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ON THE ACTIVE FLUX SCHEME FOR HYPERBOLIC PDES WITH
SOURCE TERMS*

WASILI] BARSUKOWT, JONAS P. BERBERICH!, AND CHRISTIAN KLINGENBERG*!

Abstract. The active flux scheme is a finite volume scheme with additional point values dis-
tributed along the cell boundary. It is third order accurate and does not require a Riemann solver:
the initial value problem at the particular points is solved instead. The intercell flux is then obtained
from the evolved values along the cell boundary by quadrature. This paper focuses on the conceptual
extension of active flux to include source terms, and thus for simplicity assumes the homogeneous
part of the equations linear. To a large part the treatment of the source terms is independent of the
choice of the homogeneous part of the system. Additionally, only systems are considered which admit
characteristics (instead of characteristic cones). This is the case for scalar equations in any number
of spatial dimensions and systems in one spatial dimension. Here, we succeed to extend the active
flux method to include (possibly nonlinear) source terms while maintaining third order accuracy of
the method. This requires a novel (approximate) operator for the evolution of point values and a
modified update procedure of the cell average. For linear acoustics with gravity, it is shown how to
achieve a well-balanced / stationarity preserving numerical method.

Key words. finite volume methods, active flux, source terms, balance laws, well-balanced
methods, gravity
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1. Introduction. Numerous phenomena of the physical world are modeled by
hyperbolic balance laws (conservation laws augmented by source terms). This includes
gas dynamics, the motion of water waves, plasma physics and even general relativity.
Often physical modeling requires to include source terms, and conservation is modified
due to creation or annihilation of some of the evolved quantities. Chemical reactions,
for example, change the number density of a species and produce or absorb heat (i.e.
internal energy). Gravity accelerates matter downwards and creates momentum. In
the shallow water model describing the motion of a free water surface the bottom
topography enters the equations through a source term. Rewriting the hydrodynamic
equations in a different coordinate system (e.g. in polar coordinates) makes geometric
source terms appear. All these applications require reliable numerical methods which
are able to deal with source terms.

Reliable numerical methods for hyperbolic conservation laws with source terms
first need to perform well in the homogeneous case. This means for example that
they need to cope with discontinuities / weak solutions and with phenomena arising
in multiple spatial dimensions, such as involutions and non-trivial stationary states.
This requirement has led [ER13, FR15] to suggest active fluz, an extension of the finite
volume method. Additionally to the cell average, this scheme evolves point values
located at the cell boundary. The update of the point values is achieved by using
an evolution operator that includes multi-dimensional information. The presence of
the point values along the cell boundary then allows to compute the intercell flux
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2 W. BARSUKOW, J. P. BERBERICH, AND C. KLINGENBERG

via quadrature. It has been shown in [BHKR19] that this scheme is stationarity
preserving and vorticity preserving for linear acoustics without any fix. It is third
order accurate. Extensions to nonlinear systems have been recently suggested e.g. in
[Fan17, HKS19, Bar19a]. Active flux therefore seems to be promising for resolving
many of the structure preservation problems that currently available methods are
facing (an overview of existing methods for balance laws is given below).

In view of the many applications that involve source terms, this paper therefore
aims at deriving the necessary modifications for active flux to be applicable to balance
laws while retaining its third order accuracy. Including the source term requires a
number of modifications. The homogeneous part of the equations therefore is for
simplicity assumed to be a linear hyperbolic system for which characteristics are
available. This is the case for scalar equations in any number of spatial dimensions
and for systems in one spatial dimension. For multi-dimensional systems, the concept
of characteristics needs to be replaced by characteristics cones. In the homogeneous
case, active flux has been used for this situation as well ([ER13, BHKR19]), but an
extension to inhomogeneous systems in multi-d, and to nonlinear systems remains
subject of future work. To a large part, the strategies presented in this paper will,
however, remain valid when the homogeneous part of the equations is nonlinear as
well, and even for nonlinear multi-dimensional systems.

As soon as a source term is added to a hyperbolic system, new stationary states
arise which often are of particular interest. The stationarity is due to the flux di-
vergence being equal to the source term. Many areas of application of balance laws
involve studies of dynamics on top of such an equilibrium (e.g. astrophysics, meteorol-
ogy, tsunami modeling, ... ). This requires the numerical method to be very accurate
on the stationary states in order to avoid spurious, artificial perturbations. Therefore
the error of a numerical solution representing one of those stationary states should
not increase with time, thus allowing the simulation to run for a long time.

Numerical methods which achieve this are called well-balanced, introduced in
[GL96]. They make sure that the discretization of the flux divergence and the dis-
cretization of the source term match, and that the numerical method keeps the de-
sired stationary state exactly stationary for any resolution of the grid. The concept
of well-balanced methods has been extensively used in the context of shallow water
equations with non-flat bottom topography (e.g. [ABBT04, BV94, LeV98] and refer-
ences therein). Here, the balance is the so-called lake-at-rest solution, which amounts
to an algebraic condition and can thus be given explicitly.

Another area in which well-balanced methods have high relevance is the simula-
tion of hydrodynamic processes using compressible Euler equations with gravitational
source term. The so-called hydrostatic state (stationary state with no velocity) is de-
scribed by one PDE for two unknown functions. There are many hydrostatic states,
depending on the additional thermodynamical relation that one chooses in order to
close this PDE. The fact that the stationary state is itself given by a differential
equation that cannot be integrated makes well-balancing much more delicate in this
context. There are two different ways which are currently used to construct well-
balanced methods for the Euler equations with gravity. The first and more traditional
way is to restrict the class of hydrostatic solutions which are balanced exactly or to
choose a particular, but arbitrary hydrostatic state (e.g. [CL94, LGB11, DZBKI6,
CK15, BCK16, CCK™18, BCKR19, BCK19]). This is advantageous in all those ap-
plications where the stationary state is known, and the evolution of perturbations
around it shall be studied. If no information on the stationary state can be as-
sumed, then the only way to proceed is to make sure that the stationary states of the
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ON THE ACTIVE FLUX SCHEME FOR HYPERBOLIC PDES WITH SOURCE TERMS 3

numerical method are fulfilling some discretization of the corresponding PDE (e.g.
[DZBK14, KM16, BKCK20]).

For linear numerical methods a theory of such stationarity preserving methods
was given in [Barl9b], with a particular emphasis on this latter, more complicated,
situation of the stationary states given by PDEs, and not by algebraic relations. It
turns out that many standard numerical methods add diffusion even to those states
that should remain stationary. The set of states that are actually kept stationary by
such methods is very small (e.g. uniform constants). Stationarity preserving methods
do not apply diffusion to certain discrete data. These data are described by a discrete
version of the PDE governing the stationary states. Stationarity preserving methods
thus keep stationary a much larger set of initial data. Independently of how these
discrete equations actually look like, it is their existence that makes a qualitative
difference. In a non-stationarity-preserving method, initial data sampled from an
analytic stationary state will decay due to the diffusion and become unrecognizable
in the end. In a stationarity preserving method, these initial data will evolve towards
one of the many discrete stationary states approximating the steady PDE, and will
remain there forever (up to machine precision). The long-time numerical solution will
then indeed approximate the analytic stationary state. For more details, see [Bar19b].
In this paper we understand the concept of well-balancing in this sense of stationarity
preservation.

