NEWSLETTER

of the Work Group Mathematical Fluid Mechanics

Newsletter no. 6 (2021)

Winnie Hartwig submitted her Master thesis

Last week Winnie Hartwig submitted her Master thesis. She studied the numerical approach by Jean-Luc Guermond, who insists that the numerical scheme should maintain all invariant domains of the multi-dimensional system of conservation law at hand. Eva Horlebein is picking up this topic at the start of her PhD thesis.

An Invariant Domain Preserving Method for Solving Hyperbolic Conservation Laws

and its Extension to higher order for the Euler Equations

1	The	Riemann problem	5
	1.1	Properties of hyperbolic conservation laws	5
	1.2	The Riemann problem	7
	1.3	The elementary wave solutions	
		1.3.1 The shock wave	8
		1.3.2 The contact discontinuity	8
		1 3 3 The rerefaction wave	9
	1.4	Some properties of the Riemann problem	10
2		Euler equations	15
			19
3	The	Riemann problem for the Euler equations	19
	3.1	Deriving a Riemann problem for the Euler equations	10
	3.2	Existence of a unique weak solution of the Riemann problem for the Euler	24
		equations	
	3.3	The solution of the Riemann problem for the Euler equations	28
	ann.	· · · · · · · · · · · · · · · · · · ·	31
4		estimation of the maximum wave speed The accurate computation of the extreme wave speeds	31
	4.1		31
		4.1.1 Riemann data with vacuum	32
		4.1.2 Riemann data without vacuum	36
	4.2	Estimation of the maximum wave speed from above	36
		4.2.1 Examining the different cases for elementary waves	43
		4.2.2 The gap condition	49
		4.2.3 The estimation algorithm for the maximum wave speed	49
_		· ++ I domoing	57
5		ariant sets and domains Invariant sets	57
	5.1	Invariant sets	57
	5.2	Invariant domains Computing an invariant set for the p–system	58
	5.3	Computing an invariant set for the p-system	
6	The	e Finite Element setting	65
7	7 The first order invariant domain preserving method		69
'	7.1	Introducing the scheme	69
	1.1	7.1.1 The initial approximation	69
			69
			71
		7.1.3 Choosing the artificial viscosity a_{ij} . Proving the invariant domain property for the first order method	75
	7.2		
			78
	7.4	The Suliciu solver violates the invariant domain property	80
	7.5	The discrete entropy inequality	88
8		ension to a high order invariant domain preserving scheme	95
			103
Summary			

Overview paper submitted with Fritz Röpke

We have submitted the paper: Edelmann, Horst, Berberich, Andrassy, Higl, Klingenberg, Röpke: "Well-balanced treatment of gravity in astrophysical fluid dynamics simulations at low Mach numbers", view the PDF of the paper.

The joint work with Fritz Röpke has been quite influential for me and the work group. Because of him, we began to study stationary preserving schemes for the Euler equations with gravity, when the mathematical community was still

concentrating on preserving stationary solutions for the shallow cold air under the influence of gravity. The bubble is a small perturbation of a stationary solution, which the scheme maintains perfectly.

A warm bubble rising in

Fritz Röpke

for the shallow water equations. Our first publications were in 2014. The collaboration with Praveen grew out of this. The list of PhD students who worked on this topic is: Markus Zenk, Wasilij Barsukow, Jonas Berberich and Andrea Thomann. That is why this astrophysics paper submitted last week, feels like a nice milestone: it summarizes some of this work.

Theresa Full begins with her master thesis

Theresa Full will begin her master thesis with us. She plans to work on the Vlasov-Poisson equation

This is Theresa Full a few years back, still in school in Schweinfurt, where she succeeded in the Math Olympiad.

Upcoming scientific conferences

I try to keep this list up-to-date. I encourage you to click the links and check, where you may want to participate.

2021:

- March 1 5: Oberwolfach: <u>Hyperbolic Balance Laws: modeling, analysis, and numerics</u>, organized among others by Remi Abgrall and Maria Lukacova, to be held hybrid
- March 1 5, <u>SIAM Conference on Computational Science and Engineering</u>, online
- -March 22- 26: <u>Kinetic Equations: From Modeling, Computation to Analysis</u>, in Marseille, France, organized by Shi Jin, to be held hybrid
- -May 24 28: <u>The Legacy of Carlo Cercignani: from Kinetic Theory to Turbulence Modeling</u> Milan, Italy, organized among others by Tommaso Ruggeri
- June 21 24: <u>SIAM Conference on Mathematical & Computational</u> Issues in the Geosciences (GS21), in Milan, to be held online
- July 2: <u>18th International Conference on Hyperbolic Problems,</u> <u>Theory, Numerics, Applications</u> Part 1 (formerly HYP 2020), one day online with lectures by Dafermos, Mon Tang and others
- July 5 9: <u>THE BOLTZMANN EQUATION: IN THE TRAIL OF TORSTEN</u> <u>CARLEMAN</u>, near Stockholm, Sweden
- July 12 16: <u>International Conference on Spectral and Higher Order Methods</u> ICOSAHOM 2020, Vienna (online only), Wasilij and myself plan to run a mini-symposium there
- fall: Special program on Numerical Methods for Nonlinear Hyperbolic PDEs; at SUSTech, Shenzhen, China: organized by Alex Kurganov (still in the planning stage)
- fall: <u>Nils-Henrik Risebro's birthday conference</u> in Oslo, Norway (still in the planning stage)

2022:

- some time in spring: <u>HIGH ORDER NONLINEAR NUMERICAL METHODS FOR EVOLUTIONARY PDEs: THEORY AND APPLICATIONS (HONOM)</u> in Braga, Portugal, organized by Raphael Loubère und Stephane Clain
- end of May: <u>Sharing Higher-order Advanced Research Know-how on Finite Volume (SHARK-FV)</u> in Portugal, organized by Raphael Loubère und Stephane Clain (still in its planning stage)
- June 20 25: HYP2022: 18th International Conference on Hyperbolic Problems, Theory, Numerics, Applications Part 2 (formerly HYP 2020), in Malaga, Spain, organized by Carlos Pares
- July 18 22, 2022: When Kinetic Theory meets Fluid Mechanics, Zürich
- Sept. 5 9, 2022: <u>10th International Conference on Numerical Methods for Multi-Material Fluid Flow (MULTIMAT 2021)</u> in Zürich, organized by Remi Abgrall