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Abstract

In this paper, we propose a third-order, essentially non-oscillatory, well-balanced,
unstaggered central finite volume scheme for approximating solutions of hyper-
bolic systems of balance laws. The constructed scheme deploys a non-oscillating
numerical solution on a single grid and avoids the heavy process of solving Rie-
mann problems that arise at the cell interfaces. The scheme’s main idea is to
evolve the error function defined to be the deviation between cell average val-
ues of the numerical solution of hyperbolic balance laws and a predefined steady
state of the system, as prescribed by the subtraction method. This will fulfill
C-property in the case of the shallow water equations (SWE) at the discrete
level without any additional treatment. The resulting method is a blend between
the new unstaggered version of the central weighted essentially non-oscillatory
(UCWENO) and the deviation method. The efficacy of this new method is illus-
trated when considering several rigorous test problems, including both scalar
and SWE problems. The obtained results are inline with corresponding outcomes
reported in the recent literature which confirms the robustness and efficacy of
the developed scheme.

Keywords: CWENO, Unstaggered Central Schemes, Subtraction method, Hyperbolic
balance laws, Shallow Water Equations.
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1 Introduction

Modern high-resolution schemes for approximating solutions of hyperbolic systems
of conservation laws have been developed and put into practice through extensive
research in recent years. An overview of these numerical techniques is available, e.g.,
in [1–4]. Several of those methods and others were tried on shallow water equations,
e.g. in [5–7].
Among the wide range of techniques for approximating solutions to such problems,
whether on hyperbolic balance laws in general or SWEs in specific, we focus on
unstaggered well-balanced central schemes, WENO schemes, and the subtraction
method to be used along those methods.
To avoid the time-consuming process of solving the Riemann problems arising at the
cell interfaces, Nessyahu and Tadmor (NT) [8] first proposed a non-oscillatory central
scheme for the approximate solution of general hyperbolic systems conservation laws.
This scheme deploys the numerical solution on two staggered grids in successive time
steps. Due to the slope limitation and a piecewise linear numerical solution defined at
the center of the control cells, the NT scheme is second-order accurate and prevents
spurious oscillations near discontinuities. A potential drawback of the approach is
that the numerical solution in NT schemes switches between two staggered grids at
consecutive time steps. More specifically, a synchronization problem occurs when a
treatment of the updated solution requires the previously generated solution values
obtained at previous time steps. To address this issue, a great amount of research
and work on developing and using Unstaggered Central Schemes (UCS) have been
recently developed [4, 5, 9].
High-order accuracy is crucial for capturing details in solutions to hyperbolic systems.
It can be difficult to achieve this accuracy close to discontinuities or non-smooth
areas, though. This problem was addressed by Essentially Non-Oscillatory (ENO)
schemes [1, 10], Weighted Essentially Non-Oscillatory (WENO) schemes [11, 12], and
Central WENO (CWENO) schemes [13, 14] by utilizing stencils to minimize oscilla-
tions. While ENO schemes use single stencil selection, WENO schemes use a convex
combination of all possible stencils. CWENO schemes combine both viewpoints of
WENO schemes and central schemes, being a centered version of WENO schemes.
CWENO schemes perform a centered reconstruction from cell averages, followed by
flux approximation using a continuous extension of Runge-Kutta solvers.
Numerous new schemes, such as compact CWENO reconstruction [15], were developed
using CWENO schemes as their foundation. CWENO schemes were also extended to
2D [16], coupled with a diffuse interface method under the UCNS3D framework for
underwater explosion scenarios [17], and combined with a decomposition algorithm
to construct numerical fluxes of SWEs over uneven bottoms [18]. They were also
developed and proven effective in solving complex geometric problems and enabling
simulations with multiple fluid components by extending them on mixed-element
unstructured meshes and multicomponent flows using unstructured meshes [19].
Numerous applications were solved with high-order accuracy by employing CWENO
schemes and their extensions. One such scheme is the fourth-order scheme for SWEs
on a movable bed [20].
The subtraction method, introduced and implemented in [5, 9, 21], involves evolving
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the error function, leading to obtaining the well-balanced property easily and more
efficiently, as will be shown in Section 2. The error function would be obtained by
subtracting a pre-defined stationary solution from the vector of conserved variables.
This paper presents a novel numerical scheme, the Unstaggered Central WENO with
Subtraction method (UCWENO-Sub), for solving SWE problems in one dimension.
UCWENO-Sub takes advantage of unstaggered schemes, CWENO reconstructions,
and the subtraction method. Using the introduced subtraction method, the scheme
develops an error function (∆Ū) that represents the difference between the vector of
conserved variables (Ū) and a given steady state (Ũ) instead of solving directly for
Ū . In this work, the chosen stationary solution (Ũ) is the lake at rest. UCWENO-
Sub maintains an unstaggered grid structure, simplifying data storage and reducing
communication costs. Furthermore, third-order accuracy is achieved by applying the
CWENO reconstruction method described in [14] to the error function. After the
solution update, UCWENO-Sub projects the solution from the error function onto a
staggered grid at the next time step (n+1) and then back onto the original unstag-
gered grid, preserving the unstaggered property.
This paper is organized as follows. Section 2 details the UCWENO-Sub scheme, out-
lining its key features and implementation steps. Section 3 presents the application of
UCWENO-Sub to various benchmark problems commonly encountered in the litera-
ture. The results will be compared with those obtained using UCS-Sub (Unstaggered
Central Scheme with the Subtraction method) described in [5], and other existing
schemes. Finally, Section 4 provides concluding remarks and potential future research
work.

