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Abstract

We present a well-balanced finite volume solver for the compressible Euler
equations with gravity where the approximate Riemann solver is derived us-
ing a relaxation approach. Besides the well-balanced property, the scheme is
robust with respect to the physical admissible states. Another feature of the
method is that it can maintain general stationary solutions of the hydrostatic
equilibrium up to machine precision. For the first order scheme we present a
well-balanced and positivity preserving second order extension using a modified
minmod slope limiter. To maintain the well-balanced property, we reconstruct
in equilibrium variables. Numerical examples are performed to demonstrate
the accuracy, well-balanced and positivity preserving property of the presented
scheme for up to 3 space dimensions.

Keywords Finite volume methods, well-balanced scheme, robustness, relax-
ation, Euler with gravity

1 Introduction

We consider the system of compressible Euler equations with gravity in d-space
dimensions which is given by the following set of equations

∂tρ+∇x · (ρu) = 0,

∂tρu +∇x · (ρu⊗ u + Ip) = −ρ∇xΦ,

∂tE +∇x · ((E + p)u) = −ρ〈u,∇xΦ〉.
(1.1)
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Here, ρ > 0 denotes the density, u ∈ Rd the velocity vector, p the pressure
and E = ρe+ 1

2
ρ‖u‖2 the total energy, where e > 0 is the internal energy. The

function Φ : Rd → R denotes a given gravitational potential. The pressure is
described by a general pressure law which depends on the internal energy and
specific volume τ = 1

ρ
. We require for the solution w = (ρ, ρu, E) the density

and internal energy to be positive. That means the state vector w must belong
to the set Ω =

{
w ∈ Rd+2 | ρ > 0, e > 0

}
.

The compressible Euler equations with a gravitational source term are quite
important in many applications, be it in atmospheric modelling or in astro-
physical stellar evolution. Typically in these applications is, that the solutions
are not far from a stationary solution with zero velocity. Such special solutions
are called hydrostatic equilibria. Therefore it is necessary to have a numeri-
cal method that captures those hydrostatic equilibria to machine precision, in
order to resolve the evolutions near the equilibrium even when given a coarse
mesh. Such numerical methods are called well-balanced methods.

In literature an exhaustive list of papers concerning well-balanced schemes
can be found. We will shortly mention a few approaches. A wide range of
schemes are based on finite volume methods, e.g.1,2 , central schemes e.g.3 or
discontinuous Galerkin approaches, e.g.4–6 Challenging is also how the source
term is treated. It can be included into the flux function, see e.g.7,8 or left
outside, see e.g.6

All those mentioned papers have in common that they can well-balance a
certain class of equilibria, for example hydrostatic equilibria with constant en-
thalpy, see1,2 or isothermal and polytropic equilibria, see.7 Our paper presents
a method where a given arbitrary hydrostatic equilibrium is well-balanced by
a novel approach. The hydrostatic equilibrium that is chosen to well-balance
is not restricted to a certain class. To approximate correctly the physically na-
ture of the solution it is crucial that the positivity of density and total Energy
is preserved which our presented scheme provably provides.

The paper is organized as follows. Section 2 is devoted to the descrip-
tion of hydrostatic equilibria. We will utilize the time-independent nature of
stationary solutions to rewrite the derivative of the potential in terms of time-
independent functions that describe the steady-state solution. In Section 3, we
describe the Relaxation model that is used to derive an approximate Riemann
solver. We use the results from Section 2 to achieve the well-balanced property.
Section 4 is devoted to the numerical scheme which is described in a higher
dimensional setup. A Godunov-type first order scheme is given for which a
second order extension is described. It is based on linear reconstruction on
cell averages and, to keep the well-balanced property, on a transformation into
equilibrium variables.

For the resulting scheme, the main properties, which are the robustness
and the well-balancednes of the scheme, are proven in Section 5. It is fol-
lowed by a section with numerical results to validate the main properties given
in Section 5. We start with the well-balancedness by calculating isothermal,
polytropic and a general stationary equilibrium and give the L1-error. To show
the accuracy of the second order scheme, we consider two analytical solutions
of the Euler equations with gravity. One is already known from literature6
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and a novel three dimensional one derived from an isothermal approach. Ad-
ditionally, the convergence of the source term is shown by balancing a general
stationary state against an isothermal equilibrium. We also perform perturba-
tion test cases like a Rayleigh-Taylor instability9 and a perturbation in pressure
upon a hydrostatic equilibrium.

