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Abstract Finite volume schemes for hyperbolic conservation laws require a
numerical intercell flux. In one spatial dimension the numerical flux can be
successfully obtained by solving (exactly or approximately) Riemann prob-
lems that are introduced at cell interfaces. This is more challenging in multiple
spatial dimensions. The active flux scheme is a finite volume scheme that con-
siders continuous reconstructions instead. The intercell flux is obtained using
additional degrees of freedom distributed along the boundary. For their time
evolution an exact evolution operator is employed, which naturally ensures
the correct direction of information propagation and provides stability. This
paper presents an implementation of active flux for the acoustic equations
on two-dimensional Cartesian grids and demonstrates its ability to simulate
discontinuous solutions with an explicit time stepping in a stable manner. Ad-
ditionally, it is shown that the active flux scheme for linear acoustics is low
Mach number compliant without the need for any fix.
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1 Introduction

This paper deals with numerical methods for conservation laws, such as the
Euler equations of ideal hydrodynamics. They express conservation of density,
momentum and energy of a compressible fluid. Numerical methods need to
reflect the conservation property, as by the Lax-Wendroff theorem only con-
servative numerical schemes are able to converge to a (weak) solution of the
equations. Cell-based methods consider a partition of space into computational
cells. A natural class of numerical schemes for conservation laws are finite vol-
ume schemes. They interpret the discrete degree of freedom in a computational
cell as the average of the dependent variable. Numerical fluxes assigned to the
boundaries of the cell automatically ensure conservativity of the method.

In one spatial dimension the numerical flux can be successfully obtained
from a so-called Riemann solver. The dependent variables are reconstructed
in a piecewise constant manner allowing for jumps at the locations of cell
interfaces. The Riemann problems that arise at cell interfaces are then solved
(see e.g. [God59]). It is often possible to solve the Riemann problem exactly,
but an approximate solution can lead to a similarly accurate scheme while
requiring less computations. Therefore approximate Riemann solvers are very
popular (e.g. [Bou04,Tor09]). Among others, relaxation (e.g. [JX95]) can be a
successful strategy to construct them.

In multiple spatial dimensions one faces additional challenges. First of all,
even approximate Riemann solvers are complicated (see e.g. [Zhe12] for ex-
act solutions to Riemann problems and e.g. [Col90] for approximate solvers).
This explains why dimensionally split methods are so popular: they consider
the Riemann problems arising at the edges of the computational cell inde-
pendently. The multi-dimensional problem is thus replaced by several one-
dimensional ones.

Additionally, the solutions to Euler equations in multiple spatial dimen-
sions exhibit a number of phenomena absent in one dimension. Particularly
prominent features are vortices, that strongly dominate realistic multi-dimen-
sional flows. In the limit of low Mach numbers, the solutions of compressible
Euler equations tend to those of incompressible Euler equations. This is a
multi-dimensional feature as well, because incompressible flows are trivial in
one spatial dimension. Many finite volume methods suffer from artefacts when
applied e.g. to the regime of low Mach number. While Riemann solvers seem
to yield very good results in one spatial dimension it is unclear whether this is
true in multiple spatial dimensions, or whether numerical methods based on
different concepts are more adequate. It has been, for instance, noticed that
the failure in the regime of low Mach number is observed even when using
exact multi-dimensional Riemann solvers ([GM04,BK17]).

It thus seems relevant to investigate alternative ways how multi-dimensional
numerical methods can be constructed. Recently, such a method has been pro-
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posed by [ER13], as an extension of a method from [VL79] for linear advection.
It has been given the name active flux. It involves a continuous reconstruc-
tion, together with pointwise degrees of freedom along the cell boundary. It
thus does not require the solution of any Riemann problem. Continuous re-
constructions are found not to stand in the way of computing discontinuous
solutions. Indeed, even schemes that employ reconstructions with jumps across
cell interfaces are mostly unable to resolve a shock wave sharply. They resolve
a shock wave by a succession of jumps. Instead, a method with a continuous
reconstruction resolves the shock wave by a continuous function with a sharp
gradient (see Figure 1). The details of the method are discussed in section 3
below.

Fig. 1 Illustration of the continuous reconstruction in the context of discontinuous solu-
tions. The figures show the solution to a Riemann problem of linear acoustics with the active
flux scheme in one spatial dimension on a grid of 100 cells. The exact solution consists of two
shock waves moving with speeds ±1. Left : Initial data and the numerical solution at time
t = 0.1. The overshoots are due to the scheme being higher order, but no limiting employed.
Right : Close-up of the solution at the location of the right shock. The solid line is the con-
tinuous reconstruction; additionally the averages and the point values at cell boundaries are
shown.

This paper aims at contributing to a deeper understanding of the active
flux method. First, a very general formulation of the method is given, that
is independent of the grid or the equations (section 3). It thus highlights the
most important features that distinguish the method from conventional finite
volume schemes. Active flux in multiple spatial dimensions has so far been in-
troduced for triangular computational cells. For certain applications triangles
might be too complicated a mesh. This paper for the first time presents an
implementation on two-dimensional Cartesian grids (section 4).

One of the objectives behind the development of the active flux method is
to improve multi-dimensional simulations by including more multi-dimensional
information in the scheme. Following [ER13], the method is applied to the
equations of linear acoustics. Linear acoustics is obtained when the Euler
equations are linearized around a constant background with no velocity. In
multiple spatial dimensions, linear acoustics cannot be reduced to some kind
of multi-dimensional advection. This makes it a valuable system in order to in-
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vestigate the performance of numerical methods in multiple spatial dimensions
(as e.g. also in [DOR10]).

The active flux scheme pursues a strategy alternative to discontinuous re-
constructions. The fact that the method does not use a Riemann solver raises
the question whether maybe it is better suited for the low Mach number limit
than Riemann solvers. Linear acoustics exhibits a low Mach number limit sim-
ilar to that of the Euler equations and there exists an efficient methodology
to study the behaviour of numerical schemes in this limit on Cartesian grids
(introduced in [Bar18a,Bar17]). Here, this methodology is extended to take
into account the boundary degrees of freedom and is applied to the active flux
scheme in section 6. It is shown that indeed, active flux is able to resolve the
low Mach number limit of linear acoustics.

2 Acoustic equations

This paper considers numerical methods for n×n systems of conservation laws
in d = 2 spatial dimensions:

∂tq +∇ · f(q) = 0 (2.1)

q : R+
0 × Rd → Rn (2.2)

f = (fx, fy) fx, fy : Rn → Rn (2.3)

Only vectors with d components are set in boldface symbols. Additionally,
indices are never denoting a derivative.

The most prominent example of a system of conservation laws are the Euler
equations

∂tρ+∇ · (ρv) = 0

∂t(ρv) +∇ · (ρv ⊗ v + p1) = 0
(2.4)

with velocity v = (u, v)T , pressure p and density ρ.
As a stepping stone towards a detailed understanding of numerical methods

for the Euler equations in multiple spatial dimensions the acoustic equations
are studied first. They are obtained as a linearization of the Euler equations
around the state of constant density and pressure and vanishing velocity (see
also e.g. [BK17]). Their symmetrized version reads

∂tp+ c∇ · v = 0,

∂tv + c∇p = 0.
(2.5)

with c > 0 the speed of sound of the background state. This system is strongly
hyperbolic in two spatial dimensions with eigenvalues {±c, 0}. It has to be
augmented by initial data

p(0,x) = p0(x) v(0,x) = v0(x) (2.6)
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and possibly boundary conditions.