2 UCWENO-Sub method

Among the many useful applications of hyperbolic partial differential equations
(PDEs) is the class of shallow water equations (SWEs). These equations are exten-
sively employed in the modeling of various free-surface flow phenomena, including
river dynamics, equatorial tsunamis [22], weather forecasting [23], and optimization of
hydropower generation [24].
The derivation of the SWE system is well documented in the literature (e.g., [5, 25].
Here are the governing equations that apply:

{

∂tŪ + ∂xf(Ū) = S(Ū), x ∈ D ⊂ R, t ∈ R
∗

Ū(x, 0) = Ū0(x).
(1)

In this system, Ū =

(

h
hu

)

represents the unknown vector of conserved quantities,

f(Ū) =

(

hu
hu2 + 1

2
gh2

)

denotes the flux function, and S(Ū) =

(

0
−gh db

dx

)

represents

the source term. The variables h(x, t) and u(x, t) represent the water depth and veloc-
ity, respectively, while b(x) defines the bottom topography. The constant g represents
the gravitational acceleration.
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System (1) can be explicitly written as:

(

h
hu

)

t

+





hu

hu2 + g
h2

2





x

=

(

0

−gh
db

dx

)

. (2)

Considering a system with flat bottom topography, the governing equations become
a homogeneous hyperbolic system of partial differential equations (PDEs) with real
eigenvalues and a set of linearly independent eigenvectors.
The Jacobian matrix, J(f), of this sytem if given by:

J(f) =

(

0 1
gh− u2 2u

)

. (3)

The eigenvalues and eigenvectors of the system are as follows

λ = u±
√

gh, (4)

and

r =

(

1
u±√

gh

)

.

Let Ũ represent a known steady state solution of system (2), implying

Ũt = 0. (5)

Next, we define the error variable ∆Ū by subtracting the steady state Ũ from the
unknown solution Ū of system (1,2). This gives us ∆Ū = Ū − Ũ ; consequently, Ū =
∆Ū + Ũ .
We can now utilize equation (5) and the balance law (1) in Ũ :

f
(

Ũ
)

x
= S

(

Ũ
)

. (6)

Furthermore, we substitute Ū with ∆Ū + Ũ in system (1) and apply Ũt = 0:

∆Ūt + f
(

∆Ū + Ũ
)

x
= S

(

∆Ū + Ũ
)

. (7)

Finally, we subtract equation (6) from equation (7):

∆Ūt +
[

f
(

∆Ū + Ũ
)

− f
(

Ũ
)]

x
= S

(

∆Ū
)

.
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Instead of solving system (1) at this stage, we focus on the resulting equation for the
error variable, ∆Ū . This equation forms an IVP as follows:

{

∂t∆Ū + ∂x

[

f
(

∆Ū + Ũ
)

− f
(

Ũ
)]

= S
(

∆Ū
)

, x ∈ D ⊂ R, t ∈ R
∗+

∆Ū(x, 0) = ∆Ū0(x).
(8)

For system (8), we partition the computational domain D into cells of length ∆x
sub-categorized into 2 types: Ci = [xi−1/2, xi+1/2], center xi as the control cells

and Di+1/2 = [xi, xi+1], center xi+1/2 = xi +
∆x

2
as the staggered dual cells. Let

tn+1 = tn +∆t denote the incremented time, where ∆t represents the time step to be
dynamically obtained as illustrated in section 3.
The error ∆Ūn

i = Ūn
i −Ũi is evaluated at the center, xi, of the i

th cell at time tn. This

Fig. 1: Domain D divided into control cells Ci and staggered dual cells Di+1/2

implies that the numerical solution, Ūn
i , serves as an estimation to the exact solution,

U (xi, t
n), of the system (1).

To approximate the unknown error function, ∆U(x, t), a piecewise quadratic function,
Mi(x, t), is constructed for each cell, Ci.

Mi(x, t
n) = ∆Un

i + (∆Un
i )

′

(x− xi) +
1

2
(∆Un

i )
′′

(x− xi)
2, ∀x ∈ Ci (9)

where ∆Un
i and (∆Un

i )
′

,(∆Un
i )

′′

represent the reconstructed point-values of the error
function at xi and their derivatives respectively. The process for obtaining these recon-
structed values will be addressed later in this section.
This function, Mi(x, t), aims to capture the behavior of the error within that cell.
This connection between the average value of Mi(x, t) within cell Ci and the integral
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of the exact error function is established through the following equation:

∆Ūn
i =

1

∆x

∫

Ci

Mi(x, t) dx ≈ 1

∆x

∫

Ci

∆U(x, t) dx.