To demonstrate the positivity preserving property, we perform a double
rarefraction test based on an isothermal setting similar to the Einfeldt rar-
efraction test.10

A section of conclusion completes this paper.

2 Hydrostatic states

In the following, we will focus on steady states at rest, which are solutions of

u = 0, (2.1)

∇xp = −ρ∇xΦ. (2.2)

Let a hydrostatic stationary solution be given through ū, ρ̄ and p̄. Then ρ̄ and
p̄ are time-independent. Following,11 we can write the hydrostatic solution as
just space dependent functions

ρ̄ = α(x) and p̄ = β(x). (2.3)

Since the density and the pressure are strictly positive, we also require α, β > 0.
These functions must satisfy the hydrostatic equation (2.2) which leads to

∇xβ(x) = −α(x)∇xΦ(x). (2.4)

Using this relation, we can find the following expression for the gradient of the
gravitational potential

∇xΦ(x) = −∇xβ(x)

α(x)
. (2.5)

In the following, we will consider the hydrostatic equation with the rewritten
potential gradient

∇xp = ρ
∇xβ

α
. (2.6)

For illustration we give some examples how the functions α and β can be found
for an isothermal and polytropic equilibrium.

2.1 Isothermal atmosphere

Using the ideal gas law p = ρRT and the isothermal condition T = Tc = const.,
equation (2.2) has an analytical solution given by

p̄(x) = pc exp

(
−Φ(x)

RTc

)
, (2.7)
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with pc = ρcRTc. The functions α, β are then given by

α(x) = ρc exp

(
−Φ(x)

RTc

)
, (2.8)

β(x) = pc exp

(
−Φ(x)

RTc

)
. (2.9)

2.2 Polytropic atmosphere

The polytropic atmosphere is characterized by the relation p̄ = sρ̄ν , where s, ν
are positive constants and ν > 1. Inserting the polytropic relation into (2.2)
and differentiation gives

sνρ̄ν−2∇xρ̄ = ∇xΦ. (2.10)

Integrating this equation and rewriting leads to

ρ̄(x) = ρc

(
1 +

ν − 1

sνρν−1
c

(Φc − Φ(x))

) 1
ν−1

. (2.11)

Thus the functions α, β are given by

α(x) = ρc

[
1 +

ν − 1

sνρν−1
c

(Φc − Φ(x))

]1/(ν−1)

, (2.12)

β(x) = s α(x)ν . (2.13)

3 Relaxation model

We consider the following relaxation model, for simplicity in one spatial direc-
tion, as derived in.7

∂tρ+ ∂x1ρu1 = 0,

∂tρu1 + ∂x1(ρu
2
1 + π) = −ρ ∂x1Z,

∂tρu2 + ∂x1(ρu1u2) = 0,

∂tρu3 + ∂x1(ρu1u3) = 0,

∂tE + ∂x1(E + π)u1 = −ρ u1∂x1Z,

∂tρπ + ∂x1(ρπ + a2)u1 =
ρ

ε
(p(τ, e)− π),

∂tρZ + ∂x1ρZu1 =
ρ

ε
(Φ− Z).

(3.1)

The pressure is approximated by a new variable π following the Suliciu relax-
ation approach described in,12 where a > 0 denotes the relaxation parameter.
Additionally, the potential Φ is approximated by a new variable Z which is
transported with velocity u1.

Analogously to (1.1), we define the state vector W = (ρ, ρu, E, ρπ, ρZ)
which belongs to ΩW =

{
W ∈ R4+d, ρ > 0, e > 0

}
. For a given gravity function

Φ, an relaxation equilibrium state for model (3.1) is defined by

W eq = (ρ, ρu, E, ρp(τ, e), ρΦ)T . (3.2)
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In the following, we sum up the properties of the model (3.1). A more detailed
description can be found in.7,12 The eigenvalues of the system in primitive
variables are λ± = u1± a

ρ
and λu = u1, where the eigenvalue λu has multiplicity

five. One finds the fields associated to the eigenvalues are linearly degenerate
and the Riemann invariants with respect to λ± are

I±1 = u1 ±
a

ρ
, I±2 = π ∓ au, I±3 = e− π2

2a2
, I±4 = Z, I±5,6 = u2,3 (3.3)

and with respect to λu

Iu = u1. (3.4)

Let us consider as initial data a Riemann problem at x1 = 0 with two
constant values WL,WR which are separated by a discontinuity at x1 = 0

W0(x1) =

{
WL x1 < 0

WR x1 > 0.
(3.5)

The solution consists of four constant states separated by contact discontinu-
ities and has the following structure