The curl of the velocity is called vorticity. In the context of Euler equations,
there is great interest in methods that are able to compute reliably flows that
contain vorticity, so that the appearance of vortical structures is caused by
physics and affected as little as possible by numerical error.

For the acoustic equations vorticity is stationary:

∂t(∇× v) = 0 (2.7)

Thus, for acoustics, an interesting class of methods are those that keep a
discrete version of the vorticity exactly stationary (vorticity preserving), see
e.g. [MR01,JT06,MT09,Bar18a].

The low Mach number limit for the equations of linear acoustics is the limit
ε→ 0 of

∂tp+
c

ε
∇ · v = 0,

∂tv +
c

ε
∇p = 0.

(2.8)

It is obtained by analogy from the low Mach number limit of the Euler equa-
tions. There, the pressure gradient ∇p is rescaled as ∇pε2 . The same is done here
for acoustics, which after symmetrization yields (2.8). The interpretation of
the Mach number ε as the ratio between advective and acoustic speeds in the
setting of the Euler equations, however, is not applicable to the acoustic equa-
tions. Nevertheless this limit is found useful in the design and understanding
of low Mach number compliant schemes.

The low Mach number limit in (2.8) is the same as the limit t→∞ of the
initial value problem (2.5)–(2.6). With appropriate boundary conditions, the
long time solution is governed by the stationary states (for more details see
[Bar18a]).

Note that system (2.5) can be reduced to a wave equation for p, and a
vector wave equation

∂2t v − c2∇(∇ · v) = 0 (2.9)

for v. This latter, however, cannot be reduced to several scalar wave equations
for the components of v, unless1 ∇× v = 0.

The numerical method will make use of the exact solution to the initial
value problem (2.5)–(2.6) for non-differentiable initial data. The required (dis-
tributional) solution operator for initial data of such low regularity has been
derived in detail in [BK17]. The solution formulae contain spherical means,
that also appear in the solution of the wave equation. It is helpful to first
consider three spatial dimensions:

1 Because ∇(∇ · v)−∆v = ∇× (∇× v).
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Definition 1 (Spherical mean) The spherical mean M [f ] (x, r) of an inte-
grable function f that depends on x = (x, y, z) ∈ R3 is given by

M [f ] (x, r) =
1

4π

∮
S2

dy f(x + ry) =
1

4π

2π∫
0

dϕ

π∫
0

dϑ sinϑf (x + r · n)

(2.10)

with the outward normal vector given by

n =

sinϑ cosϕ
sinϑ sinϕ

cosϑ


This paper concentrates on the two-dimensional case, though. If f does not

depend on z, then, with s := r sinϑ, it is possible to rewrite equation 2.10 as

M 2D [f ] (x, y, r) =
1

2πr

2π∫
0

dϕ

r∫
0

dsf (x+ s cosϕ, y + s sinϕ)
s√

r2 − s2
(2.11)

In both cases, if f is polynomial, the spherical means can be evaluated
analytically. Indeed, by shifting the point of integration one is left with

M 2D [xpyq] (0, 0, r) =
1

2πr

2π∫
0

dϕ cosp ϕ sinq ϕ

r∫
0

ds
s1+p+q√
r2 − s2

(2.12)

Both integrals can easily be evaluated analytically because the angular inte-
gration bounds here are multiples of π

2 . The second integral is

r∫
0

ds
sm√
r2 − s2

=


r2m

′ π

4m′

(
2m′ − 1

m′

)
m = 2m′,m′ ∈ N

r2m
′+1 (m′)!24m

′

(2m′ + 1)!
m = 2m′ + 1,m′ ∈ N

(2.13)

In [ER13] for the initial value problem (2.5)–(2.6) the following solution
formula appears:

p(t,x) = p0(x) +

ct∫
0

dr r ·M
[
div grad p0

]
(x, r) + ct ·M

[
div u0

]
(x, ct) (2.14)

u(t,x) = u0(x) +

ct∫
0

dr r ·M
[
grad div u0

]
(x, r) + ct ·M

[
grad p0

]
(x, ct)

(2.15)



The active flux scheme on Cartesian grids and its low Mach number limit 7

These formulas are derived from the classical Poisson formula for the scalar
wave equation in second-order form [Whi11], which was used in [AGH00,
Hag15] to derive high-order finite-difference methods for the scalar problem.
For the acoustic equations in first-order form, and for the linearized Euler
equations, (2.14) was applied to the pressure, and a similar equation to the
velocity components, and employed in [ER13] to create an active flux scheme,
with vorticity treated as a source term. The full extension to vortical flows
(2.14)–(2.15) appears in [FR15], together with investigations of the active flux
method on unstructured grids, including boundary conditions and nonlinear-
ity. Finite-volume schemes based on the full extension are reported in [FG18].

For the numerical method it will be necessary to consider initial data that
are continuous, but possess discontinuous first derivatives, such that terms like
∇ · ∇p0 require clarification. The interpretation of this formula in the sense
of distributions has been achieved in [BK17]. At the same time it has been
shown that it can be rewritten as follows:

Theorem 1 (Solution operator) The solution to the initial value problem
(2.5)–(2.6) is given by

p(t,x) = ∂r

(
r ·M [p0] (x, r)

)∣∣∣
r=ct
− 1

ct
∂r

(
r2M [u0 · n] (x, r)

)∣∣∣
r=ct

(2.16)

u(t,x) = u0(x)− 1

ct
∂r

(
r2M [p0n] (x, r)

)∣∣∣
r=ct

+

ct∫
0

1

r
∂r

(
1

r
∂r
(
r3M [(u0 · n) n] (x, r)

)
− rM [u0] (x, r)

)
dr

(2.17)

The derivatives are to be interpreted in the sense of distributions, if necessary.

For the proof of the theorem, and more details on its distributional version,
see [BK17].

This latter form makes it easier to deal with the discontinuities of the
derivatives later. When trying to use formulae (2.14)–(2.15), one would be
forced to interpret them in the sense of distributions in order to compute the
second derivatives correctly. Nothing seems to be gained when using (2.16)–
(2.17), because they also contain second derivatives. However this time, the
derivatives are all expressed with respect to r and the initial data in the
particular setup of this paper will turn out to have continuous derivatives
with respect to r (section 4.3). Thus when using formulae (2.16)–(2.17) it is
possible to avoid dealing with distributional solutions, which is a substantial
advantage.

It should be noted, that the exact solution may be expressed in various
representations, which differ by the way they can be used. In this respect
the above formulae are very different from those obtained, for example, in
[Ost97,LMMW04] using bicharacteristics. There, analytical relations are de-
rived, which connect the solution at time t > 0 with the data at initial time
via a so called mantle integral. This latter involves the solution at all inter-
mediate times. Therefore, the knowledge of the data at initial time does not
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allow to immediately compute the solution at a later time exactly. With the
above formulae (2.14)–(2.15) or (2.16)–(2.17), on other hand, the solution at
time t is given as a functional of the data at initial time t only and thus can
be determined immediately.

3 General structure of the active flux method

This section outlines the idea of the active flux method on general polygonal
(unstructured) meshes and without specifying the hyperbolic system of PDEs
that is to be solved. Several references to implementations for particular equa-
tions that appear in the literature are given in section 3.3. In section 4 finally,
Cartesian meshes with rectangular cells are introduced, on which the active
flux method is used for the first time to solve the acoustic equations (2.5).