In this paper, after extending the active flux scheme to include source terms, we
construct a well-balanced active flux method for the equations of acoustics with grav-
ity. The hydrostatic solutions of acoustics with gravity are comparable to those of the
compressible Euler equations with gravity, since they are given via the same under-
determined differential equation. We show that the active flux scheme endowed with
an exact evolution operator is intrinsically well-balanced in this way. In practice, an
approximate evolution operator needs to be used. Hence we introduce a modification
of the approximate evolution operator which makes the scheme well-balanced even
upon usage of an approximate evolution operator.

The paper is organized as follows: After the active flux scheme for homogeneous
problems is introduced in section 2, the modifications necessary for including source
terms are discussed. Section 3 discusses the evolution operators necessary for the
update of the point values. Section 4 is devoted to the modifications in the update
of the average. Here, the focus lies on linear systems of equations with possibly
nonlinear source terms in one spatial dimension and on linear advection in multiple
spatial dimensions. Section 5 discusses well-balancing of active flux for linear acoustics
with gravity. Section 6 finally demonstrates numerically that the new method attains
third order accuracy with linear and nonlinear source terms, can be used to compute
Riemann problems, and displays well-balanced behavior for stationary states.

This work can be seen in the larger context of the quest for structure preserving
numerical methods, of which well-balanced methods form an example. Extending
these results to nonlinear hyperbolic equations with source terms and thus combining
the structure preserving properties of active flux remains subject of future work.
However, the procedures suggested in this paper are formulated with as little reference
to the linearity of the equations as possible.
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M ¥ o+ ¥

Fi1Gc. 1. The degrees of freedom used for active flux. Stars indicate the location of point val-
ues, and the cross (placed in the center symbolically) refers to the cell average. Left: One spatial
dimension. Right: Two spatial dimensions.

2. The active flux scheme. Consider the initial value problem for an m x m
system of hyperbolic balance laws in d spatial dimensions'

(2.1) g+ V -£(q) = s(q) q¢:Rf xRT*—=R™, f,5:R™ —»R™
(2:2) q(0,x) := qo(x)

This section reviews the general idea of the active flux scheme. Some of the details
then depend on the particular equation that is to be solved. After the general concept
is outlined, the details that make it applicable to hyperbolic balance laws are discussed
in sections 3 and 4.

2.1. Degrees of freedom in the active flux scheme. The active flux scheme
([ER13, BHKR19], first introduced in [VL77]) is an extension of the finite volume
scheme. The active flux scheme evolves both the cell average and point values which
are distributed along the cell boundary. In particular, here the following two choices
are considered (see Figure 1):

e In one spatial dimension, there is a point value g; +1 located at each cell
interface ;. 1 Thus every cell has access to one cell average ¢; and two
point values at its interfaces.

e On Cartesian grids in two spatial dimensions, there is a point value ¢ 1 ;,
Gijt1 atb each edge midpoint and one at each node Qigd jad- Every cell has
access to one cell average ¢;; and 8 point values distributed along the cell
interface.

Note that the point values at cell interfaces are shared by the adjacent cells. Thus,
in one spatial dimension, on average there are 2 degrees of freedom per cell: 1 cell
average and 2 interface values shared each by 2 cells. In two spatial dimensions in
the setup as described above there are 4 degrees of freedom per cell: 1 cell average, 4
edge values, each shared by two cells and 4 node values each shared by 4 cells.

Note also that active flux does not use a staggered grid. The degrees of freedom
at the cell boundaries are not averages over staggered volumes, but point values. This
also explains why there is no notion of a conservative update for these, because this
concept only applies to averages. The update of the cell average in the active flux
method is, of course, conservative (see below).

2.2. Update of the cell average. As the active flux scheme is an extension of
the finite volume scheme, given a numerical flux, the update of the average happens in

n this paper, indices never denote derivatives. Boldface symbols denote vectors that have the
same dimension as the space.
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ON THE ACTIVE FLUX SCHEME FOR HYPERBOLIC PDES WITH SOURCE TERMS 5

the same way as for finite volume schemes. In this section, this finite volume aspect of
active flux is described in an arbitrary number of spatial dimensions. The numerical
flux, however, is obtained very differently in the active flux scheme ([ER13, FR15]).
This is then described in detail in section 4.

Consider the computational domain to be subdivided into polygonal computa-
tional cells. Upon integration of (2.1) over one time step [t",t" + At] and over
one computational cell C one obtains an evolution equation for the cell average

qc := ﬁfc dx q(t,x):
—n+1 —n
e [
fe % 21 [q [ don-f(g(t,x) =
S Legs [at [ dontt)

1 t"+ AL 1

— dt— | d t

5 [t [ xstax)
t’IL

Here, as usual, the index of the time step is denoted as a superscript and g7 denotes
the average in cell C at time ™. The boundary dC consists of edges e, such that one
can rewrite

1 L1 t"+AL
dc —dqc / =
- = 4+ — dt do ne - f(q(t,X)) -
At ‘C| At eCZBC €
in

. "+ AL .
AL /dtm /cdxs(q(t,x))
t'n/

The vector n. is the outward unit normal of edge e. This expression, so far exact,
becomes a finite volume scheme upon replacing the exact normal flux and source
averages by suitable approximations f. and Sc¢:

G -a 1 ;
(2.3) A T icl Z le|fe = 3c
eCoC
with
t"+AL

A 1 1
(2.4) fo / dt o / don, - £(q(t, x))

th+AL
1

(2.5) S¢ ~ N /dt|cl| /Cdxs(q(t,x))

tn

Usual finite volume schemes introduce a (piecewise continuous) reconstruction
of the averages, and obtain the numerical flux by an exact or approximate short-
time evolution of this reconstruction. For example, introducing a piecewise constant
function whose averages match the given cell averages, and solving the Riemann
problems at the cell interfaces allows to compute a numerical flux.

The active flux scheme does not need this. Indeed, the point values along the
boundary can be used to immediately approximate (2.4)—(2.5) by quadrature. The
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6 W. BARSUKOW, J. P. BERBERICH, AND C. KLINGENBERG

desired properties (most importantly the desired order of accuracy) of the resulting
scheme dictate the number of point values along each edge and also the points in time
at which these point values need to be available.

The source term also contributes to the update of the cell average. The quadrature
necessary to approximate the source term average (2.5) to sufficient order in space
and time is suggested in this paper for the first time and discussed in section 4.

2.3. Update of the point values. The cell average update, and in particular
the computation of the intercell fluxes, requires accurate point values at the cell
boundary to be available.

First consider the case where the source term vanishes: s = 0. For third order of
accuracy, the integrals in (2.4) need to be approximated by Simpson’s rule. For the
integration in space this can easily be achieved using the available point values at each
cell interface as described in section 2.1. For the integration in time all point values
need to be available at t™, "™ + % and t" + At. Altogether this yields a space-time
Simpson rule.