WR

(x1

t
;WL,WR

)
=


WL

x
t
< λ−

W ∗
L λ− < x1

t
< λu

W ∗
R λu < x1

t
< λ+

WR λ+ < x1
t

, (3.6)

where W ∗
L,W

∗
R denote the intermediate states. The resulting Riemann problem

consists of 2(4 + d) unknowns, 4 + d for each intermediate state W ∗
L,R. To

solve the Riemann problem 2(4 + d) relations are needed but one obtains just
2(3 + d) + 1 relations from the Riemann invariants (3.3) and (3.4). This leaves
us with one degree of freedom to choose the missing relation such that the
resulting scheme has the well-balanced property.

In relaxation variables, the hydrostatic equilibrium (2.2) in x1 direction is
given by

∂x1π = −ρ∂x1Z. (3.7)

Let

π∗R − π∗L = S (3.8)

be a discretization of (3.7), where S is a discretization of the source term.
Using this relation in addition to the relations gained from the Riemann

invariants, the intermediate states W ∗
L,R can be determined. They are given
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by

1

ρ∗L
=

1

ρL
+

1

a
(u∗ − uL) ,

1

ρ∗R
=

1

ρR
+

1

a
(uR − u∗) , (3.9)

u∗ = u∗L = u∗R =
1

2
(uL + uR)− 1

2a

(
πR − πL − S

)
, (3.10)

π∗L = πL + a(uL − u∗), π∗R = πR + a(u∗ − uR), (3.11)

e∗L = eL +
1

2a2

(
π∗L

2 − πL2
)
, e∗R = eR +

1

2a2

(
π∗R

2 − πR2
)
, (3.12)

Z∗L = ZL, Z
∗
R = ZR. (3.13)

For more details on the computations see.7

Thus, the Riemann problem of the relaxation system completed by relation
(3.8) has a unique solution of the form (3.6). An alternative approach which
leads to the same approximate Riemann solver can be found in.13

Now it remains to give an explicit form of the source term S. We choose
the following definition

S(WL,WR) =

(
ρR
αR

βR −
ρL
αL
βL

)
− 1

2

(
ρR
αR
− ρL
αL

)
(βR + βL). (3.14)

This formula can be derived by partial integration and Taylor expansion up to
O(∆x3).

The following result shows the well-balanced property of the defined ap-
proximative Riemann solver.

Lemma 1 Let WL,WR be given by

u = 0,
ρL,R
αL,R

= const.,
pL,R
βL,R

= const.. (3.15)

Then follows for the intermediate states W ∗
L = WL and W ∗

R = WR. That
means the approximate Riemann solver is at rest.

Proof. Let wL, wR be given satisfying (3.15). If u∗ = 0 we have from the
eqs. (3.9) and (3.11) to (3.13) together with uL,R = 0 that W ∗

L = WL and
W ∗
R = WR and thus (3.15) is fulfilled for weq(x

t
;wL, wR). It remains to show,

that u∗ = 0. In equilibrium we have ρR
αR
− ρL

αL
= 0,

ρL,R
αL,R

= 1 and the given

formula for S simplifies to

S =
ρR
αR

βR −
ρL
αL
βL = βR − βL = πR − πL.

Since πR−πL = S all terms on the right side in equation (3.10) vanish and we
get u∗ = 0.

We want to conclude this section by mentioning some additional properties
of the above defined Riemann solver following.7

Lemma 2 Given initial data wL, wR ∈ Ω, then for the relaxation parameter a
large enough there is weq(x

t
;wL, wR) ∈ Ω; i.e the approximate Riemann solver

is robust with respect to the positivity of density ρ and internal energy e.
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Proof. The positivity of the density ρ∗L,R follows directly from the order
of the eigenvalues uL − a

ρL
< u∗ from which we get uL − u∗ < a

ρL
. Using the

Riemann invariant u− a
ρ

we have

1

ρ∗L
=

1

ρL
+

1

a
(u∗ − uL) >

1

ρL
− 1

ρL
= 0.

The positivity of ρ∗R can be shown analogously.
For the positivity of the internal energy we have

e∗L = eL+
1

8a2
(3πL+πR−S)(πR−πL−S)+

1

4a
(πR+πL−S)(uL−uR)+

1

8
(uL+uR)2.

This formula contains only positive terms or terms which can be controlled if
a is chosen sufficiently large. For e∗R there can be found a similar formula.