The active flux method is an extension of the finite volume method. There-
fore finite volume methods are first reviewed in section 3.1, before the active
flux method is introduced in section 3.2.

3.1 Finite volume methods

For the finite volume method the discrete degree of freedom qC is interpreted
as the average of q over the polygonal numerical cell C ⊂ Rd. For Cartesian
grids, also the notation qCij =: qij is standard. However, our presentation of
the method for the moment does not depend on the nature of the grid. In
order to construct the method one first integrates the conservation law (2.1)
over the cell and applies Gauss’ law. This gives rise to fluxes through the cell
boundary:

∂t

∫
C

dx q +

∫
∂C

dx n · f(q) = 0 (3.1)

Here n is the outward normal on the boundary ∂C of C.
The finite volume method now replaces the exact expression (3.1) by a

(yet undetermined) numerical approximation f̄e of the flux through an edge
e ⊂ ∂C:

∂tqC +
1

|C|
∑
e⊂∂C

|e|f̄e = 0 (3.2)

Here |e| is the length of the edge e and |C| the area of the cell C.
One way to obtain a numerical flux is by using a Riemann solver: One

considers the initial value problem (2.1) with initial data qrecon : Rd → Rn

that are piecewise constant

qrecon(x) = qC if x ∈ C (3.3)
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This step is called reconstruction. The resulting Riemann Problems across the
cell boundaries are solved exactly or approximately in time. The numerical flux
is then taken to be the average of the flux of this solution along the boundary.

Alternatively, one might consider an initial value problem given by more
complicated reconstructions inside the cells, which is referred to as generalized
Riemann Problem (see e.g. [BAF03] and many others). This leads to schemes
that are higher order discretizations of the original PDE. In this case the
reconstruction qrecon in cell C does not only depend on qC , but also on the values
in neighbouring cells. Conservation still requires the average 1

|C|
∫
C dx qrecon(x)

of the reconstruction over any cell C to match the discrete degree of freedom
qC in this cell.

3.2 Active flux method

Now the active flux scheme is introduced. Its presentation in this section again
is given without specifying the type of grid. In section 3.3 a brief overview of
an implementation on one-dimensional grids and on triangles is given, before
section 4 presents the novel implementation on Cartesian grids.

The active flux method differs from usual finite volume methods in how
the numerical flux is obtained. Additional degrees of freedom qp, p ∈ ∂C
are introduced, which are given the interpretation of point values and are
distributed at a finite number of locations p along the cell boundary ∂C.
This immediately allows to use them in a quadrature formula in order to
approximate the flux through the boundary. The update formula for the cell
average qC remains equation (3.2) just as for usual finite volume methods.

The additional degrees of freedom require update formulae. Here a recon-
struction qrecon : Rd → Rn is used as initial data in order to solve the initial
value problem (2.1) at the location p ∈ ∂C of the boundary degree of freedom.

The reconstruction qrecon has to fulfill both

1

|C|

∫
C

dx qrecon(x) = qC (3.4)

and

qrecon(p) = qp at finitely many p ∈ ∂C (3.5)

The latter condition implies that the reconstruction is continuous across the
cell boundary at least in all points p. In fact, in this paper the reconstructions
will be continuous across all of ∂C. The increased number of conditions makes
the appearance of high order interpolation polynomials natural, which make
the scheme high order in space. High order temporal accuracy is obtained
by using one or several substeps during the time integration (as discussed in
section 4.4).

To summarize, the active flux method promotes the solution along the
boundary (and thus in a sense the boundary flux) to the status of an indepen-
dent degree of freedom (hence the name active flux ). In usual finite volume
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methods on the other hand the boundary flux is a derived quantity. Another
difference to usual finite volume methods is that the reconstruction is used to
evolve the boundary degrees of freedom (which are then used to compute the
flux), rather than to obtain a flux directly by e.g. solving a Riemann Problem.
The algorithmic structure of the active flux method is shown in figure 2 and
in algorithm 1.

Algorithm 1 Active flux algorithm
1: procedure ActiveFlux(numberOfT imeSteps)
2: while t < tfinal do
3: for cells do
4: build reconstruction for the cell
5: for boundaries do
6: time evolution of the boundary values

7: for boundaries do
8: calculate numerical flux at the boundary

9: for cells do
10: calculate new average for the cell

11: t+=∆t

3.3 The standard active flux method

The active flux method as formulated in section 3.2 is very general. It is not
restricted to a particular grid, nor to a particular form of the conservation
law (2.1). At the same time it leaves a lot of freedom concerning its design, as
neither the locations of the boundary degrees of freedom nor the reconstruction
have been specified in section 3.2.

Fig. 2 The active flux algorithm.
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Two particular designs appear in the literature and shall be briefly dis-
cussed here for the sake of an overview. The first goes back to [VL79] and
considers a one-dimensional grid. The cell boundaries are points, and an addi-
tional degree of freedom is located at each one. The reconstruction is piecewise
parabolic, which is the lowest degree polynomial that fulfills conditions (3.4)
and (3.5). The reconstruction is continuous across the cell boundaries due to
(3.5), but has discontinuous derivative there. [VL79] discusses the applica-
tion to linear advection; Burgers’ equation has been considered in [ER11a],
nonlinear hyperbolic systems in [ER11b].

An extension to two-dimensional triangular grids has been introduced in
[ER13,Eym13]. Inspired by P2 interpolations the boundary degrees of freedom
are located at vertices and edge midpoints of the triangles. (3.4) and (3.5)
are 7 equations in this case. The reconstruction is taken to be a subset of
the biparabolic polynomials (see [ER13], Table 2 for details). In [ER13] the
method is used to numerically solve both linear advection and linear acoustics.
Extensions to nonlinear problems are discussed in [Fan17,Mae17].

In both cases the reconstructions are piecewise parabolic, thus yielding
third order accuracy in space. In order to reach the same accuracy for the
temporal discretization, the boundary degrees of freedom are evolved with
half time steps from the same data. The quadrature formula for the numerical
flux then is a space-time Simpson rule.

4 Active flux on a Cartesian mesh for the acoustic equations

In this chapter, an implementation of the active flux scheme on rectangular
meshes is considered for the first time for the acoustic equations. Acoustic
equations in multiple spatial dimensions are an important stepping stone in
the development of the active flux method for the Euler equations. At the
same time Cartesian grids are easy to implement and are used in a variety of
applications.

A Cartesian mesh consists of rectangular cells Cij with width ∆x and height
∆y

Cij =

[(
i− 1

2

)
∆x,

(
i+

1

2

)
∆x

]
×
[(
j − 1

2

)
∆y,

(
j +

1

2

)
∆y

]
⊂ R2

(4.1)

indexed by (i, j) ∈ Z2. Therefore |C| = ∆x∆y. The cell average qCij is denoted
by qij .

The algorithm consists of the four steps mentioned in section 3.2. The
choice of the boundary degrees of freedom is presented in section 4.1. The
reconstruction on rectangular cells is discussed in section 4.2. It is used as
initial data in order to advance the boundary degrees of freedom forward in
time. The corresponding solution operator for the equations of linear acoustics
is presented in section 4.3. A quadrature rule is then applied to the boundary
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x

y

q1 q2 q3

q4

q5q6q7

q8
qij

Fig. 3 The boundary values q1,ij , ..., q8,ij and the cell average qij for a rectangular cell Cij

with width ∆x and height ∆y.

values in order to determine the numerical flux (section 4.4), and the fluxes
are used to update the cell average.

