) was computed:

Autt = 1(Au’.‘i1 + Au™th + g((Au’fil)/ — (Au™)). (2.17)

2 73 i3 8 3 i3
Equation gives the solution of the balance law at the next time on the original grid.
The Geometry of the [UC] scheme and that of the [NT] scheme is given in figure 2.3} We see
how both schemes avoid dealing with Riemann problems at the interfaces. While the [NT]
scheme evolves the solution on two grids, the [UC] scheme evolves the solution on a single

grid.

11



N AN 1 1
1 1
1 1 1
UTH_I ! u:-l:r; : U(LJL}\ I n+1
! ! T3 ! v = u,
+2/ \ / - Vit
1 | 1
1 [y - 1
: Uzl_l :
1 1
[} £ ]

Titl o )
1 $Z+% X

Figure 2.3: Geometry of the [DI[NT] scheme (left) and of the IDI[UC] scheme (right).

To complete the presentation of the scheme, we still need to demonstrate that it is
capable of capturing any stationary solution up to machine accuracy. Without any loss of
generality, we assume that the updated solution satisfies u} = u;, i.e., Au} = 0 at time

t = t". Performing one iteration using the proposed numerical scheme, one can show that:
1. Au "2 =0,
n+l __
2. Aui+% =

3. Ault = 0.

The proof of 2 and 3 follows immediately after 1 is established. We start by showing 1.
The prediction step (2.16)) leads to,

n+z A ,A 4 Ni ! ~i

n
(2

= 0, then we obtain,

st = B[ LE) 18],

But since Au

‘ Ax Ax

1
Hence, Au?JrQ = (; the proof of points 2 and 3 follows immediately. We conclude that the

+

updated numerical solution u*! remains stationary up to machine precision.

2.3 Unstaggered Well-balanced [F'V] Central Scheme

In this section we extend the proposed well-balanced scheme we derived in section to

the case of the balance laws, using the reconstruction technique developed in [10]. The

12



well-balanced property of the proposed scheme is presented at the end of this section.
We consider the balance law:

U, + F(U), + G(U), = S(u,z,y), (x,y) € QCR* t>0.

(2.19)
U(z,y,0) = Uy(z,y),

where U is the vector of conserved variables, F'(U), G(U) are the fluxes in the z- and
y- directions, respectively, and S(u,z,y) is the source term. We consider a Cartesian
domain decomposition of the computational domain {2 where the control cells are the

rectangles C;; = [Ii_%7$i+%] X [yj_%,yﬁ%] centered at the nodes (z;,y;). We define

the dual staggered cells DH%J%A = [z, Ti41] X [Yj,Yj41] centered at (xi+%,yj+%) where
Tipt :xi—i—% and Yirl =y, + 5, where Ax:xH%

visualization of the 2D grids is given in figure Before proceeding with the derivation of

)

— ;1 and Ay = Yirl = Y1 The

—
8
N

I
i
&
|
—
~—
r
!

!

|

|

!

|

|

|
=
|

!

!

|
——— =
|

|

|

|
—~
8
<.
+
=
<
I
i
~—

Figure 2.4: The cells of the main grid C;; (blue cell) and of the staggered grid
D 1,1 (green cell).
the numerical method, and for convenience, we introduce the average value notations:

Pt pign — Pt~ Piged TP

Pij+i = 7 1Pl = 9 s Pi () 5

_ Pivi; TPl
Py = : 9 =, Hp]]i,j+% = Pij+1 — Pij

HPHH%J = Pit+1,5 — Pij> [[PHZ‘,(J’) = Pij+l ~ Pij-1; HPH(Z‘)J = Pyl = Pi-ly

We follow the same strategy as in section ; we assume that U is a given stationary
solution of system (2.19) and we define AU = U — U. We substitute U = AU + U in the

13



balance law , we obtain:
(AU), + F(AU 4+ U), + G(AU + U), = S(AU + U, z,y). (2.20)
On the other hand, since U is a stationary solution, then balance law in (2.19) reduces to
F(U), +G(U), = S(U, ,7y). (2.21)
Subtracting equation from equation , we obtain

(AU), + [F(AU + U) — F(U)], + [G(AU + U) - G(U)], = S(AU + U, z,y) — S(U, z,y).
(2.22)
Using the fact that the source term S(u,z,y) in equation (2.19)) is linear in terms of the

conserved variables, then equation ([2.22]) reduces to
(AU), + [F(AU + U) — F(U)], + [G(AU + U) — G(U)], = S(AU, z,y).  (2.23)

The proposed numerical scheme consists of evolving the balance law in equation ([2.23])
instead on evolving the balance law in system (2.19)). The numerical solution U will be
then obtained using the formula U = AU + U. The numerical scheme that we shall use to
evolve AU(x,y,t) follows a classical finite volume approach; it evolves a piecewise linear
function £; ;(z,y,t) defined on the control cells C; ; and used to approximate the analytic
solution AU(z,y,t) of system (2.19). Without any loss of generality we can assume that
AU}, is known at time ¢" and we define L; ;(, y,1") on the cells C; ; as follows.

. " (AU, (AU,

INSNY IR . : . . .
where ( [Aj;’]) and ( [AJ;’J) are limited numerical gradients approximating
respectively, at the point (z;,y;,t"). The MC-6 limiter (2.8) is used to avoid spurious
oscillations. Next, we integrate the balance law ([2.23)) on the rectangular box R .

i+
2:JT2

n 4n+1
Di+%,j+% X [t , b ],

AU AU
5= and “5=,

/ / / (AU), + [F(AU + U) — F(U)], + [G(AU + U) — G(0)],dR
Rivig+d

:///R S(AU, z,y)dR. (2.24)

19+3
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We use the fact that AU is approximated using piecewise linear interpolants similar to
L;; on the cells C; ;; following the derivation of the unstaggered central schemes in [71],

equation ([2.24)) is rewritten as:

1 ~
n+1 o n o
AU 3ty AUZ+2 Jts T AzAy ///RH1J+1 AU = AUk

- [G(AU +T) — G(O)],dR + A; v / / /R S(AU, z,y)dR. (2.25)

For the flux integrals, we apply the divergence theorem that changes the volume integral

into surface integral. Equation (2.25)) becomes then:

tn+1

AU"+1 = AU" , / / F(AU + U) — F(U)] - n,dAdt
+7 z+2]+2 Al‘Ay BRW[ ( + ) ( )] n

tn+1

G(AU+U)—G(U)] - n,dAdt + /// S(AU, z,y)dR
-5 | /[ (AU+0) = G(O))-nydAdt + 5 - )
(2.26)
where Ry, = [z, it1] X [¥i, Yit1], and n = (ny, n,) is the outward pointing unit normal at
each point on the boundary dR,, (the boundary of R,,), see figure [2.5) -
Next, we approximate the integrals [ = de F(AU + U) — F(U)].nydzdydt and
g Jor,,|G(AU +U) — G(ﬁ)].nydxdyczt.
n=(0,1)
(24, yj+1) ] (Tiy1, yj+1)
n=(—10) — ——n=(1,0)

(i, y5) J (Tit1,5)
= (O’ _1)

Figure 2.5: The boundary 0R,, and the outward pointing unit vector n = (n,,n,) on
each part of the boundary.
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:/tn /%ﬁl[ <(AU+I~J)(xZ+1,y, ) F(fj(%ﬂ y,1))] - 1dy
AU D)~ PO gy, )0
*/ / [F((AU +0) (s, ,1) = F(Uai,.1))] - ~1dy

An approximation of each integral using the midpoint rule leads to:

1= B R(AU + 0)iar, 15, 74)  F(O(risr, 05, 7))]
+ [FAU + ) (@i, 511 8")) = P(O(@ig1, g1, 5))]]
~ S P(AU 1 0) s, 775)) — F(Oar, 5, 07))
+ [FAU + U) (@i, gy, #744)) = (O, g0, )]
Hence,
1= SRV P(AU + O)E) — FOOLE)] + P(AU + O)E )~ FOOLE )

~ [P(AU+0)7%) = F(O3 ) - [FUAU + O) ) - RO

l’]

Similar approximation for J implies,

AtAzx n ~ n+% ntl - n—&-%
[[GUAU +0)12) - GO+ GIAU + 0 ) — GO )]

J==

~ [GUAU + 0)1 ) = O3 ) - [GIAU + O - GO

2y
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Hence equation ([2.26]) becomes,

n+1 o n
AUH%J—&-% - AUH%J%
At ~\n+3 ~ n+ti ~ i ~ ntl
— o [[FUAU+0)1) = FOOLE)] + [F(AU + U)EL) - F(OT2))
N = n+3 ~ ntl ~ 1
~ [F((AU+ D)%) = F(U)) = [F(AU + )75 = FOL )]
At ~ 1 ~ n+%

n ~  nt1 o TLJr%
= 52y [GUAU +O)TE) — GO + [GIAU + ) ) = GO

- [GUAU + 0% = GO )]~ [GUAU + D)) - GO

1,] 1,J i+1,g

1 ///
+ S(AU, z,y)dR (2.27
AzAy Ri+%,j+% ( ) ( )

The integral of the source term is being approximated using the midpoint quadrature rule

both in time and space:

/// S(AU, z,y)dR ~ AtAxAy
R 1 .,1

itg,J+
’ n+i n+i n+i n+i
S(AU, ;%) + S(AU ) + S(AU, ;. 34) + S(AU 24 y)
4

(2.28)

The forward projection step in equation (??) consists of projecting the solution at time "
onto the staggered grid. It is performed using linear interpolations in two space dimensions

in addition to Taylor expansions in space; we obtain:

n 1 —n ——=n
AUi+%7j+% = §(AU1+%J + AU%,]—&-%)
Am n,xr n,xr
— 2L AU g + (AU 00
Ay n n
- 1_6([[AU ’y]]mur% + [[AU ’y]]z‘+17j+%)- (2.29)

Here, AU™" and AU™Y are the spatial partial derivatives of AU" that are approximated
by a limited numerical gradient using the (MC-6) limiter ({2.8]).
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Finally, the evolution step (2.27)) at time t"*! on the staggered nodes can be written as,

n+1 n
AUH%J% AUHQJJr2
At w 'n,—|-l ind w n+ g
- 7[ YF(AU; 2+ Uy ) — DLF(Uy ) + DL F(AU 2 + Uy )
- Dx (Uz ]+1)]
Aty "ty T y y nt3
_ 7[D+G(AUM +U,,;,)—D G(Um) + D F(AUHM + Uz+1,j)
— DYG(Uiy )]

n+2 n+ n+ n-‘r
+ALS(AUL 2 AU 2L AU 2L AU ). (2.30)

Here D% and DY are the forward differences given by,

xT Uz 1,5 FU17 FUi,' 1—FUi"
D*F(U, ;) = i +1.9) = )DyF(U j) = D P

The predicted values in equation (|2 are generated at time s using a first order Taylor

expansion in time in addition to the balance law ([2.19)):

nih e L AEL(FR)CEG (GGG
AUZ’J = AUi,j + 7 W + E A—y Ay + S (2.31)

() E (@)

where =, =L, AL nd ” denote the approximate spatial partial of I = F(U), F =
F(AU +U), G =G(0), and G = G(AU + U), respectively. Here also we limit the spatial

numerical derivatives using the MC-6 limiter to avoid spurious oscillations.

Finally we apply a back projection step similar to the one in . In order to retrieve

the solution at the time ¢"*! on the original cells C; ;, we obtain

n "H—l n+1
AU = (AU +AU; 1)
A'x mn xT n X
- 1—6<HAU ) st + AU )
A
= (AU ) + AU ), (2:32)

where AUZ;FL% and AUZ;LZ” denote the spatial partial derivatives of the numerical solution
obtained at time ¢"*! and node (x4, y;) approximated using a limited numerical gradient.
To complete the presentation of the numerical scheme, we need to verify the well-balanced
property of the proposed scheme and to show that it is capable of maintaining stationary
solutions of the Euler system with gravitational source term.

Suppose that the numerical solution obtained at time ¢ = t" satisfies U}, = U, j, l.e

i, Lo

18



AU}; = 0. Performing one iteration using the proposed numerical scheme, one can show
that:

1
1. AU/ ? = 0.
n+1 .
2. AUTH L, =0.

3. AU = 0.

In fact, it is straight forward to establish 2 and 3 once 1 is established. We will present the
proof of 1 only.

The prediction step ([2.31]) leads to

_ F(AUY; +Uy) N F'(Uy,)
Ax Az

_ G(AUF; +Uy) L G'(Uyy) n
Ay Ay

S(AUY,, z, y)] . (2.33)

But since AU}; = 0, then we obtain,

n—i—%_g

F/INJ% F/-[le G/'[JTZ G"[sz
1 SU_FE) | PO 01U, 00,

A
v Ax Az Ay Ay

1
Hence, AUZ;Q = (. Therefore, we conclude that the updated numerical solution remains

stationary up to machine precision.

2.4 [TVDI Property of the Proposed Numerical Scheme Applied

to Scalar Conservation Law

In this section we establish the Total Variation Diminishing (TVDI) property of our proposed
numerical schemes. To prove that the scheme is [I'VDI, one needs to prove that T'V (u(t +
At)) < TV (u(t)).

Let the scalar conservation law,
u + f(u), =0. (2.34)
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As in (2.1) and (2.19), we will discretize the equation,
Aug + h(Au), =0, (2.35)

where Au = u— @ and h(Au) = f(Au+a)— f(a) and @ a time independent reference solu-
tion. Using our unstaggered central scheme, the numerical solution of the scalar equation

2.35)) is updated at time t"™! as follows: First, we apply a forward projection step,
p

A / !
(Aup + Aup,) + == (Au) = (Auzy) ) (2.36)

Au” =

1
i+

DN | —

Then, we predict the solution values at time 7+3 with the aid of the predictor step,

ACTE = At — %[(h?)']. (2.37)
Next, we apply the time evolution step
Aur = Aury — A [h(Aquﬁ) - h(AuZﬁL%)} . (2.38)
Finally, we apply the backward projection step
Ayt = % (Au?_@l + Au7j§> + % ((Au’fﬁ)l - (Aul‘jﬁ)l) . (2.39)

Theorem: 1 Assume that the numerical spatial derivatives be chosen as,

0< Au;.sgn(AuiH — Au;) < Cstpy.

Y

Ax ’ Ax

) (Aui+1 — Au; Au; — Auil)
minmod

0< h;.sgn(AuiH — Auy;) < Csty,.

)

minmod (AUZ‘+1 - AUZ AUZ — Aui_l)

Ax ’ Ax

with Csta, = a and the following [CEL condition holds,
Amaz|a(u)| < 6

where
B:/\Csth S\/4+4a—0z2—2'
Cstay 20

and o < 4 (for B> 0). Then the scheme satisfies the property.
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Proof: Inspired by the [TVDI proof in [57] and [39], one can say that it is sufficient to
¥((oh) (o))
and C; =

prove that |4, < 1 and \Ci+%| < 1 with 4; = (Au"+1—Au"+1) =
1 1 ’ ’ +3 -4
A[h(A“?:1§)*h(A“?+7)]*%((A“?) 7(A“?+1) >
Auﬁl—Au? :
First, we show that |A;] < 1,
A |(2) — ()
? (AunJrl _ Aun+1>
iti i-1
n+1 n+1
N e |
< 2% max . ; & <2<z (2.40)
8 (Au?:ll - Au?j’f) (Aui‘rll — Aui‘jf) 8 2
Next, we show that |C;, 1] < 1,
2
nt3 ntg Az ny’ n \
A B(A) = h(Au )] - A2 () - (Aur,) )
Auyy — Auy
n+i n+ N N
< hMAu*) = h(Au; )| Az | (Auy) — (Aulyy)
- Au?  — Au} 8 Au?  — Au}
<A h(A ?112) h(A ?+§> Au?jf A :L+2 Az (AU?)/ - (Auzn—i-l)
- Au?jf A :”r% Au? — Auj 8 Au? — Auj
(2.41)
From the [CEL] condition, one concludes that,
(A n+% hA n+%

n—f—% n+%
Au; P — Au;

n 1 . .
Next, from the predictor step Au; +2, the second absolute value to the right-hand side of
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inequality (2.41)) is bounded by

n—i—% n-‘,—%
Au; * — Au,

7

n n
Augyy — Au;

n Aty n o Aty
n n
Au,  — Auj

/

AU?H — Au — g(hi—l-l - h;)

2

n n

7

/
Pt

n n
Audyy — Au;

’

N

]

— Au?

I

i — N
Aud | — Au}

(2
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A
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n
Au,

At (
< 1+7max

(2.43)

Finally, we have

(Aup)
Au?, — Aug

(AU?H)I
Au?  — Au?

(Aup) — (Au,)
Au?, — Aug

Ax
8

I

Ax (
< — max
8

> < %. (2.44)

Performing the following term-by-term operations, ([2.42))x (2.43))+(2.44) results in,

A [h(Auﬁﬁ) — h(Au;ﬂL%)] - & ((AU?)/ - (AU?H)l)

n n
Au?, | — Auj

a< =, (2.45)

0|
N —

1
< B+ 5045) +
This follows from the definition of £, and we conclude that,

(2.46)
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The total variation in the updated solution is now,

TV(Au(t + At)) =Y [Augp (t + At) — Auy(t + At)]

1 1
< [Aurts - Aw] 15 + A + | - Aut] |5 - A,
= Aufr%l — Aufj%l ,

n n 1 n n 1
< Augyy — Au; 9 Cipi| + ‘Auz‘ﬂ — Au; 2 +Ci 1,
= A = Au| =) [Auga(t) — Au(t)| = TV (Au(t)),

here we followed a re-indexing step twice. We conclude that

TV (u(t + At)) — TV (u(t)) = TV (Ault + At) + @) — TV (Au(t) + @),
< TV(Au(t + Ab) + TV (@) — TV (Au(t)) — TV (a),
= TV(Au(t + At)) — TV (Au(t)) < 0.

Hence,

TV (u(t + At)) < TV (u(t)).

Theorem (1] states that the scheme is [I'VD| in the scalar case, which assures, according to
the Lax-Wendroff theorem [54] , the convergence of the scheme to a weak solution of the

conservation law in the scalar case.

2.5 Numerical Results

In this section, we implement the proposed well-balanced numerical schemes and use them
to solve classical problems from the recent literature. The main property of the proposed
schemes will be tested when we consider numerical experiments featuring stationary solu-
tions. In all test cases, we will consider an ideal gas with v = 1.4 and a parameter value
6 = 1.5 for the limiter. The condition is set to 0.485.
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2.5.1 Application to the Euler system with gravitational source term
2.5.1.1 The model

The Euler system with gravitational source term is given by:

w + f(u), =Su,z), z€QCR, t>0.

(2.47)
u(x,0) = up(x),
where
P pu 0
u=| pu |, fluy=1| p2+p |[.S()=]| —po.
E (E+pu —puc,

Here, p is the fluid density, u is the velocity, p is the pressure and £ = %pu2 + % is the
non-gravitational energy which includes the kinetic and internal energy of the fluid. The
gravitational potential ¢ = ¢(x) is a given function and ~ is the ratio of specific heats. In
the absence of the gravitational source term, system (2.47]) reduces to a hyperbolic system
of conservation laws with a complete set of real eigenvalues and a corresponding set of

linearly independent eigenvectors.