In order to obtain sufficiently accurate time evolved point values, in [VL77] it has
been suggested to reconstruct the data and to use an exact evolution operator. An
exact evolution operator generally is unavailable for nonlinear problems, and there-
fore in [Fan17, HKS19, Bar19a] approximate evolution operators have been proposed.
Even for linear systems of hyperbolic balance laws it is generally very difficult to ob-
tain closed-form exact evolution operators, as is shown in section 3.2. Therefore the
point values in the active flux scheme shall be evolved using a sufficiently high order
approximate evolution operator applied to a reconstruction of the discrete data. An
exact evolution operator provides the necessary upwinding in order to guarantee sta-
bility, and an approximate evolution operator needs to do the same. The approximate
evolution operator is introduced in section 3.3.

2.4. Reconstruction. The reconstruction shall interpolate the point values and
its average over the computational cell shall match the given cell average. In the
following, to simplify notation, in one spatial dimension a uniform grid is assumed,
although the reconstruction can immediately be generalized to nonuniform grids. In
two spatial dimensions, a Cartesian grid is used. As mentioned in section 2.1, in
one spatial dimension every cell has access to 3 degrees of freedom which makes a
parabolic reconstruction natural. With the above-mentioned setup it is unique and
reads ([VL77, FR15])

2
B Xr —x;
(26) o) = ~3(2 — iy — a1y ) U
—z; 606G —q_1—q1
T — T i i i+
(2.7) a4y G- 5, 1 - el
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ON THE ACTIVE FLUX SCHEME FOR HYPERBOLIC PDES WITH SOURCE TERMS 7

In two spatial dimensions as described above, every cell has access to 9 degrees of
freedom, and there is a unique biparabolic reconstruction, which reads

9
Qrecon,ij(foa WAZU) = Z@j (_1 + 452) (_1 + 4772)
1
- 7w (=1 -4 +126%) (-1 +47°)

— 1qE (—1+4€ +126%) (-1 +4n?)

4
~ Tas (~144€%) (—1— 4y + 1277)

(2.8) - in (=1 +4€%) (=1 +4n + 127?)
+ %qsw(—l +28)(=1+2n) (=1 - 29+ 2§(—1 +6n))
b g1+ 26)(—1+ 20)(1+ 27+ 26(~1 + 6n)
+ geanw(=1+26)(1 -+ 20)(1 — 29+ 26(1 + 6m)
+ %QNE(l +26) (1 +2n)(—1 + 21 + 2£(1 + 67))

with £ := z/Az, n:=y/Ay and

(2.9)  aNB = igep ONW S Giogged GSW TGy o) 0SB = dipd -4
(2.10) N = 9i 41 as = q; -1 4e = Gt 1 5 aw = q;-1 5

Note that both reconstructions are globally continuous, but generally not contin-
uously differentiable at the cell interfaces.

2.5. Overview of the algorithm. The overall algorithm of active flux is as
follows:

1. Given cell averages and point values, compute a reconstruction according to
section 2.4.

2. Use the reconstruction as initial data in the update of the point values. The
choices of evolution operators considered so far are discussed in section 2.3
and evolution operators in presence of source terms are suggested in section
3.3 below.

3. Given the updated point values along the cell interfaces, compute the inter-
cell fluxes via quadrature (sections 2.2 and 4 for the homogeneous and the
inhomogeneous cases, respectively).

4. Update the cell averages via (2.3).

A CFL-type condition arises in the update of the point values: the domain of
dependence of the evolution operator needs to be contained in the neighbouring cells.
Denoting by Apax the maximum speed of propagation, the time step needs to be
chosen as

h

min

(2.11) At <

>

max

where L;, = Ax in one spatial dimension, and Ly, = % min(Az, Ay) in two spatial

dimensions, when the point values are distributed as described in section 2.1.
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3. Evolution of the point values in presence of a source term. The
evolution of the point values needs to account for the source term. Additionally, in
this paper a special focus shall lie on structure preservation properties of the resulting
scheme. In the homogeneous case such properties have been observed upon usage of
an exact evolution operator ([BHKR19]). In presence of a source term, one needs to
use an approximate evolution operator (section 3.3), but should nevertheless aim at
making it such that it does not spoil structure preservation (see section 5).

For certain equations, the inhomogeneous problem admits an exact solution (sec-
tions 3.1-3.2). This is valuable in order to assess specific properties of the numerical
method later.

3.1. Linear advection with a source term in multiple spatial dimen-
sions. Consider a scalar equation (m = 1) and f(¢q) = Uq with U € R%. Then

(3.1) diq+U-Vq=s(q)

amounts to the ODE

d

(3.2) 4=

along the straight characteristic of velocity U. This ODE can be easily solved ana-
lytically:

q(t,x) d
(3.3) / e
go(x—Ut) S(p)

q(t,x)

E.g. for s(¢) = kq this yields In Toun = Kt or

(3-4) q(t,x) = go(x — Ut) exp(rt)

and for s(q) = kq®, B # 1

(3.5) a(t, %) = ((ao(x = UH)'"F + (1= B)t) 7

3.2. Linear acoustics with gravity in one spatial dimension. This section
has threefold purpose. First, it introduces the acoustic equations with a gravity
source term, which form a very useful system for the study of structure preservation
of numerical methods. This is the set of equations for which a well-balanced method
is derived in 5. This section also demonstrates the difficulties of finding an exact
solution to an inhomogeneous system even if it is linear. Finally, the exact solution
derived here is used later in order to assess the accuracy of the numerical method.

The equations of linear acoustics in one spatial dimension endowed with a gravity
source term read:

(3.6) Op+0,v=0
(3.7) dw+0p=pg geER
Op + 0yv =0

The corresponding homogeneous problem (linear acoustics) is the linearization of
the Euler equations around the background state of constant density png = 1, constant

This manuscript is for review purposes only.
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pressure pye and vanishing velocity. Then the speed of sound ¢ = /% is a constant
g

(R >~ >1). The full system (3.6)—(3.8) can be understood as a particular kind of a
linearization of the Euler equations with gravity?

(3.9) Orp + 0z (pv) =0
(3.10) By (pv) + 0 (pv® +p) = pg
(3.11) dre + Ox(v(e+p)) =0
N
(3.12) e= o + 5PV~ PgT

The static (stationary and v = 0) states of (3.9)—(3.11) are governed by d,p = pg.
This equation can only be solved if e.g. p is given as a function of z, or if another
relation is provided between any two of the variables p, p, e. This multitude of possible
stationary states is reflected in the linearization (3.6)—(3.8). (This is the reason for
this particular choice of a linearization.) Observe that stationary states of (3.6)-
(3.8) also are governed by d,p = pg and that p can only be computed if p is given
as a function of z, or if an additional relation is provided that links p and p. This
is an example of a so-called non-trivial stationary state as introduced in [Bar19b].
Examples of stationarity preserving schemes for (3.6)—(3.8) have been discussed in
[Bar18].