4.1 Boundary degrees of freedom

In this and the next section, the reconstruction is adapted to a rectangular
cell. As on triangular grids mentioned in section 3.3, the boundary degrees
of freedom are taken to be located at the corners of the cell (node values)
and at edge centers (edge values). These locations are indexed as in Figure 3.
Each cell Cij has eight boundary values: four node and four edge values. These
degrees of freedom are correspondingly denoted by qm,ij , m = 1, ..., 8. They
are shared by the adjacent cells, i.e. for example q4,ij = q8,i+1,j .

4.2 Reconstruction

The reconstruction is subject to the constraints (3.4) and (3.5) from section 3:
it has to be exact in the eight boundary points and the average of the recon-
struction over the cell has to yield the cell average. These are nine conditions.
It is helpful to define the reconstruction qrecon,ij in any cell to refer to the cell
midpoint as x = 0. Therefore denote by

qrecon,ij :

[
−∆x

2
,
∆x

2

]
×
[
−∆y

2
,
∆y

2

]
→ Rn (4.2)

the reconstruction of any quantity q in cell Cij and by

qrecon(x) = qrecon,ij(x− xij) x ∈ Cij (4.3)
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the reconstruction on the entire grid as introduced at the end of section 3.1.
In this coordinate frame, the locations of the boundary degrees of freedom

of a cell are denoted by xm, m = 1, . . . , 8. E.g. x4 = (∆x/2, 0).
To simplify notation it is also helpful to define a mapping to a reference

cell. Consider coordinates x = (x, y) aligned with the cell edges and centered
at a given cell. They can be transformed to reference coordinates ξ = (ξ, η)
of a square cell with dimensions ∆x = ∆y = 2. The edges of the square are
located at ξ = −1, ξ = 1, η = −1 and η = 1. The transformation between the
coordinates is

ξ = J−1x with J−1 =

( 2
∆x 0
0 2

∆y

)
(4.4)

ξm are the locations of the boundary degrees of freedom in the reference
cell. They correspond to xm = Jξm. The reconstruction qrecon,ij(x(ξ)) will
be denoted by the same symbol qrecon,ij(ξ) whenever there is no confusion
possible.

A straightforward derivation of the reconstruction polynomial is to solve
the linear system that arises by inserting a general biquadratic polynomial

a00 + a10ξ + a20ξ
2 + a01η + a11ξη + a21ξ

2η + a02η
2 + a12ξη

2 + a22ξ
2η2

(4.5)

into the 9 equations that arise from (3.4) and (3.5). The polynomial consists
of all possible combinations of ξ and η each up to second degree. It has 9 free
parameters. Hence, the solution of the linear system is unique.

This reconstruction can be obtained in a more elegant way, reminiscent
of Lagrange polynomials. This representation of the interpolation will also be
useful later. In every cell, one seeks a reconstruction in the form

qrecon,ij(ξ) =

9∑
m=1

cm,ijbm(ξ) (4.6)

with basis functions bm(ξ) and coefficients cm,ij ∈ R. The expressions for bm
are the same for every cell while the coefficients cm,ij vary, as they depend on
the average value in the cell and the boundary degrees of freedom around it.

The reconstruction can be organized nicely by choosing the basis functions
at most biquadratic with

bm(ξ) =

{
1 ξ = ξm
0 else

m = 1, . . . , 8 (4.7)

b9(ξm) = 0 ∀m ∈ {1, . . . , 8} (4.8)

1

|C|

∫
C

dx qrecon(ξ(x)) = qC (4.9)

This implies that

cm,ij = qm,ij ∀m ∈ {1, . . . , 8} (4.10)
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The value of c9,ij is to be determined after the basis functions have been
obtained explicitly.

Theorem 2 (Interpolation basis) The following polynomials fulfill (4.7)–
(4.8)

b1 = −1

4
(ξ − 1)(η − 1)(η + ξ + 1) (4.11)

b2 =
1

2
(ξ − 1)(η − 1)(ξ + 1) (4.12)

b3 =
1

4
(ξ + 1)(η − 1)(η − ξ + 1) (4.13)

b4 = −1

2
(η − 1)(ξ + 1)(η + 1) (4.14)

b5 =
1

4
(ξ + 1)(η + 1)(η + ξ − 1) (4.15)

b6 = −1

2
(ξ − 1)(η + 1)(ξ + 1) (4.16)

b7 = −1

4
(ξ − 1)(η + 1)(η − ξ − 1) (4.17)

b8 =
1

2
(η − 1)(ξ − 1)(η + 1) (4.18)

b9 = (η − 1)(η + 1)(ξ − 1)(ξ + 1) (4.19)

Proof The result is verified by explicit calculation.

Note: These products are polynomials that vanish along straight lines in ξ–η-
plane, as shown in Figures 4 and 5 for b1 and b2.

Additionally, using (4.10) and computing (4.9) one obtains

c9,ij =
9

16

(
4qij +

1

3
(q1,ij − 4q2,ij + q3,ij − 4q4,ij + q5,ij − 4q6,ij + q7,ij − 4q8,ij)

)
(4.20)

(4.6) becomes a biquadratic polynomial upon inserting the basis functions
b1, . . . b9. With the coefficients (4.10) and (4.20) it must be equation (4.5)
because the interpolation polynomial in this case is unique.

Theorem 3 (Continuous reconstruction) The biparabolic reconstruction
(4.6) with basis functions from theorem 2 and coefficients from (4.10) and
(4.20) is continuous across cell interfaces.

Proof From (4.5) it is obvious that the reconstruction is parabolic along the
coordinate axes. Consider an edge common to two cells. The two reconstruc-
tions on both sides of the edge both reduce to quadratic functions along the
edge. Moreover, they agree in three points (at the two vertices and at the edge
midpoint). This information specifies the quadratic function uniquely, and the
two quadratic parabolas must agree. �

Note that the derivatives perpendicular to the common cell edge in general
are different. An example of a reconstruction for an arbitrary cell is sketched
in Figure 6.
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Fig. 4 The linear terms for the recon-
struction polynomials for the red edge
point

Fig. 5 The linear terms for the recon-
struction polynomials for the red node
point.

x y

q

Fig. 6 The cell boundary values of q
(black dots) and the according recon-
struction of q.

x y

t

Cij

Fig. 7 The blue circles represent the
time evolutions with the method of spher-
ical means for the half time step; the
green circles represent the time evolution
with the method of spherical means for
one time step. They show the domain of
dependence of the solution.

4.3 Updating the boundary values

In order to advance the boundary degrees of freedom in time, one solves the
initial value problem (2.1) with initial data

q(0,x) = qrecon(x) (4.21)

at the location of the degree of freedom.

The exact solution of the acoustic equations on a rectangular mesh is given
by equations (2.16)–(2.17). The reconstruction qrecon is defined piecewise ac-
cording to (4.3). The evolution of the boundary degrees of freedom therefore
involves the reconstruction in several adjacent cells.