2.5.1.2 isothermal equilibrium

We start our numerical experiments by verifying that the numerical scheme is capable of
preserving any steady state at the discrete level. We consider for our first test case the
isothermal equilibrium problem with a linear gravitational field ¢, = g = 1 previously
considered in [78]. The numerical solution is computed on 200 grid points of the interval
[0,1]. The final time is ¢ = 0.25. The equilibrium at the [PDE] level is defined such that,

u; = 0. The isothermal equilibrium state is given by:

Pogd
p(x) = poexp(——x),
Po

u(z) =0,

Pog
p(z) = poexp(—Lx).
Po

The above formulas for p, u, and p ensure that u, = 0 at the [PDEl level. However, we need

n+1

to prove that u = u", in order to prove that the equilibrium is preserved numerically.

Here we set pg = 1,py = 1. The reference solution u chosen in this experiment is exactly
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the isothermal equilibrium state. The results are illustrated in figure 2.6] where we plot
the numerical solution at ¢ = 0.25 and we compare it to the exact solution. This figure
shows that the equilibrium is exactly preserved and a perfect match between the computed
solution and the exact one is observed. Note that in [78], this equilibrium needed a very

specific well-balanced strategy to be preserved. To test the ability of the scheme to capture
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Figure 2.6: isothermal equilibrium: density (top left), momentum (top right), energy
(bottom left), pressure (bottom right) at time ¢ = 0.25.

perturbations around the equilibrium, a small perturbation is added to the initial pressure.

Hence, it is now given as:

p(x) = poexp(—p;—gx) + nexp(—lOOp;—g(x —0.5)%),
0 0

where 17 = 0.01. The perturbation will be calculated at each time by the following formula,

= xr) — ex —@.T .
k(z) = p(x) — poexp( . )
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In figure we plot the perturbation £ obtained at time ¢t = 0.25 and we compare it to
the initial perturbation on 200 grid points. Outflow boundary conditions are applied. The
plots show that the proposed numerical scheme is capable of capturing small perturbations.
The order of convergence of the proposed numerical scheme is calculated using the L;-norm

for the density, pressure and the energy components and the obtained results are reported
in Table2.1]

-2

04 05 06 07 08 09 1
X

0 0.1 02 03

Figure 2.7: isothermal equilibrium: profile of the initial perturbation (dashed curve)
and the perturbation at the final time ¢ = 0.25 (dotted curve).

N Ly-error p Order Lq-error p Order Li-error Order
200 | 2.7651 x 107¢ | — 3.7978 x 107 9.9488 x 1076 | —
400 | 7.3147 x 1077 | 1.89 || 1.0297 x 1076 | 1.88 | 2.5750 x 107¢ | 1.95
800 | 1.7659 x 10~7 | 2.05 || 2.4007 x 10~" | 2.10 || 6.0035 x 10~7 | 2.19

Table 2.1: isothermal equilibrium: Li-error and order of convergence.

2.5.1.3 moving equilibrium

Next, we verify that the proposed numerical scheme is capable of preserving moving equi-
librium states. We consider the test case previously presented in [80]. A nonlinear gravita-
tional field ¢(z) = exp(z)(—exp(z) + y(exp(—yx)) is considered. The numerical solution is
computed at time ¢ = 10 on 200 grid points of the interval [0,1]. The moving equilibrium
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state is given by:

0d
px) = poeXp(—Eﬂf),
u(z) = exp(x),
(P9
p(z) = exp( ” )

po = 1 and pg = 1 are given. The considered reference solution in this case is the equilibrium
state itself. Figure [2.§ shows that the density, velocity, energy and pressure are exactly
preserved at time t = 10. The curves are exactly on top of each other which ensures that

the steady state is perfectly preserved with zero error.

1 2.8
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= = = Exact solution 26 = = = Exact solution
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Figure 2.8: moving equilibrium: profile of the density (top left), velocity (top right),
energy (bottom left), and pressure (bottom right) obtained at time ¢ = 10.
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2.5.1.4 shock tube problem

We consider for our next experiment the shock tube problem with a linear gravitational
field with ¢, = g = 1, which was previously considered in [78]. The computational domain
is the interval [0,1]. Reflecting boundary conditions are considered. The reference solution
u considered in this experiment is the isothermal equilibrium. Notice here that we are
not solving steady state problems, so any other smooth solution could be considered. The

initial conditions are given by:
1, if x <0.5,
0.125, otherwise,
u(z) =0,
1, if v <0.5,

p(x) =
0.1, otherwise.

The numerical solution is computed on 100, 200, and 400 grid points at the final time
t = 0.2. The obtained results are reported in figure [2.9] where we show the profile of the
density, velocity, energy, and pressure. The obtained results are in perfect agreement with

those appearing in the literature.

2.5.2 Application to the Euler system with gravitational source term
2.5.2.1 The model

The Euler system with gravitational source term is given by:

U, + F(U), +GU),=5U), (z,y) €eQCR? t>0.

(2.48)
U(I’, Y, O) = UO('I" y)7
where
P puL pu2
2
U= | P F(U) = puy+p L G(U) = Piéluz
pus PULU puy +p
E (E+p)u (£ + p)us
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Figure 2.9: [DIshock tube problem: density (top left), velocity (top right), energy (bottom
left), pressure (bottom right) at time ¢ = 0.2.

and
0

— PPz
_p¢y
_pugbz - pv¢y

S(U) =

Here p is the fluid density, u; and usy are the velocity components in the x- and y- directions,
respectively, p is the pressure and E = %p(u% +ud) + % is the non-gravitational energy
which includes the kinetic and internal energy of the fluid. The gravitational potential
¢ = ¢(x,y) is a given function and v is the ratio of specific heats. Similar to the
case, and in absence of the gravitational source term, the system reduces to a hyperbolic
system of conservation laws with real eigenvalues and a complete set of linearly independent
eigenvectors.

In this section we apply the well-balanced unstaggered central scheme we developed
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in section and we solve the classical Euler system with gravitational source term
featuring stationary solutions and other equilibrium states.

The discretization of the intergral of the source term,

S(AU”+2 AU . AU”H, AULE g+1> (S, Sa, S5, 54)
with
Sl = 0
n+ n+
S, — (Ap>2+12j+1 + (Ap)z+1] + (Ap)z j+1 + (Ap> ’
s = —gi 1 ).
+1 n+%
S o (Ap>z+1 ,J+1 + (Ap)z+lj (Ap)z j+1 + (Ap>z,j
3= —g2| 1 ].
n+ 2 nti nti n+:
S, = _gl[(APU)HfjH + (Apu)iy % + (Apu); i 8+ (Apu); 2]
4
n+i n+l nti
p [(APU)HfjH + (Apv)iJrl j (Apv)z g+l + (APU) 2]
— gy )
4

For ¢, = g1 and ¢, = ¢».

2.5.2.2 isothermal equilibrium

The first numerical experiment we consider aims to validate the well-balanced property of
the proposed scheme. We consider the isothermal equilibrium state problem [20), 80,
78]. This experiment is a direct extension of the experiment previously considered in
subsection [2.5.1.2] The initial conditions correspond to a stationary state and are given
by:
Po
plz,y) = poexp(—p—o(glx + g29)),

u\r,y) = 07
(@9) (2.49)
Uz (ZZ', y) = 07

Lo
plz,y) = poexp(—p—o(glx + g2y).

po = 1.21 and py = 1 are given. The gravitational potential is linear with ¢, = g; = 1
and ¢, = g» = 1. The computational domain is the square [0, 1]* discretized using 60 x 60
grid points. We apply the scheme and compute the numerical solution at the final time
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t = 0.25. Figure [2.10] shows the profile of the density and the energy.

12 25

1.4

1.2

0.8

0.6

0.4

0.2

0.l

Figure 2.10: isothermal equilibrium: density (left), energy (right) obtained at the
final time ¢ = 0.25.

2.5.2.3 Unidirectional equilibrium perturbation

In this test case we extend the perturbation problem to the case where both the
equilibrium state and the perturbation are initially set along the x or the y-axis. Whenever
set in the z-direction [7§], the equilibrium state and the pressure perturbation are given
by:

p(z,y) = exp(—x)),

u(7,y) =0,

us(z,y) =0,

p(z,y) = exp(—x) 4+ nexp(—100(z — 0.5)%).

Similar initial data are defined if the perturbation is set in the y-direction. The perturbation

will be calculated at each time by the following formula,

k(z,y) = p(x,y) — exp(—z).

The numerical solution is computed at time ¢ = 0.25 using our proposed numerical scheme
with n = 0.001. The obtained results are reported in figure The observed profiles
are similar to those of the case, as well as those reported in the literature. Figure
shows a comparison between cross sections of the pressure of the problem (with
perturbations set in the z- and y- directions) and the corresponding one of the ID] problem.

31



All three curves are in perfect match. The Li;-norm for the density component and the

order of convergence of the numerical scheme are reported in table 2.2

-4
6><1O .

1D
2D x-cross section
// \ 2D y-cross section | 7

/
al / \ / \\\

Figure 2.11: Unidirectional equilibrium perturbation: [D]/2D] comparison of the pressure
perturbation £ at time t = 0.25.

N Li-error p | Order
200% | 2.8461 x 107" | —

4002 | 7.0611 x 1078 | 2.01
8002 | 1.6840 x 1078 | 2.06

Table 2.2: Unidirectional equilibrium perturbation: Li-error and order of convergence.
2.5.2.4 moving equilibrium

This test case is an extension of the moving equilibrium problem to the case; it

is meant to verify that the proposed numerical scheme is capable of preserving steady
states with non-zero velocities. The initial coefficients are given by:

Pog
plx,y) = poexp(—p—o(ﬂc +9)),

ui(z,y) = exp(z +y),
uz(z,y) = exp(z +y),

Pog
p(z,y) = exp(——(z +y))".

Po
po =1, pp = 1, and g = 1. We consider a nonlinear gravitational potential given by

o(x,y) = exp(z+y)(—exp(z+y)+v(exp(—y(z+y))). The numerical solution is computed
at the final time ¢t = 0.25. The equilibrium is preserved exactly and a [D}/2D] comparison
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Figure 2.12: Unidirectional equilibrium perturbation: initially along x (top left), at ¢t =
0.25 along x (top right), initially along y (bottom left), at t = 0.25 along y (bottom right).

is held on the density component at the final time in figure [2.13] The comparison shows a
perfect match, thus confirming the potential of the proposed scheme to handle stationary

equilibria.

2.5.2.5 shock tube problem

We consider for our last experiment the sod shock tube problem. As in the case,
the reference solution U is the isothermal equilibrium solution (2.49). We consider first

the flow along the z-direction with the linear gravitational field with ¢, = ¢; = 1 and
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Figure 2.13: moving equilibrium: the density at time ¢ = 0.25 with /2D x-cross
section (left) and [IDI /2Dl y-cross section (right).

¢y = g2 = 0; the initial data are given by:

1, if 2 < 0.5,
0.125,

p(x,y) = ,
otherwise.

Ul(Q?,y) =0= u2('r7y>'
1, if x <0.5,
0.1,

p(x,y) =
otherwise.

The computational domain is the square [0, 1]? discretized using 400 x 10 grid points. In a
similar way, we define the initial data along the y-direction, where the same computational
domain is discretized using 10 x 400 grid points. The numerical solution is computed at
the final time ¢ = 0.2 using the proposed well-balanced scheme. The obtained numerical
results are reported in figure where we present a comparison between cross sections
of the problem set along the x- and y- directions for the density, velocity, energy and
pressure and the corresponding solution of the problem. A perfect match between the
plots is observed and the obtained results are in perfect agreement with corresponding ones

appearing in the literature.
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Figure 2.14: shock tube problem: [[DH2D] comparison density (top left), velocity (top
right), energy (bottom left), pressure (bottom right) at time ¢ = 0.2.

2.5.3 Application to the IMHDI| equations with gravitational source term

2.5.3.1 The model

Ideal Magnetohydrodynamics (MHD) equations model problems in physics and astro-
physics. The system is a combination of the Navier-Stokes equations of fluid dy-
namics and the Maxwell equations of electromagnetism. A gravitational source term is
added to the ideal equations in two space dimensions in order to model more compli-
cated problems arising in astrophysics and solar physics such as modeling wave propagation
in idealized stellar atmospheres [65], 12]. The system of equations with gravitational

source term in two space dimensions is given by:

U, + F(U), +GU), =SU), (z,y) e QCR? t>0.

(2.50)
U(z,y,0) = Uy(x,y),
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where

p pus
pu1 pui + Iy,
Pl purus + 1o
U= | F(U) = puruz + I3 7
E Fuy + uilyy + uollys + usllys
B 0
By Ay
Bs —As3
PlUo 0
pusuy + Iy 0
pu% + Iy, — PP
G(U) = pusus + Ilog S(U) = 0
FEug + uplla + uplla + usllas —pu2Qy
—As 0
0 0
Ay 0

Here p is the fluid density, pu is the momentum with u = (uy, us,u3), p is the pressure,
B = (B4, By, B3) is the magnetic field, and F is the kinetic and internal energy of the fluid
given by the following equation £ = % + % plul® + 3 |B|? with v the ratio of specific heats.
¢ = ¢(x) with ¢, = g is the gravitational potential and it is a given function. A = u x B,
I1;1, 1155 and Il33 are the diagonal elements of the total pressure tensor and Ilj5, I1;5 and
I3 are the off-diagonal tensor are given by the following formulas:

I; =p+ %(B]2 + B} — B?) and II,; = —%BiBj, fori,j,k=1,2,3.

To determine the time-step using the CFL condition, we present the eigenvalues of the flux
jacobian in the z-direction,

M =uU —cf, Ao =u — by, A3 = up — ¢, Ay = U, As = Ui, A\g = ug +¢5, Ay = ug + by,

Ag = u1+cy. The eigenvalues of the flux jacobian in the y-direction are analogously defined.

1
e
= \/ 5 (a0 =\l 0 g (25

Here,

and
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are respectively the fast and slow wave speed with a = 1/% is the sound speed and

b = /b2 + b3+ b2 with b; = %,z’ € {1,2,3}. For additional reading on the hyperbolic
analysis of the system, readers are refered to [32, [60]

The conservation of momentum is exposed to Lorentz force from the magnetic field and
to gravitational force. In addition, the conservation of the total energy (internal, kinetic
and magnetic) has the gravitational potential energy as a source term. A list of numerical
experiments has been considered in order to verify the robustness and accuracy of our
method in the case of the system of equations. The time-step is computed with a

[CET] number equals to 0.485. The MC-6 limiter (2.8)) is used with 6§ = 1.5.

2.5.3.2 Constrained Transport Method (CTMI)

From electromagnetic theory, the magnetic field B must be solenoidal i.e. V-B =0 at all
times. The divergence-free constraint on the magnetic field reflects the fact that magnetic
mono-poles have not been observed in nature. The induction equation for updating the
magnetic field imposes the divergence on the magnetic field. Hence, a numerical scheme
for the equations should maintain the divergence-free property of the discrete mag-
netic field at each time-step. Numerical schemes usually fail to satisfy the divergence-free
constraint and numerical instabilities and unphysical oscillations may be observed [70].
Several methods were developed to overcome this issue. The projection method, in which
the magnetic field is projected into a zero divergence field by solving an elliptic equation
at each time step [15]. Another procedure is the Godunov-Powell procedure [61], [63], [30],
where the Godunov-Powell form of the system of the equations is discretized instead
of the original system. The Godunov-Powell system has the divergence of the magnetic
field as a part of the source term. Hence, divergence errors are transported out of the
domain with the flow. A third approach is the [CTM] [14], (62, 27]. The was modified
from its original form to the case of staggered central schemes [4]. It was later extended
to the case of unstaggered central schemes [73]. In this work we consider the version of
developed in [73]. At the end of each iteration, we apply the corrections to the

magnetic field components. Starting from a magnetic field that satisfies the divergence-free

n+1

constraint V- B}'; = 0, we would like to prove V- B]'/" = 0. The discrete divergence using
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central differences at time t" is given by,

J ox i j y i

_ (BZ’)?-H,]' B (Bx)?—u 4 (By)ZjH o <By)2j—1
2Ax 2Ay

= 0.

The vector of conserved variables U™ is computed by the numerical scheme, but V.B?jl
might not be zero. Therefore, we compute the magnetic field BZ}“l by discretizing the

induction equation at the cell centers of C ;,

o (B _o (o), a(e)_,
ot \ B, ox \ Q oy\ o | 7

where Q = (—uxB), = —u, B, +u,B,. Hence, the discretization of the induction equation

is the following,

1 1
B+l —(B.)" nty ot
( ””)i+%,j+% ( I)i+%’j+% 1 i+d g3 irda-L 0
At 2Ay T
1 1
B, 1 (B QTL+§ _Qn+§
( y)z’+%,j+% ( y)i+%,j+% S i e e 0
At 2Ax o
Then,
1 1
+1 n At nt3 nt3
B i =(By)1 1 — = (Q —Q
+1 n At (ontz nts '
B)" 1= (B 1. =L (Q —Q .
( y)z+%,3+% ( y)z+%,j+% * 33z i+ 5+ i—15+3

1

n+s
Now, we compute Qi+ IS
27

order to obtain second order of accuracy in time,

i+l using the numerical solution computed at time ¢" and ¢"*! in
2

nti 1 1
Q2 = — | Qr o
irhotd T g [itdary T i)
n n n n
S n O+, + O 0+ 0
9 | it3i+s 4
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2
n+1 n+1 n+1 n+1
V.(B)"H = (Bx)”% ity (Ba)iZs J+3 + (By)H%JJr% (By>z+§ i—3 (2.54)
3.0+ R 2Ax B 2Ay '
-1 he
We compute now [ and J as
n+1 n+1
I= (Be)ivygey = (Be)itying
2Ax ’
_ 1 (Bw)?—i-l,j + (Bx)?+2,j+1 + (Bﬂf)?-&-&j + (BI>?+1,j+1 B At <Qn+% B Qn+% )
2Azx 4 2Ay \ +3a+3 T Tidi-d
B (B17>?—1,j + (B )zg—}—l + (B )Z] + (Bm)?_l,j_;_l i At (Qn+% B QnJr% >
4 2Ay \"imgats  imyamz) |
n+1 n+1
J = Bulisyirg ~ Boirtiy
2Ay ’

1 By T By + (Bu)iia e + (By)ijo LAt (Q"Jr% Qe )
20y 4 2Az \ it3gts imgdts
(By)ijl + (By)?Jrl,jfl + (By)?JrLj + (By)?,j At n+l n+i

- Q .1 T Q 1 - 1
4 20z \ 3073 i—5.J-73

The sum of I and J is,

I+ J= 823: [(Bx)?+1,j = (Ba)ilay + (Be)iya g1 = (Be)ijp
+ (Ba)iya,; — (Ba)ij + (Be)iir i — <Bl‘>?fl,j+1]
* 4@2@/ (F90 ey + ) + (20 - 90)
" (9?? g +§a~+g> (2 -2
8Ay wiger = By + (B jan = (By)isa
+ Byt o — Byt + (By)jia — (By)i, ]
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Hence,

4+ — 1 (Bx)?ﬂ,j - (Bx)?q,j n (By)ZjJrl - (By)zjq
4 2Ax 2Ay
I (Bm)?—m,j—i-l - (BZ)Zj—H 4 (By)?+1,j+2 B (By)?ﬂ,j
2Ax 2Ay
i (Bw)?w,j - (Bx)?] i (By)ZjJrQ - (By>zj
2Ax 2Ay
n (Bx)?+1,j+1 - <B$)?—1,j+l i (By)?+1,j+1 B (By)?-i-l,j—l (2.55)
2Ax 2Ay o
and the divergence of the magnetic field on the staggered grid V - (B)"J;H 1 reduces to,
v-(B)yj;j+% = [v B}, +V-B},,,+V-B},,+V-B, ] =0 (2.56)

Finally, we compute the magnetic field on the main grid B"Jrl as the average of its values

on the staggered grid,

n+l __ n+1 n+1 n+ n+1
By = GBI B B B
Hence,
n+1 __

2.5.3.3 Shock tube problem

For the first numerical test case, we consider a shock tube problem for the system of ideal
MHD equations extracted from [5]. The simulation takes place over the computational do-
main [—1,1] x [0,1]. U = [p, uy, us, us, Ba, B3, p] is initially given as U = [1,0,0,0,v/4,0, 1]
for < 0.5 and U = [0.125,0,0,0, —v/4,0,0.1] for z > 0.5 and B; = 0.75v/4. This test
case features seven discontinuities. It was originally introduced for the non-scaled
equations [5]. Hence, removing 7 from the initial data makes it a valid test case for the
scaled [MHDI equations. We compute the solution at the final time £ = 0.25 on 400 x 400
grid. Because the numerical divergence at the final time was zero, there was no need to
apply the [CTM| The cross sections in figure show a very good agreement with the
results in the literature. In order to investigate the effect of the on the computed
solution, we did a convergence study in figure while applying the [CTM| As it is very
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clear in the figures above, applying the [CTMI for the [UC] schemes has a small smearing out

effect on the solution.
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Figure 2.15: shock tube problem: cross sections of the 8 components at time ¢t = 0.25.
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Figure 2.16: shock tube problem: cross sections of the 8 components at time ¢t = 0.25
on 200x200 (dashed line) and 400 x 400 (solid red line) and 800 x 800 (solid black line)
grid points.