Furthermore,Mi(x) leverages a convex combination of quadratic polynomials, denoted
by Qi(x). These component polynomials will be defined in detail later. Equation (10)
expresses this combination:

Mi(x, t
n) = ωi

i−1Qi−1(x) + ωi
iQi(x) + ωi

i+1Qi+1(x), (10)

where ωi
i−1, ω

i
i, and ωi

i+1 represent the weights assigned to each Qi(x) polynomial
within the combination for cell Ci. These weights will also be determined later in this
section, and

Qk(x) = ∆Ǔk +
(

∆Ǔk

)′

(x− xk) +
1

2

(

∆Ǔk

)′′

(x− xk)
2, k = i− 1, i, i+ 1. (11)

Each Qk(x) in equation (11) is a quadratic polynomial centered at a specific neigh-
boring cell. The notation k can take on values i− 1, i, or i+ 1, corresponding to the
left, center, or right neighboring cell of Ci, respectively. Similar to equation (9), these
polynomials incorporate reconstructed point-values and their derivatives of the error
function at the corresponding cell center.
We proceed by integrating the balance law (8) overDi+1/2×[tn, tn+1]. This integration
yields the following equation:

∆Ūn+1

i+1/2 = T1 + T2 + T3, (12)

where

T1 = ∆Ūn
i+1/2 =

1

∆x

∫ xi+1

xi

∆Ū(x, tn)dx,

T2 =
1

∆x

∫ tn+1

tn

(

fs(xi, t)− f̃(xi, t)
)

−
(

fs(xi+1, t)− f̃(xi+1, t)
)

dt,

T3 =
1

∆x

∫ tn+1

tn

∫ xi+1

xi

S
(

∆Ū
)

dxdt,

fs (xi, t) = f
(

∆Ūi + Ũi

)

,

f̃ (xi, t) = f
(

Ũi

)

.

Our approach utilizes stencils defined within the computational domain. Each stencil
comprises three sub-stencils, encompassing a total of five points. Within each cell,
Ci, of the stencil, we reconstruct three quadratic polynomials, denoted by Qk(x), for
k = i − 1, i, and i + 1. The key requirement is that each Qk(x) integrates to the
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Fig. 2: Stencil made of three sub-stencils for the reconstruction of Mi(x, t
n)

corresponding cell-averaged value of the error function over its respective cell:

1

∆x

∫

Ck−1

Qk(x) dx = ∆Ūk−1,

1

∆x

∫

Ck

Qk(x) dx = ∆Ūk,

1

∆x

∫

Ck+1

Qk(x) dx = ∆Ūk+1, k = i− 1, i, i+ 1.

These conditions, along with equation (11) defining the form of Qk(x), allow for the
direct determination of the reconstructed point-values, ∆Ǔ , and their derivatives:

∆Ǔk = ∆Ūk −
∆Ūk−1 − 2∆Ūk +∆Ūk+1

24
,

∆Ǔ ′

k =
∆Ūk+1 −∆Ūk−1

2∆x
,

∆Ǔ ′′

k =
∆Ūk+1 − 2∆Ūk +∆Ūk+1

∆x2
, k = i− 1, i, i+ 1. (13)

Building upon the definitions in equations (9,10,13), we can express the reconstructed

Table 1: The constants of the
UCWENO-Sub reconstruction

ci−1 ci ci+1

cell-averages 3/16 5/8 3/16
derivatives 1/6 2/3 1/6

point-values of the error function, ∆Un
i , and their derivatives as follows:

∆Ui = ωi
i−1

(

∆Ǔi−1 +∆x∆Ǔ ′

i−1 +
1

2
∆x2∆Ǔ ′′

i−1

)

+ ωi
i

(

∆Ǔi

)

+ ωi
i+1

(

∆Ǔi+1 −∆x∆Ǔ ′

i+1 +
1

2
∆x2∆Ǔ ′′

i+1

)

,
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∆U ′

i = ωi
i−1

(

∆Ǔ ′

i−1 +∆x∆Ǔ ′′

i−1

)

+ ωi
i

(

∆Ǔ ′

i

)

+ ωi
i+1

(

∆Ǔ ′

i+1 −∆x∆Ǔ ′′

i+1

)

,

∆U ′′

i = ωi
i−1

(

∆Ǔ ′′

i−1

)

+ ωi
i

(

∆Ǔ ′′

i

)

+ ωi
i+1

(

∆Ǔ ′′

i+1

)

. (14)

The weights, denoted by ωi
k, are calculated to ensure convex combination coefficients

in the high-order numerical scheme. These weights satisfy the following properties:

i+1
∑

k=i−1

ωi
k = 1, and ωi

k ≥ 0, for k = i− 1, i, i+ 1.

We achieve this by defining the weights as:

ωi
k =

αi
k

αi
i−1 + αi

i + αi
i+1

, k = i− 1, i, i+ 1,

where αi
k are positive coefficients given by:

αi
k =

ck
(

ǫ+ ISi
k

)2
, k = i− 1, i, i+ 1.