For example, the integration for the spherical mean of an edge value is
split up into integrations over two hemispheres: The integration bounds for
a vertical (x = const) edge are ϕ ∈ {π2 , 3π2 } and ϕ ∈ {0, π} for a horizontal
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(y = const) edge. It is convenient to define the partial spherical mean

Mϕ2
ϕ1

[f ] (x, r) =
1

4π

ϕ2∫
ϕ1

dϕ

π∫
0

dϑ sinϑf (x + r · n) (4.22)

and M2π
0 ≡M . Thus for a vertical edge, the spherical mean is computed as

M2π
0 [qrecon]

((
xi+ 1

2

yj

)
, r

)
= M

3π/2
π/2 [qrecon,ij ]

((
∆x/2

0

)
, r

)
(4.23)

+M
π/2
−π/2 [qrecon,i+1,j ]

((
−∆x/2

0

)
, r

)
(4.24)

Analogously the integration for the spherical mean of a node value is di-
vided into four different integrals with integration boundaries ϕ ∈ {0, π2 , π, 3π2 }.

In a practical implementation the computational cost can be reduced by
precomputing (analytically)

Mϕ2
ϕ1

[
x`ym

]
(x, r)

for all relevant values of `,m, at all relevant locations xm, m = 1, . . . , 8 and
for all relevant angular domains. The spherical means are then obtained as
linear combinations of these precomputed values. As equation (2.13) shows,
they are polynomials in r, and this even allows to compute the derivatives and
integrals with respect to r in (2.16)–(2.17) analytically. Thus, the evolution
operator can be programmed in a way that makes its evaluation inexpensive.

4.4 Time integration and numerical flux

In order to advance the cell average in time the fluxes through the cell bound-
aries are required. The strategy proposed here follows closely that of [ER13,
Eym13] on triangular grids.

Consider notation of Figure 8, where an arbitrary edge is depicted and the
edge value is denoted by M and the two node values by L and R.

The biparabolic reconstruction implies formally third order accuracy of the
evolution of boundary degrees of freedom. It is thus natural to approximate
other parts of the scheme to the same order of accuracy in order to obtain an
overall third order scheme.

For the approximation of the average flux through a cell edge e

1

|e|∆t

∫ tn+1

tn
dt

∫
e

dxne · f (4.25)

two node values and one edge value are available. Thus it is possible to use
Simpson’s rule as a quadrature formula, leading to a scheme of third order.
In order to achieve the same accuracy in time, it is necessary to introduce an
intermediate time step n+ 1

2 . The boundary values are computed at three time
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x y

t

Cij

R

M

L

n

n+ 1
2

n+ 1

Fig. 8 The nomenclature for the required edge and node of quantity q at different times to
calculate the average flux for one side of the rectangle.

steps n, n + 1
2 and n + 1. These time evolutions for one edge of an arbitrary

cell are illustrated in Figure 7.

The space-time Simpson’s rule approximating (4.25) is then given by

f̄e =
1

6

(
1

6
fnL +

2

3
fnM +

1

6
fnR

)
· ne +

2

3

(
1

6
f
n+ 1

2

L +
2

3
f
n+ 1

2

M +
1

6
f
n+ 1

2

R

)
· ne

+
1

6

(
1

6
fn+1
L +

2

3
fn+1
M +

1

6
fn+1
R

)
· ne
(4.26)

The numerical flux for a rectangular cell is visually presented in Figure 8.
The cell average for tn+1 is calculated with the finite volume method (3.2).

As the time integration amounts to an explicit scheme, there is a CFL-
type time step restriction. All spherical means involved in the evolution of
boundary degrees of freedom have to remain inside the cell. The strongest
constraint comes from the edge midpoint: the radius of the corresponding
spherical mean has to be smaller than

dmin = min

(
∆x

2
,
∆y

2

)
(4.27)

Thus the largest possible time step of the active flux method for the acous-
tic equations on a rectangular mesh is

∆tmax = min

(
∆x

2c
,
∆y

2c

)
(4.28)

Experimentally, the active flux method was observed to be stable with time
steps very close to this bound, suggesting that the bound is sharp.

The required time evolutions for the numerical fluxes of an arbitrary cell
are sketched in Figure 9; the numerical fluxes themselves and the cell average
for an arbitrary cell are sketched in Figure 10.
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x y

t

Fig. 9 The cell boundary values and the
time evolutions of the cell boundary val-
ues required for the numerical fluxes of a
cell are sketched as black dots

x y

t

q n

f̄x2

f̄x1

f̄y2

f̄y1

q n + 1

Fig. 10 The cell average q n and the nu-
merical fluxes f̄x1

, f̄x2
, f̄y1

, and f̄y2
re-

quired to calculate the new cell average
q n+ 1
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Fig. 11 The vortex setup for the acoustic
equations at t = 0. Contour plots of the cell
averages of |v| are shown.
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Fig. 12 The vortex setup for the acoustic
equations at t = 100 after roughly 80 rota-
tions. Contour plots of the cell averages of
|v| are shown.

5 Numerical results

In this section numerical results of the active flux scheme for the acoustic
equations are presented. Given analytical expressions for the initial data, the
boundary degrees of freedom are initialized by evaluating these expressions
at the corresponding locations. The initial cell average is computed with a
quadrature formula following Simpson’s rule.

The first setup is the stationary vortex (r =
√
x2 + y2)

v(r) = nϕ ·


5r for 0 ≤ r ≤ 0.2

2− 5r for 0.2 < r ≤ 0.4

0 for r > 0.4

p(r) = p0 (5.1)

with nϕ = (− sin(ϕ), cos(ϕ))T . The simulation has been performed on a 50×50
Cartesian mesh with ∆x = ∆y = 0.03.
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Contour plots of the cell averages of the absolute value of the velocity
|v| =

√
u2 + v2 for this setup are shown in Figures11–12 for the times t = 0

and t = 100.

Fig. 13 Radial plot of the cell averages (orange) at time t = 100 and the initial data (black)
of the absolute value of the velocity |v| .

Additionally, the radial plot of the cell averages of the absolute value of
the velocity |u| at t = 100 and the exact solution are shown in Figure 13. The
radial plots in Figure 13 suggest that the presented method is able to preserve
stationary states to very high accuracy. This is not just due to the high order
of the scheme. As is shown in the next section, the active flux method on
rectangular grids is stationarity preserving. This is a property introduced in
[Bar18a] which means that the stationary states of the scheme discretize all
the analytic stationary states.

A second test case is that of a radial shock wave. The initial data are chosen

v = 0 p(r) =

{
2 for r ≤ 0.2

1 else
(5.2)

The simulation is performed on a 100×100 grid. The results are shown in figure
14. One observes that despite a continuous reconstruction the method is able
to compute discontinuous solutions. The radial scatter plot demonstrates the
symmetry of the solution. The over- and undershoots are due to the high order
of the scheme and no limiting being employed.

6 Low Mach number compliance and vorticity preservation

Low Mach number compliance of a numerical scheme for linear acoustics has
been found to be related to further concepts in [Bar18a]. In particular, it has
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Fig. 14 Radial Riemann Problem solved with the active flux method on a 100× 100 grid.
The initial data involve a symmetric discontinuity in the pressure p and v = 0 everywhere.
Upper row : Initial data in the pressure (left) and the pressure at ct = 0.1 (right). Lower row :
Absolute value |v| of the velocity at time ct = 0.1 (left) and a scatter plot of the pressure
at ct = 0.1 as a function of the radius (right).

been shown that stationarity preserving schemes for the acoustic equations
are just those that comply with the limit of low Mach number. A numerical
scheme is called stationarity preserving if it possesses stationary states that
discretize all the analytic stationary states. For a thorough presentation of
these concepts the reader is referred to [Bar18a,Bar18b].