The exact solution of (3.6)—(3.8) is studied in the Appendix A. This solution is
not part of the suggested method but only serves auxiliary purposes, such as accuracy
checks. However it illustrates the difficulties encountered when solving linear systems
with sources. To the authors’ knowledge the exact solution to (3.6)—(3.8) is not
available in the literature so far.

3.3. Runge-Kutta method for linear systems with a source. Consider an
m X m linear system in characteristic variables:

(3.13) ((9t+/\58$)Qg :Sg(Ql,...,Qm) l=1,...,m

From now on, the capital letter () denotes the characteristic variables of this particular
system, whereas ¢ continues to denote a generic variable.
Recall the following theorem from [Barl9al:

THEOREM 3.1. Assume a hyperbolic CFL condition Ax/At — const as At — 0.
If the approximate evolution Q*PP™*(t, x) approximates the exact solution Q(t,x) for
fized x at least as

(3.14) Q*PPX(t, 1) = Q(t, x) + O(t%)

and the quadrature rules used to approzimate (2.4)—(2.5) yield the exact value up to
an error of O(At*Az?), a + B > 3 then active flur formally achieves third order
accuracy.

Note that the simple approach of evolving each component of the source term
along its associated characteristic

(3.15)
Qf(tax) ~ Qf,O(x - )‘ft) + tSf(Ql,O(x - )‘ft)a ey Qm,O(x - )‘ft)) { = 17 o,

2Note that often the energy equation is written with a source term pgv appearing. This source
term is unnecessary, as it can be removed by redefining the notion of total energy. When the
total energy includes the potential energy —pgz due to gravity, the conservation form of the energy
equation is restored. The source term in the momentum equation remains.
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ot - - — - —

|
|
|
|
1
x—At(l— ) r— dat(l — )

Fic. 2. Illustration of the intermediate solutions and the involved characteristics for the first
step in the Runge-Kutta scheme.

353 fails to be accurate enough (the error is O(t?) instead of O(£3)).
354 Recall the second order Runge-Kutta method for the ordinary differential equation

357 (3.16) q(t) = s(t,q(t)) q:Rj =R

358 (3.17) ¢V (at) = q(0) + ats(0,¢(0))

1 1
350 (3.18) q(t) = q(0) +t (1 - ) 5(0,¢(0)) + t=—s(at, ¢V (at)) + O(t%)
360 2a 2a
361 for any a € (0,1). In particular choosing o = % (midpoint method) involves a

362 predictor value at half time step. This can be taken as inspiration for constructing a
363 sufficiently accurate approximate evolution operator:

364 THEOREM 3.2 (RK2 evolution operator). Choose (see Figure 2)

365 (3.19) ok = x — At(1 — o) — Aot

36 (3.20) ke = Qr0(&er) + atSk(Qr.0(Eek), - - - Qm,o(Eex)) kt=1,...,m
368  and
(3.21)
1
369 Qél)(t7 :L‘) = Qg,o(.r — )\gt) + (1 — 20[) Sg(Ql,o(l‘ — )\gt), ey Qm’o(l‘ — )\zt))t
t * * _
a0 (322) + 5=Se (Qw N .,Qme) 0=1,...,m
372 Then, for all o € (0,1)
1 (3.23) QP () = Qult,) +OF)  L=1,....m

3
ot

Note that Q7; approximates Qelat,x — N\t(1 — ).
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ON THE ACTIVE FLUX SCHEME FOR HYPERBOLIC PDES WITH SOURCE TERMS 11

Proof. By explicitly computing the first three terms of the Taylor series in ¢ one
confirms the statement. The exact solution is

2
(320)  Qult,2) = Quole) +10,Q| _ + 508 +00)
(3.25) = Qu0(x) +t(Se,0 — M0 Qe 0)

(3.26) (Z 05¢ (S;c 0— (A + )\f)asz:,O) - A?&%Qe,o)) +0(t%)

where Sy o denotes

(3.27) S0 = Se(Q1,0(2),- -, Qmo(z))

and ggi also is evaluated at x. Note that it has been used that 9, A, = 0 (i.e. that the
homogeneous system is linear), but the source S can be any differentiable function of
Q.

Expand now (3.22) (¢(=1,...,m):

(3.28) &5@’,;2‘ =~ = @) + M), Qu0 + @S

(3.29) 8:QV (t,x) = ~\0Qro(z — Aet)

(3.30) <1 - > <tz ey, Qro(z — Aet)(—=A0)
(3.31) + S(Qro(z — M), ..., Quo(z — )\gt)))
(3.32) ( > 50, 05 90, e + S (Qier-- -,ane)>
(3.33) "= X082 Qe0 + St

(3.34) 2Q\M (¢, x)‘ = A02Qu0 + (1 - > (22 05 - 0:Qro(— ))

| )

OuQro(Me+ M) =Sko) O

(3.35) ( Z 05 20, i

(3.36) = \202Q0 — Z 05 (

Obviously the two Taylor series agree up to terms O(t?), which proves the statement.

COROLLARY 3.3 (Midpoint method). If o = %, then for £,k =1,...m

(3.37) b5 == et )3
(339) Qie = Quol€n) + 5 5(Quo(&re), - QuuolEe)
(3.39) Qi (t.2) = Qeo@ = Aet) + 154 (Qlps- -, Qe )
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COROLLARY 3.4 (RK2 evolution operator for a scalar equation). For a scalar
equation

(3.40) (Or +20:)Q = 5(Q)

the algorithm reads

(3.41) E=x— M\

and

(3.42) QW (t,z) := Qo(x — At) + (1 - 22) S(Qo(x — b))t
(3.43) +5-5(Q0(6) + arS(@0(6)))

For the equations (3.6)—(3.8) of linear acoustics with gravity, \; = ¢ = —X3, A3 =
0. The characteristic variables are

_pte p

(3.44) Q=" Q=27 Q="
and the gravity source term then is

_ _9 9 _
(3.45) S1=-5= ?C(Ql +Q2) + EQB S3=0

4. Update of the cell average in presence of a source term. The update of
the cell average needs to include the space-time average of the source term according
to (2.3) of section 2.2. This space-time average needs to be approximated by a suitable
quadrature / approximation with sufficient order of accuracy. Active flux has a strong
focus on providing discrete degrees of freedom along the boundary which allow to
perform a quadrature along the boundary. However, the evaluation of the source
term for the update of the cell average involves an averaging over the cell volume. It
is more difficult to achieve the desired order of accuracy here, as the setup lacks the
quadrature points that would have been natural for this task. A quadrature formula
adapted to the geometry of the active flux method is derived here.

Active flux for equations with a source term is considered in [NR16] for stationary
problems, and for parabolic problems with slowly varying boundary conditions. In
these cases there is no need to use high order quadrature in time. Therefore the
method suggested there cannot be used here.