2.5.3.4 Four stages Ideal Riemann problem

This test case is considered to prove the ability of our scheme to solve ideal IMHDI problems

and preserve the divergence-free constraint. The initial data consist of four constant states
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[5, 73] . The initial four constant states are given as follows,

1,0.75,0.5,1) ifx >0andy >0

(
(
2,0.75,0.5,1) ifrxr<Oandy >0
(pJ u17u27p) = < E ) Y (258)
(

1,-0.75,0.5,1) ifx <Oandy <0
3,—0.75,—-0.5,1) ifzx>0andy <0

with an initial uniform magnetic field B = (2,0, 1). The numerical solution is computed in
the square [—1, 1] x [—1, 1] on 400x400 grid points.

400
350
300
250
< 200
150
100

50

Figure 2.17: Four stages Riemann problem: p with [CTM] (left) and without [CTM] (right)
at the final time ¢ = 0.8.

divB 400 x 400 divB 400 x 400

Figure 2.18: Four stages Riemann Problem: divB with [CTM] (left) and without [CTM
(right) at the final time ¢ = 0.8.

Figure illustrates the density at the final time ¢y = 0.8 with and without applying
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constrained transport treatment to the magnetic field components. Similar comparison on
the divergence of the magnetic field is illustrated in figure 2.18, The results highlight the
robustness of the numerical scheme in the sense that even without treatment we are able to
show numerical simulation while other schemes simply blow up without special treatment

of the magnetic field.

2.5.3.5 [MHD)I vortex

For our third test case, we consider the IMHDI| vortex for the homogeneous ideal [IMHDI

equations [I0]. The initial data represent a moving stationary solution of the system of

the ideal [MHDI equations and are given by, r? = 22 + y* p =1, uy = ug — £, exp(l’f)y,

U = Vo + Ky exp(%)x, us =0, By = —m, exp(%)y, By = —m, exp(%):p, Bs =0, and

2
The vortex is advected through the domain [—5, 5] x [—5, 5] with a velocity (ug, vo). Steady

m2 H2
p=1+ <7p(1 —r?) — —”). We set the parameters m, = 1,k, = 1,uy = 0, and vy = 0.

state boundary conditions are used in this test case. In figure we present the pressure
profile at the final time ¢ = 100\[2@_7;17 ~ 100% on different grids. The steady state gets

preserved exactly as the background solution U is the vortex itself.

>0 o B °

-4 2 0 2 4 -4 2 0 2 4 -4 -2 0 2 4
X X X

32 x 32 64 x 64 128 x 128

Figure 2.19: [MHDI vortex: pressure profile at the final time on different grid points.

2.5.3.6 Hydrodynamic wave propagation

The aim of this test case is to test the well-balanced property of the subtraction method by
simulating a steady state solution under hydrodynamic wave propagation. The experiment
is carried out in two steps. The first step is to check that the subtraction method preserves
the steady state. The initial data are the hydrodynamic steady state in the computational
domain [0,4] x [0, 1].

p(x,y) = po exp(—%),p(:v, Y) = Do exp(—%), u=0,B=0. (2.59)
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With H = g% = 0.158, pg = 1.13 and g = 2.74. The subtraction method preserves the
hydrodynamic steady state exactly after choosing the reference solution U at the steady
state itself. Figure [2.20] shows a very simple comparison of the density and the energy
cross section at ¢ = 0 and the final time ¢ = 1.8. The second step is to add perturbation
to the steady state as a time dependent sinusoidal wave that propagates from the bottom
boundary of the vertical velocity and exits from the top one. The wave formula is as the

following,
= exp(—100(z; 0.1y — 1.9)*)csin(67t"). (2.60)

n
2i,{0,-1}

The bottom boundary is a localized piston at x = 1.9. Figure [2.21] shows the profile of the
wave at the final time ¢ = 1.8 for ¢ = 0.003 (left) and for ¢ = 0.3 (right) for 800 x 200
grid points. The waves propagate in both cases from bottom to top under the effect of the
pressure and gravity forces. The case where ¢ = 0.003 models a small perturbation and
¢ = 0.3 models a stronger wave. The results are in a very good agreement with the ones in
[30]. More importatntly they match the results of the most accurate (third order) of the
three schemes compared in [30]. Hence, the scheme is well-balanced in the sense that it

preserves the steady state and can capture its perturbations.
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Figure 2.20: Hydrodynamic wave propagation: a comparison of the cross sections of the
density p (left) and the energy F (right) initially and at the final time ¢ = 1.8.

2.5.3.7 IMHD| wave propagation

In this test case, we model propagating waves that not only undergo the effects of pressure
and gravity, but also that of the magnetic field. The test case is extracted from [30]. We

consider the magnetohydrodynamic steady state defined as,
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Figure 2.21: Hydrodynamic wave propagation: wave profile uy for ¢ = 0.003 (left) and
¢ = 0.3 (right) at the final time ¢ = 1.8.

p(.) = poexp(— 7). ple.y) = poexp(— ) u =0,B = (0.41,0).V-B=0.  (261)

Where p is a parameter that takes different values for each part of the experiment. The
waves model a perturbation of the steady state that starts from the bottom boundary of

the normal velocity as the following,

2Rl4 c6in(6rt)  for x € [0.95,1.05),
uTL — | z,{O,l}l (2.62)
,{0,1}
0 Otherwise,

with ¢ = 0.3. The computational domain is [0,2] x [0,1]. We use the wave propagation
boundary conditions suggested in [30]. These boundaries are periodic boundaries in the

x-direction for U and p and Neumann type boundary conditions in the y-direction as the

following,
Ay Ay
n _ n = n _ n S
Pi1 = Pi2€ " s Piog = Pi1€H
—Ay —Ay

1 — - N —
pi,ny—l - pi,ny—Qe H api,ny - pi,ny—le H

for 1 < ¢ < nz. Similar boundaries for the momentum pu and the pressure p. Energy
boundaries are computed from the pressure. For the magnetic field boundaries, we simply
copy the data from the cell before. We present the profile of the velocity in the direction
of the magnetic field,

up =< u,B > /|B|, (2.63)
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at the final time ¢t = 0.54 for different values of . As p increases, the effect of the magnetic
field on the propagating wave increases. The wave profile gets compressed as the magnetic
field takes higher values. The plasma parameter is given by [ = % [30]. Tt measures the
relative strength of the thermal pressure to the magnetic field, and is crucial in determining
the dynamics of the plasma. The [-isolines are illustrated in black and the lines of the
magnetic field are illustrated in white. The parameter 5 indicates the effects of the pressure
and the magnetic field on the propagating wave such that, for 8 > 1, the region is pressure
dominated, while for 8 < 1, the region is magnetic field dominated. In figure 2.22] the
profile of the velocity in the direction of the magnetic field, in the case of u almost zero, is
illustrated, which is exactly the velocity in the y-direction in this case. The wave propagates
freely along the computational domain taking a radial profile in the absence of the magnetic
field on 400 x 200 grid points. Figure [2.23] shows the profile of the propgating wave under
the effect of a stronger magnetic field for ¢ =1 on 400 x 200 grid points without applying
In addition, figure presents the divergence of the magnetic field which is clearly
not zero. On the other hand, we present the same results with applying on 1200
X 600 grid points in figure Applying the results in a zero discrete divergence
of the magnetic field up to machine precision. Another effect of applying the is the
diffusion we see in figure [2.24] which was resolved by evolving the solution on a finer grid.
Additionally, we present the velocity in the direction perpendicular to the magnetic field
in figure for p = 1 at different times.

Our results, obtained with the second order scheme, are comparable with the results in
[30], obtained with third order schemes, which ensures the robustness of our scheme and
its capability of solving physically challenging problems, such as wave propagation under

the effect of pressure and gravity.

Figure 2.22: [MHDlwave propagation: velocity in a direction parallel to the magnetic field
up =< u,B > /|B| for x =0 on 400 x 200 grid points at the final time ¢ = 0.54.
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Figure 2.23: [MHDkwave propagation: velocity in a direction parallel to the magnetic field
up =< u,B > /|B| for 4 =1 on 400 x 200 grid points at the final time ¢ = 0.54 without
CTM

2.6 Conclusion

In conclusion, we develop IDland 2Dlsecond order unstaggered finite volume central schemes
for general balance laws. The proposed scheme is capable of preserving any type of known
equilibrium states due to a special reformulation that computes the numerical solution
in terms of a specific reference state. Applications to the systems of Euler and MHD
equations with gravitational source term are presented in the numerical results section. A
comparison between the obtained numerical results and the corresponding literature ensure
the robustness and the accuracy of the developed schemes. In this work, we chose the [CTM]
as a procedure to clean the divergence of the magnetic field. We realized that, it has a
smearing out effect on the solution especially in the physically challenging test cases. For
this reason, the it is applied dynamically whenever needed. Meaning that, in the
test cases where the numerical divergence is zero at the final time or where no numerical
instabilities has been observed, we do not apply it. This leaves us with a second order well-
balanced finite volume numerical scheme that captures solutions of the equations

and satisfies the divergence-free constraint.
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Figure 2.24: [MHD|wave propagation: velocity in a direction parallel to the magnetic field

up =< u,B > /|B| for 4 = 1 on 1200 x 600 grid points at the final time ¢ = 0.54 with
CT M
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Figure 2.25: [MHD| wave propagation: velocity perpendicular to the magnetic field
urp =< (uy,us), (—Ba, By) > /|B| for p =1 on 400 x 200 grid points at different times.

48



Chapter 3

Asymptotic and Stationary
Preserving Schemes for Kinetic

equations

3.1 Introduction

After working on well-balancing techniques for the Euler equations. We started looking at
possibilities to generalize the well-balancing approach. Digging deeper into the derivation
of the Euler equations, we noticed a connection between the Euler equations and the kinetic
models such that, rescaled kinetic models (as we will see in the following sections) converge
to fluid equations. When the average distance between two successive velocity changes is
small, i.e., the mean free path is small, one has to use resolved space and time steps that are
less than the mean free path. Moreover, the probability density function in kinetic models
depends not only on space and time, but also on velocity. The high dimensionality and the
small mean free path led to an extremely high computational cost, and [AP] schemes that
allow mean free path independent meshes became popular in the last decades.

[AP] schemes were first proposed [52, 53] for the neutron transport equation and have been
successfully extended to a lot of applications, we refer to the review paper [68] for more
discussions. Different [APlschemes have been developed for various kinetic models, including
the neutron transport equation [2 46, [52],56], the velocity jump model for E.Coli chemotaxis
[16], 1], and the Boltzmann equation [29, 83| [17, 43]. The Knudsen number ¢ is the ratio
of the mean free path and the domain typical length scale [53]. To prove that a scheme
is AP, one has to show that when the Knudsen number goes to zero in the discretized
scheme, it converges to a good discretization of the corresponding limit model. The main

advantage of [AP] schemes is that their stability and convergence are independent of the
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Knudsen number. For such models, since the equilibrium is not known at the begining, it
can only be reached after a certain amount of time, which means it is not known and cannot
be initially given as the well-balanced techniques require. Moreover, as the parameter in
the equation takes a new value, a new equilibrium pops up. Hence, the common well-
balanced techniques will not be useful here and the need for stationary preserving schemes,
as mentioned before, arises. The investigation first adressed two questions: how can we
see the property for the corresponding [AP] schemes; and how can we project what we
understand at the kinetic level back to the fluid level. Our key observation is that, as far
as the Maxwellian of the distribution function of an [APl scheme can be updated explicitly,
the second requirement of the property is satisfied immediately. Our proof of the SP
property is independent of € and applicable whenever the discretization linearly depends
on the Maxwellian of the collision operator. Numerically, one can check that the time
evolutionary problem converges to a discrete stationary solution after finite time, and their
difference is smaller than machine precision. In the subsequent part, we will consider three
different classes of [AP] schemes for which one can prove their properties as examples
on which our criterion applies. Once we are able to show that for an [AP] scheme, the
space and velocity discretization of the stationary equation provides a good approximation
to the steady state solution for all €, and the Maxwellian of the distribution function is
updated explicitly, the property follows immediately. To show the universality of our
observation, we test different kinetic models for different [ADP| schemes, as listed in Table
Bl

For this aim, we considered three schemes for three different kinetic models in sections |3.2),
and [3.4} see table We tried to prove the [SP| property for each scheme separately and
a useful conclusion has been drawn [26]. In each section, we present the kinetic model and
its corresponding [AP] scheme with the [SPl property followed by some numerical evidence.
For the velocity space in the numerical test cases, the standard Gaussian quadrature set is

used.

Kinetic Model Scheme
Neutron transport equation Parity-equations based
Chemotaxis kinetic model UGKS
Boltzmann equation IMEX Penalization method

Table 3.1: A list of kinetic models together with their corresponding schemes.
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3.2 Parity equations-based scheme for the Neutron transport

equation

In this section we check the parity equations-based [AP] scheme for the neutron transport
equation in [68, 69]. This scheme is then proven to be [SP] as well.

3.2.1 The neutron transport equation

Consider thdIDl neutron transport equation:

1 orT 1 ! / 1 ! /
atf‘i‘gvV:pf—g_g(ﬁ/_lfdv_f)_o-a(g/_lfdv)—i_q (31)

with « € [z, zg] and v € [-1,1]. f = f(t,x,v) is the particle distribution function and v
is the particle velocity. We present the scheme for a simplified neutron transport equation
with o = 1,0, = 0, ¢ = 0. The extension to more general cases does not add any
difficulties.

3.2.2 Discretization of the model

When or = 1,0, =0, ¢ = 0 in (3.1)), the parity equations-based scheme in [69] can be

summarized by the following steps:

e Rewrite (3.1) into two equations. For v > 0,

s+ 000w = (5 [ o= s0)).

© (3.2)

1/1 (!
e f(—v) —v0, f(—v) = B (5/ fdv — f(—v)) :
—1
e Introduce the even and odd parities that are

1 ) 1
T'(t,.l', U) = §[f(t,l',1)) + f(t,.??, _U)]7 ](ta l’,’U) = %[f(ta l’,’U) - f(ta Z, —U)].
e Add and subtract the equations in (3.2]) and rewrite them into the following diffusive

relaxation system,

1
aﬂ’ + Uar] - ——2(7‘ - pr)a
< 3.3)
! (3.
Ouj + nudyr = _5_2[j + (1 — €n)vd,r],

o1



where p, = fol rdv’ and n = n(e) is such that, 0 < n < g% in order to guarantee the
positivity of n(¢) and (1 — €?n(e)) so the problem remains well-posed uniformly in €.

1 is chosen as n(¢) = min(1, ).
e Split the equations (3.3)) into two steps:

— Relaxation step:
Or = —%(r —pr),

€

O = —E%[j + (1 — €2n)vd,r].

— Transport step:
atr + 'Uam_] =0

0rj + nuo,r = 0.

e Discretize the two steps as follows:

— For the transport step, we use an explicit first order upwind scheme on its

diagonal form such that

n—l—% __.n At DHun
ry 2= —us DU, (3.4)
n+i :

7 52] _n,UAtDun

where D“f" = fl\| — f' and D°f" = % are the upwind and the central

spatial differences respectively.

— For the relaxation step, we use an implicit backward Euler method that writes

U - ),
n+1 n+2
EUS R+ (- e,

1
By integrating the above first equation over V' we find, p”+1 = p:}fQ. Then,
n+1 Arn+2 + Bpn+2

-n .n-l— n
jz = A.]z B(1—8 77) A:c z+17

(3.5)

with A and B being defined as:

A= and B =

52
g2+ At 2+At
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The fully space-time discretized parity equations-based [AP]scheme is given by the transport
step (3.4)) and the relaxation step (3.5)). The boundary conditions for r and j are the same

as in [69] and are obtained using the following relations:
T+ €f|ome, = Fr(v) and r — j|ps,, = Fr(v) (3.6)
when € << 1, j can be approximated by,
J = =00, (3.7)

from the second equation in (3.3). Hence, the boundary conditions for r and j are,

" — V0,7 gy, = Fr(v) and v+ 00,7 |4y, = Fr(v) (3.8)

J=—v0,r (3.9)

where Fj(v) and Fgr(v) are the inflow boundary conditions of f. The [AP] proof of the
scheme has previously been done [69], [68], [16].

3.2.3 Property

The purpose of this section is to prove that the scheme has the [SP| property. As mentioned
in the introduction, the scheme has to meet two requirements. The first requirement is
satisfied when an [AP] discretization of the steady state equation is provided. The proof is
given in Appendix B. For the second requirement, we need to prove that starting from a

discrete stationary solution, the solution of the time evolutionary problem does not change.