It turns out that for the acoustic equations stationarity preservation is
equivalent to the scheme being vorticity preserving, i.e. possessing a discrete
vorticity that remains stationary. Therefore a numerical scheme that is not
vorticity preserving also fails to discretize all the stationary states. It intro-
duces so much diffusion that all but the most trivial stationary states are
decaying in time. Numerical results of section 5 suggest that this is not the
case for the active flux scheme on Cartesian grids.

In this chapter, it is shown that the active flux method on a rectangular
mesh is stationarity preserving when used for numerically solving the two-
dimensional acoustic equations. The framework presented in [Bar18a] has to
be generalized in order to take into account the boundary degrees of freedom
that are present in the active flux scheme. How this is achieved is shown in
section 6.1. The proof involves applying the discrete Fourier transform to the
numerical scheme, which is discussed in section 6.2. Stationarity preservation
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qij

Fig. 15 The spheres for the spherical
means, which are necessary to calculate
the time update of the ij-th cell average
q̄ij

qAVG,ij

qN,ij

qEV,ij

qEH,ij

Fig. 16 The grid for the nodes (red cir-
cles), the vertical edges (blue crosses), the
horizontal edges (green diamonds) and
the averages (orange squares)

of the active flux scheme is proven in Corollary 1 in section 6.3. The discrete
vorticity that is kept stationary by the scheme is discussed there as well.

6.1 Lattices formed by the degrees of freedom

For usual finite volume methods, the cell average is the only degree of freedom
per cell. Now additionally to the cell average there are 8 boundary degrees
of freedom distributed along the cell boundary. They are however also partly
shared by adjacent cells: There are four node values, each shared by four
cells. Similarly, there are four edge values, which are shared by two cells each.
Therefore per cell one is left with

– 1 cell average
– 1 node value
– 2 edge values (horizontal and vertical)

In Figure 16 these degrees of freedom are shown in different colors. Indeed,
each of them forms a lattice with spacings ∆x and ∆y in x and y direction,
respectively. When solving linear acoustics with the active flux method, there
are thus 12 variables per cell, i.e. 4 degrees of freedom per cell with 3 variables
per degree of freedom. In the following, the nomenclature from Figure 16 is
used to differentiate between the different kinds of degrees of freedom.

6.2 The active flux scheme in Fourier space

Stationarity preservation can be most efficiently studied in Fourier space. A
prerequisite is that the scheme under consideration is linear. For the active
flux scheme this is established in the following
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Theorem 4 The active flux scheme for the acoustic equations on Cartesian
grids is linear in the discrete degrees of freedom.

Proof The reconstruction 4.6 is linear in the cell average and the boundary
degrees of freedom. The spherical mean (equation 2.10) is a linear functional.
The time evolution of a boundary degree of freedom involves a decomposi-
tion of the integration domain and sums of spherical means over the different
segments, i.e. sums of linear functions. The solution operator 2.16–(2.17) is
linear in the initial data. Thus the update of the boundary values from time
step n to the time step n + 1

2 or n + 1 is a linear function of the quantities
at time step n. The numerical flux obtained by the Simpson’s rule is a linear
functional of the boundary values involved. Finally, the finite volume method
used to update the cell average is linear in the fluxes. �

As the acoustic equations are a linear problem, and thus the active flux
scheme is linear as well, it is possible to consider it in Fourier space. This is
analogous to the procedure in [Bar18a], and switching to Fourier space allows
to prove stationarity preservation easily. With the results of section 6.1 the
additional boundary degrees of freedom that are present in the active flux
scheme can be easily incorporated in the framework. The discrete Fourier
transform with respect to the spatial variable can be applied to each of the
lattices qij , q

N
ij , q

EV
ij , qEH

ij defined in section 6.1: Any function qij(t) is expressed
as

qij(t) = q̂(t) exp(i∆xkxi+ i∆ykyj) (6.1)

with the wave vector k = (kx, ky) and the imaginary unit i. The hat in
q̂ denotes the discrete spatial Fourier transform of q. The overall prefactor
exp(i∆xkxi+ i∆ykyj) will appear in all terms. The following definition helps
to abbreviate notation:

Definition 2 The notation Â ' B means that B = Â exp(i∆xkxi+ i∆ykyj).

Equation (6.1) with the short-hand notation becomes q̂ ' qij .
For linear acoustics solved with the active flux method, the Fourier trans-

forms shall be ordered as follows (see also Figure 16)

Q̂ := (p̂, û, v̂, p̂EH, ûEH, v̂EH, p̂EV, ûEV, v̂EV, p̂N, ûN, v̂N) ∈ R12. (6.2)

The translation operators that convey shifts by one cell in x-direction and
y-direction are defined as

tx = exp(i∆xkx) and ty = exp(i∆yky). (6.3)

such that Equation 6.1 becomes

q nij = q̂ ntixt
j
y. (6.4)
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The Fourier transform of any two-dimensional linear finite difference for-
mula corresponds to a Laurent polynomial in tx and ty. For example, using
notation from definition 2 again:

qij ' q̂ qi+1,j ' q̂ · tx qi,j+1 ' q̂ · ty (6.5)

A more complicated finite difference formula can be, for example, expressed
as

qi−1 + 4qi + qi+1 ' q̂ ·
(
t−1x + 4 + tx

)
= q̂

1 + 4tx + t2x
tx

(6.6)

Also the reconstruction qrecon,ij(x) in cell Cij is a linear function of the
degrees of freedom in Cij which allows to apply the discrete Fourier transform
to it:

qrecon,ij(x) ' q̂recon(x) (6.7)

Note that the spatial variable x is unaffected, because the origin x = 0 has
been chosen to be the cell midpoint of the corresponding cell, and the discrete
Fourier transform only acts on i, j. Then upon the discrete Fourier transform
one can rewrite the reconstruction in any other cell Ci+s,j+p as

qrecon,i+s,j+p(x) ' tsxtpy q̂recon(x) (6.8)

On the other hand, the evolution operator (2.16)–(2.17) only acts on x. It
is thus possible to construct a 12× 12 matrix A which describes the evolution
of the Fourier modes Q̂ introduced in (6.2):

Q̂(∆t) = A(∆t; tx, ty)Q̂(0) (6.9)

Theorem 5 The active flux scheme for linear acoustics in two spatial dimen-

sions is stationarity preserving iff det
(
A(∆t; tx, ty)−112×12

)
= 0 ∀∆t, tx, ty.

Proof This is Theorem 2.11 from [Bar18a].

The matrix A can be constructed explicitly. However, this involves com-
putations of considerable length. Therefore in the following section a simpler
strategy is applied. Its main ingredient is the observation that the active flux
scheme uses the exact evolution operator for the boundary degrees of freedom.

6.3 Stationarity preserving reconstruction

Clearly, at continuous level, if the initial data for (2.5) (see also equations
(2.14)–(2.15)) fulfill

∇p0 = 0 div v0 = 0 (6.10)
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then they remain stationary. (This statement needs to be understood in the
sense of distributions, if necessary – see [BK17] for more details.) Therefore
one path towards understanding the stationary states of the active flux scheme
is to study when the reconstruction fulfills

∇precon = 0 div vrecon = 0 (6.11)

Assume this to be the case for some choice of the discrete values on the grid.
Then at least the boundary degrees of freedom will remain precisely stationary
over one time step. This shall be studied now in more detail; the question of
whether the cell averages remain stationary is postponed and taken up at the
end.