Here, ǫ is a small positive constant (typically 10−6) introduced to prevent the denom-
inator in the term αi

k from vanishing. The constants ck (detailed in table (1)) ensure
high order accuracy of the scheme, however, they do not guarantee non-oscillatory
behavior.
To address the issue of potential oscillations, we introduce smoothness indicators, ISi

k.
These indicators quantify the smoothness of the solution, Ū(x, t), within a specific
sub-stencil, Sk, k = i− 1, i, i+ 1.
The smoothness indicators are calculated using the L2-norms of the derivatives of the
reconstructed polynomials, Qk(x), within the sub-stencil:

ISi
k =

2
∑

l=1

∫ xi+1/2

xi−1/2

∆x2l−1
(

Ql
k

)2
dx, k = i− 1, i, i+ 1,

which explicitly writes as:

ISi
i−1 =

1

3

(

4∆Ū2
i−2 + 25∆Ū2

i−1 + 10∆Ū2
i −19∆Ūi−2∆Ūi−1

+ 11∆Ūi−2∆Ūi − 31∆Ūi−1∆Ūi

)

,

ISi
i =

1

3

(

4∆Ū2
i−1 + 13∆Ū2

i + 4∆Ū2
i+1 − 13∆Ūi−1∆Ūi

+ 5∆Ūi−1∆Ūi+1 − 13∆Ūi∆Ūi+1

)

,
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ISi
i+1 =

1

3

(

10∆Ū2
i + 25∆Ū2

i+1 + 4∆Ū2
i+2−31∆Ūi∆Ūi+1

+ 11∆Ūi∆Ūi+2 − 19∆Ūi+1∆Ūi+2

)

.

(15)

With the definitions for all constituent elements in the first T 1 established, we can
now proceed to its evaluation through explicit integration:

T1 = ∆Ūn
i+1/2 =

1

∆x

∫ xi+1

xi

∆Ū(x, tn)dx

=
1

∆x

(

∫ xi+1/2

xi

Mi(x) dx +

∫ xi+1

xi+1/2

Mi+1(x) dx

)

=
∆Ui +∆Ui+1

2
− ∆U ′

i+1 −∆U ′

i

8
∆x+

∆U ′′

i +∆U ′′

i+1

48
∆x2. (16)

For the second term T2, we employ Simpson’s rule for numerical integration:

T2 =
1

∆x

∫ tn+1

tn

(

fs(xi, t)− f̃(xi, t)
)

−
(

fs(xi+1, t)− f̃(xi+1, t)
)

dt

=
∆t

6∆x

([

Fn
i + 4F

n+1/2
i + Fn+1

i

]

−
[

Fn
i+1 + 4F

n+1/2
i+1 + Fn+1

i+1

])

,

(17)

where Fn
i = f

(

∆Ûn
i + Ũi

)

−f
(

Ũi

)

. Here, Fn
i represents a term evaluated at the nth

time step and cell interface xi. The time-evolved terms, ∆Ûn
i , ∆Û

n+1/2
i , and ∆Ûn+1

i ,
will be determined using a Runge-Kutta method with NCE.
The predicted values at t = n+1/2 and at t = n+1 are obtained through the following
equations:

∆Û (xi, t
n) = ∆Un

i ,

∆Û
(

xi, t
n+1/2

)

= ∆Un
i +∆t

(

d1(1/2)K
1
i + d2(1/2)K

2
i

)

,

and

∆Û
(

xi, t
n+1
)

= ∆Un
i +∆t

(

d1(1)K
1
i + d2(1)K

2
i

)

. (18)

The intermediate state variables, Kj
i , appearing in equation (18), are calculated based

on the balance law (8) and defined as:

Kj
i = −f ′

(

U j
i

)

+ f ′

(

Ũi

)

+ S
(

Y j
i

)

. (19)
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The auxiliary variables, Y j
i , used within the source term in equation (19), are defined

as:

Y j
i = ∆Ui +∆t

j−1
∑

s=1

ajsK
s
i , (20)

where a =

(

0 0
1 0

)

, specific to the chosen Runge-Kutta.

U j
i used within the pointwise reconstructed space derivative f ′ of the flux fi = f (Ui)

in equation (19) are defined as:

U j
i = Y j

i + Ũi,

where f ′ will be derived later in this section.
The source term appearing in equation (19) writes as:

S
(

Y j
i

)

=

(

0

−gY j
1,ibxi

)

,

where bx is a limiter coefficient. bx can be determined using a fourth-order MC-theta
limiter:

bx = MinMod

[

θ
25bi − 48bi−1 + 36bi−2 − 16bi−3 + 3bi−4

12∆x
,

−bi+2 + 8bi+1 − 8bi−1 + bi−2

12∆x
, θ

−3bi+4 + 16bi+3 − 36bi+2 + 48bi+1 − 25bi
12∆x

]

,

(21)

with 1 < θ < 2 and MinMod function as defined in [26].
Finally, d1 and d2 in equation (18) are defined as:

d1(α) = (d(1)− 1)α2 + α and d2(α) = d(2)α2,

where d =

(

1/2
1/2

)

, also specific to the chosen Runge-Kutta.