4.1. One spatial dimension. The numerical discretization (2.5)

. AL .
(4.1) Se = & /dt|C| Cdxs(q(t,x))
tﬂ.

of the source term in (2.3) requires a space-time quadrature that is exact for parabolic
functions. The natural candidate would be Simpson’s rule in both space and time (as
used for the numerical flux), but there are not enough quadrature points for it. For
example in one spatial dimension, the available information is
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tntt q:z_-i-%l qzzj-%l
tn+% q?, f qlnjf
= ay %y
{Ei_% xH_%

These are only 7 values (the box emphasizes that one of the values is a cell average,
whereas the others are point values).

4.1.1. Linear source term. Consider first a linear source term, i.e. s” = 0.
Such source terms are relevant in practice (e.g. compressible Euler equations with
gravity), and therefore it is worth dealing with them specifically as they allow for a
simpler approach. For linear source it is possible to first find a quadrature for ¢ and
to apply s to the result. In order to find a quadrature formula for ¢, one needs to
find a space-time polynomial p(t,z) of at least second degree which interpolates the
available 7 data. Integrating this polynomial would yield a quadrature formula for q.
Here we suggest to use

(4.2) P(t,x) = (ag + a1x + ast + azx® + agxt + ast?) + agwt?

There is a unique set of coefficients ao, . . . , ag which makes polynomial (4.2) fulfill

(43) Py = P wisy) = 4

(44) 2@ he ) =g} P e y) =)
T4

(4.5) 32'(75”7%—7%) :q;i% /dx PA",x) = q} ,@(t",xH%) :q;ﬂr%

€.
i—

[N

Inserting this polynomial in (2.5) and integrating it instead of the source yields
the following quadrature formula:

1A
— dt—/ deq(t" +t,x; +x) =
(4.6) AtJo  Ar ) as
1 1 1
-n n n n+1 n+1 n n+
@+ (—5(%_% ta ) F a4y qi+§))
The weights can be depicted as
1 1 1
5 12
1 4 4
A+ 12
5 5
A 13
Ti—1 Titd

Again, the box indicates that the corresponding weight refers to the cell average,
whereas the others multiply point values.

The time levels (n,n + §,n + 1) contribute with weights (g, 2, ), such that this
quadrature formula is a modification of Simpson’s rule in time. Note that it is not
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possible to use terms proportional to 23, z%t or t3 instead of the term xt? in the
polynomial ansatz, as then the system (4.3)-(4.5) does not admit a solution. In a
sense this is therefore the only choice of a simple quadrature formula.

Quadrature formula (4.6) can be used immediately in order to approximate (2.5)
for linear source terms.

4.1.2. Nonlinear source term. For nonlinear s, the average

:Ei+%

[azstate.)

(4.7)

in general is different from

:Ei+%

s /dx q(t™, x)

x.
i—

(4.8)

Point values, however, do not present any difficulties: one can just evaluate s on
them. Therefore we suggest to consider a reconstruction grecon,;() that interpolates
q;i% and qi"Jr 1 and whose average agrees with g;'. It is computed anyway in order
to update the point values in time, see equation (2.7). This reconstruction can be
easily evaluated at the midpoint of the cell. Then, instead of the cell averages, one
works with a seventh point value grecon,i(0) = %(6(}? —q .- qgﬂrl). Of course, this is
equivalent to replacing the average by a Simpson’s rule 1121 the qzuadrature, and thus
the order of the quadrature is not reduced. Therefore when using only point values
(the 6 pointwise degrees of freedom and one value at the cell midpoint) the weights
of the quadrature formula read

tn+1 1 1
12 2
n+3 4 4
e 12 12
m | _3 8 _3
12 12 12
xZ;% $i+%

Equation (2.5) then is replaced by the quadrature

s(@H) + (@) + (@) + s(@771)) = 3(s(@ ) + (a7 ) + Sarecon.i(0)
2 2

1 1 sy 1 1
i—3 it3 its +3

12

(4.9) 5 =

This quadrature can now be used for nonlinear s. As (4.9) uses a Simpson quadrature
instead of the average, upon usage of a linear source s, it reduces to the expression
(4.6) because of the quadratic reconstruction.

If the source term vanishes, the scheme becomes conservative in the sense that
averages are updated using numerical fluxes.

4.2. Two spatial dimensions.

4.2.1. Linear source term. Similarly consider the setup of the active flux
method on two-dimensional Cartesian grids as described in 2.1. The available de-
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-

F1a. 3. Illustration of the weights of the space time quadrature formula (4.15).

grees of freedom are

. n+ +1
(4.10) 3 x 4 nodes: qli;Ji ’qlil Jilaq,:lié’]il

(4.11) 3 x 2 vertical edges: qi"il e qiif . q?iﬁlj

(4.12) 3 x 2 horizontal edges: g7, ,qmil Y

(4.13) 1 average: q;;

The ansatz for a space-time polynomial is

(4.14) P(t,x,y) = Z acny - Y |+ agrr’yt? + aropry?t?
C+n+9<4

It admits a unique solution to the interpolation problem given the available de-
grees of freedom and yields the following quadrature formula (see also figure 3):

At
N /m T Ay /AydyA/ dtq(t,z,y) = q;;

ap +ax + 48 + ¢w) + =5 (aNg + Rw + Ge + Sw)

(4.15) 72 5 7 5
16 ntd o4l ntl 4 / ny n +1
+72(QE Ttay 2 tag C+ay )_7<qNE2+qNW +qSE2+qS )

4 n n n n 1 mn n n n
+ﬁ (qE+1 +1+q +1 1y H)_ﬁ(qNH +1+q +1—|—q +1)

The time levels (n,n+ %, n+ 1) contribute again with weights (%, %, %), and the edges
always contribute —4 times the nodes.

4.2.2. Nonlinear source term. Again, for nonlinear source instead of the av-
erage it is necessary to use the evaluation of the reconstruction at the cell midpoint.
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This amounts to an approximation of the average by a two-dimensional Simpson rule.
Then the source term is approximating as follows:

S B At 32
A:E/A;dey/AzydyAt 0 dtS(Q(taxay)) = ES(Qreconjj(O’O))

— 22 (s(q) + s(aR) + 5(a) + s(ay)

-3
[\

_|_

s(gxg) + s(anw) + s(g5p) + s(agw))

4.16 n+i n+i n+i nt+l
(116) g™+ s(ay ™) + (a8 )+ sai )

_|_

SR BB w

1

n+i n+i nt+l ntl
s(ak) + s(aknt) + s(ad ™) + slagu®))

s(ap™) + s(gd™) + s(ad™) + s(afy™))

+ [
—~

—~

(s(ani) + s(akiy) + s(a55") + s(agi))

In case that the data only depend on one of the variables, the two-dimensional
quadratures (4.15) and (4.16) do not exactly reduce to the one dimensional quadra-
tures (4.6) and (4.9). This is because (cf. Figure 3) the point values on edge midpoints

0, :I:%) do not disappear even if the data depend only on z, and therefore the avail-

able degrees of freedom remain different from the one-dimensional case.
5. Well-balanced property for acoustics with gravity.