Theorem 5 states that a scheme is stationarity preserving (and thus vor-
ticity preserving) if there is a zero eigenvalue. The corresponding eigenvector
can be seen as a non-zero choice of

Q̂ = (p̂, û, v̂, p̂EH, ûEH, v̂EH, p̂EV, ûEV, v̂EV, p̂N, ûN, v̂N) (6.12)

that implies that all the degrees of freedom remain stationary. Therefore

Theorem 6 The active flux scheme for linear acoustics is stationarity pre-
serving, if there is a non-zero choice of Q̂ that implies (6.11).

Note: As such a non-zero Q̂ spans an eigenspace, any multiple of it implies
(6.11) as well.

Observe the tremendous simplification from Theorem 5 to Theorem 6.

Whereas showing det
(
A(tx, ty)−112×12

)
= 0 requires writing down explicitly

all the spherical means (like in (4.24)) and evolution operators, the statement
of Theorem 6 refers to a property of the initial data only. This is only possible
because the evolution operators are exact and one thus can express in simple
words which data they keep stationary.

Theorem 7 If Q̂ is such that

p̂ = p̂EH = p̂EV = p̂N = 0 (6.13)

û = −2

3

1 + 4tx + t2x
tx

· (ty − 1)(ty + 1)

∆yty
v̂ =

2

3

1 + 4ty + t2y
ty

· (tx − 1)(tx + 1)

∆xtx
(6.14)

ûEH = −1 + 6tx + t2x
tx

· ty − 1

∆y
v̂EH = 2

(tx − 1)(tx + 1)

∆xtx
(ty + 1)

(6.15)

ûEV = −2(tx + 1)
(ty − 1)(ty + 1)

∆yty
v̂EV =

tx − 1

∆x
· 1 + 6ty + t2y

ty
(6.16)

ûN = −4(tx + 1)
ty − 1

∆y
v̂N = 4

tx − 1

∆x
(ty + 1) (6.17)

then precon = 0 and div vrecon = 0 uniformly.



The active flux scheme on Cartesian grids and its low Mach number limit 25

Proof Consider the biparabolic reconstruction of equation (4.6) and theorem
2 together with equation (4.20). Applying the discrete Fourier transform one
can rewrite

qrecon,ij(x) =

9∑
m=1

cm,ijbm(x) (6.18)

' q̂N

(
1

txty

(
b1(x) +

3

16
b9(x)

)
+

1

ty

(
b3(x) +

3

16
b9(x)

)
(6.19)

(6.20)

+ b5(x) +
3

16
b9(x) +

1

tx

(
b7(x) +

3

16
b9(x)

))
(6.21)

+ q̂EH

(
1

ty

(
b2(x)− 3

4
b9(x)

)
+

(
b6(x)− 3

4
b9(x)

))
(6.22)

+ q̂EV

((
b4(x)− 3

4
b9(x)

)
+

1

tx

(
b8(x)− 3

4
b9(x)

))
(6.23)

+
9

4
b9(x)q̂ (6.24)

precon(x) = 0 is thus clear. Moreover, one easily can compute div vrecon(x)
by differentiating the basis functions bm as given in theorem 2 and verify
div vrecon = 0. The computation is lengthy but uneventful, and is thus omitted.

�

Note: From (6.17), (6.14) it follows that

ûN
(tx − 1)(ty + 1)

∆x
+ v̂N

(tx + 1)(ty − 1)

∆y
= 0 (6.25)

û
1 + 4ty + t2y

ty

(tx − 1)(tx + 1)

∆xtx
+ v̂

1 + 4tx + t2x
tx

(ty − 1)(ty + 1)

∆yty
= 0 (6.26)

and from (6.15)–(6.16)

ûEV
tx − 1

∆xtx
+ v̂EH

ty − 1

∆yty
= 0 (6.27)

ûEH
1 + 6ty + t2y

ty

tx − 1

∆x
+ v̂EV

1 + 6tx + t2x
tx

ty − 1

∆y
= 0 (6.28)

These equations are discretizations of div v = 0.
Note 2: Having thus found one eigenvector that belongs to the eigenvalue

0 of A(tx, ty)−112×12 it is not a priori clear whether there are more. This can
be checked by actually computing the kernel of A(tx, ty)− 112×12. Due to the
extreme length of the expressions, the one-dimensionality of the kernel could
so far only be verified using mathematica.

Corollary 1 The active flux scheme for linear acoustics in two spatial dimen-
sions is stationarity preserving.



26 Wasilij Barsukow et al.

Proof The proof consists of two parts. First, stationarity of the average values
has to be checked. Second, the multi-step integration procedure (section 4.4)
has to be taken into account.

i) Assume the initial data to fulfill (6.14)–(6.17). By the above theorem this
implies stationarity of the boundary values and thus the three brackets in
(4.26) are all equal. The values of p are all zero, and thus the fluxes of u
and v are zero. The change of the cell average of the pressure is[

1

6
ûN

(
1 +

1

ty

)
+

4

6
ûEV

]
1

∆x

(
1− 1

tx

)
+

[
1

6
v̂N

(
1 +

1

tx

)
+

4

6
ûEH

]
1

∆y

(
1− 1

ty

) (6.29)

Equations (6.25), (6.27) imply that (6.29) vanishes identically. Thus the
cell averages are stationary.

ii) Assume again that the initial data fulfill (6.14)–(6.17). Then at time step
n+ 1

2 and at time step n+ 1 they are equal to those at time step n. This
is because they both are computed from the same initial data at time
step n. The update of the cell average happens only at time step n + 1.
Therefore stationarity preservation is valid independently of how many
steps are used for the integration in time.

This completes the proof. �

Stationarity preservation has several consequences: The eigenvector Q̂ of
theorem 7 is the Fourier transform of those data that the active flux scheme
keeps exactly stationary. In [Bar18a] it is shown that many numerical schemes
add so much diffusion that only trivial (e.g. constant) stationary states are
stationary at the numerical level as well. The active flux scheme on the other
hand is stationarity preserving, i.e. it keeps stationary a discretization of all
the stationary states of the PDE. By inverting the Fourier transform one
obtains from (6.25)–(6.28) the following discrete relations that characterize
the discrete stationary states:

{[uN]i+ 1
2
}j+ 1

2

∆x
+

[{vN}i+ 1
2
]j+ 1

2

∆y
= 0

〈[u]i±1〉(4)j
∆x

+
[〈v〉(4)i ]j±1

∆y
= 0 (6.30)

〈[uEH]i+ 1
2
〉(6)j

∆x
+

[〈vEV〉(6)i ]j+ 1
2

∆y
= 0

[uEV]i− 1
2 ,j

∆x
+

[vEH
i ]j− 1

2

∆y
= 0 (6.31)

Here the following notation has been used:

[q]i+ 1
2

= qi+1 − qi {q}i+ 1
2

= qi+1 + qi (6.32)

[q]i±1 = qi+1 − qi−1 〈q〉(α)i = qi−1 + αqi + qi+1 (6.33)

The notation is combined for different directions, e.g.