To find the point-wise space derivative f ′ used in equation (19), we proceed as follows.
We show the following on any dummy vector V .
We first find point-values of the flux, fi = f(V n

i ). These values are then used to
establish specific interpolation requirements:

Qk(xk−1) = fk−1,

Qk(xk) = fk,

Qk(xk+1) = fk+1, k = i− 1, i, i+ 1,

10



These requirements lead directly to the reconstructed point-values, f̌k, and their
derivatives:

f̌k = fk,

f̌ ′

k =
fk+1 − fk−1

2∆x
,

f̌ ′′

k =
fk+1 − 2fk + fk−1

∆x2
, k = i− 1, i, i+ 1.

Similar to the point-wise derivative, ∆U ′

i , we can now find the point-wise reconstruc-
tion of the space derivative, f ′

i , through a weighted average of reconstructed derivatives
and second derivatives at neighboring points:

f ′

i = ωi
i−1

(

f̌ ′

i−1 +∆xf̌ ′′

i−1

)

+ ωi
i f̌

′

i + ωi
i+1

(

f̌ ′

i+1 −∆xf̌ ′′

i+1

)

.

Note that, here, we utilize the second-row coefficients, ck, from table (1), and employ
the point-wise flux values, fi, instead of cell averages, when calculating the smoothness
indicators (15).
The third term, T3, is evaluated using Simpson’s rule for both the time and space
integrations. We begin by considering the time integral:

T3 =
1

∆x

∫ tn+1

tn

∫ xi+1

xi

S
(

∆Ū
)

dxdt

=
∆t

6∆x

[∫ xi+1

xi

S
(

∆Ûn
)

dx+

∫ xi+1

xi

S
(

∆Ûn+1/2
)

dx+

∫ xi+1

xi

S
(

∆Ûn+1
)

dx

]

.

(22)

Building upon the work in [27], we will employ a change of variable and integration
by parts for each of the three integrals mentioned above. This manipulation aims to
transform the integrals such that they involve the derivative of the water level, WL,
instead of the topography derivative. We will demonstrate the process for the first
integral, and the approach extends similarly to the remaining two.

∫ xi+1

xi

S
(

∆Ûn
)

dx = −
∫ xi+1

xi

g∆hn db

dx
dx

= −
∫ xi+1

xi

g(hn − h̃)
db

dx
dx

= −
∫ xi+1

xi

ghn db

dx
dx+

∫ xi+1

xi

gh̃
db

dx
dx.

Using the relations h = WL− b and h̃ = W̃L− b, the term on the right becomes

−
∫ xi+1

xi

g((WL)n − b)
db

dx
dx +

∫ xi+1

xi

g(W̃L− b)
db

dx
dx

11



= g
(

bi∆ŴL
n

i − bi+1∆ŴL
n

i+1

)

+ g

∫ xi+1

xi

b
d(∆ŴL

n
)

dx
dx. (23)

While analytically both integral forms are valid, the latter form involving the water
level gradient is preferable for numerical computations. This is because the water level
gradient tends to be smoother than the bed slope gradient, especially in scenarios with
irregular bottom topography or discontinuous water levels. Consequently, the latter
form is less prone to numerical errors.
Therefore, we proceed with the integration of the source term using the final form
obtained after integration by parts (Equation (23)):

g

∫ xi+1

xi

b
d(∆ŴL

n
)

dx
dx = g

[

∆x

6

(

bi

(

∆ŴL
n
)

′

i
+ 4bi+1/2

(

∆ŴL
n
)

′

i+1/2

+ bi+1

(

∆ŴL
n
)

′

i+1

)]

,

where
(

∆ŴL
n
)

′

i
can be determined using a fourth-order MC-theta limiter as shown

in equation (21).
The water level gradient at the half-point is defined as follows:

(

∆ŴL
n
)

′

i+1/2
≈ 1

∆x

(

−∆ŴL
n

i+2

24
+

27∆ŴL
n

i+1

24
− 27∆ŴL

n

i−1

24
+

∆ŴL
n

i−2

24

)

.

We can now obtain the projected error function at time tn+1 on the dual cells Di+1/2,

∆Ūn+1

i+1/2, by summing the contributions from the three terms, T1, T2, and T3:

∆Ūn+1

i+1/2 = T1 + T2 + T3.

With ∆Ūn+1

i+1/2 in hand, we need the reconstructed point-values, ∆Un+1

i+1/2, and their

derivatives. This can be achieved by repeating the steps outlined in equations (13-15),
but using ∆Ūn+1

i+1/2 as the starting point instead of ∆Ūn
i .

Finally, to obtain the evolved solution, Ūn+1

i , at the cell center, Ci, and time step,
tn+1, we employ Taylor series back projection on ∆Un+1

i+1/2. This correlation accounts

for the spatial variation within the cell. The resulting formula is shown below:

∆Un+1

i =
∆Ui−1/2 +∆Ui+1/2

2
−

∆U ′

i+1/2 −∆U ′

i−1/2

8
∆x+

∆U ′′

i−1/2 +∆U ′′

i+1/2

48
∆x2.