Remark 3 Let ∂tρF (η) + ∂xF (η)u ≤ 0 an entropy inequality for the Euler
equations with gravity, where η(τ, e) denotes a specific entropy. Then the ap-
proximate Riemann solver is consistent with the entropy inequality. This fol-
lows directly from Theorem 8 from,7 since the given proof there is independent
of the source term and thus it can be directly applied here.

4 Numerical scheme

In this section, we describe the numerical scheme associated with the approxi-
mative Riemann solver developed above. Consider at first the general form of
the Euler equations (1.1) as

wt +∇x · f(w) = S(w). (4.1)

Furthermore consider the relaxation system derived in section 3 as

Wt +∇x · F (W ) = S(W ) +
1

ε
R(W ), (4.2)

where we can decompose the flux function of the relaxation system as

F =

(
F1

F2

)
,

F1 =


ρu1 ... ρud

ρu2
1 + π ... ρu1ud
...

. . .
...

ρu1ud ... ρu2
d + π

u1(E + π) ... ud(E + π)

 ,

F2 =

(
ρu1π + a2u1 ... ρudπ + a2ud

ρu1Z ... ρudZ

)
.

(4.3)

We would like to note that the suggested relaxation system is consistent with
(1.1) in the way that F1(W eq) = f(w).
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For the space discretization we construct a cartesian mesh by defining a
family of stepsizes ∆xi for i ∈ {1, ..., d} for each dimension and from that a
family of points

xI = [x1,I1 , ..., xd,Id ] = [x1,0 + I1∆x1, ..., xd,0 + Id∆xd], (4.4)

where I ∈ I is a multi-index defined as I = [I1, ...., Id]. To simplify notations
we further define

I(i, k) = [I1, ..., Ii + k, ..., Id]. (4.5)

With this, we define the cells

CI = [x1,I(1,− 1
2

), x1,I(1, 1
2

)]× ...× [xd,I(d,− 1
2

), xd,I(d, 1
2

)]. (4.6)

The time discretization on the interval [0, T ] is given by tn+1 = tn + ∆t where
∆t > 0 denotes the length of the time step restricted by a CFL condition. As
standard in the finite volume setting, we compute approximations of the cells
averages

wnI =
1

Πd
i=1∆xi

∫
CI

w(x, tn)dx (4.7)

Furthermore we consider data to be in a hydrostatic equilibrium when

uI = 0, ρI = αI , pI = βI (4.8)

holds for all I ∈ I.

4.1 First order scheme

As standard in a finite volume scheme, we find after integration of (4.1) over
the cell CI and over the time intervall [tn, tn + ∆t], the evolution of the data
as

wn+1
I = wnI −∆t

d∑
i=1

1

∆xi
ni ·

(
F+
I(i,− 1

2
)
− F−

I(i, 1
2

)

)
, (4.9)

where F denotes the numerical flux and ni the i − th unit vector. As in a
Godunov-type scheme, the fluxes are computed by considering the Riemann
problem at the cell interfaces. In our case, we specifically use the relaxation
system (4.2). Therefore we consider the Riemann problem as

Wt+Fi,xi = Si,

W0(xi) =

{
W eq
I (wI) if xi < 0

W eq
I(i,1)(wI(i,1)) if xi > 0

,
(4.10)

where Fi denotes the i− th row of F and Si = (0, ρni�∇xΦ, ρ〈u,ni�∇xΦ〉)T
evaluated over the interface between the cells CI and CI(i,1). Given (3.6), we
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define the numerical fluxes as follows

(F−
I(i, 1

2
)
, F+

I(i, 1
2

)
) =



(ni · F1(WL),ni · F1(WL) + SI(i, 1
2

)) if λ− > 0

(ni · F1(W ∗
L),ni · F1(W ∗

L) + SI(i, 1
2

)) if λu > 0 > λ−

(ni · F1(W ∗
L),ni · F1(W ∗

R)) if λu = 0

(ni · F1(W ∗
R)− SI(i, 1

2
),ni · F1(W ∗

R)) if λ+ > 0 > λu

(ni · F1(WR)− SI(i, 1
2

),ni · F1(WR)) if λ+ < 0

,

(4.11)
where SI(i, 1

2
) = (0,niSI(i, 1

2
), λ

uSI(i, 1
2

))
T and SI(i, 1

2
) = S(WI ,WI(i,1)) .

It should be remarked, that in general F−
I(i, 1

2
)
6= F+

I(i, 1
2

)
, since we include

the source term into the flux definition. Moreover we are only advancing the
physical variables and do not consider the update on the relaxation variables
since we consider the initial condition to be at the relaxation equilibrium.