{[q]i+ 1
2
}j+ 1

2
= qi+1,j+1 − qi,j+1 + qi+1,j − qij (6.34)
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By [Bar18a] a stationarity preserving scheme is vorticity preserving. This
means that there exists a discretization of ∇ × v that is kept stationary by
the scheme (even if the solution itself is not stationary). This is a discrete
counterpart to Equation (2.7). The discrete Fourier transform of the discrete
vorticity is given by the left eigenvector Ω belonging to eigenvalue zero. As A
depends on ∆t, one is facing the slightly surprising situation that the discrete
vorticity might depend on ∆t. Indeed, this might have occurred for the discrete
stationary states already, but turns out not to be the case. Additionally, the
amount of computations made it impossible to determine the explicit shape of
the discrete vorticity. However, its existence is clear by the results of [Bar18a].
From the dimension of the kernel it is also clear that there is only one discrete
vorticity that is invariant. Only this particular discrete vorticity will be kept
stationary while other discretizations will undergo some evolution.

That the discrete vorticity depends on∆t can be shown as follows: Consider
an expansion of A in powers of ∆t:

A− 1 = ∆tA(1) +∆t2A(2) +∆t3A(3) (6.35)

Independently of ∆t, the vector Q̂ from theorem 7 is a right eigenvector of
A(1) corresponding to an eigenvalue 0. Therefore one concludes that A(1)Q̂ =
A(2)Q̂ = A(3)Q̂ = 0. It is possible to compute the left eigenvector Ω(1) of A(1):

Ω(1) =

(
0, 0, 0,− ty − 1

∆yty
, 0, 0, 0,

tx − 1

∆xtx
, 0, 0, 0, 0

)
(6.36)

This would correspond to a discrete vorticity

[vEV]i− 1
2 ,j

∆x
−

[uEH
i ]j− 1

2

∆y
∼ ∂xv − ∂yu (6.37)

One can verify, however, that Ω(1)A(2) 6= 0 and thus Ω 6= Ω(1).
Finally, low Mach compliance is another consequence of stationarity preser-

vation as discussed in [Bar18a]. Von Neumann stability of the method implies
that no Fourier mode is growing. Thus the long time solution is governed by
the discrete stationary states, and stationarity preserving schemes discretize
all of the analytic stationary states (for more details see [Bar18a]). As ε goes
to zero, one thus observes that the numerical solution obtained with the ac-
tive flux scheme is a discretization of the limit solution. This is to be seen in
contrast to many other numerical schemes that can only be made low Mach
compliant by introducing some kind of fix (e.g. [DJOR16,BEK+17]).

7 Summary

The active flux scheme is a finite volume method with additional degrees of
freedom located on the boundary. Introduced in [VL79] for one-dimensional
linear advection, it has since been extended to triangular grids ([ER13]) and
other systems of hyperbolic PDEs. This paper presented an implementation
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for two-dimensional Cartesian grids. This underlines the viewpoint that the
active flux is a concept that can be used with considerable flexibility with
respect to the computational grid.

Cartesian grids have several advantages. Apart from the ease of implemen-
tation and low computational cost, the limit of low Mach numbers can be
studied very efficiently for linear acoustics on Cartesian grids ([Bar18a]). Low
Mach compliance of a numerical scheme for linear acoustics is linked to it be-
ing stationarity preserving, i.e. to be able to keep stationary a discretization
of all the analytic stationary states. Here, the framework of [Bar18a] has been
used in order to show that the active flux possesses this property, and thus
is low Mach compliant. The stationary states of the active flux scheme have
been obtained explicitly. They are closely linked to the solutions of the active
flux scheme in the limit of low Mach numbers.

Finally, as stationarity preservation is equivalent to vorticity preservation,
it was thus possible to show that the active flux scheme for linear acoustics
is vorticity preserving. This can often be checked easily if it is known which
discretization of the vorticity remains stationary. The approach via stationarity
preservation, on the other hand, allows to check vorticity preservation without
having to know the discrete vorticity in advance. We expect analogous results
to hold true for the active flux scheme on three-dimensional Cartesian grids
as well.

Several numerical examples showed the good performance of the active
flux scheme in practice. In particular they showed that active flux seems to be
stable with the maximum CFL condition. To study this theoretically is subject
of future work. As the scheme is of high order limiting is a further aspect of
future investigation.

Low Mach compliance was shown for the scheme endowed with an exact
evolution operator for the boundary degrees of freedom. This is different from
Riemann solver based schemes, where even an exact Riemann solver does not
in general lead to a low Mach compliant scheme. This, therefore, is clearly
an advantage of the active flux scheme. However, the exact solution operator
is generally unavailable for nonlinear systems of hyperbolic PDEs. Therefore
approximate evolutions will be necessary. With the results of this paper in
mind, future work shall focus on choosing them such that low Mach compliance
is retained.
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GM04. Hervé Guillard and Angelo Murrone. On the behavior of upwind schemes in
the low mach number limit: Ii. godunov type schemes. Computers & fluids,
33(4):655–675, 2004.

God59. Sergei Konstantinovich Godunov. A difference method for numerical calculation
of discontinuous solutions of the equations of hydrodynamics. Matematicheskii
Sbornik, 89(3):271–306, 1959.

Hag15. Thomas Hagstrom. High-resolution difference methods with exact evolution for
multidimensional waves. Applied Numerical Mathematics, 93:114–122, 2015.

JT06. Rolf Jeltsch and Manuel Torrilhon. On curl-preserving finite volume discretiza-
tions for shallow water equations. BIT Numerical Mathematics, 46(1):35–53,
2006.

JX95. Shi Jin and Zhouping Xin. The relaxation schemes for systems of conserva-
tion laws in arbitrary space dimensions. Communications on pure and applied
mathematics, 48(3):235–276, 1995.

LMMW04. Maria Lukacova-Medvidova, KW Morton, and Gerald Warnecke. Finite volume
evolution galerkin methods for hyperbolic systems. SIAM Journal on Scientific
Computing, 26(1):1–30, 2004.

Mae17. Jungyeoul Maeng. On the advective component of active flux schemes for non-
linear hyperbolic conservation laws. PhD thesis, University of Michigan, Dis-
sertation, 2017.



30 Wasilij Barsukow et al.

MR01. KW Morton and Philip L Roe. Vorticity-preserving lax–wendroff-type schemes
for the system wave equation. SIAM Journal on Scientific Computing,
23(1):170–192, 2001.

MT09. Siddhartha Mishra and Eitan Tadmor. Constraint preserving schemes using
potential-based fluxes ii. genuinely multi-dimensional central schemes for sys-
tems of conservation laws. ETH preprint, (2009-32), 2009.

Ost97. Stella Ostkamp. Multidimensional characteristic galerkin methods for hyper-
bolic systems. Mathematical methods in the applied sciences, 20(13):1111–1125,
1997.

Tor09. Eleuterio F Toro. Riemann solvers and numerical methods for fluid dynamics:
a practical introduction. Springer Science & Business Media, 2009.

VL79. Bram Van Leer. Towards the ultimate conservative difference scheme. v. a
second-order sequel to godunov’s method. Journal of computational Physics,
32(1):101–136, 1979.

Whi11. Gerald Beresford Whitham. Linear and nonlinear waves, volume 42. John
Wiley & Sons, 2011.

Zhe12. Yuxi Zheng. Systems of conservation laws: two-dimensional Riemann problems,
volume 38. Springer Science & Business Media, 2012.


	Introduction
	Acoustic equations
	General structure of the active flux method
	Active flux on a Cartesian mesh for the acoustic equations
	Numerical results
	Low Mach number compliance and vorticity preservation
	Summary