The final evolved solution at tn+1 on Ci can then be determined by adding the update,
∆Un+1

i , to the reference state, Ũi:

Ūn+1

i = ∆Un+1

i + Ũi.
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To accurately simulate still water (or to fulfill the C-property) in the context of shallow
water equations, one needs to apply a well-balanced numerical technique to maintain
such steady states. This means that if the initial conditions of the SWE system cor-
respond to a lake at rest, then the numerical scheme should capture this steady state
at any time during the simulations; this means that the water depth should remain
constant and still. The proposed UCWENO-Sub numerical scheme achieves this key
property by perfectly fulfilling the steady states requirements at the discrete level. In
fact, we will prove that if Ūn

i is a stationary solution of system (1), Ūn
i = Ũi, (i.e.,

∆Ūn
i = 0) then Ūn+1

i , the newly generated numerical solution at time tn+1, is also a
stationary solution of system (1), so it remains unchanged over time, Ūn+1

i = Ũi, (i.e.
∆Ūn+1

i = 0). The proof is as follows:

1. In the first step we show that T1 = 0.
Using ∆Ūn

i = 0, true for any cell center xi, substitute ∆Ūl = 0, for l = k − 1, k,
and k + 1 in equation (13):

∆Ǔk = ∆Ūk − ∆Ūk−1 − 2∆Ūk +∆Ūk+1

24
= 0,

∆Ǔ ′

k =
∆Ūk+1 −∆Ūk−1

2∆x
= 0,

∆Ǔ ′′

k =
∆Ūk+1 − 2∆Ūk +∆Ūk+1

∆x2
= 0.

Using those results, substitute ∆Ǔl = 0, ∆Ǔ ′

l = 0, and ∆Ǔ ′′

l = 0 for l = i − 1, i,
and i+ 1 in equation (14):

∆Ui = ωi
i−1

(

∆Ǔi−1 +∆x∆Ǔ ′

i−1 +
1

2
∆x2∆Ǔ ′′

i−1

)

+ ωi
i

(

∆Ǔi

)

+ ωi
i+1

(

∆Ǔi+1 −∆x∆Ǔ ′

i+1 +
1

2
∆x2∆Ǔ ′′

i+1

)

= 0,

∆U ′

i = ωi
i−1

(

∆Ǔ ′

i−1 +∆x∆Ǔ ′′

i−1

)

+ ωi
i

(

∆Ǔ ′

i

)

+ ωi
i+1

(

∆Ǔ ′

i+1 −∆x∆Ǔ ′′

i+1

)

= 0,

∆U ′′

i = ωi
i−1

(

∆Ǔ ′′

i−1

)

+ ωi
i

(

∆Ǔ ′′

i

)

+ ωi
i+1

(

∆Ǔ ′′

i+1

)

= 0.

Using those results, substitute ∆Ul = 0, ∆U ′

l = 0, and ∆U ′′

l = 0, fr l = i − 1, i,
and i+ 1 in equation (16):

T1 =
∆Ui +∆Ui+1

2
− ∆U ′

i+1 −∆U ′

i

8
∆x+

∆U ′′

i +∆U ′′

i+1

48
∆x2

= 0.

2. Using ∆Un
i = 0 and equations (17,18,19,20), we get T2 = 0.

3. Using equation (22), we get T3 = 0.
4. Finally we deduce that ∆Ūn+1

i+1/2 = T1 + T2 + T3 = 0.

13



-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

x

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

W
a

te
r 

le
v
e

l 
W

L

Initial condition

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

x

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

W
a

te
r 

le
v
e

l 
W

L

Analytical solution

UCWENO-Sub

Fig. 3: Linear advection problem 1: Initial profile at t0 = 0 (left) and profile acquired
analytically versus UCWENO-Sub at tf = 10 (right)

Naturally, we get ∆Un+1
i = 0, and then the lake at rest is preserved and the C-property

is possessed.

3 Numerical Experiments

In this section, we apply the numerical method we presented in this paper and solve
classical problems in SWEs. The developed numerical scheme is first validated and
we confirm its order of convergence following a grid convergence approach; then we
validate its well-balanced characteristic at the discrete level.

3.1 Scalar equation problems

We first start with scalar equations previously discussed in [14] as test problems to
check the performance of our scheme. In all the scalar test problems, the boundary
conditions, BCs, are periodic. In the advection problem, the time step is ∆t = 0.9×
(3/7)×∆x; whereas in Burger’s equation problem, the time step is ∆t = 0.66×(3/7)×
∆x as per the conditions stated in [14].

3.1.1 Advection test 1

The first test problem is a linear advection.

Ut + Ux = 0.

[−1, 1] is the computational domain, and 200 grid points are used to partition it into
equal-sized subintervals. The numerical solution is resolved at the final time tf = 10.
The initial condition, IC, is sinusoidal defined by U(x, t = 0) = sin(πx).

The profile of the IC at t0 = 0 is displayed in figure (3) to the left, while the gen-
erated solution acquired at tf both analytically and utilizing UCWENO-Sub scheme
is presented in figure (3) to the right. The obtained findings reveal a great fit between
our scheme and the analytical solution. The order of convergence obtained by following

14



grid refinements is illustrated in table (2); the obtained results reveal that developed
numerical scheme is third-order accurate.