1
Plugging l) in D and using the fact that p?+2 = p"! the equations for updating

1 and j7 can be written as:

T?+1 - rzn “ -n 1 n+1 n+1

—t —|— U_I']l g —?(7”2 — pn ), (310&)

‘n+1 n u DE

Ji —Ji n 1 -n+1 2 n+1

2 I gy = —— (4T (1 — — ), 3.10b
At e Amr’ g2 Ui (1-¢ 77)UA:15TZ ) ( )

A discrete stationary solution to (3.10) are r7* and j that satisfies:

VALl = —g(f‘?—P?), (3.11a)
D n 1 N 2 D n
R = gl (L emnu . (3.11b)



Lemma: 2 When r}' and jI' are solutions of the steady state equation discretization (3.11J),

n+1

i

then r

-n+1

=71 and j;" = jI'. Hence the parity equations-based scheme satisfies the second

requirement of the [SP property.

Proof: e For r:

Since p;. = fol r?, inserting (3.11a)) in (3.10a) and integrating over

0, 1] yields pt! = pn.

r

Using (3.11a)) and p; ™" = pp, (3.104)) gives

Hence,

and then r"*!

T;H_l —7“? 1 n n 1 n 0
At _E_Q(rz _pri):_g_Q(ri—i_l_pm)‘
1 1. ., n
(E+€—2)(T@-+1—7’z):0

j— n
_T’L'

e For j: Using r"** =" (3.10b])) becomes

From (3.11b)),

-n+1
Ji

At

Then,

and thus ;'

-n4+1 n u &
gett — g I 2\ D
_Ji R — 1— . 3.12
T = =S (1 - o] (312
(3.12)) writes,
‘7? 1 n 2 ¢ ny __ 1 -n+1 2 ¢ n
—E—Q[Ji +(1—e U)UA:UH]——E—Z[Z' +(1_€77)UAxrz‘]'
(Kt+e_2)<i+1_]i):0
= Jr.

Using this Lemma, the scheme satisfies both requirements of the [SP| property as mentioned

in the bullet points in the introduction. This is because, starting from a discrete stationary

solution, our discretization of the time evolutionary problem does not change this discrete

stationary solution. This way we have shown that our parity equations-based scheme (which

is[AP)) has both the

[AP| and [SPI properties.
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3.2.4 Numerical results

To validate the [AP] and properties of the parity equations-based scheme, we use the
same initial and boundary conditions as problem 1 in section 6 in [69]. The initial condition,
given by the distribution function is f(x,v,t = 0) = 0, and the computational domain is
x € [0,1]. The boundary conditions are as in and with

Fr(v) =1 and Fg(v)=0.

This data are consistent as can be seen by and . The mesh and time step sizes
are respectively Ax = 0.025 and At = 0.0002 with the S5 Gaussian quadrature points for
the velocity. In figure , we plot the density at time ¢ = 0.05 for ¢ = 1072, ¢ = 1073,
e = 107% and compare it to its diffusion limit. The curves get close to each other when &
gets very small. The curve corresponding to e = 107% is exactly on top of the curve of the
diffusion limit equation. This verifies the [AP] property. Furthermore, we plot in figure
the time evolution of the distance between the numerical stationary solution p; and the

numerical solution p, of the time evolutionary equation given by the L*° norm
llor = prlloc = max{pr; — pj;}-

One can see that this distance does not change after we reach the steady state. After that
we give the norm at discrete times in Table where we also show that the [SPl property
is valid for all ¢ << 1. Figure [3.2] and Table [3.2] indicate that the property is well
satisfied.

e=1E-2
——— =1E-3 0.96 -
— — —=1E6
Diffusion Limit | |

e=1E-2
e=1E-3
— — —e=1E-6
Diffusion Limit

0.955

0.945

0.94 |

0.935

0 Of1 0:2 0.‘3 Of4 0.57 OfG 0.‘7 018 0;9 1 0 0.(;05 0.01 0.01\5 0.;)2 0.(;25 0.;)3
Figure 3.1: Neutron Transport: Left: the density p, at time ¢ = 0.05 for ¢ = 1072,

e = 1073, ¢ = 107% and the solution of the diffusion limit equation; right: a zoomed part
of the left plot.
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10712
0

time

Figure 3.2: Neutron Transport: time evolution of the L>-norm of the difference between
the solution and the stationary solution in the time interval [0,8] for ¢ = 1075,

T 0 2 4 6 8
L% 1 0.995 | 1.051 x 1073 | 1.683 x 1075 | 2.696 x 107 | 4.120 x 10~12
T 0 2 4 6 8
L 1 9.111 x 1074 | 1.263 x 1076 | 1.752 x 1079 | 2.176 x 1072

Table 3.2: Neutron Transport: L°°-norm of the difference between the solution and the
stationary solution in the time interval [0,8] for ¢ = 1072 (top) and € = 10~® (bottom).

3.3 lUGKS| scheme for the chemotaxis kinetic model

In this section we first extend the [UGKS|in [56, 83],[84] to the time evolutionary chemotaxis
model, then show its [AP] and properties. The [AP] scheme is derived by Min Tang and

Casimir Emako.

3.3.1 The chemotaxis kinetic model

The chemotaxis kinetic model models bacteria that undergo run and tumble process as
mentioned in |40} 66, 67]. During the run phase, bacteria move along a straight line and
change their directions during the tumble phase. This is called the velocity jump process
and can be modeled by the Othmer-Dunbar-Alt model that writes [3, [58]:

Ouf + 2o Vof = Bliy [ (1 +20( - 0:9)f () — (1 +£9(v - 0,5)) [ (v)],

(3.13)
0S — DAS +aS = pp, p(z,t) = ‘71‘ [y f(v)dv-
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Here f(z,v,t) is the probability density function at time ¢, position & and moving with
velocity v; ¢ is an odd decreasing function such that ¢(—u) = —¢(u); S(z,t) is the concen-
tration of a chemical substance where the parameters D, «, [ are positive constants; ¢ is
the Knudsen number. When ¢ = 0, the chemotaxis kinetic model reduces to the neutron
transport equation. As ¢ — 0, f(x,v,t) converges to po(x,t), where po(x,t) solves the
following Keller-Segel equation [I8 41 [59]:

Bipo = 580 + V((§7 fy v6(v0,5)dv) po),
0,S — DAS + oS = Bpy.

(3.14)

3.3.2 Discretization of the model

Before discussing about the more complex equation for f, we first discretize the equation
for the chemical concentration S. Let S!" &~ S(x;,t"), the following centered finite difference
method is used to update S:

Sptt . gn Sl ggntl 4 gl

A7 = D~ Alxz LSt B (3.15)

After SPM! is obtained, we approximate 9, 5™ by a piecewise constant function such that

Sn+1 Sn+1
0, (z, ") = 0,5 ( Hl,t”“) Sl o Oirl, for Vo € [z, 2i41).  (3.16)

Ax
The [UGKS! is a finite volume approach for discretizing the kinetic equation of f. By
integrating the chemotaxis kinetic model (3-13) over [wi1, @] < [, t"1] x V and letting

= A%C ;“’1% flz,v, ") dx, p? = |V| [y I dv, the total den51ty P! and density fluxes
=3

fi +ig updated as follows

n+1 n Fn Fnl

pz pZ 2 7'75
0 3.17
At Az ’ 0
it — f” % - ¢ iy _ 1 (pn-i-l 1)
At Az Z Z
. (W / W%m W ot )f). (B9
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Here the numerical fluxes are given by

tn+1

1
o, = — vf(z, 1Ut)dt
'L+§ é\At/ i+350
(3.19)

+%: |V\/ 5At/ vf(x Tirl,V, t)dt) dv-

It is important to note that o, 1 approximates 0,5 in the interval [x;, x;,1), while f/ is the
average density over the cell [z;_ 1,21 1). This choice is important to obtain the correct
advection term in the limit Keller Segel model when € becomes small. We use discrete
ordinate method for the velocity discretization, but for simplicity, we write the scheme in
continuous velocity. The most crucial step for [U S| is to determine @”+1 and F ™. The

details are listed below: ’

e Find the approximation of f(z,, %,v,t). The chemotaxis model (3.13)) can

be rewritten as:

of + f+ 8 o ==T'f, (3.20)

1+ e¢(v0,5°)
g2
where (T'f)(z,t) = ﬁ/ (1 + e¢(v'9,9)) f(z,v',t)dv'. Consider the interval
v

(I4ed(vo, 1)
[z;, x;11), multiplying both sides of (3.20]) by exp <€—21+%t> yields

o+ gt,v,t) exp ((1 + 5¢(U‘7i+§)t>] _ Tlfg(f,t) exp <(1 + 5¢(U‘7i+§)t>.

dt

82 g2

Integrating the above equation over (", t) yields to,

) 1+ VO, 1
F@isyv0) = flay = 26— )0 t”)exp< ( (b( +2)(t—t")>
(3.21)
! v 1 +ep(vo
t o /tn71f<xi+; 2t = s).s) exp <—( “i( +2)(t—s)>ds.

This is an exact expression for f(z, Tif 1,V ,1) that will be used to determine (ID” 1, F n
2 2

in (3.19). At this stage, we need to approximate f(z,v,t") and (7' f)(z,t) on the

right hand side of (3.21)). f is approximated by a piecewise constant function and
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T'f by a piecewise linear function as follows:

n

! T << T;, 1
+7
flao )y =" o
ﬁl? x>$i+%’
1 T +6"T! i —wp), w<agyg,
T f(x,t) = ’ )

1 rn RA1 rn
T HE i+%(x—xi+%), T > T

, are defined by:

2

Here, Tlfl.’i%, 5L’Tlfi’1%, and 5’?7‘1]2’:‘F

(7 i1 = ﬁ V7<1 +ep(vo 1)) [l + v V+(1 +ep(vo ) fi'
SETHf | = Tlfﬁ% el
3 Ax/2 ’
s, I Ty
L ity Azx/2 ’

with VT =VNRtand V- =V NR".
Substituting the above approximations into equation (3.21]) yields an expression for

f(a:H%,v,t) such that:
For v > 0,
(1+€¢(UO’Z~+;) Tlf;:_l
v t) = f" - 22—ty |
f(‘rz—i-%vva ) fz exp ( 62 ( ) + 1 —|—5gb(vai+%)

ed(vo,, 1 SETY
X (1 — exp <— (1 + eolvoiy) (t— t”))) + ve( fHE (3.22)

= T4 e0(vo, )

(1 P t”>) exp <‘ e m) i 1] ,

g2 g2

X

and for v < 0,

e2

. (1+ Eqb(vaH%) . Tlf;ré
f@ipr,0t) = fliyexp <_ (t—t )> +m

(1+ o i+1 5RT1finl
X (1 — exp <— 6827;0 +2) (t — t”))) + v€<1 n €¢(UO'—;_21))2 (3.23)

g2 g2

X
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° Determme@ L1 Fm .
T3’ its

The flux @7 ( ) in (3.19) can be approximated by

Li(v) = Avfl + BUTlfﬁr% + 01125]%7‘1]%1%, for v < 0,
L1(v) = Avf' + BoT! ,-T_LF% + 0025L71f£%, for v > 0,

[

(I)i
(3.24)
®

[

where the coefficients A(v,e, At), B(v,e, At), and C(v,e, At) can be determined ex-
plicitly, such that

o £ 1+€¢(UO'Z-+%)
A(v,e,At) : = A+ 5¢(vai+%)) (1 —exp ( — TAt)) :
1

e(l +€¢(U0i+%))

€ 1 +€¢(UU’¢+%)
T AU+ 2007, (1 el g—zAﬂ) (32

_ 2e? 1+ 5¢(U‘7i+§>
Clo,e, At) : = At(L+ep(vo;; 1)) (1 —exp (- TAt)>

B(v,e,At) : =

1 1+ 5¢<U‘7i+%>
-5 5¢(voi+%))2 (1 +exp (— — = At)) .

Furthermore, F7" 1 in (3.19) is given by

1
Fi’jr%:m - Av Z_‘Hdv—i—|v| V+Avffdv+m71 " /VUBdU

_5R1.”1/02d 5L1”/02d-

T e, G T ey [ 0

(3.26)

This concludes the construction of the scheme.

3.3.3 Property

The[UGKS|scheme has to meet the two requirements of the[SPlproperty. The[AP]discretiza-
tion of the steady state equation is given in Appendix C. For the second requirement, we

assume that we start from a steady state solution, that at the discrete level satisfies,

Az 2 1( — (M/@WJ V[T (W) dv" = d(vo, 1 )f”). (3.27)
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Integrating equation (3.27)) over v yields

}71‘7—11—% - Fin—é _ 0
Arx o

From (§3.17) one can deduce that,
o= g, (3.28)

which indicates that the macroscopic density is preserved. Using (3.27)), the equation of

updating ™! in (3.18)) can be written as,

n+l _ rn 1
% =S = = (5 = ).

Then from (3.28)),

A
1+ )0 - =0,

which gives f/"** = f*. This concludes the [SPl property of the UGKS.

3.3.4 Numerical results

Parameters in equation (3.13]) are chosen as in Gosse [33] such that,
s =1,D=158=60,a = 3.

and ¢ is of the form
¢(u) = —xs tanh u.

The computational domain is set to be x € [—1,1]. We impose specular boundary condi-
tions for f and Dirichlet conditions for S. The initial density distribution is composed of

two bumps located at = +0.65 given by:
f(z,v,0) = 5(exp(—10(z — 0.65)* — 20(v + 0.45)*) + exp(—10(z + 0.65)* — 20(v — 0.45)?)).

We use Az = 2/500 for the space discretization and v € [—1, 1] with the S3» Gaussian
quadrature points for the velocity. The limiting scheme of the [UGKS|is an explicit solver

for the diffusion equation. Therefore, to ensure the stability of the numerical scheme, the
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time step At is chosen as below

{O.5Al‘2, for e < Az,
At =

0.5eAx, else.

In order to verify the [AP] property of our scheme, the total densities p at time ¢t = 1 are
displayed in figure for different values of e ranging from 1072 to 107%. In order to check

0.7

0.65

06

0.55

0.45

0.4 r

035

0.3

e=1E-2
e=1E-3| | 0.67
e=1E-4
e=1E-5
e=1E-6 |

Figure 3.3:

. . .
-06 -04 -0.2

Chemotaxis:

left,

the

0.665 -

0.655 *
0.65 |-
0.645 -
0.64 -
0.635 -

0.63 -

0.675 F 7

0.66 -

. .
-0.1 -0.05

density p at time t =

1072,1073,107*,107°,107%; right, a zoomed part of the left plot.

the property, we give the time evolution of the L*°-norm of the difference between the
solution and the stationary solution in the time interval [0,100] in Table |3.3|for ¢ = 1 and

. .
0 0.05

X

e = 1073. These results ensure that the property is independent of ¢.

T 0 30 60 65 100
L> | 0.9064 | 8.260 x 1077 | 3.767 x 10711 | 7.474 x 10712 | 1.662 x 10712
T 0 2 10 50 100
L% ] 0.6493 | 3.024 x 1077 | 2.064 x 1072 | 2.199 x 10710 | 1.476 x 10~1°

Table 3.3: Chemotaxis: L*>-norm of the difference between the solution and the stationary

solution in the time interval [0,100] for ¢ = 1 (top) and € = 1073 (bottom).

3.4 IMEX]| scheme with the Penalization method for the

Boltzmann equation

In this section, we consider the penalization method developed in [29] for the Boltzmann

equation. This method together with an [MEX] discretization of the equation give an AP
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scheme for the Boltzmann equation. One can find the [AP] proof in [29]. Here we show that
the penalization method is not only [APIbut also SP. In [31], the authors propose a multistep
high order IMEXI|[AP] scheme for the BGK model and the Boltzmann equation. The scheme
is originally developed for the BGK model and then extended by the penalization method
to the Boltzmann equation. One can think of the scheme proposed in [3I] as the high
order version of the scheme in [29]. The authors prove that the IMEXI[AP] scheme, without
penalization, is uniformly in €. Our criterion can be applied successfully to the high
order IMEXI[AP] scheme in [31] after penalization. Our proof, in contrast to theirs, requires

the linear dependence of the Maxwellian of the collision operator.

3.4.1 The Boltzmann equation

The Boltzmann equation describes the time evolution of the density distribution of gas

particles. It is given by

o)

3

8tf+v'v:cf:

Here f(xz,v,t) is the probability density distribution of particles at time ¢, position = and
with velocity v. @ is the Boltzmann collision operator where only binary interactions are
considered. Let (v,v,) and (v/,v]) be respectively the velocities of the two colliding particles

before and after the collision related by

v'=35((t—v) = [v —vlo),
1
2

(v —vy) + v — vilo).

With o € 8%~!. Q is given by

oW = [ [ Blv=eleost)(FOIC) = ) @hdodo.. (329

The collision kernel B is a non-negative function given by B(|u|,cosf) = Cy|u|*, where
u= % and cosf = u - o, for some A € [0,1] and a constant C\, > 0. For more details,
one can look at the Boltzmann equation description in [29]. ¢ is the dimensionless Knudsen
number and [ w(v)Q(f)dv = 0 for w(v) = (1, v, [v[?). The equilibrium distribution of Q is
the Maxwellian distribution M, 1, i.e. Q(M,.,r) =0 and it is given by,

1

p
MP7H»T(U) = |2 Y

(27T)F exp L
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where p,u, and T are the density, velocity and temperature of the gas, and d, is the
dimension of the velocity space. As ¢ — 0, the zeroth, first and second moments of the

distribution function solve the Euler equations.

3.4.2 TMEX] scheme with the Penalization method

The penalization method was originally developed in [29, [68]. The purpose is to split the
collision term of the Boltzmann equation into a stiff part and less stiff part. More precisely,

the Boltzmann equation is written in the following form:

OWf+v-Vaof = + ;

where Q(f) is the Boltzmann collision operator and P(f) is a relaxation operator, namely
P(f) = BM,ur(v) — f(v)], where 3 is a strictly positive parameter. P(f) has the same
equilibrium as Q(f). It satisfies [ P(f)w(v)dv = 0 for w(v) = (1, v, [v]?) and P(M, 1) =
0. Asin [29], 5™ is chosen to be 27p™ such that both operators P(f) and the full Boltzmann
operator Q(f) have the same loss term corresponding to the dissipative part.

The following [MEX] discretization of the Boltzmann equation is proposed in [29]:

PR g QU = PUY) | PUTY

At € €

(3.30)

For the discretization of the Boltzmann operator, one can use a fast spectral Fourier-
Galerkin method [28], and for the transport part, a first or second order finite volume
scheme can be employed. This gives an [AP] discretization for the Boltzmann equation as

proven in [29)].

3.4.3 property

Because we computed our numerical results in a space homogeneous set up, proving that
the discretization of the steady state equation is [AP]is unnecessary, knowing that the full
scheme is[AP] [29]. We only need to prove that starting from a discrete stationary solution,
the solution of the time evolutionary problem does not change. Suppose that the solution
satisfies the stationary equation at time t", i.e.

QU™ — P, PUT)

S 9

VeV ft = (3.31)
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It follows from the properties of the collision operator Q and the relaxation operator P
that:

/w(v)v -V f" =0, (3.32)

with w(v) = (1, v, |v]?).
Now multiply (3.30)) by w(v) and integrate over the velocity space. Using the conservation
properties of @, P and (3.32)), one observes that the Maxwellian of the distribution function

is preserved. Substituting (3.31)) in (3.30]) gives,

frt— o —P(f") n P(f"*)
At ¢ e

Now, we plug in P by its defnition P(f) = B[M . r(v) — f(v)],

fn+1 _ fn _ _ﬁn[Mn _ fn] N Bn—i-l[Mn—i-l _ fn—i—l]
At 5 5 '

Since M"*! = M"™ and ! = B", f**! = " and the steady state is preserved.