5.1. Exact evolution operator. As described in 3.2 a closed-form exact evo-
lution operator for acoustics with gravity is very difficult to obtain. Nevertheless,
it is still possible to show that a scheme endowed with such an operator would be
well-balanced / stationarity preserving; i.e. that there exists a discretization of the
stationary states of the PDE which remain exactly stationary. This proof does not
require the evolution operator to be known explicitly, but only relies on the fact that
it is exact. Besides its fundamental importance, this result is used in section 5.2
to analyze the situation for the approximate evolution operator and to restore the
well-balanced property for it.

The numerical stationary states are best studied upon the (discrete) Fourier trans-
form. Define ¢, := exp(ik;Ax), t, := exp(ikyAy). Here i is the imaginary unit and
k = (ks, ky) € R? is the wave vector characterizing the spatial frequency of the Fourier
mode. Applying the Fourier transform introduces one mode ¢ for the averages and
one mode ¢ for the point values; this implies writing ¢; := gtitJ, g, +1= qtit).

THEOREM 5.1 (Stationarity preservation with exact evolution). If the discrete
data fulfill

Pivl T Pi—1

(5.1) pi = 5
Pitl —Pi-1 Pi—t tPipl
5.2 2 3 _ i3 ;
(5.2) Az 9 2
(5.3) Diy3 —Pitl _ gpiJr% + 4Pi+% +pi—1
' Az 6

and the exact evolution operator for (3.6)—(3.8) is used, then the numerical solution
remains stationary.
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Proof. The proof consists of two parts.
Consider first the evolution of the point values. When the exact evolution opera-

tor is used to update the point values, they remain stationary if the reconstruction
fulfills

(54) Vrecon (m> = const aacp]recon (.L“) = precon(x)g

Upon the Fourier transform this becomes (w.l.0.g. x; = 0)

i 1\ 2z 1\ 1

~ 1
_ 1 22 1 T 6p—p(1—|—g)
(5.6) —Sg(2p—p(1+tx)>M—ng(l—%)m;—kg4

This shall be valid for all z:

(5.7) 2% — p(1+1/ts) = 0
(5.8) — 2Pty + plty + 1) = W
(5.9) pty — 1) = Axg—Gﬁtm — plta +1)

4

These are three equations for four variables. In particular

_ 1+1/t,
5.10) MIESTS
t, +1
2
(512) 5 Aagplit et

I 6t (te — 1)

These statements can be rewritten as finite difference formulae by inverting the
Fourier transform:

Piti + Pi-l

5.13 0D —
(5.13) p 5

pi+l - pi,l pi,l + pi+l
5.14 2 2 — 2 2
(5.14) AL g 5

Pi+1 — Pi Pirg T4pips +pioy

5.15 =
(5.15) s g G

Assume now (5.10)—(5.12) to be true. Simpson’s rule in time for the flux average
is trivial, and thus the update of the cell average amounts to

ot —o" p(1—1/t,) ot —o" te +1
5.16 =
(5.16) At T Az At 9Py
@n+l _ @n B
(5.17) = +gp o0

The quadrature formula (4.6) for the source reduces to gp if the point values are
stationary, which implies 9"t = ©™. This completes the proof.
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The equations (5.10)—(5.12) contain p as a free variable. One can rewrite the
system making p the free variable:

_ p(ty —1) 2p(t, — 1) 24t +1
(5.18) P = . Azg P~ Auglt, +1) PPt + 1)
This form will be useful later.

Equations (5.2)—(5.3) are finite difference approximations of d,p = pg. Equation
(5.1) implies that the reconstructed p of the discrete stationary state is linear, which
is clear: for quadratic reconstructions to fulfill (5.4), precon has to be linear in each
cell. The slope of the linear function can vary from cell to cell and is given by (5.2).

5.2. Approximate evolution operator. The above section identifies condi-
tions (5.1)—(5.3) on the discrete data for them to remain stationary upon usage of the
exact evolution operator. Unfortunately, such an operator is unavailable in practice.
Having identified an approximate solution operator, which agrees with the exact so-
lution up to terms O(3) in section 3.3, here we study whether it keeps the same data
(5.1)=(5.3) stationary as well.

THEOREM 5.2. If the discrete data fulfill (5.1)—(5.3) and the approzimate evolu-
tion operator of theorem 3.2 for (3.6)—(3.8) is used, then both the pressure p and the
density p remain stationary over one time step, but the velocity undergoes the time
evolution

2 —
_ag” Pyl T Pi-L 4
(319 )=

Proof. Assume the initial data to fulfill (5.1)—(5.3), or equivalently (5.4). Using
(2.7) (and applying the discrete Fourier transform straight away) (5.4) implies

(5.20)

Precon () = i <6p—p(1+ ;)) + & (1 - ;)p—?,x; (2p—p <1+ ti))
(5.21)

Precon(2) = w% (P (1 - ;) - 6%, <2p_p (1 " ti)))
(5.22)

Urecon (33) =0

and using (3.44) therefore

(5.23)
B - p(1+ tz) — 6pt, p(tz - 1)33 3(p(1 + tw) - thx)xQ
@ro@) = Qao(2) = 8t, 2Axt, 2Ax2t,
(5.24)
_ p(—=1+t.)  p—6pty +ply
@s.0(x) = Azxgt, 4c?t,
N (—Azgp(ty — 1) + 6% (p(1 + ty) — 2pt,)) @ 3 +ts) — 2t )x?
2Ax2gt, c2Ax?t,

Evaluating the Runge-Kutta algorithm of section 3.3 on these initial data (at
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z = &%) yields

p
. * ag(tiv - 1)2 3
5.25 . th = _Pe— )
(5:25) v W Y 2022, (t, + 1)
P

(v is the parameter appearing in the RK2 method.)

Recall that p and p are the Fourier coefficients of the point values of the density
and the pressure. Obviously p and p remain stationary, but the velocity does not.
Using (5.18) v* can be rewritten as

2 20,1 — p:
N ag 1 3 ag® Pi+d —Pi-1 5
5.26 =——|1—-—|pt°=——"—2_——2¢
( ) v 4Ax < t$> P 4 Ax
having applied the inverse Fourier transform in the last step. ]

Observe that the time evolution of the velocity is consistent with the accuracy of
the algorithm (O(¢3)).

COROLLARY 5.3 (Stationarity preservation with approximate evolution). If the
algorithm of section 3.3 is modified by adding the term

ag? Pitl — Pi-}

43
4 Ax

(5.27)
to the velocity evolution, then
i) its accuracy is not changed
i) it becomes stationarity preserving / well-balanced with the same discrete station-
ary states as the exact evolution operator

The two forms (5.25) and (5.19) of v* are equivalent, because the initial data
have been chosen to be stationary, and thus additionally fulfill (5.18). The proposed
modification is to always add —v* to the velocity evolution, irrespective of whether
the data fulfill (5.18) or not. At this point the Fourier coefficients of p and p are
independent and it matters whether the correction is used in the form (5.25) or (5.19).
Of course, also the inverse Fourier transform has to be applied to the expression first
in order for the correction to attain the form of a finite difference formula. Compact
finite difference formulae are in one-to-one-correspondence with Laurent polynomials
in t,. An expression such as ﬁ =1—t, +t2F...is an expression involving an
unbounded stencil and cannot be implemented in usual codes. Therefore (5.19) cannot
be used as a correction because the correction would have a non-compact stencil (just
as the equivalent expressions involving only 5 or p). This is why the form (5.25) which
involves point values of p is preferred.