4.2 Second order in space

Concerning the spatial order, we extend the first order scheme to second
order by constructing piecewise linear functions in the primitive variables
wp = (ρ,u, p). We make use of the structure of the cartesian mesh and recon-
struct along each dimension separately. Thus, we consider a linear function in
xi in the i− th spatial dimension as

wpI,i(xi) = wpI + σI,i(xi − xi,Ii), (4.12)

where σI,i ∈ Rd+2. The slopes σI,i are computed from the neighbouring cell
along that dimension, i.e.

σI,i = limiter(wpI(i,−1), w
p
I , w

p
I(i,1)). (4.13)

The function limiter can be any consistent limiter in the sense that from

wpI(i,−1) = wpI = wpI(i,1) it follows σI,i = 0, (4.14)

where (4.14) is to be understood component-wise.
In order to derive a well-balanced scheme, we choose to modify this pro-

cedure by adjusting the reconstruction in pressure. We define the following
transformation

qI,I(i,−1) = pI(i,−1) + SI(i,− 1
2

),

qI,I = pI ,

qI,I(i,1) = pI(i,1) − SI(i, 1
2

),

(4.15)

and with this the set w̄pI,i = (ρ,u, q). We would like to emphasize that this
new set has to be computed for each stencil on which the reconstruction is
considered.

Then the interface values are computed as

wp,∓I,i = w̄p,∓I,i = wpI ± σI,i
∆xi

2
. (4.16)
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The initial condition for the Riemann problem at the interface I(i, 1
2
) is then

defined as

W0(xi) =

{
W eq(wp,−I,i ) if xi < 0

W eq(wp,+I(i,1),i) if xi > 0
(4.17)

and
SI(i, 1

2
) = S(W eq

I ,W
eq
I(i,1)). (4.18)

Remark 4 From the reprojection in (4.16) we see that when we compute a
slope for the new values q we are in fact finding a slope for the pressure since
qI,I and pI coincide on the cell CI .

Remark 5 For the well balance property it is crucial that the source term, as
denoted in equation (4) for the source discretization, is evaluated using the cell
average values.

We would like to emphasize a crucial property of the new reconstruction
in the following Lemma.

Lemma 6 Let the initial data be given in hydrostatic equilibrium (4.8) for all
I ∈ I. Then after applying the reconstruction (4.12) - (4.16) we have

u∓I,i = 0, p∓I,i = pI . (4.19)

Proof. The reconstruction of the velocities follows from the consistency
of the limiter (4.14). We now want to analyse the reconstruction in q. Given
(4.15) and (3.14), we compute the pressure transformation

qI,I(i,−1) = pI(i,−1) + SI(i,− 1
2

)

= pI(i,−1) +

(
ρI
αI
βI −

ρI(i,−1)

αI(i,−1)

βI(i,−1)

)
− 1

2

(
ρI
αI
−
ρI(i,−1)

αI(i,−1)

)
(βI + βI(i,−1))

= pI(i,−1) +
(
βI − βI(i,−1)

)
= pI .

(4.20)

Analogously we get qI,I(i,1) = pI . Therefore the result follows again from the
consistency of the applied limiter (4.14).

4.3 Second order in time

We follow the lines of Berthon, see,14 and consider the first order time update
formula (4.9) as

wn+1
I = wnI −∆tH(wnI). (4.21)

Based on this, we construct the following two stage time integration

w̄I = wnI −∆t1H(wnI),

¯̄wI = w̄I −∆t2H(w̄I),

wn+1
I = wnI (1− γ) + γ ¯̄wI ,

(4.22)
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where

γ =
2∆t1∆t2

(∆t1 + ∆t2)2
.

The total time increment is given by

∆t =
2∆t1∆t2

∆t1 + ∆t2
(4.23)

Remark 7 This time integrator has the advantage that the CFL criteria can
be met for every single stage independently and the total time increment is a
result of the possibly different increments in the single stages. Moreover it is
straightforward to see that γ ∈ (0, 1). This makes the final update a convex
combination of the values wnI and ¯̄wI .

5 Properties of the numerical scheme

In this section we would like to state the central properties of the first and
second order scheme derived above.

Theorem 8 Let the initial data be given in a hydrostatic equilibrium (4.8) for
all I ∈ I. Then the first order scheme is well-balanced.