3.4.4 Numerical results

In this section, we consider the Bose gas experiment 3.3 in [43] to test the [APl and the
SP property of the penalization method presented in [29]. We solve the space homogeneous
quantum Boltzmann equation in velocity space which is a special case of the classical
Boltzmann equation for a particular collision operator Q,.
Q(f) —P(f) P

+
9 €

3tf =

As defined in [43], the quantum collision operator is another version of the collision operator

(3.29) and given by

0N = [ [ Bllv=vlcost) (£ 5001 %001,

£ (1 eof;)>do—du*

where 0, = h% and h is the rescaled Planck constant. The upper sign corresponds to the
Bose gas, while the lower sign to the Fermi gas. In this experiment we consider the Bose

gas case. The idea can be extended to more general collision operators. Hence, scheme
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(3.30) is simplified to

ntl € Qq(fn) — P(f") BrTAL n+l
f 5+ﬁ”+1Atf + At e+ BrtiAL +€—|—ﬁ”“AtM :

The initial distribution function is given as in [43],

_ Mo —|v — ug|? —|v 4+ uo|?
o) = 22 (exp( » )+exp( B,

where py = 1, Ty = 3/8, and uy = (1,1/2). The computational domain is [—8, 8]* with 64

grid points. The quantum Maxwellian [43] is given as,

1 1

\U U\ —1

My (v) =

)

fo z~lexp

where 6, = 0.12, z = 0.001590, T' = 1 is the temperature, and u = 0 is the macroscopic

velocity. In figure [3.4], we test the [AP] property of the penalization method. A cross section
of the distribution function for different values of ¢ is plotted on the left and a zoomed

part of the plot on the right. The curves get closer to each other as € converges to 0

which implies the [AP] property. Next, we investigate the [SPl property. Figure shows

0.16 T ! : +
A
0.14 \,\’ ‘g’ e=1E-2| - 0.0622
[ e=1E-3
{ \
{ \ e=1E-4
012 f \ 1 0.06215 |-
[
L | \ ]
o1 / "r, 0.0621
/ \
! 1
- L f \ 1 -
0.08 | \ 0.06205 -
\\ ’!
0.06 [ { \ 1
{ \ 0.062
0.04 / \ .
/ \ 0.06195 |-
0.02 [ ]
/ \ 0.0619 -
o . L . LN . . . . . . . .
-8 6 -4 2 0 2 4 6 8 1365  1.37 138 1385 139  1.395 1.4

Figure 3.4: Boltzmann: cross section of the distribution function for different values of
(left) and a zoomed part of the plot(right).

contours of the distribution function and the contour lines of the difference between
the distribution function f and its equilibrium at ¢ = 200. We computed the L*°-norm
of the difference between f and its equilibrium in the time interval [0,200] in figure
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as evidence that f converges exponentially to the equilibrium. Table presents the L*°
norm of the distances between the time evolutionary simulation and the equilibrium at some

discrete times, where one can find exactly when the initial distribution function reaches its

equilibrium.
%107
3 0.14 3 11
10
2 0.12 2
9
8
1 0.1 1
7
2o 0.08 o 6
5
1 0.06 1
4
3
2 0.04 2
2
3 0.02 3 1
3 2 1 0 1 2 3 -3 2 1 0 1 2 3

Figure 3.5: Boltzmann: contours of the distribution function (left) and the contour
lines of the difference between the distribution function and its equilibrium (right) at the
final time ¢ = 200.

. . . . . . . . .
20 40 60 80 100 120 140 160 180 200
Time

Figure 3.6: Boltzmann: time evolution of the L*°-norm of the difference between the
distribution function f and its equilibrium in the time interval [0,200].

T 0 20 50 100 150 200
L>® 05453 | 1.2 x 1073 | 6.581 x 1077 | 3.495 x 1072 | 7.619 x10~'3 | 5.623x10~ '3

Table 3.4: Boltzmann: L*-norm of the difference between f and its equilibrium starting
from t=0 until the final time t=200 for ¢ = 1.
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3.5 Conclusion

Proving the [SP| property for the three [AP] schemes, leads neadly to a criterion, emphasising
that asymptotic preserving schemes with a discretization that linearly depends on the
Maxwellian are also [26]. We realized that the linear dependency on the Maxwellian in
the source term is the key to proving that the moments are being updated explicitly not
implicitly. This in turn is the key to proving ultimately that the updated solution at the

next time t"*! does not change in the case of steady state solutions.
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Chapter 4

Asymptotic and Stationary
Preserving Schemes for the
Isentropic Euler Equations with

Gravitational Source Term

4.1 Introduction

The resulted criterion at the kinetic level causes us to consider how to translate this to the
fluid level. For this reason, we consider again a fluid model in this section and we try to
develop an [AP] scheme and investigate the relationship between [AP] and properties for
fluid models [47]. We start with a special case of the Euler system, namely the isentropic
Euler system. We extend the scheme developed by Goudon et al. for the isentropic
Euler equations to the case with gravitational source term. In section we introduce
the model. We present the [AP] and semi-discrete numerical scheme in section and
the fully-dicrete scheme in the one and D] framework in section [£.4] Some numerical test
cases from the litrature to validate the properties of the scheme are considered in section
4.5
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4.2 The Isentropic Euler Equations with Gravitational Source

Term

4.2.1 The model

The Isentropic Euler equations with gravitational source term is a special case of the Euler

equations ([2.48) and is given by,

atp + V(pU) = O:

(4.1)
d(pu) + V.(pu®@u) + Vp(p) = —pV¢.

Where p is the density, u is the velocity field, p is the pressure, and pu is the momentum.
The pressure law is given by p(p) = Ap?, where A and «y are positive constants. ¢ is the

gravitational potential, a given function of space.

4.2.2 Scaling

One scales the equations (4.1)) to describe the low Mach number (incompressible) limit.
Let xq,to, po, po, up be a set of characteristic scales for the variables. The dimensionless
variables are then given by, & = ;‘—O,tA: %, o= %, ... with ¢g = ’;—8.

Substitute the variables in the equations,

1 R 1 A
2 0i(Ppo) + —V.a(ppoting) = 0,
0 Zo

1 1 1 1 N (4.2)
t—ﬁf(ﬁpoﬁuo) + —V.:(ppotiug ® tug) + — Vi (ppo) = —(ppo)—V.2(d0).
0 Zo To Tq
then,
2.5+ PRy (i) = 0,
to Zo (4 3)
2 )
u u .
p(; 0 0,(pt) + Py L (i @ ) + PVa(p) = 222057 L4
0 Zo To Tq
Drop the hat,
Do+ 2209 (pu) = 0,
to To (4 4)
2 )
0 Zo i Zo
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Multiply by f)—% and use the fact that up = 32,

Op + V.(pu) = 0,

(4.5)
upOi(pu) + ueV.(pu @ u) + Po Vp = —@pngS.
Polo Uo
So,
Op+ V.(pu) =0,
(4.6)
0.(pu) + V.(pu u) + L vp = — 250,
PoUy Uy
Then,
O+ V.(pu) =0,
(4.7)

1 1
d(pu) + V.(pu®@u) + ;VP(P) =3PV

2
are the non-dimensionalized equations with £ = %. Taking the gravitational source term
to the left-hand side and using the pressure law, system (4.7)) is then,

(9tp + V(,OU) = 0,
1 (4.8)
O(pu) + V.(pu®@u) + ngW =0.

With W = 221771 4 ¢,

v

4.2.3 The incompressible limit equations

The asymptotic expansion of the variables is given as,

u= u(o) + eu(l) + €2u(2) + ...

W=w®O 4 ew® 4 2w 4
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The expansion of the product of two quantities can be seen as,

pVW = (9 +epV + ) V(WO +ew® + 2w ),
_ p(O)Vw(O) + €<p(0)vw(1) + p(l)VW(O)) + 52(p(0)vw(2) + p(l)vw(l) + p(2)VW(0)).

(4.9)

Compare O(1) terms in system (|4.8]),
9p® 4+ V.(,Ou®) = 0, i
at(p(o)u(o)) + v‘<p(0)u(0) ® 11(0)) + p(O)vw(2) + p(l)vw(l) + p(Q)VW(O) =0. ( ’ )

Compare O(%) terms then O(1) terms in system (4.8) and use p® # 0 to deduce that
VWO =0 and VIW® = 0. The fact that p© is stationary leads to,

V.(pOu”) =0,

(4.11)
8,(u®) + uOv.u® 4 vw® = .

(4.11)) represents the incompressible isentropic Euler equations.

4.3 Semi-discrete Numerical Scheme

4.3.1 The scheme

Following the splitting technique introduced in [37] and used in [34], we split the divergence
in the density equation as well as the pressure and the gravitational source term in the

momentum equation. System (|4.7]) can be written as:

Op+ aV.(pu) + (1 — @)V.(pu) =0,

1 vy—11 1 vy—11
d(pu) + V.(pu®@u) + =V p(p) —a(t)A(1 - T—@P} + ga(t)AV [(1 - Tzwl)]

A
—1+a(t a(t
= 0 95 - Wy,
€ €
(4.12)
We split the system into two steps,
Op + aV.(pu) =0,
1 ~11 ~1+a(t (4.13)
) + V.o o w) + 59 [0(e) — a0 AL - T2 2000 | - =5 v
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and

Op+ (1—a)V.(pu) =0,

a(t) (4.14)

aupu) + Sa0A¥ (1= T2 o] = - pvo,

{_:2

The choice of the time dependent function a(t) > 0 depends on the hyperbolicity of the
system (4.13). The system (4.13)) in its conservative form can be written as,

U, + F(U), + G(U), = S(U), (4.15)

p(p)—a(t)(1- 221 L9)

£2
and S(U) = (0, _1+a(t) PP 1+a quy) The eigenvalues of the jacobian

matrix of F(U), the flux function along x, are /\1 =u, A\a = u+cand \3 = u — ¢ with
'(0)—a ,L—li
c= \/ (1 —a)u?+ o” ) (t)i(l v 4?) . Similar calculations hold for the flux along y. We

/
! f gl@} — I(t)e* with a choice of ¢ such that 0 < %%(ﬁ < 1.
v A

Where [(t) is a constant such that a(t) > I(t)(1 — %) > 0 for € < 1. In the numerical tests

we choose [(t) = 0 or [(t) = 1. The existence of the function I(t) eliminates the spurious

with U = (p, pu, pv), F(U) = (apu, pu* +
p(p)—a(n) A1-21 1)
g2 )

,puwv), G(U) = (apv, puv, pv* +

h 1) = mi
choose a(t) mm{A(

T

oscillations that might appear for large e, for more details, see [34]. Under this choice of
a(t) the wave speeds A are real and positive. Thus, the system is hyperbolic.
Let At be the time step, and for a positive integer n, we set "t = t" + At. The two steps

can now be discretized as a slow explicit system,

L_”n—l—czV( u)” =0,

(p)* —(pw)" =11 4 ,]" Ll g (4.16)
(0 Lo 4 7 (pu o u) + 5V [p(p) - a(t) A1 — L) V6,
and a fast implicit system,
P (L= @)V (pu)t =0,
(4.17)

u"+1 u n - n ag n
(pu) Alt(p) +€2adA(1—771%¢)Vp H:_ﬁp 1V .
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The full semi-discrete system of equations can be viewed as,

pn+1

—~ 4+ aV.(pu)" + (1 — a)V.(pu)"! =0,
(pu)”+1

0 1V (pu @ u)" + 5V [p(ﬂ) —a()A(l = 2 5)p| + Ha"AV | (1 — 2 50)p" !

— %pnvgb_ ‘;—gp”Hquﬁ.
(4.18)

4.3.2 The [AP] property

In order to prove the [AP] property of the semi-discrete scheme we need to prove that as
goes to zero, (4.18) is a good discretization of the incompressible limit equation (4.11f). We
will start by defining the well-prepared data. We reformulate the momentum equation in

(4.18]) before the expansion, as at the [PDE] level. The momentum equation is discretized

as,

n+l _ n n 1 —11 1 n 11 n
(pu) N (pu) +V.(pusu) _|_§V p(p) — a(t) A1 — T_¢) ] = —a AV [(1 - TZ¢)p +1
—1+a"

a™
= TPnV(b — 8—2p”“V¢. (419)

Similar to what has been done at the [PDE] level, we write the following two terms into,

1, y—11 ., a" a” vy—11 n a” v—1
—a"AV (1 - TZ¢)p T+ =P Ve = —2A(1 - Tzd))vp H——=p +1V(T¢)
a”
+ €_2pn+lv¢’
n —11 vy—1, ,
=% [woran -T2 0 - Tl
" Al -250) 1
_ a n+1 n—+1
— 2’ [Vp p”“ Ve
aTL

3

1
— _2pn+1v |:M<pn+1> + ;¢‘| 7

" 1
— a_anerM(anrl) + _v¢
g2 y

with M (p fp 7 =l dp with a > 0 constant.
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SV [pe) = a0 = L= 0|+ "V

1 —11 —11 "
= ST AV " — @t AV (1 = T —6) +a”Ap"V<”—Z¢> + (1 - a")p"V),
€ Y Y
1 1
= ST AVY" 4 p"V 6 — a"A(L - ——cb) a"p”§V¢],
1 _ v — 1
_ n,7y 1A n n o nA 1 — s n__ . n . n_
=P Vo' +p"Vo —a" A - A¢)Vp a"p 7Vsb],
1 A(l=2Z50)Vp" 1
— n,'y—QA n o .n v A _ont
=P [vp Vp"+ Vo —a 0 a ,yvéb]a
1
0" [VN) + V6 = @[V () + Vo]
with N(p) = [” Ayp7~2dp’ with a > 0 constant.
Hence, the momentum equation can be rewritten as,
u)" — (pu)? 1 1
ol S LV pum )+ S TN + Vo - (VM) + V]

n 1
+ Z—zp"“V[M(p"H) +29l=0. (120)

And the semi-discrete system of equations (4.18]) can be rewritten as,

anrl_p + Oév (pU) (1 . oz)V.(pu)"H — 07
”T + V. (pu@u)" + 5" [VN(p") + Vo — " [VM(p") + 1Vg]]  (4.21)

HEPITIM( ) + 9] =

Definition 4.3.1 (p,u,v) are said to be well-prepared data if they satisfy,

o p=pO4epM+0(e?) with p© = (A(l - %%(b)) , and pV) = <A(1 — 7_1%¢)>ﬁ :
i.e. VM) = —=V1¢, VNg = —Vo, VMy) = -V ¢>, and VN3 = —Vé.

o V.(p90u®) = 0.

Lemma: 3 Choose (p,u,v) to be well-prepared, then

L [VN(p") + Vo — a"[VM(p") + %V¢H

5



s of order €.

Proof: The expansions of M(p) and N(p) around p(®) are given as,
M = M(p®) +epWM (p) + 2(pP M (p©) + £2M" (p0)) + O(?).

(1)2

N = N(p©) +epIN'(p©) + 2 (0PN (p) + E5=N"(p)) + O(e?).

Using the expansion formula for the product (4.9)),

PIVN(") + V6 = a[VM(p") + 196

62
o [VNG) + Vo — afy) [VM) + V]
52
. Pl VNG + Vo — alyy [VM{) + 2V | — afyy [VM) + V]
13
. Piy [V NG + Vo — afy) [VMG, + 2V o]

g
+ Py [VND) + Ve — afy [VME, + iw] — (VMR + iw] —apy (VM +%v¢]]

+ VNG + Vo — aly VM) + iwﬁ] — ay[V M, + %Wﬁ]]

1
+ Py [V NGy + Vo — aly) [V M) + ;W]] + O(e).

But because the data are well-prepared,

PVN(p") + V6 — a"[VM(p") + 1))

= P [V NGy — ai) VMip] + O(e),

= Py [N (0 Vi) + pey N (0 Vo) + py N (0 Vo) + T)N (P V)

=M (0) V) = 10 M (0") Vo) = 100y M (0 )V pa) = 1= M (07) V)] + Oe),

= O(e).
Which concludes the proof of the lemma and hence,
20" [VN(p") + Vo —a"[VM(p") + 2V ]
is of order e. 0
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Now we compare O(Z) terms in the momentum equation in (4.21)),
n n+1v MnJrl 1 _ O
“WPo VMo + 2ol =0,
but aff, # 0 and p?OJ)Fl £ 0,
VM(";rl —V ¢,
M/ n+1 \V/ n+1l ]'v
(P(o) ) Py = _; ?,

from the definition on M(p),

Al =7 59)
n—i—wl vp?(j)_l - V¢7
P o)
Vi i
Py A= 150)
multiply by v — 1,
Vanrl _ -1 ng
(0)
(v —1) n+1 W%l 1

—11
(v — )Vlnp”+1 VinA(l — TZ¢)’

—11
vmqg“/k—VMAu-17—Z¢%

hence,
—11
Inplg 17t = AL - T
e nA(L—T=20) +e

%“1M“Tw

1
i = (011

hence, ,0(0) constant in time. Compare O(%) terms in the momentum equation,

a(o)pn+1V[Mn+1 + ¢] (a@p® 4 ¢ O ))V[M("H + ¢] =0,

VMWT’ —v @
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1

Similar calculations as for p(® lead to, p(V) = (A( 7;1 L qﬁ))

Now compare O(1) terms in the density equation in 4.18,

n+1 mn
Pyt —p
O+ aV. ()" 4 (1 - a) V. (pOu) =, (4.22)

Taking p(© as time 1ndependent and supposing that the initial data are well prepared, then
0O = (A( = 11 qb)) "' and equation ([f:22) can be simplified to,

V.(pOu®)ntt — (4.23)

Compare O(1) terms in the momentum equation,

)" — (poyue))”

At
+ (afoy P! + afy Py IVIMET + ﬁb] (afoyP(oy + afyeisy’ + ags >f’?+>1)v[]‘4<n+1 + ¢”

(P0)u0)

n .n n 1

Using the fact that p() is constant in time and V]W(%J)rl = —V%(ﬁ and V]W(”f)rl = —V%gb,

the equation simplifies to,

1
n n+1 _

/
From the definition of a(t) = min {A(l 0 o) } — I(t)e®, we deduce the following,
A

/( p(0)
al® :min{A p<p7_1)1 }:’7.
@ (1= 21=49)

The expansions of M and w around p® are given by,

M = M(p®) +ep®M (p0) + 2(pP M (p) + L= M (o) + O(E).
/ 2

w = w(p) +epMw (p@) + (PP (p) + L5=w" (p©)) + O(e?).