Being always present in the velocity evolution (and not only at stationary states),
the modification (5.27) might in general affect the stability of the algorithm, but it
has not been found to have any effect on the stability in practice.

6. Numerical examples. The numerical examples of this section serve to il-
lustrate the performance of the new method. The equations discussed are linear
advection with different source terms (in one and two spatial dimensions, as intro-
duced in section 3.1) and linear acoustics with gravity (introduced in section 3.2). In
both cases it is demonstrated that the method achieves third order of accuracy in the
experiments. For acoustics with gravity additionally the discrete stationary states are
studied and shown to agree with the prediction of section 5.
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initial data —+— error of numerical solution (averages) —f—

numerical solution at t=0.05 —— error of numerical solution (point values) —>
i third order
14 -
001 >~>§Q
12 | \k\
00001 |-
1t x
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5 1e06 |- e
1 3 N\\
g
06 - 1e08 - Sa
AK
04 | [N
1e10 e
02
le12 Lewt . ;
0 10 100 1000 10000

0 01 02 03 04 05 06 07 08 09 1 gidsize

F1G. 4. Gaussian initial data for (6.1) with U = ez, k = 7. Note that due to the source term,
the Gaussian is advected and also changes shape. Ezact evolution operator (3.4) and quadrature
formula (4.6) have been used with CFL = 0.45. Left: Initial data and solution at t = 0.05 (cell
averages) on a grid with 1000 cells. Right: Error of the numerical solution as a function of the grid
size shows third order convergence.

1 16 1 16
14 14
08 08
12 12
1 1
06 06
08 08
0.4 06 0.4 06
04 04
02 02
02 02
0 0
0 0
0 02 04 06 08 1 0 02 04 06 08 1

F1G. 5. Gaussian initial data for (6.1) with U = (1,0.1), k = 7. Note that due to the source
term, the Gaussian is advected and also changes shape. Ezact evolution operator (3.4) and quadra-
ture formula (4.15) have been used with CFL = 0.45. Left: Initial setup. Right: Numerical solution
at t = 0.05 on a 100 x 100 Cartesian grid.

6.1. Linear advection. Consider first
(6.1) 01q+ U -Vq=rq

with the exact solution given by (3.4). In Figures 4-6 the exact solution operator is
used for the evolution of the point values and third order convergence is observed. This
shows that the quadrature formulae (4.6) and (4.15) used to evolve the cell averages
indeed yield a third order scheme. Figure 4 shows the setup for a one-dimensional
situation together with a convergence study, Figure 5 shows the setup in two spatial
dimensions and Figure 6 shows the corresponding convergence study.

Consider now

(6.2) hq+U-Vg=re® B#1

with the exact solution (3.5) and x = 7, B = 3. Figure 7 (left) shows the initial
data and the numerical solution, and Figure 7 (right) shows a convergence study for
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F1a. 6. Convergence study for the setup shown in Figure 5. One observes third order accuracy.
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initial data —+— < T error of numerical solution (averages) ——
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X N . third order
f 001 b oF =
25 | Jf S
¢
H 0001 F R
2 ¥
\I 00001 |-
15 | JI 5 leo0s b :
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FiG. 7. Gaussian initial data for (6.2) with s(q) = kg® and U = e;, K = 7, B = 3. Runge-
Kutta approzimate evolution operator from Corollary 3.4 and quadrature formula (4.9) have been
used with CFL = 0.45. The solution has been computed on a grid covering [—1 : 2], but the error
is only computed inside [0,1] to exclude any boundary influence. Left: Initial setup and solution
at t = 0.05 (point values) on a grid with 1000 cells. Right: Error of the numerical solution as a
Sfunction of the grid size shows third order convergence. The exact solution is given by (3.5).

the approximate evolution operator from Corollary (3.4). One observes third order
accuracy, as expected.

6.2. Acoustics with gravity. Consider now the equations of linear acoustics
with a gravity source term (3.6)—(3.8). The exact solution operator is only partly
available in closed form, and therefore the approximate Runge-Kutta evolution op-
erator of section 3.3 is used in combination with the well-balancing fix (5.27). The
parameter « in the Runge-Kutta method is chosen to a = %

Figure 8 shows a stationary setup given by
(6.3) p=A12? + Asx + As p=2A12/g+ As/g v=>0

with A; = 17, Ay = —3, A3 = 1. This parabola is exactly recovered by the reconstruc-
tion, and thus remains stationary up to machine precision. This experiment shows
that the well-balancing fix works as it should.
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20 1 001 - T T T
Velocity —— velocity (no fix)
pressure pressure (no fix)
density —— density (no fix)

15 |- 00001 |- velocity (well-balancing fix)

pressure (well-balancing fix)
density (well-balancing fix)
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Fic. 8. Setup of a stationary parabola (6.3) for (3.6)—(3.8), solved using the Runge-Kutta
approzimate evolution operator of section 3.3 with and without well-balancing (5.27). Here g = —1,
and the setup is solved on a grid covering [—1.5,2.5], but the error is only measured inside [0, 1]
(Ax = 1072) to exclude the influence of the boundaries. Left: Setup. Right: Error of numerical
solution as a function of time. Thin lines: without the well-balancing (5.27). Thick lines: including
the well-balancing (5.27). In the latter case one only observes an evolution due to machine error.

1200 T T T T T T T 0.01 T T T T
velocity —— velocity ——
pressure pressure
density —— density ——
0.0001 |

1000

1e-06

800 -
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1e-10

L1 norm of error

le12

le-14

1e-16

x time

Fic. 9. Stationary setup (6.4) for (3.6)—(3.8), solved using the Runge-Kutta approzimate evo-
lution operator of section 3.3 with well-balancing (5.27). Here g = —1, and the setup is solved on a
grid covering [—5.5,5.5], but the error is only measured inside [—4,4] (Ax = 1073) to exclude the
influence of the boundaries. Left: Setup (cell averages). Right: Error of numerical solution as a
function of time. One observes a transition towards a numerical stationary state which then persists
forever.

Consider next (Figure 9) the stationary setup fulfilling p = Kp?, i.e.

1

(6.4) P <g(';ﬁl)x+pgl)w

with K = 1,7 = 1.4, pg = 100. This is reminiscent of an isentropic atmosphere
in the context of the Euler equations. This setup is not recovered exactly by the
reconstruction, but one observes a numerical evolution towards a discrete stationary
state which then persists forever.