Proof. We know from Lemma 1 that the approximate Riemann solver at
the cell interfaces is at rest. Therefore with the definition of the numerical
fluxes (4.11) we have

F∓
I(i,± 1

2
)

= F (wI). (5.1)

Using (5.1) in the update formula (4.9) we get

wn+1
I = wnI −∆t

d∑
i=1

1

∆xi
ni ·

(
F+
I(i,− 1

2
)
− F−

I(i, 1
2

)

)
︸ ︷︷ ︸

=0

= wnI (5.2)

and thus the first order scheme is well-balanced.

Theorem 9 Let the initial data be given in a hydrostatic equilibrium (4.8) for
all I ∈ I. Then the second order scheme is well-balanced.

Proof. First, we want to address the analysis of the interface values. From
Lemma 6, we have

u∓I,i = 0, p∓I,i = pI . (5.3)

Furthermore by using the source average as defined in (4.18), we can proof
again the results of Lemma 1 and conclude that the approximate Riemann
solver stays at rest. Following the lines of the proof of Theorem 8, we con-
clude for the second order time update given by (4.22) we have the following
implication

w̄I = wnI , ¯̄wI = w̄I , ⇒ wn+1
I = wnI (5.4)

and thus the second order scheme is well-balanced.
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Theorem 10 Let wI ∈ Ω, then under the CFL condition ∆t
∆xi

max | λi | < 1
2d

the first order scheme is robust.

Proof. We begin the proof with the analysis of the special case of one spatial
dimension. Then the update (4.9) can be rewritten as

wn+1
I =

1

∆x1

∫ xI

x
I(1,− 1

2 )

W
(ρ,ρu,E)
R

( x

tn+1
,WI(1,−1),WI

)
dx

+

∫ x
I(1, 12 )

xI

W
(ρ,ρu,E)
R

( x

tn+1
,WI ,WI(1,1)

)
dx

)
, (5.5)

see also.7 We know that WR(x
t
, WI(1,−1),WI),WR(x

t
,WI ,WI(1,1)) ∈ Ω from

Lemma 2 and by the convexity of Ω and (5.5) we have wn+1
I ∈ Ω. Now we

extend the analysis to higher space dimensions. For this we can rewrite the
update formula (4.9) as

wn+1
I = wnI −∆t

d∑
i=1

1

∆xi
ni ·

(
F+
I(i,− 1

2
)
− F−

I(i, 1
2

)

)
=

1

d

d∑
i=1

[
wnI −

d∆t

∆xi
ni ·

(
F+
I(i,− 1

2
)
− F−

I(i, 1
2

)

)]
︸ ︷︷ ︸

(5.5)
∈ Ω

(5.6)

under the CFL condition 1
2d

. Therefore by convexity of (5.6), we have wn+1
I ∈

Ω.
Now we would like to tackle the issue of the robustness for the second order

method. If a reconstruction in conservative variables is applied, then for the
robustness it is sufficient to check the robustness of the reconstructed states
at the interface, see Bouchut.15 However we decide to reconstruct in primitive
variables. In this case we can use the results of Berthon14 in order to ensure
the robustness. We give the following Theorem as a summary of the work in14

within our context.

Theorem 11 Let wI ∈ Ω, then under the CFL condition ∆t
∆xi

max | λi | < 1
3

1
2d

the second order scheme is robust.

Proof. The proof is a straightforward application of the results proven in
section 3.1 in.14

6 Numerical results

To illustrate the properties presented in Section 5, we present several numerical
experiments. In all numerical experiments performed with the second order
scheme, we use the minmod limiter defined as

minmod(x, y) =


min(x, y) if x, y ≥ 0

max(x, y) if x, y ≤ 0

0 otherwise

(6.1)
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and apply the slope limiting from14 to enusure the robustness of the scheme.
All computations are carried out on double precision and errors are given in
the L1-norm.

6.1 Well-balanced tests

For the well-balanced tests, we consider different stationary solutions in one,
two and three space dimensions using the second order scheme. The computa-
tions are performed on a uniform grid on the domain [0, 1]d, where d denotes
the number of dimensions, up to a final time Tf = 1.0.

As a first example, we consider a isothermal hydrostatic atmosphere in
three dimensions, see Section 2.1, with Φ(x) = 1

2
(x2

1 + x2
2 + x2

3).
Then a polytropic atmosphere in two space dimensions according to Section

2.2 with Φ(x) = x1 + x2 is considered.
Next, we consider a non-polytropic and non-isothermal stationary state

with the potential Φ(x) = −
∑d

j=1 sin(2πxj) on the domain [0, 1]d with periodic
boundary conditions. A steady state solution for this potential is given by

ρ(x) = cρ − 2 Φ(x), (6.2)

u = 0, (6.3)

p(x) = cp − cρ Φ(x)− 1

2

d∑
j=1

cos(4πxj) +
d∑

i,j=1,j>i

sin(2πxi) sin(2πxj). (6.4)

For this general stationary state calculations are performed in one, two
and three space dimensions. It can be seen from Tables 2, 3 and 4 that the
stationary states are preserved on machine precision.