Note that,

and




So,

/ (1)2 1
VW = Ve (o) + Eu (o) + ¢,
(1)2
/ ” ” 1% "
= VpPuw (0) + pPuw (0 Vo + pIVp N’ (p0) + " (0 )V + Vo,
= VPl + pP (v = 2000, Vo' + p IV p Wy (y = 2)pl PV
p? 71—y (0)
+ (1 = 2)(y = 3)pgy Vo + V.
On the other hand,
n V Mn+1 1
apy VIMG~ + ;Qﬂ
’ " " (1)2 n ]_
= [V M (p@) + p@ M (p )V + p IV M" (p©) + pTM (P )V + ~9l
= VpPypie)” + 0Py = 20005 VO + pOVp (v = 2)pj PV
P(l)z 4
+5=1(v = 2y = 3)pfy, Vo + Vo
Finally, the momentum limit equation is,
uitt —u?
(0) (0) n n n+l __

Hence, as ¢ goes to zero, discretization (4.18) becomes,

v'(p(o)u(o))nﬂ =0,
ntl (4.25)
n n n+l __
+ u(O)Vu(O) + VW(Q) = 0,

a good discretization of the incompressible limit equations (4.11)) and the scheme (4.18)) is

asymptotic preserving.

4.3.3 The property

In this section we prove that the developed [AP] scheme for the isentropic Euler equations

with gravitational source term is SP.

Theorem: 4 If the solution at time t" is stationary, i.e. U™ = U where U = (p, pu),

then it is stationary at the next time t"!, i.e. UMM = U™,
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The semi-discrete scheme (4.18]),

pn+1

2" 4 V. (pu)" + (1 — @) V. (pu)™*! =0,
)"+1

(o e 9 (pu @) + 5V |plp) — a(A(L = Sh0)p| + amAV (1 - S he)m
= 5PV — GV,

(4.26)

Proof: Suppose that the solution is stationary at time ¢”, then the semi-discrete scheme

(4.26)) can be written as,

V.(pu)" =0,

(4.27)
V.(pu®@u)" + 5 Vp(p)" = —zp"Vo.

We will first prove p"* = p™ in (4.18]). From the momentum equation,
P p

”At a At 11

\Y [A<1 - T—aﬁ) } =V {A@ - 7%—¢)p"“}

(pu)" ™ = (pu)" +

”At a"At
nv¢ _ = anng

A

+

Now, we substitute (pu)"*! by its value in the density equation in ([4.26)),

Pttt —pr a1 — a)At -11 a™(1— a)At v—11 i
AAl——— —————— A Al — ——=9)p"
At * g2 ( ¢> 22 ( 5 A¢)P
a™(1 — o)At 1 —a)At
+ TG () - <€—2>v.<p“+1v¢>. -
(4.28)
Hence,
a™(1 — a)At? -11, , a™(1 — a)At? .
prt— %A [A(l - 7qub)p “} - %V-(p Vo)
(4.29)
o, dM(l—a)Ar? y—=11 .1 a"(1—«a)A? .
=p TA {A(l TACb)P 2 V.(p"V9).
Because p—%V.(pV(ﬁ) are linear first order components in p, the fact that A | A(1 — VT_ligb) p]

is elliptic, is enough to say that the full equation is elliptic. So, under appropriate boundary

conditions, the uniqueness of the solution of the elliptic equation results in | p"! = p"|.

However, we still need to prove that (pu)"™! = (pu)".
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Recall the equation for updating the momentum from (4.26)),

(pw)™** — (pu)"

At A
1 n Y 11 n+1 —1+a” n " n+1
But if p"t! = p", then,
(o)1 — (pu)" L po11 "
PV e+ 59 o) - aan - T o
1, y—11 ¢, —1+ad" o a"

and the momentum equation in system (4.27)) holds at time ¢". So,

() — ()" _
At ’

n+l _

Hence, | (pu) (pu)™|.
This concludes the proof of the [SP| property of the scheme (4.18)). U

4.4 Fully discrete Numerical Scheme

In order to complete the presentation of the numerical scheme, we still need space discretiza-
tion. In this work, we follow the staggered discretization on a Cartesian grid suggested by
Goudon et al. [34] which follows the principles of MAC] schemes [38]. System (4.18) splits

into two systems, the slow explicit system:

L;{Ln +aV.(pu)" =0,

(pu)*—(pw)™ n 1 v—11 L L (430)
(" 4 7 (pu@ ) + 5V [p(p) - a(t)A(L — 2 2)p]” = kv,
and the fast implicit system:
=" (1 — )V (pu)" = 0

n+1__ * — n ay n
(™ (w1 gmA(1 — L)V = =SV,

We will deal with each system separately in one and two space dimensions.
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4.4.1 The numerical scheme

In the setup, our computational domain 2 = [z, zg|, an interval of the real axis,
is partitioned into subintervals [z;, x;41], for i € {1,...,N}. We define z; 1 = DL a5

centers of the subintervals. Let Awx;, A:L‘H_% be the length of the interval [xi_%,xﬂr%] and
[z;, x;11] respectively. In our calculations, we set Az; = Az, L1 = Ax.
The density p is evolved on the centers z; +1 of the primal cells. The velocity u is evaluated

on the points x; . The density on the edges of the primal mesh can be defined by averages,

B Pitl + Pi-1

Pi 5 (4.32)
We start by presenting a discretization for the slow explicit system ({4.30]),
iyl Pivy Fi1—F;
2At st |: +Alx } - 0’
(4.33)
¥, % m.m ¢, 1—C 1 e, -1 Aaqr P17, 1
p;u; —p;u; i+ i— 1 i+ i o “+a it i
Y v = e v Ry L R v

The flux terms in the density equation are computed with the following formula,

F; = Fi+ +F = F+(Pi—%7ui) + F_(Pi+%v“i)>

with
0 if  u<—c(p,u)
Fr(p.u) = § v+ clp,u)? it ful < c(p,u)
U if u<—c(p,u)
P (p.u) = § — o — clpou))? if  Ju] < c(p,u)
0 it u>c(p,u)

The flux terms in the momentum equation are computed as the following,
_ + +
CH% = UiFH_% + Ui+1ﬂ+%7
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with

1
+ + +
Fio=5 (F +Fh).

IT;; 1 is the modified pressure term at the node z; i+1 and is defined as

11

iy = p(Pz‘%) —agA(1 - %Z@%)PHQ

a is the discrete version of the time dependent function a(t) at time ¢, defined as

ay :min{ - } — I
LAl - ’YTI%@)

The next step is to discretize the fast implicit system (4.31)),

! R
i+1 Tt P P
2At ?+(1_O[)|: +Ax :O,
+1, n+1 Pty P 1 ¢ -, (4'34)
P u piu; ag —-11 i+l o a” 1%+l 1
A A - 5 ) T =
Here (F"*1)Y? is the upwind flux function obtained as following,
1\ U 1 1+ 1 1
(PP = g ] =[]
Where [X } = ‘X|2+ X Now, in order to solve this implicit system we first write u™* from

the momentum equation in as a function of p"*!,

n+1 __
% - n+l
Pi

Pty — 2 v A

n+1
1 Atal y—11, Piyl ~ Pz_g ailAt Pyt — Gl
Ax 527

u; AL ) Pt ] (4.35)

Substitute the flux terms by their values in the density equation,

n+1
Pip1 — pw (1—a)
+ L

Al [ ) = o )T = o [ )] = 0.

i+
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. . + XX
Keeping in mind that [X } = | |2+ ,
p”}—p*ﬁ 1 1 | n+1‘+ n+1 | n+1‘ _on+tl
+3 it3 +( — @) | gl |y o1 Y | T Ui
S 1 -3
At Ax it3 2 it3 2
1 1 1 1
e ek L Bl R (4.37)
i 2 Py ™ 2 -
Rearranging the terms yields to,
n+l o« n+l _ n+l n+1 n+1
Pirl = PiL N (1—a) | P+l ~ Pirs ! i+l + i+3 ]
At Ax 2 ”1 2 o
n+l _  n+l n+1 n+1
Piet ~ Pty Pt TPk | o 4as
+ 9 lui ™| — 9 u; =0. (4.38)

However, from the definition of p?™, the equation can be rewritten into this

nt1 * n+1 n+1
- 1 - 1 _ - 1 -, 3
p1+§ '0”5 1 (1-a) p”i ”5’ n+1’+ ntl ntl
At N 5 U;iqq Pivr1 Yigq
n+l _  n+l
pi—i—% i

1
+ 2 |luftt — p?“u?“] =0. (4.39)

2

Next, we substitute u™' by its value in the density equation,

n+1 *
Pivl = Pip1 N (1—a)
At Ax
n+1 n+1 n+1 n+1
Pii1r = Piys Ataly vy—11 Pivs =Py altAt Dir3 = Pip1
2 2 pf ut . = dA(l _ _¢ 1) 2 2 _ d pn-i-l 2 2
2o T2 v AT Az e2y " Az
n+1 n+1
w (o —AtagA(1—7_11¢- )pz‘+%_pi+% _ agAt n+1¢i+g_¢i+§
Pit1Uit1 = —7 yhkas N 2y Pit1 Ar
n+1 n+1 n+1 n+1
Piyl =Pl ot AtaZA(l - 1l¢‘)pi+% TPl _ agAt . ¢i+% - ¢i—%
2p0 11 pith e? v AT Ax g2y pi Ax
n+1 n+1
Ataly y—11 Pyl =Pl alAt Gip1 — i1
—(prur — —2A(1 - —0i)— Lo 2) =0 (440
e e | v (4.40)
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The previous system of N nonlinear equations is to be solved using the Newton-Raphson

method. We are interested in solving the system f(x)=0 with
T Hoptl a1 |
X = |T1Z2...xN] = |p5 ps Pl
[ 162 N] |:p% pg pN+%:| )

f(x) = [f1(x) fa(x)... fn (x)]",

where T denotes the transpose operator and f;(x) =

n+1 *
Pirl =Pl (1—a)
+
At Az
n+1 n+1 n+1 n+1
Pivk =Pz AtafjA(l vy—11 s )pi+g TPl agAt ¢i+g - ¢i+;‘
Py = v AT T AL ey P T AL
n+1 n+1
4 (o —AtagA(1—7_11¢- )pi+%_pi+% _agAt n+1¢i+%_¢i+%
Piv1itip1 — — 5 —’y hkas N 2y Pit1 T Ar
+1 n+1 +1 n+1
L p?+% TPt ot _ AtagA(l s 1l¢.)p?+; T Pis _agAt n+1¢i+% — 01
2p0 11 pith 2 v AT Ax g2y Fi Ax
n+1 n+1
. . Atal y—11, Pigl =Pt aiAt il =01
- (piui - E2dA(1 - T~ 527 pitt v 2) . (4.41)

After solving the system of nonlinear equations for p"™' (pu)"*! is recovered from the
momentum equation. The full presentation of the scheme is summarized by the slow

step (4.33)) together with the fast step (4.34)).

4.4.2 The numerical scheme

We discretize the computational domain Q = [z, x| X [y, yr] on a Cartesian grid.
We define @;,1 = Tt and Vil = % for 4,5 € {1,..., N}. Let Az, Az 1, Ay,
and Ay, 1 be the length of the interval [wi—%vxwé]? [z, i), [yjfé,y#%], and [y;, Yj+1]
respectively. In our calculations we will set Ax; = Az, 1= Az, and Ay; = Ay, 1= Ay.
The idea of [MAC is to place the variables of the system in different locations on the grid.
The density p is evolved on the centers (z, 110V +%) of the primal cells. The velocity u in
the x-direction is evaluated on the points (x;, Yirl ), and the velocity v in the y-direction is
evaluated on the points (z,, 1 y;) as in figure . The density on the edges of the primal
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mesh can be defined by averages,

pz+27.7+7 + pz_77‘7+7
N
pz,j—|—§ 2 )

e
pi-i—%d' 9

The numerical solution is evolved on the staggered grid and the fluxes are defined as in

F----- T - 1
[ | [
I 1 | |
I t—=Lae I i
I “ I I vt b
[ T8 - -7 === =-- l
g ! o ‘ ' A DU
__________ | ] i—1,5 L, d !
‘ : ! | P P : : : v I
I I I I |
uhi—le ey, tie . . : - ! . ! ) ! I |
| o Cagbd 1l pwhi—l 1 i Iopbhitl ! | \
\ pi,]fl | p'a,y | F——®--4+-——-—0--—4+-——-—0--4 |
1 I 1 1 . |
- - - — — R 4 ot [ ] u1=1+1,
| \ | I i
I I I ) | I p |
° | I
I I I , | i | \ I |
I gitlie | | phi ; | !
I | | |
I \ \ L----- J“‘Hfl“i “““ - [ pit1.d :
[ Lo _-_-_ J v b 8- - - -~ -
(A) equation for u (B) equation for v (C) equation for p

Figure 4.1: [MAC discretization.

[34]. We start by presenting a discretization for the slow explicit system (4.30)),

¢ p* —p" FZ _Fz FY _FY
Pirlged Pirl il La it1,+3 i+l n i+ kg | 0
At Ax Ay -
C un ¢ oy gy
Pijr il p,3+2 it + itd+d 5. $+3 + Cijr1—Si
At Ax Ay
I —II1™ _
L1 gl oLl —1an 0 Pl il 141 (4.42)
e? Az €2 i+3 Az ’
* v* _an o™ vz v,z C’Uay _vay
Pird Ve di Pivditied |GG | tedard ihah
At Ax Ay
I —II™ _
41 it5ats it sa-s 71+a3pn Pird i+l Pl -1
(&2 Ay ez Piyl Ay :

The flux terms along the x- and the y- directions in the density equation are computed by

the following formulas,

z,+ T,— 1+ _
By = By Ty = gy i) T F (g g tigng)
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T x,+ _ o+ -
}71+1,J+2 Fz+1,g+l T Fz+1,g+ =r (pi+%,j+%’ “z‘+17j+§) + (pi+%7j+%7 ui—&-l,j—f—%)’
— Y,+ Y,— —
= + F;+%7j _ F (pz+2,]——7 z+2 ]) + F- (/Oi+%,j+%7 U@'Jr%,j)?

lJrQJ l+2:J

Y _ Yyt Y,— _ 1+ -
Fz+2,]+1 F’z+2,j+1+F;+%,j+1 F (pz+27]+ i+%,j+1)+F (pz‘—f—%d-i-%’vi-&-%»j-i-l)’

with
0 if  u<—c(p,u)
F*(p,u) = § s (v + clp,w)? if - u] < c(p, u)
pu if  u>c(p,u)
pu if  u< —c(p,u)
F™(p,u) = § = (v = clp,w))? if  Ju| < c(p,u)
0 if  u>c(p,u)

The flux terms in the momentum equation along the z-direction are computed as follows,

u,T o x,+ x,—
Ci+%,j+% - 7]+ F+27 +1 + uz+1,]+ F;+%’j+l
A Fo 4 F™7
_ igrd T el igrd T el
= Wit} 5 T Ui+ 5 )
+
FH(picy gy tige) + FF (0 jyni i 1)
u; j-l-l D)
7 2
Fo(pivt gt Wiy t) ¥ F7 (0 jats Ui git)
+ Uiy 4l 5 :
U, T _ €T, + T, —
CZ_,J_;'_, = U Lj+35 P;_, ]+; +Ui,j+l};;_%7j+%7
z,+
B Fz— Lj+3 T F,J+2 FZ— Lj+3 +FJ+2
= U141 5 Uyl 9 )
+
B P (Pz",ﬁ—vuifl,j%) + F (pif%,jJr%?ui,jJr%)
= U154 9
F~ (Pifé,j%’ uifl,jJr%) + F~ (pi+%,j+%> “i,j+§)
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u,y __ y,+ Y=
gi,j uzy——F +u1]+ F
Fy + Fy T+ Fy’ F%
. 'L+27] 7'_5’.7 + +27] 7'_7’.7
= U1 9 Ui+l 9 ,
+ +
F (Pi+%,j—%vvi+§,j) + F (pif%,jfév Uze%,j)
= U; ;1
2,] 2 2
‘u F (pi+%,j+% i+l ]) + (pif%,jJr%?vif%,j)
i,jJr% 2) '
Y Y,—
G g+l = Wiyl Fy ij+1 T Uy g3t
Fy 7+ F Y,+ Fy’ Fy’_
o ’L+27]+1 + 71777]4'1 7’+27]+1 + 1777]4’1
= U4l 5 + U 48 5 :
+ +
F (Pi+%,j+%v“i+%,j+1) + F (pi—%,j—%v Ui—%,j)
F7(pi 1 e gs Vind gor) T F (Pim1 08501 510)
T Ui jd 5 :

Now, in a similar manner we compute the flux terms in the momentum equation along the

y-direction,

v,r x,+ X, —
G = v B o B

5J 7’_7
Fﬂ”lJFF’C+ Foo +F5
_ 7.7+2 ,]— + 7]+2 7.777
_Uif%,j B ’UlJrQJ 9 )
+
F (pz—f,]+lvu1]+ ) +F (pi—%,j—%7ui,j—%)
= V. 1 .
7/_57] 2
F=(piy1jatotigey) + F (P 1,ui;0)
v,T T, + T, —
Cerl] Vit sz’+1j +Uz’+% jFiH,j’
T, + x,+ €T, — X, —
F7‘+17.7+l + F’Z+17]_7 -F;'*'lmj"'l + }77/4_17]_7
Vitd,j 5 T Uirs 5 )
+ +
F (pi+%,j+%7ui+1,j+%) + F (pi+%,j—%7 ui—i—l,j—%)
= V., 1 -
'L+§)] 2
F- (P¢+g,j+%7 ui-&—l,j—i—%) + I (pi+%,j—%vui+l,j—%)
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Y Y,—
SV =1 FYY +v1 i FO
Cz+é,g+§ i3I i3+ EPEARREEENES L

7+ Y, + Y, Y=
FY7 + FY F + F"
1+27J i+3,5+1 z+273 i+3,5+1
Vil 5 T Uil 5 :
+
B F (PH%,J’— Uiyl j) + F (:Oi+%,j+%7 Ui+§,j+1)
- UiJr%,j 2
F- (Pz+2,g+—’ i+3 ) + F (pi+%,j+%7 Ui+%,j+1)
T Vil 5 :

v,y — y+
. . =01 . F . + v,
Cz+%a—% i1V -1 T Vit

Fy+ Fy’+ F.% Fy’_
it T it+i,j it T i+l
= . 2 2 + v 2 2

it+g.0-1 9 it+5. 9 ’
+ +
F(pigy -3 Vivy i) + F7 (i1 o1,V 5)
Viglj—1
3] 2
Fo(pis g1 Virt ) + F (Pt i1 vivs )
5 .