Next, a perturbation

(6.5) 200 exp(—100z%)
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1200
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" velocity —— " velocity

pressure
density

pressure
density

1000 1000

200 L L L L n L L 200

Fic. 10. Setup (6.4) endowed with the pressure perturbation (6.5) solved using the Runge-
Kutta approzimate evolution operator of section 3.3 with well-balancing (5.27). Left: Initial data
(cell averages). Right: Numerical solution (cell averages) at t = 0.5 on a grid covering [—5.5,5.5],
but only the subinterval [—4,4] is considered in order to exclude the influence of the boundaries.
Az = 0.01, CFL = 0.45.

error of numerical solution ——|—
third order

0001 |

00001 |

L1 eror

1605

1606 N

1607

1e-08

100 1000 10000 100000
gidsize

Fic. 11. Setup of Figure 10. The error of the numerical solution is measured on the point
values. One observes third order accuracy.

in the pressure is added onto the setup (6.4). In order to study the accuracy of the
scheme on this setup, it is solved on a grid of 131072 = 2'® cells and the solution is
used as reference. Again, g = —1, K = 1,7 = 1.4. Figure 10 shows the setup and
the numerical solution at ¢ = 0.5, and Figure 11 shows a convergence study which
displays third order convergence.

Consider finally a Riemann problem:

1 025<2<0.75

(6.6) p=235 p=15 v =
3 else

This Riemann problem can be solved exactly using the formula (A.18)—(A.22). Note
that if all quantities are constant in space, then they solve

(6.8) dip =0
(6.9) O = pg
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Velocity  +
pressure x

5 - %M . density k|
F 3 % ]

Velocity
pressure
density

]

Fic. 12. Riemann problem setup (6.6) solved using the Runge-Kutta approzimate evolution
operator of section 3.3 with well-balancing (5.27). Here, g = —10. Left: Initial data. Right:
Numerical solution (dots) and exact solution (solid line) att =0.1. Az = 0.01, CFL = 0.45. Point
values of the numerical solution are shown are shown.

which means that p and p remain stationary, but that v = v(¢t = 0)+ pgt. The solution
to the initial data (6.6) therefore can be obtained by adding the time evolution of

0
vo(xz) | (via numerical quadrature of (A.18)-(A.22)) and the time evolution of
0
P p
0 which is just pgt | . Figure 12 shows the numerical and the exact solution.
p p

7. Conclusions and outlook. Active flux is a novel kind of numerical method
for hyperbolic problems, extending the finite volume method. Instead of computing
the intercell flux via a Riemann problem it relies on a continuous reconstruction and on
accurately evolved point values along the cell boundary. They then immediately serve
as quadrature values for the computation of the intercell flux. The extension of active
flux to time dependent balance laws presented in this paper requires a modification
in both these aspects: the evolution of the point values and the average update
need to account for the source term. Here, an approximate evolution operator is
suggested for the point value update; this is done for linear systems with possibly
nonlinear source terms in one spatial dimension, and linear scalar equations with
source terms in multiple spatial dimensions. A suitable quadrature is suggested in
order to approximate the contribution of the source term to the cell average. This
quadrature can be applied to any system of (nonlinear) balance laws.

We aim at combining the strategy presented in this paper with an approximate
evolution operator for a nonlinear homogeneous problem (such as those suggested
in [Bar19a]) in future. Multi-dimensional systems of hyperbolic conservation laws
are very different from their one-dimensional counterparts because in general char-
acteristics are unavailable and need to be conceptually replaced by characteristic
cones. Examples of evolution operators that make use of such cones can be found in
[ER13, FR15, Fan17, BHKR19]. Combining these with an approximate evolution of
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the source term shall pave the way towards the extension of active flux to nonlinear
multi-dimensional balance laws and the derivation of accurate structure preserving

(in particular well-balanced) methods for them.

Appendix A. Exact solution of linear acoustics with gravity.
System (3.6)—(3.8) can in principle be immediately solved exactly via Fourier

transform by inserting the ansatz

p p
(A1) v | =1 o

p b
into (3.6)—(3.8):

p 0 k
(A.2) wl| b = ig 0

p 0 %k

exp(ik - ¢ — iwt)

o o O
=N S ™

Therefore w = 0, or w = ++/c2k2 +igk. The complex eigenvalue can be removed

upon transforming

(A.3) p = pet” v = veM”
with

g
A4 ==
(A.4) Bi= 5

System (3.6)—(3.8) then reads

p = pe”

(A.5) Oup + 0,0 = —pi
(A.6) OV + 02 = pg — pip
(A7) Oup + 0,0 = =P

Now, a solution of (A.5)—(A.7) shall be found. For better readability, drop the tilde.

Upon the Fourier transform (A.5)—(A.7) becomes

p p
(A.8) wl|l o | =€ E=
p p

0 k—iup 0
ig 0 k—iu
0 Ak —ic*u 0

The eigenvalues of £ are now real: wy = 0, wa 3 = tc\/k2 + p?. Although this
transformation brings the endeavour of finding the exact solution to (3.6)—(3.8) into
the realm of the possible, technical difficulties prevent one from actually computing

all Green’s functions in closed form.

Assume therefore that the only non-vanishing initial data are in the velocity.

Then the Fourier mode at initial time reads

0

(A.9) o | exp(ikx)

0
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and at a later time it becomes
3
(A.10) Z U exp(ikz — iwp,t)
m=1

0

where the decomposition of | ¢ | in the eigenbasis of £ is used, i.e.

0
0 3
(A.11) b | = Z U, EVm = WmUm
0 m=1
Such a basis is given e.g. by
W+ ik ik
(A.12) er = 0 €33 = +icy/ k2 + p?
g A+ ik)

Collecting the terms yields the time evolution of the Fourier mode (A.9):
(1 + ik) sin (ct k2 + /ﬂ)

eV k? + p?
(A.13) o exp(ikz) cos (ct k2 + u2)
c2(p+ ik) sin (ct k2 + /ﬂ)

eV k? + p?

— + am
(h ) sin (ct k2 + /12)
Al4 =7 0 exp(ikx
W t N R
_02 (:U’ + az)
Green’s function is obtained by inserting the Fourier transform of a Dirac d,/ at
7', i.e. taking 0 = %\/%m) and performing the inverse Fourier transform with the

help of formula 1.7 (30) in [Bat54]. This yields, wherever defined,

G,(t,z;2") —(p+ 0x)
(A.15) Gutma) |=| o oo (1 Gt — (o~ )?)
Gp(t,z;2") —c2(u+ 0y)
 Oatet — Ot
(A.16) 4 Opyet f%m—ct

c (51:+ct - 6:vfct)
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where Jy is the 0-th order Bessel function of the first kind, and Jj = —J;. Then the
solution is obtained by performing a convolution with the initial data. Reinstalling
the tilde one has
(A.17) o(t,z) = /dx’ Gy (t, z;2")0o(2")

(A.18) v(t,z) = /dx’ Gy (t, z; 2" e yg ()

(A.19) _ % / e == 5,y (i (AP — (& — 22 wol)

(A.20) + % (e_‘“tvo(az +ct) + e"tug(z — ct))

(A21)  pltz) = —% / da’ ) (ut-0,) o (/ (el — (@ — ) wola)
(A.22) - %(e_’“tvo(m +ct) — e"tug (a0 — ct))

and analogously for p. However, it is easier to note that

(A.23) o(p—p)=0
such that
(A.24) p(t,2) = po(@) + ¢ (p(t,) = po(x))
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