Table 2: Linear advection
1, U0 = sin(πx): L1 error
and order of convergence

N L1 error h L1 order

200 3.21e− 06

400 3.80e− 07 3.08
800 4.67e− 08 3.02

3.1.2 Burgers equation problem

The fourth test problem is a Burgers equation problem as discussed in [14]:

Ut +

(

1

2
U2

)

x

= 0.

80 points are used to divide the domain defined by [−1, 1]. The numerical solution
is found at t = 0.5 and then at tf = 1.5. Findings obtained at t = 0.5 are used
for the computation of the convergence rate, while findings obtained at time t = 1.5
are used for the shock capturing test (the shock develops at t = 2/π). The IC is

U(x, t = 0) = 1 +
1

2
sin(πx).
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Fig. 4: Burgers equation problem: Initial profile at t0 = 0

Figure (4) shows the initial data profile at t0 = 0. Figure (5) shows the profile
acquired at tf using CWENO scheme [14] versus UCWENO-Sub scheme developed in
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Fig. 5: Burgers equation problem: Profile acquired using CWENO versus UCWENO-
Sub at tf = 0.5 (left) and at tf = 1.5 after the formation of the shock (right)

this paper. The reported findings show a perfect match between the results. Table 3
shows the computed order of convergence obtained prior to the formation of the shock
wave and confirms the third order of accuracy of the developed scheme.

Table 3: Burgers equation
problem: L1 error and order
of convergence prior to the
formation of the shock wave

N L1 error h L1 order

80 5.73e− 07

160 6.96e− 08 3.04
320 8.59e− 09 3.02

3.2 System of equations: Shallow water system of equations

Setting F (∆Ū) = fs − f̃ , the PDE in (8) can be expressed as follows:

∆Ūt + F (∆Ū)x = S(∆Ū). (24)

Now, as explained in [28], the Jacobian matrix J(F ) =
∂F

∂∆Ū
in equation (24) can

be replaced by the Jacobian matrix J(f) =
∂f

∂Ū
given in equation (3) of system (2)

because they are equal. Accordingly the time step for each iteration of the scheme can
be defined as follows:

∆t = CFL
∆x

maxi |λi|
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Fig. 6: Lake at rest: WL0 at t0 = 0 (left) and WL acquired using UCS-Sub versus
UCWENO-Sub at tf = 1 (right)

where CFL= 0.485 and where the λi’s denote the eigenvalues of the Jacobian matrix

Ji(fi) =
∂fi

∂Ūi
over Ci as mentioned in equation (4).

In the following section, we shall address a few classical SWEs problems raised in the
literature. Our main objective is to compare the final results we get by employing
our method to ones acquired by applying UCS-Sub described in [5]. In a few other
problems, we will compare our results to ones obtained by other higher-order schemes.
As previously mentioned, the lake at rest steady state is the stationary solution Ũ to
be used:

Ũn
i =

(

h̃n
i

h̃n
i ũ

n
i

)

such that h̃n
i + bi = constant and ũn

i = 0.

3.2.1 Lake at rest problem

We examine the problem of a water flow in one dimension over varied bottom topog-
raphy. This test pertains to the C-property. The computational domain 0 ≤ x ≤ 10 is
divided using 200 equally spaced grid points. The riverbed function is defined according
to the below formula:

b(x) =



















0.5, 1 ≤ x ≤ 3,

−0.75x2 + 7.5x− 18, 4 ≤ x ≤ 6,

−|0.25x− 2|+ 0.25, 7 < x ≤ 9,

0, otherwise.

The ICs feature a lake at rest configuration with WL0 = 1 and u0 = 0. The numerical
solution is generated using UCWENO-Sub scheme at tf = 1.

Figure (6) showsWL0 at t0 = 0 (left) and showsWL acquired at tf = 1 using UCS-
Sub versus UCWENO-Sub scheme (right). The steady-state requirement is entirely
resolved by the numerical solution obtained by the UCWENO-Sub approach. This is a

17



compelling sign of the potential of the procedure to manage and capture steady-state
problems at the discrete level. The outcomes produced using UCS-Sub agree perfectly
with the numerical solution generated using UCWENO-Sub scheme.

3.2.2 Steady flow problem, variable bathymetry

We now examine steady flow across variable bathymetry that was previously examined
in [29]. We want to study the time convergence of steady flow over variable bathymetry.
We use 201 grid points to mesh the computational domain [0, 25]. The riverbed is
defined by the following function

b(x) =







1

5
− 1

20
(x− 10)

2
, 8 ≤ x ≤ 12,

0, otherwise.

We set u0 to be null and the numerical solution is generated at tf = 200. Three dis-
tinct instances are possible: transcritical without shock, transcritical with shock, and
subcritical. Based on the BCs, we observe for the:

• Subcritical flow, upstream discharge hu is 4.42 and downstream water level is 2.

• Transcritical flow without shock, discharge of inflow water from the left is 1.53
and downstream water level is imposed at 0.66 if the motion is subcritical.

• Transcritical flow with shock, upstream discharge is 0.18 and downstream water
level is 0.33.