G
7‘+§’]7

+ vi-l—%,]
T, 1 is the modified pressure term at (x; Ti1,Y; +%), and is defined as

z+2,J+

vy—11

Misgjuy = p(pHQ gty 1) —aqA(l - Z¢i+§,j+%)/)i+§,j+§'

al} is the discrete version of the time dependent function a(t) at time t" defined as

. { PP1) } 2
a; = min — — le”.
w LA = 771%%%%)

The next step is to discretize the fast implicit system (4.31)),

( n+1 _ % pn+l Up,z pntl Up,z pntl Up,y pntl Up,y
pi+%d+% p”%d”r% + (1 _ CY) ( ) it+1i+5 —E, it + ( )”2!]*1 ( )”%’j =0
At Az Ay 9
n+1 un+1 p pn+1 _ . nt+l
iy gt P ,]+2 + adA( 7 1 1¢ ) i+t g+d Ti-lg+d
{  an il Pisliry P14}
n+1 77/;:7&-—1’_5 A 7 n+1 n+1
v —p* v* -
Pird Vil Pirditinda 4 ﬁA( o ¢ )pz‘+%,j+% Pivdi-4 _
At e? ’H-QJ Ay o
_a ot g} Pidaog
(e Vit l Ay :

(4.43)
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Here (F' ”*1)Up * and (F "“)Up Y are the upwind fluxes obtained as following,

7 +2 +2’
n+1\Upx _ n+l n+l 1+ n+1 ntl 1
(F )Z--;—P_, [1] - [Ul]
J+35 i 7J+ L,Jj+35 1+27J+ ,Jj+35
n+1\Up,y et n+l 1+ n+1 ntl 71—
(F )H =P, _,[U-L] _P-;-;[»;~]
54 i+3.J 1+, +5.0+5 5 itgd
Now, in order to solve this implicit system, we first write u?;&l and v”: ! as a function of
) 5 §,
n+1
P
( pn+1 pn+1
ntl 1 * agAt =11 i+di+3Ti-1g+3
U = u — 4—A(1 - Lo,
bty e Pij+itij+d = Al v A¢w+%) Az
W2
_agAt nt1 Pird i+l P15+l
e?y Pijts Az ’
R (4.44)
[Ca s S « _ agAt 7—1 1 it dg+d el
UiJr%,j - pjﬁj Piv1Yirl AL - ¢z+273) Ay
2
_aBAt pgr Pirdard "®irda-3
i+5.] Ay
\
Substitute the velocities by their values in the density equation from (4.43)),
ntl — Fn+1 Up’ _ n+1 Upzx n+1 Up,y _ n+1 Up,y
p”z’ﬁ* pl+2’]+2 ( >l+171+2 (F >i,j+% <F )i+§,j+1 (F )i+%,j
+(1-a) + = 0.
At Ax Ay
(4.45)
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pn+1 *
1 -
ithits ~ Pirdary | (1-0a) Pitties ~ Pivs
i+l gl T Pl
~ + X 2:J T3 5,015 | &
. s Pl
2pi+1,j+§ i+1,5+1 Vitl,5+3
Atal} i
B _ n+l
_ deA(l N ll¢ . 1)pi+%’j+% 'OiJF%J*l ag At ¢
A0t X L alAt Ly Pidged Gl
z T P e
g2y i+1,5+5
) * w 2 Ax
) a B n—+1
<pi+1,j+lui+l 1~ — 2 ~r-11 fivgans _ Vit
g o A
) x
_ adAtan Pirdjrd — Pirdird
g2y Vitlits —
pn+1 n+1 i Am
i+l i1 _p 1,
27J+2 7'_7]"’_1
s Q‘p,f o Atal v—11 ot _ ol
2p; irl ij+3 ity g2 Al = ———9 deFar AR ELs
h c v A z,j-i—%) A 3:J13
x
an .
_ d2At 1 ¢2+%,j+% _¢z’—%j+l
o1 , 2
giy "Itz Ax
B ) ) Atan B n+1 n+1
(Pi,j+%“i,j+% B gsz( - 1l¢~ )pi%’ﬂ% findand
v ATWT A 2
x
anA . . —
_ t WI%%M% Piljti
g2y "hits Az >
+1
1_ pn L _n+l
( . a) | Pirtgrs ~ Pirl g3
; — Pi1 . U1
2043 g1 LA
n
2 ——, 1 212 gty O .
£ v A i+1,5+1) A 3dts  GgAL 4 Pirdiry ~ Pirdird
g2y Titgatl Ay
+ <p* L Alag T i
SR — d L . ~ Pl
L+ Vit S+ Al -7 lﬁb' 1 Pivdang Firgary
€ v A Z+5’j+1> A 272
) Yy
_agAt Pitdj+d — Pirl iyl
— 2 2913
£ ry Z+§7]+1
et n+1 B
it l el T Pip1
27]+2 i+35 ]71
- i Atal) v—11 ot n+1
Pz‘+lj i3, i+5. 2 A( o T Pit1 ) G EAE le’jil
y € v A i+3,] A 2 2
Y
an .
B dAt ¢z+%,j+l — Qip1 1
— 2 2773
gly " tta
Ay
s . Ataly i
' B n B / _n+l
(pz+liji+1 - —CA(1 - y-11 Pirljrt ™ Pirlj-1
! 1 5 ;1 ) PR i+35.0—3
c vy A z+§’3 2 2
Ay
a’nA . . —
CagAt L Pt T Palsod
“ Pi+1j PRA) —
5 y Ay =0. (4.46)
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The previous system of N? nonlinear equations is to be solved using the Newton-Raphson

method. We are interested in solving the system f(x)=0 with

T __ n+1 n+1 n+1 n+1 n+1 n+1
" = P3PS 1P s Py 1 Prei s Pyiinet]

(%) = (A L) ()

X = [z129...2 N2 3
272
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where T' denotes the transpose operator and fi;_1).n+)(X) =

n+1 % n+1 _ . n+l
Pivlivd = Pirdivd ) Pivljel ~ Pirs el | -
At Ar p@jll o Pit1,j+ 1 Wig1,+1
1 5] 2
n+1 n+1
n _ p 3 ., 1 _IO 1 -, 1 n .03 .1 — 001 -1
B AmdA(l 7 ll¢ ) i+3g+3  Pidard agAt Ditd gt — Divdjrd
_— . -1 . L1
g2 v ALt Ax g2y Tithits Ax
nt1 _ontl
+< \ . Ata:;A(l v -1 1¢ )pi+%,j+% Pivl i+l
. 201 . L1 T T — — — 0 .1
pz+1,g+§ i+1,5+3 c2 v A i+1,5+5 Ar
asAtpn—o—l Pirdird ~ ¢i+;,j+;>
- T 5 M. .1
£2~ Mitli+g Azr
n+1 _n+l n+1 _nt+l
Piriiv ~ Picljed ‘p* o AtaZA(l v—1 1¢ 1)pi+§,j+§ Pitivd
oo .1 — — @, ., 1
pn+—‘i1 l:]+§ 7/,.]""5 62 fy A 7'7]+2 Ax
1,] 2
agAtan Ditlgrt = Dimijrl
- Loo01
g2y Thits Az
Ata™ —11 pq-qj+11~ 1 pTH_ll- 1
— (Paatigey — St A0 = T, ) e
J+5 Thjt+g g2 vy ATWits Azr
n L1 — A
B adAtan ¢z+§,]+% ¢22,g+§>
L1
g2y Thits Az
n+1 _n+l
(L—a) | Pivsory ~ Pirgird) . .
Ay 2,07.f11 » Pitl i1Vt 1
7 57]
n+1 n+1
n _ p 1 -, 3 _IO 1 -, 1 n .01 ., 3 — P P |
. Atad A( . Y 1l¢ . ) 1+5.0+5 i+35,0+5 . adAtanrl ¢7«+§J+§ ¢l+§’]+§
_— 1 L1
£2 A Titgatl Ay 527 i+3,5+1 Ay
n+1 _ n+l
+< . o AtaZA(l v—1 1gz5 )pz'+é,j+% Piyl s
1 L1 —_— — ;1 -
pl+§,]+1 i+5,5+1 2 A Titgatl Ay
agAtpn—s—l ¢i+%,j+% o ¢i+§,]‘+é>
- 5 M., 1 .
527 ’L+§J+1 Ay
n+1 _n+l n+1 . n+l
Piedird ~Piich) o Ataj o v =11, )pi+%,j+% Pivii-y
.01 U1 . — _— 0, 1 -
2pn:11 1+§,] z+§7.7 52 f}/ A 7’—i_2"7 Ay
? Ea.]
GGAT iy Pithir ~ Pirhicy
- L1
g2y Tit3 Ay
n+1 n—+1
<p* o AtadA(l Y= 11 ¢ ) )’O’H-%J"F% pl-‘réd_%
— .01 .U 01 0 — — — ;1 :
+35,] i+3,] e2 ol AT e Ay
agAtan ¢i+%,j+% - ¢i+§,j§> (4.47)
- o1 . .
g2y Ttz Ay
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After solving the system of nonlinear equations for p" ™, (pu)"™ and (pv)"*! are recovered

from the momentum equations. The full presentation of the scheme is summarized by

the slow step (4.42)) together with the fast step (4.43)).

4.4.3 The [AP] property for the numerical scheme

The scheme (|4.42)-(4.43)) is [AP] if as € goes to zero, the discretization becomes a good
approximation of the incompressible limit equations (4.11)). We write the two systems
(4.42)) and (4.43) in one system,

n+1 n

4 rz —_F% Fy 7Fy
Pivdard Pivdavd +a i+lLit+3 iit3 + i+dg+1 itd
At Az Ay
(Fn+l)UP7 (Fn+1)Up, (Fn+1)Up,y (Fn+1)Up,y
1 i+1 J+ ,J+2 Z+2,J+l z+2,a =0
+< - Oé) Aw + Ay -
n+1 n+1 n n U, T u:c
A A Ty A R A ) ) cuy U,y
p%ﬁ-% 1734—% pm+% er% + Cz+%»]+% 7]+2 + ,J+1*C i,j
At Ax Ay
" _Im pn+1 7pn+1
1.1 1., 17 P11
1 _it+5.d+3 i— ,J+g ad _oy=11 i+3,0+5 i—5.0t35
+£2 Az + A( 5 Agbi,jJr%) Az <448)
[ L e ¢i7§,j+% _a} p4l Pisliry %i-li+d
g2 pi,j—&—% Az 52’yp ij+3 Az ’
n+l | n+l * * vy v,y
v - v v, T v,T . . -5, .
Pirdirys Py ieds | GG | Sdaed S
At Az Ay
I T
+i it3.tg  ityi-g 4 ﬁA(l . 'y 1 1¢ ) i+ +d Tirdi-3
g2 Ay g2 2+2,J Ay
_ —ltag n Pirdird Pl -1 . 3 nt1 Pirdgrd Pird -1
LT e il Ay e2ylitlj Ay ’

The asymptotic expansion of the variables can be written as,

¢ (O)vn (1),77, 2 (2),’!1
. . = p. . EP. . EP. .
Pird g+l = Pird el + Pitd il + Pird i+l +
n (0),77, (1)7n 2 (2),7’l
ij+3 6j+3 te ij+3 te ij+s
n (0)777/ (1),TL 2 (2)777/
(% = V. . EV. . 7. .
il H_%’]—F z+%,J+ ’H‘%,]—{_
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As we did at the continuous and semi-discrete levels, we reformulate the momentum

equations in system (4.48)) to the following,
¢ 1 _pn F= — FY —FY
Pirlird Pirlirld + i+ljts  Ljt+d + i+l it
At Az Ay
(Fn+1)UPT (Fn+1)UP,I (Fn+1)UPy (Fn-&-l)Uva
+(1 _ Oé) i+1,+4 it + it g+l itd . -0
Ax Ay )
n+1 n+1 uz
u u"™ s
A TS L " ity ,,,,”2 n Gt =Y
At Az Ay

+E%P?j+1 [N/(PZﬁ%)D FIEva DZ]+1¢ aq [M/<P”+ )Df’ﬁ%p + %Dzﬂ%ﬁb]]

ay n+1 1 n+1 1nz _
+£—:2ng+ (M <pi,j+%)DZJ+1p+ Du+1¢] 0,
ntl | ntl _ « * v,y VY
Pisd 3% da Pind el X Git1,=Sy I Sitdgid Sitlsod
At Az Ay
1 n N'(o" DY D / Y Y
=P S —al|M D7 . D .
+62p7,+l Jj [ (p’b-‘r%,j) ’L+2 ]p + ¢ d[ (pZ+ ]) ’L-‘r%,]p + ’L—|—%,j¢]
de n+1 M/ n D —
+52 pz+ ][ (pl-i-%,]) i+ p+ z—l— ]¢] 0
Which is the same as,
("t Fe —F® FY —FY
Pivd ity ” p’b+2,J+2 +a i+li+3 iit3 + i+5g+l itd
At Az Ay
(Fn+1)Up, (Fn+1)Up,z (Fn+1)UP7y (Fn+1)Up7y
+<1 . a) i+1,5+ 5 i+ + i+3,5+1 3|
Ax Ay -
n+1 n+l _ n U, u,T
Pijrt il p,g+2uu+2 + <z+2,g+2 C'*%,H% + Gt =Gy
At Az Ay
1 n n T _ n[Dz n o 1Pz
TPl Dm+1N +D7 l(b ad[Dz‘,jJr%M + sz‘,j+%¢]]
ad n+1 n+1 1 Nz
= 22 P; g+ [ ij+3 1 M Ty D +3 qb]
nt+l  n+l o« * v,y _ vy
Pird ;Vird i Pird Vit I Gitr—Sis . Ci+%,j+% Ci+%,j—$
At Az Ay
1 n Dy N™ Dy n Y n Y
Spt . | DY L o—allD? , M+ D7
+€2pl+l i+3.,j - i+, ¢ il i+, T H‘%JQS]
ay 1 1
+ag pn+ [Dy Mn+1 +1 Dy ¢] =0.
27] 7]
with
Do _ Pivlg+d T Pi-lg+d DY N e
i '+lp - 3 S 1 - ’
It Ax it3.d Ay
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and
M(ﬁ) M/(pz—i—w])DH_éJp

7]

D;v +1M(p) M/(pz,]-‘r )Dz]_t,_%p? Dy +1

By Taylor expansion,
M(Pi+%,j+%) = M(pi,j-&-%) + (Pi+%,j+% - pi,j—f—%)M/(pi,j-&-%) + .
M(pi_yje1) = M(pyje1) + (pimy ji1 = pijps) M (pijin) + ..

M. 11— M. 1.
i+3.0+5 i—3.0+3 e M

~ 1 M(p).
Ax 1,j+5

Dl:J_FlM(lO)

We define the well-prepared data as,

Definition 4.4.1 The discrete data of (p,u,v) are said to be well-prepared if they satisfy,

1

n 2 _ 71
Aoy = P el oD L with o0, = (AL =52 40,,,0)) T and
p(.}j)Jr; = (A( ”’_1 L 59 L )) are constant in time, i.e. Dﬂf +§M = 1Dx,]+l¢

x 1),;n _ 1 T x O)n _ _ x (1),n _DN=x
D,g+—M = 5D} 419, Dz VO =—DP 19 and Di,j+%N = D719

1

n 2 _ o
B, = p§+)2,g +5p() +52,0(+)2 + ... with ,0+27 (A(l — 771/11@@73))7 and

O (A(l — Tli(biﬂ,j)) o are constant in time, i.e. DY , M©On = 1Df+1 J¢;

P@+2,j i+l
Y (l),n__l y Y (0 ),n__ Y (1),n Y
D2+2’JM =3P +3 ¢ Dz+2,yN - z‘+%,g¢ and Di+§,jN - DH;,JGﬁ

o Va(p”, WY =0

p+27]+ 7‘+§’.7+§

Lemma: 5 Choose the discrete data of (p,u,v) to be well-prepared, then

1 1
Pl [ij+1N" + D6 — gD, M™ SLART) (4.51)

s of order €.

Proof: The expansions of M(p) and N(p) around p(® are given as,

M(p) = M(p™) +epV M (p0) + (oM (o) + 237 M" (o)) + O(E?).
’ (1)2

N(p) = N(p) +epMN'(p) + 2(p@IN'(pV) + Z=N"(p)) + O(&*).
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Using the expansion formula for the product (4.9)),

o [ngj%zvn + D76 —aylDz, M Dwﬁlqﬁﬂ

pl:]"rg
52
0),n |:Dx N(O)’n + D ¢ i a(O),n[Da: M(O) + Doc ¢]
Pt | i w3 ? T iy s
82
- pJ+ [Dz,ﬁ NOn +Dx 1¢_ [ny+1M 1D:iﬂ+1¢]
€
B V), e 0),n 1 Nz
af" Dz, M D”+1¢]]
3
T z - (0),n 1 Nz
+ 7J+2{D +1N "t D0 "Dy M DJ“M
€
O [Hz  N@m y pr 4 MEn 1D””
+P7]+ ’]4_1 + ’j+1¢ ad [ ]+é +")/ ,]+ ¢]
1, L s
_agl) [Dxﬂ_FlM() +7D7J+1¢] [ zj—l—lM() +7D7]+1¢]:|
TP ,J+ [D:E,JJrIN +ng:3+1¢ [ zJ+1M s DvaJrl(b]

X 1 X
OR [Dlj+;M() v Dﬁlqﬁ]]

2 T z z L v
T, [D,J+1N() + D7 p— "D S MO +7Dm+1¢1]+0()

7]+ 7.]+
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But because the data are well-prepared,

T n T n[Hx n 1 Nz
ooy |2 AN+ D26 = a3l Dy M" 4+ D7 )]

Y 4LJ+
o2
_ On [ A 2),n w _ De 2).n z
- pi,j-‘rl _Di i %N + D; ’J+1¢ [ 7J+%M + '}/D 7J+ ¢]:| ( )
) | Hz @) _ AT
_pm_DﬁéN D7, M@ ]+(9()
— (0)777’ NE (0)7n z ( ) ( ) " (0)7n ( ) (1),71 " (0)777' X (0),’)1
= Pt |V (Piyi ) DFjap +p7j+ N (0 y ) Dy Py PN () D p
2(0),n1
L,j+5 o x T n 2),n " 0),n T N
TQN (p(,3)+2 ) D! ’]+1p( M (PE J)Jr )Di,j+%p(2)’ _ 7pz(',j)+%M <p§,j)+%)Di,j+%p(0)
2(0)m1
,n " T ,J+5 m z
=M (DY o =M () DE O |+ Oe),
= O(e).
This concludes the proof of the lemma. Hence,
1 3 X n X n n 1 x
P [DWN + D6 —aglDe M+ SART) (4.52)
is of order e. U
Similarly,
! [Dy N DV, é—allDY, M"+ LDy qs]} (4.53)
2Pirki ‘ i+45? T Wl et '

is of order €.

Compare order O(E%) terms in the momentum equation in the z-direction in (4.50)),

1
07 n+1 x s x
aé) pE )+7 [DJJF MO +7D7]+1¢]

Because ad " #£0 and p nH # 0, then

(0),n+1 _1=1lpe
(’}/ o 1) 7]+2p o v D'Lv]‘i’%(b
n - —11 '
P ; ' Al = =500 541)
—-11
~ 1D pOm = D AL - ).
( ) 1 Ilp 7+§ n ( v A )



Hence,
_1
O+l _ vy—11 7=t
Pij+d (A(l - TZ@M%))

A similar conclusion is arrived at when comparing order (’)(E%) terms in the momentum

equation in the y-direction in (4.50)),

_1
O)n+1 y—-11 71
Pivly = (A(l —7 A¢z‘+§,j))

(0)

From the above calculations, we deduce that p, , is independent of time.