6.2 Accuracy

6.2.1 Source term

However the equilibrium solution (6.2) can be preserved on machine precision,
we want to balance it against an isothermal equilibrium using the first order
scheme to demonstrate the accuracy of the source term discretization. For
the given discretization S one finds with a straightforward computation using
Taylor expansions that pR − pL = S +O(∆x3).

From Table 1, we see that the first order scheme with S converges with
order 2. This loss of one order of accuracy can be explained that the source
term is included into the flux function, see (4.11), which leads to the reduce of
accuracy.

6.2.2 Exact solutions

To demonstrate that the second order extension of the first order scheme has
the expected accuracy, we compare the numerical solution to an exact solution

13



of the Euler equations with gravity. An exact solution of (1.1) is given by

ρ(x, t) = exp

(
1

RT

(
1

2

d∑
i=1

u2
i −

d∑
i=1

κi
ηi

cos(ηit)Φxi − Φ

))
,

ui(t) = κi sin(ηit),

p(x, t) = RTρ(x, t),

Φ(x) =
1

2

d∑
i=1

η2
i x

2
i ,

(6.5)

where the constants κi > 0 denote the amplitude of the velocities ui and ηi > 0
are scaling constants. The velocities are time dependent and for u = 0, (6.5)
is an isothermal hydrostatic equilibrium. We have set α and β according to
the isothermal equilibrium solution. It can be seen from Table 6 that the
convergence rates are approaching 2.

The calculations are performed on the domain [0, 1]3 starting with 25 cells
using exact boundary conditions. Another exact solution in two space dimen-
sions taken from6 is given by

ρ(x, t) = 1 + 0.2 sin(π(x1 + x2 − t(u10 + u20))),

u1(t) = u10 ,

u2(t) = u20 ,

p(x, t) = p0 + t(u10 + u20 − (x1 + x2)) + 0.2 cos(π(x1 + x2 − t(u10 + u20)))/π.

For the parameters, we choose u10 = 20, u20 = 20 and p0 = 4.5. As α and β, we
choose the density and pressure for u10 = 0 and u20 = 0 which is a stationary
state of the Euler equations with gravity. The computational domain is [0, 1]2

and the computations are performed with exact boundary conditions up to a
final time Tf = 0.01. It can be seen from Table 5 that the convergence rates
throughout all variables are around 1.9.

6.3 Evolution of small perturbations

In the following numerical test, the evolution of a small perturbation added
to an initial isothermal hydrostatic solution is investigated, see.9 The initial
values on the domain [0, 1] are given by

Φ(x) = x,

ρ(x) = exp(−Φ(x)),

p(x) = exp(−Φ(x)) + 0.01 exp(−100(x− 0.5)2),

where the pressure is perturbed by a Gauß function centered in x = 0.5. The
solution is computed at time T = 0.2 with 100 cells and a reference solution
with the second order scheme using 32000 cells. The functions α and β are
chosen according to the isothermal atmosphere from Section 2.1. In Figure
1, the pressure perturbation p(x) − p0(x) and the velocity perturbation are
plotted in comparison with the initial perturbation. One can observe, that the
second order scheme captures the peaks of the resulting waves more accurately
than the first order scheme.
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Figure 1: Perturbation in pressure (left) and in velocity (right).

6.4 Rayleigh-Taylor instability

In this test case taken from,9 a perturbation in density is put over an isothermal
solution in polar coordinates with potential Φ = r. The initial pressure and
density on the domain [−1, 1]× [−1, 1] are given by

p =

{
exp(−r) r ≤ r0

exp(− r
µ

+ r0
1−µ
µ

) r > r0

, ρ =

{
exp(−r) r ≤ ri(θ)
1
µ

exp(− r
µ

+ r0
1−µ
µ

) r > ri(θ)
,

(6.6)

where ri(θ) = r0(1 + ν cos(kθ)) and µ = exp(−r0)/ exp(−r0) + ∆ρ). This
results in a jump in density by an amount of ∆ρ at the interface defined by
r = ri whereas the pressure is continuous. Following,16 we take ∆ρ = 0.1,
η = 0.02, k = 20. For computation, we use a mesh of 240 × 240 cells. For
r < r0(1 − η) and r > r0(1 + η), the initial condition is in stable equilibrium
but due to the discontinuous density, a Rayleigh-Taylor instability develops at
the interface defined by r = ri. In Figure 2 the initial value and the solution
at times t = 2.9, 3.8 and t = 5.0 for the density are plotted. It can be seen
that instabilities occur only around the discontinuous interface since a well-
balanced scheme is used for the computations. Since a Cartesian mesh and
dimensional splitting is used in the computations, the instabilities evolve along
the coordinate axes and thus the solution is not radial.