The profile of WL0 at time t0 = 0 is depicted in figure (7). Using UCS-Sub and
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Fig. 7: Steady flow, variable bathymetry: WL0 at t0 = 0

UCWENO-Sub scheme, we generate the numerical solution at tf = 200, and we report
the results in figures (8,9) displaying the WL component in subcritical and transcriti-
cal with shock cases. Both schemes show excellent results. Again, the small difference
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Fig. 8: Steady flow, variable bathymetry; subcritical flow: WL acquired using UCS-
Sub versus UCWENO-Sub at tf = 200
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Fig. 9: Steady flow, variable bathymetry; transcritical flow with shock: WL acquired
using WENO (4th-order) versus UCS-Sub versus UCWENO-Sub at tf = 200

in the inward propagating wave in figure (9) is because UCWENO-Sub is a third-order
accurate scheme as opposed to UCS-Sub which is only second-order accurate. In figure
(9), a comparison with results from WENO scheme displayed in [30] is also shown.
Those results were obtained using WebPlotDigitizer. The presented comparisons are
generated using a fourth-order WENO scheme and third-order UCWENO-Sub scheme
and are in great agreement. In addition, we illustrate in table (4) the order of con-
vergence of the proposed method generated following mesh refinement. The reported
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results confirm the third order of convergence of the proposed numerical method. The
results shown in table (4) validate our scheme’s high-order accuracy, and the figure
shows how third-order UCWENO-Sub is scheme in better agreement with fourth-
order WENO scheme than the second-order UCS-Sub is. Fourth-order UCWENO-Sub
scheme can be easily obtained and is expected to give better approximations to ana-
lytical solutions than what we can see here with the advantage of its being easier to
implement, as we saw in the C-property possession that no further treatment for the
source term was needed.

Table 4: Steady flow, vari-
able bathymetry; subcritical
case: L1 error and order of
convergence

N L1 error h L1 order

200 7.62e− 08

400 6.93e− 09 3.46
800 6.56e− 10 3.40

3.3 1-shock and 2-shock problem

We study now a shock problem previously mentioned in [6] where they worked with a
high-order CWENO scheme. The computational domain is [−10, 10] and it features a
step bottom topography defined by

b(x) =

{

0, x ≤ 0,

1, otherwise,
(25)

while the ICs for this problem are defined

h0 =

{

4, x ≤ 0,

1, otherwise
and u0 =

{

5, x ≤ 0,

−0.9, otherwise.
(26)

Two shocks are generated by this test case, the first traveling to the left and the second
to the right. The numerical solution is resolved at tf = 1.

WL0 at t0 = 0 is depicted in figure (10) (left). In Figure (10) (right), WL
acquired using CWENO scheme versus UCWENO-Sub scheme at tf . The results
using CWENO scheme were devised using WebPlotDigitizer from [6]. One can clearly
see that the generated numerical results using UCWENO-Sub scheme are in great
agreement with the analytical solution of the problem and are a better approximation
to it than the results using CWENO scheme as the figure shows that the points
relating to UCWENO-Sub scheme are actually closer to the analytical solution than
the crosses that relate to CWENO scheme.
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Fig. 10: 1-shock and 2-shock problem: WL0 at t0 = 0 (left) and WL acquired using
CWENO versus UCWENO-Sub at tf = 1 (right)
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Fig. 11: Dam break, discontinuous bathymetry:WL0 at t0 = 0 (left) andWL acquired
using UCS-Sub versus UCWENO-Sub at tf = 15 (right)

3.3.1 Dam break problem, discontinuous bathymetry

We study the dam break over discontinuous bathymetry. The computational domain
is [0, 1500]. 600 grid points are used to partition the domain into equal-sized segments.
The numerical solution is resolved at tf = 15.
The riverbed function:

b(x) =

{

8, 375 < x < 1125,

0, otherwise,
(27)

and the ICs are

WL0 =

{

20, x < 750,

15, otherwise,
(28)

and u0 = 0.
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WL0 at t0 = 0 is depicted in figure (11) to the left. In Figure (11) to the right,
WL acquired using UCS-Sub versus UCWENO-Sub scheme at various times and at
tf , respectively. The outcomes demonstrate the two plans’ outstanding agreement.

4 Conclusion

In this paper, we proposed a new scheme for approximating solutions of hyperbolic
balance laws by combining the UCWENO scheme with the subtraction method. The
proposed scheme is third-order accurate that shapes a new unstaggered version of the
original CWENO reconstruction, while preserving a non-oscillatory characteristic. The
UCWENO scheme blends effectively with the subtraction method and yields a proce-
dure that satisfies the well-balanced property at the discrete level. In particular the
resulting method ensures the lake at rest property of shallow water equations without
any additional treatment. The proposed scheme strikes a balance between simplicity,
efficacy, and accuracy. It avoids the heavy process of solving Riemann problems at cell
interfaces, and employs the subtraction method to achieve a well-balanced property
without the need for any particular discretization of the source term. Comparisons
with other schemes on benchmark problems demonstrate that the proposed scheme
reduces effectively numerical oscillations while successfully capturing steady states at
the discrete level. Future work will concentrate on extending the scheme to account
for frictional effects, dry and wet phases on irregular topographies, and also Coriolis
forces. Two-dimensional extensions of the scheme are currently under investigations.
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