+2’ +2
Similarly, comparing O(%) terms in the momentum equation results p(+) il is time inde-
2’ 2
pendent.
Compare order O(1) terms in the density equation in (4.50) and use that PE?; i1 Is time
27 2
independent,
n,(0))z — (Fm(0))z n,(0) (0)
o (F )+1 Jts (£ )z‘,j+% " (F )z+2,]+1 ( )z‘+§,j
Ax Ay
n+1,(0)\Up,z n+1,(0)\Up,z n+1,(0)\Up,y n+1,(0)\Upy
oy | i~ T T |
Az Ay ‘
Substitute the fluxes by their values,
i <’0(O)u(0))?+1,j+% — (p© )u(O)) b (p@© ))z+2,y+1 (p(O)u(O))ZF%’j
Ax Ay
i (p(O)u(O))Zlel’jJr% — (pOu (0))?;227 N (p(O)U(O))?:;jH _ (p(O)U(O))Zirél’j Y
Az Ay -
Therefore,
aVa.(p )+ (1= a)Va (pPu®)E L =0, (4.54)
Where V. is the discrete divergence defined as,
V. (pu) (pu)i+1,j+% - (pu)i,j—i-% N (pv)i—i-%,j—kl - (IOU)H-%J
z+2,J+2 Az Ay ’
The discrete well-prepared initial data provide V4.(p@u@)” | flgel = = 0 V(4,7) which leads
3]
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to,

Vo (pPa®)E L =0, (). (4.55)

Compare order O(1) terms in the momentum equation in a-direction,

(0) n+1,(0)  (0) n,(0) (0) U, (0 U, (0) wy  (0) URT
Pij+it% 1 ij+3 Lt n Pij4iil gyl pi,j+%Gz’—%,j+% N pz‘,j+%Giaj+1 Pij+1™ig
At Ax Ay
1 1
0), n x )m (1 1), x n x
+a£l) P( )+ [D j+%M(2) +1+,YD Pl L+ ( 2j)+1_’_ MOR pi]) )[D J+%M( ), +1+,}/D il 4]
On 21y (1) @m0ty Fe Ot , 1 e

+(ag ity +ag Pij+i tdq Pij+d )[Di,j+%M + fyD ity 19] =

Using the fact that p(©) is constant in time and D“” MO+t — _1pr gand D MO0t =
1, +2 vy Z7J+§ 7".7+§

—%Dzj +%¢, the equation simplifies to,

n+1,(0) _ n,(0) u,T oy u, u,
ul’]‘i‘% ul).]"'% + G7'+2a.7+2 Gl_%v]""% G’L ]y-f—]. Gi,]y
At Az Ay
(0),n @1, L
+ag "D MO ~ D18l =0

The expansions of M and w around p(®) are given by,

M = M(p™) +epM (p0) + (02 M (p0) + 5= M (p)) + O(?).
/ / (12

w =w(p®) +epMw (p©@) + 2 (p@w (p) + E=w" (o)) + O(e?).

Note that,

and
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Then,

1
4Dy MO + D7y

(1)2

P
x 2 !/ 0 Z7]+7 " 0 xT
=D, (pf )+7M (P(-JL;) T M <’0§,j)+%)) T Digry®
(1)

_ x @ s (0 ) (2 ) " (0) z (0) z ( )
(1)2
p 7]+ " ( ) T ( z
TtV =M (p )D1]+ 1p +Dz]+1¢7

2 it}
X 07 2 07 3 x 1 x
= D7 PP P (= 200D 0 ) D
(1)2

Pij+d

0 3 x 3 4 X x
Yy = 2)p DL 00+ =y = 2) (= 3 DE 0 D76,

(1)

Nz ()n+1 T
DJ-‘r +D,]+1¢

_ x ),n+1
= Dy, WO,

x (2) n+1
~ DI W
W(2 _ s(2)m
Z+27J+2 27%’]4,%

Az

Finally, the momentum limit equation in the x-direction is,

n+1,(0) n,(0) U,z U, (2),n (2),n
u. —u, G" -G —_qwy W =W
ij+3 ij+3 n i+3.0+3 l*%fr% Gl — Gy " i+3.+3 i—3dty 0
At Ax Ay Ax '
(4.56)
Similar calculations are performed on the momentum equation in the y-direction,
n+1,(0) n,(0) U, T u,T (2)n (2)n
v —v .y G -G U,y wy WU =W
ho b Cegard Ciegord | Gign G Tegany T Ty
At Az Ay Ay ‘
(4.57)
Hence, as ¢ goes to zero, discretization (4.50) becomes,
Ve (pOuO) L=,
+2 j+
n+1 (O) (0) u,x T wy (2) (2),
Yigrd M+l IS M WS </ Rt ci s AACEE NI M AT S 4.58
At + Az + Ay + Az - O’ ( )
n+1 (0) n,(0) U, U,T (2),n (2),n
—" -G w —
Yirds itk y bord by | CignmGi | Tidard wdach
At Az Ay Ay



a good discretization of the incompressible limit equations (4.11)) and the scheme (4.50) is
APl
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4.5 Numerical Results

We validate the and numerical schemes in this section, with an interest in the AP
and the [SP| property of both schemes. Experiments are chosen for the isentropic Euler
equations with and without gravitational source term. Note that in the absence of the
gravitational source term, the scheme reduces to the [APl scheme developed by Goudon et
al. [34]. As in [34], we choose a = £ and [ = 0 in the definition of a(¢) for all numerical

experiments.

4.5.1 test cases
4.5.1.1 Riemann problem
To validate the robustness of the numerical scheme, we extract from [34] a Riemann

problem for different values of €. The initial conditions are

14+¢? if 2<0.5,
1 if x> 0.5,

p(z,0) =

l—e¢ if 2<05,
u(z,0) =
1+e¢e if x> 0.5,

The pressure is given by p(p) = Ap” with A = 1 and v = 2. The solution is computed along
the interval [0, 1] over 200 grid points for §t = Sdx, with 8 = 0.2,0.1 or 0.01. To test the
AP property of the scheme, three differenet cases for different values of ¢ are considered.
The density and the velocity are illustrated at the final time 7' = 0.1 for ¢ = 1/0.99 and
B = 0.2 in figure 4.2, at the final time 7" = 0.05 for e = v/0.1 and 8 = 0.1 in figure ,
and at the final time 7" = 0.007 for ¢ = +/0.001 and 8 = 0.01 in figure 4.4 Note that
in the cases where ¢ is small (¢ = V0.1 or \/W), the [AP] scheme gives relevant results
for § = 0.2, while explicit scheme simply returns negative density. By adjusting [, the
[AP] scheme gives better results, and the explicit scheme returns positive density. For more
details about the comparison, please refer to section 3.1 in [34]. The plots are in prefect

match with the ones in the Literature. The solution can still be captured as € gets smaller

which proves the [AP] property of the Dl scheme ([4.33])-(4.34)).
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Figure 4.2: Riemann problem: density (left) and velocity (right) initially, and at the
final time Tfinal=0.1 for ¢ = v/0.99 and § = 0.2.

4.5.1.2 steady state

As proven analytically, the [AP] scheme is also SP. For this purpose, we try to simulate a
steady state solution, and prove numerically that the scheme preserves such a state. One
example of a steady state for the isentropic Euler equations with gravitational source term

18

(4.59)

With the pressure law given as p(p) = Ap” where A =1 and v = 1.4, and a gravitational
potential ¢(x) = x. At the [PDE]level, is a steady state solution. The computational
domain is the interval []0, 1] discretized over 200 grid points. We choose ¢ = 1/0.99 and
0t = Box with § = 0.01. With the knowledge that the scheme should preserve the steady
state independent of the choice of €. We run our simulations till the final time ¢ = 0.1
and compare it to the steady state solution in figure [4.5 The density plot at the final
time lies exactly on top of the initial density. The velocity error is approximately 10~ and
this error stays as it is as time increases, an indication that the scheme has reached the
numerical steady state. It is worth mentioning that no well-balancing treatment is applied
here. In other words, the [AP] schemes with their [MEX] structure fulfill the need for any

[SPI treatment. At least for the isentropic Euler equations with gravitational source term,
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Figure 4.3: Riemann problem: density (left) and velocity (right) initially, and at the
final time Tfinal=0.05 for ¢ = +/0.1 and 5 = 0.1.

the [SP property follows from the [AP] property.
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Figure 4.4: Riemann problem: density (left) and velocity (right) initially, and at the
final time Tfinal=0.007 for ¢ = +/0.001 and S = 0.01.

4.5.2 test cases
4.5.2.1 Riemann problem

An extension of the Riemann Problem is considered in this section. The initial data

are given as

14+¢e% if z<0.5,
1 if x> 0.5,

p(l‘, Y, O) =

1—¢ if 2<0.5,
u(z,y,0) =
l+e if 2> 0.5,

v(z,y,0) =0.

The flow in setup takes place in the direction of the horizontal velocity. The
computational domain is the square (0,1) x (0,1) divided into 200 x 200 grid points. A
comparison between the results and the cross sections is illustrated. The density
and the velocity are plotted at the final time 7' = 0.1 for € = v/0.99 and # = 0.2 in figure
, at the final time 7' = 0.05 for ¢ = v/0.1 and § = 0.1 in figure , and at the final time
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Figure 4.5: steady state: profile of the density (left) and the momentum (right)
initially and at the final time t = 0.1 .

T = 0.007 for € = +/0.001 and 3 = 0.01 in figure The results show the accuracy and
the robustness of the 2Dl scheme ([4.42))-(4.43)) as well as the [AP] property.
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Figure 4.6: Riemann problem: density (left) and velocity (right) initially, and at the
final time Tfinal=0.1 for € = v/0.99 and 5 = 0.2.

4.5.2.2 steady state

In this section, we test the [SP| property of the 2Dl scheme. An extension of the ID] steady

state along the y-axis is considered

o) = (1= (T o) o (4.60)
(4.61)

with zero velocity field u = 0 in the square (0,1) x (0,1), over 200x200 grid points, and
a gravitational potential ¢(z,y) = x. A direct comparison between the plots and the
cross sections is illustrated in figure [£.9] This test case proves that the RDI[AP] scheme
preserves steady states numerically without the need for any extra well-balancing, which
is a strong statement, suggesting that we can prove, so far (analytically and numerically),

for [AP] schemes for the isentropic Euler equations with gravitational source term.

4.5.2.3 translating vortex

A traveling vortex from [34] is considered in this section. The computational domain is the
square [0, 1] x [0, 1] discretized over 32x32 grid points with € = 0.8 and §t = 5 x 10~*. The
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Figure 4.7: Riemann problem: density (left) and velocity (right) initially, and at the

final time Tfinal=0.05 for ¢ = /0.1 and 5 = 0.1.

initial data are given as

2

o - )
u(z,y,0) = vy + g(r)(0.5 — y),
v(z,y,0) =11 + g(r)(z — 0.5),

with
r=A4m((z — 0.5)% + (y — 0.5)%))2,

fr) = (1.5)%5(r)(k(r) — k(m)),
g(r) = 1.5(1 + cos(r))d(r),
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Figure 4.8: Riemann problem: density (left) and velocity (right) initially, and at the
final time Tfinal=0.007 for ¢ = 1+/0.001 and S = 0.01.

The pressure law is given as p(p) = %pz and vy = 0.6,; = 0. We compare our computed

numerical solution to the exact solution,

p(z,y,t) = p(zr — vot,y — 11t,0), (4.66)
u(z,y,0) = u(x — vt,y — 11t,0), (4.67)
v(z,y,0) = v(x — vty — 11t 0). (4.68)

(4.69)

The vortex gets translated at speed (v,11), as one can see in figure [4.10, We present
initially and at the final time, the horizontal velocity in figure d.11] and the vertical velocity

in figure To avoid spurious oscillation, we set [ in definition of a(t) to 1.

4.5.2.4 stationary vortex

For our last test case, we consider a stationary vortex for the system of isentropic Euler
equations with gravitational source term. The aim is to prove that our numerical scheme
is both SPl as for a fixed ¢, the vortex is a stationary solution of the system and [AP] as
the numerical solution becomes a solution of the incompressible version of the isentropic
Euler system as € goes to zero. We take the vortex for the shallow water equations defined

in [55], and we change its initial data to fit the the rescaled shallow water equations. The
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Figure 4.9: steady state: profile of the density (left) and the momentum (right)
initially and at the final time ¢ = 0.1.

initial condistions are given as,

2
g 2 2
p<x>yat> =1- 162(1 ) — ¢($,y), U(t,l‘,y) = yel ) U(t,l’,y) = —xe

1—r2

Here 1% = 22 + %, ¢(z,y) = 0.2¢%50-7") is the gravitational potential. The pressure law
is p(p) = Ap” with A = % and v = 2. The vortex rotates in the computational domain
(—1,1) x (—1,1) with steady state boundary conditions over 32 x 32 grid points. Figure
illustrates the profile of the velocity ¢ = v/u? + v? initially and at the final time for
e =10"1,1072,1073,10~*. The significance of this test case lies in the fact that the scheme
preserves the steady state and at the same time converges as € goes to zero. The result
ensures the ability of our numerical scheme to preserve steady states and to capture the
solution as e gets smaller. This test case proves that the developed numerical scheme for

the system of isentropic Euler equations with gravitational source term is both [SP] and [AP]

4.6 Conclusion

The proof of the property at the semi-discrete level clearly depends on the pressure law
and the fact that we are in the isentropic case. An [AP] scheme for the isentropic Euler
equations is [SP] under the condition that the pressure is a function of the density and that

the latter is obtained as a solution of an elliptic equation [47].
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Figure 4.10: Translating vortex: the initial (left) and final (middle) profile of the density
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p, and a cross section (right) along y = 0.5 as a function of z — voT.
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Figure 4.11: Translating vortex: the initial (left) and final (middle) profile of the hori-
zontal velocity u, and a cross section (right) along x = 0.5 + voT as a function of y.
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Figure 4.12: Translating vortex: the initial (left) and final (middle) profile of the vertical
velocity v, and a cross section (right) along y = 0.5 as a function of x — vT.
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Figure 4.13: Steady vortex: the velocity ¢ = vu? 4+ v? initially and at the final time for
different values of € on 32 x 32 grid points.
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Chapter 5
Conclusion and Future Work

In this work we investigated the relationship between [AP] and property of a numerical
scheme for a parameterized model, such as kinetic equations and low Mach isentropic Euler
equations. In other words, we were curious about the long time behavior of a numerical
scheme, as well as its behavior as the rescaling parameter approaches zero.

The first aim of this thesis was to develop a well-balanced finite volume central scheme
for the system of Euler equations with gravitational source term using the subtraction
method, and to extend this well-balancing approach to the system of equations with
gravitational source term. Which was succefully accomplished via the subtraction method
combined with the in the case of the system of equations.

The second aim was to investigate the property of numerical schemes for kinetic mod-
els, which became of big interest due to the fact that the Euler equations can be viewed
as the limit of the Boltzmann equation. The question was to investigate under which
circumstances [AP] schemes are SP. The aim was achieved after we introduced a criterion,
emphasising that [APlschemes with a discretization that linearly depends on the Maxwellian
are also SP.

For our third aim, we were interested in projecting the relation between[AP| and [SPlschemes
for the kinetic models to fluid models. We considered the system of isentropic Euler equa-
tions as our first model. In this case, an [AP] scheme was developed and proven to have
the [SP] property under the condition that the pressure is a function of the density, and the
latter is obtained as a solution of an elliptic equation.

One interesting extension would be to look at this relation for the full low Mach Euler
equations with gravitational source term. Knowing that, in this case, the equation of state
is not just the pressure law, and the energy equation is involved. One may also try to find
a relation between the low Mach and [SP] property of the scheme under certain conditions.

To sum up, [APlschemes, discretized in a particular way, should be capable of preserving any

117



stationary solutions without any additional treatment. This holds true for kinetic models

and for hyperbolic balance laws.
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Chapter 6

Appendices

Appendix A.[AP] property of the UGKS

In this section, we provide a formal derivation of the [AP] property for the [UGKS| proposed
in - - When ¢ goes to zero, asymptotic expansions of A, B, and C' given in 3 25
read A=0(¢),B=1- qb(vai+§) +0(e),C = =1+ 0(e). The leading order term of (3.18
yields f"' = pi"*' + O(g) and we only need to show that satisfies the equation for
p in (3.14), at the discrete level. Suppose that f/* = pI* + O(¢), then

1

ST = PP+ 0G),

T % +O(e).

We deduce that the expansion of F , reads:

2

Pl + Pz+1 Piv1 — PP
F?’L 1 — — O .
T T v ( / volv > 3n, 06
Therefore,
Fig =Ly pr =200 + 01 (- L/ b0, 1)) At P
Az 3(Ax)? V| 2

(g [ ot in) 52 o)
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In the limit of & — 0, the discretization (3.17)) becomes

n—+1 n

P =g Py — 200 i 1 / e
AL 3(da2 <|V| volvoisg)dv | =5

@(/w< >>ﬁ%ﬁﬂ‘

which is a consistent discretization of the equation for p in (3.14)). Therefore, the proposed

scheme is [AP] after coupling with the discretization for S(x,t) in (3.15)).

Appendix B. [AP] property of the stationary discretization of the

parity equations-based scheme

Consider the behavior of the scheme as ¢ — 0 for a stationary discretization of the fully

space-time discretized parity equations-based scheme. Equations (3.4) and (| are then,

e Transport step:

e Relaxation step:

Consider the relaxation step as ¢ — 0,

=l =gl
So,
D
Uagli =0
W <o
v—>{_(—v
o Ax Azl
D De 1
5 p?/ v?dv =0
Ax 0
1D“De ,
3 A2 T



which is a consistent discretization of the stationary equation of the diffusion limit. Hence,

the discretization of the stationary equation is AP.

Appendix C. [AP] property of the stationary discretization of
UGKS

In this section, we provide a formal derivation of the [AP| property of the stationary dis-
cretization of the [JGKS| which results from setting p"™! = p" and f*™' = f in (3.17)—

ED).

FTL 1 Fn 1
i+5 =5
Ax =0, .
(I):L-i-l (I)?—f 1
T:§<p (|V|/¢ (v) dv’ —¢(U01+;)fi)- (2)

Formulas A, B, and C' given in are time dependent, but when ¢ goes to zero,
asymptotic expansions of A, B, and C read A = O(¢),B = 1 — qf)(UO'H_%) + 0(e),C =
—1+ O(e) which is time independent. Hence, choosing A4, B, and C as in (3.2F)), for the
stationary discretization will not affect the [AP] proof. We only need to show that
satisfies the stationary equation of the Keller-Segel equation for p at the discrete
level. Suppose that f* = pI' + O(e), then

1
T i1 = 5 (P} + Pi41) +O(e),
L1 P?-s—l_pzn
T H_l —A—x—l—O(é),
Rlgn _ Piy1 — P
\(5 T fH—% == —AZL' —|—O(€>

We deduce that the expansion of F , reads:

2

" R Pit1 — Py
F", = I e TR
e AT (/ volv ) 3ne 09
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Therefore,

Fla—FL
Az
P = 207+ i / (vo,, /)Z pi T+ P
3(Ax)? |V| 2

m/vvgb(vai_;)dv %) + O(e).

In the limit of € — 0, the discretization becomes

Piy1 — 207 + piy 1 / pi + Pt
+ | — o(vo, 1)dv | ——————
3(Az)? <|V| VU (v %) v 2

1 ny o
W (/ vﬁb(vai_l)dv) %) =0.
v 2

which is a consistent discretization of the stationary equation for p in (3.14)). Therefore, the

proposed stationary discretization is [AP] after coupling with the discretization for S(z,t)
in (3.15).
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