6.5 Rarefraction test

In order to demonstrate the positivity preserving property, we follow the 1-
2-3 rarefraction test in10 where we set ρ and p isothermal with a quadratic
potential Φ(x) = 1

2
[(x1− 0.5)2 + (x2− 0.5)2] centred around x = (0.5, 0.5). As

initial velocity we set

u1 =

{
−2 for x1 < 0.5,

2 for x1 ≥ 0.5,
u2 = 0 (6.7)

The calculations were performed with the second order scheme on 100 cells on
the domain [0, 1]2 up to Tf = 0.1. We want to mention, that throughout the
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Figure 2: Rayleigh-Taylor instability in density in radial gravitational field at
times t = 0 (top left), t = 2.9 (top right), t = 3.8 (bottom left) and t = 5.0
(bottom right).

computations the limiting procedure described in14 to avoid negative values
in the reconstruction was not necessary. As can be seen from Figure 3, the
pressure, energy and density come close to 0 but remains positive throughout
the simulation.

7 Conclusion

A method for well-balancing arbitrary given hydrostatic equilibria of the com-
pressible Euler equations with gravity was presented. It has been combined
with a relaxation solver based on finite volume discretization. For this scheme,
a second order well-balanced extension was described by using linear recon-
struction and transformation of the pressure variables. The resulting scheme
was given in a higher dimensional framework. To validate the proven prop-
erties, well-balancednes, robustness and second order accuracy, numerical ex-
amples were shown. Therein a novel higher dimensional exact solution (6.5)
was used which allows to ascertain the numerical error well. An additional
feature important for physical computations is the robustness of the presented
scheme. It guarantees the positivity of density and total energy for the first
as well as for the second order scheme.
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Figure 3: Density, energy, momentum and pressure for the rarefraction test
with initial velocity u = ±2.0 at Tf = 0.1.
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50 100 200 400 800 1600

ρ 9.083e-06 1.673e-06 3.428e-07 7.632e-08 1.790e-08 4.328e-09
— 2.441 2.287 2.167 2.092 2.048

ρu 5.171e-05 1.303e-05 3.268e-06 8.182e-07 2.047e-07 5.120e-08
— 1.989 1.995 1.998 1.999 1.999

E 1.841e-05 3.433e-06 7.114e-07 1.595e-07 3.757e-08 9.106e-09
— 2.423 2.271 2.157 2.086 2.045

Table 1: L1 error and convergence rates at Tf = 1.0 balancing (6.2) with an
isothermal equilibrium using S.

N ρ ρu ρv ρw E

50 5.996E-017 1.450E-016 1.450E-016 1.438E-016 7.404E-017
150 4.930E-017 2.121E-016 2.121E-016 2.128E-016 6.426E-017

Table 2: L1 error with respect to initial values in density, momentum and
energy for isothermal equilibrium of Section 2.1 at Tf = 1.0.

N ρ ρu ρv E

100 4.796E-017 1.188E-016 1.188E-016 8.684E-017
500 1.036E-016 5.525E-016 5.525E-016 2.209E-016

Table 3: L1 error with respect to initial values in density, momentum and
energy for a polytropic equilibrium of section 2.2 at Tf = 1.0.
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N ρ ρu E

200 2.187E-016 3.742E-015 1.263E-015
1000 2.220E-018 5.149E-016 4.529E-017

N ρ ρu ρv E

100 9.294E-017 2.285E-015 2.285E-015 1.214E-015
500 5.571E-016 6.459E-015 6.459E-015 3.257E-015

N ρ ρu ρv ρw E

50 2.137E-016 3.092E-015 3.098E-015 3.032E-015 2.174E-015
150 4.930E-015 1.292E-014 1.299E-014 1.298E-014 5.000E-014

Table 4: L1 error with respect to initial values in density, momentum and
energy for a general stationary state at Tf = 1.0.
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