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Abstract. We introduce novel high order well-balanced finite volume methods for the
full compressible Euler system with gravity source term. They require no à priori
knowledge of the hydrostatic solution which is to be well-balanced and are not re-
stricted to certain classes of hydrostatic solutions. In one spatial dimension we con-
struct a method that exactly balances a high order discretization of any hydrostatic
state. The method is extended to two spatial dimensions using a local high order ap-
proximation of a hydrostatic state in each cell. The proposed simple, flexible, and
robust methods are not restricted to a specific equation of state. Numerical tests verify
that the proposed method improves the capability to accurately resolve small pertur-
bations on hydrostatic states.
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1 Introduction

In many applications, the compressible Euler equations arise as a model for flow of in-
viscid compressible fluids such as air. Finite volume methods are commonly utilized to
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numerically approximate solutions of this system since they are conservative and capable
of resolving shocks by construction. Fluid dynamics in atmospheres can be modeled by
adding a gravity source term to the Euler system. This model admits non-trivial static,
i.e., time independent solutions, the hydrostatic solutions. They are described by the hydro-
static equation

v=0, ∇p=ρg, (1.1)

which models the balance between the gravity ρg, where ρ is the gas density and g is
the gravitational acceleration, and the pressure gradient ∇p, where p is the gas pressure.
Additionally, the solution must satisfy the constitutive relation between pressure, density,
and internal energy density ε. This relation is called equation of state (EoS) and it has to
be added to the Euler system to close it. In many practical simulations, the dynamics
are considered which are close to a hydrostatic state. Standard finite volume methods
usually introduce truncation errors to hydrostatic states, which can be larger than the
actual perturbations related to the simulated dynamical process. Hence, the small-scale
dynamics can only be resolved on very fine grids, which leads to high computational
cost. This creates the demand for so-called well-balanced methods which are constructed
to be free of a truncation error at hydrostatic states.

The idea of well-balanced methods is very common especially for the shallow water
equations with bottom topography. The hydrostatic solution for the shallow water equa-
tions, the so-called lake-at-rest solution, can be given in the form of an algebraic relation.
This favors the construction of well-balanced methods since the algebraic relation can be
used to perform a local hydrostatic reconstruction, which is the main tool to construct
well-balanced methods. Examples can be found in [1–7] and references therein. Also, for
the Ripa model, which is closely related to shallow water model, there are well-balanced
methods (e.g. [8, 9] and references therein).

For the compressible Euler equations with gravity source term, the situation is more
complicated, since the hydrostatic states are not given by an algebraic relation but by a
differential equation (Eq. (1.1)) together with an EoS. Especially complicated EoS can in-
crease the difficulty of performing a local hydrostatic reconstruction. The result is that
there do not exist methods which are well-balanced for all EoS and all types of hydro-
static solutions, and all existing methods so far known for Euler equations with gravity
bear some restriction. We can classify well-balanced methods broadly into three types,
which may help in understanding their differences and limitations and their domain of
usefulness.

In the first type of well-balancing approaches, à priori knowledge of the hydrostatic
state which is to be well-balanced is assumed.

Definition 1.1 (Type 1). A numerical method is well-balanced (type 1) if it exactly pre-
serves any hydrostatic state that is given as analytical formula or in terms of discrete data
on the grid.

This allows the methods to be general, such that they can balance arbitrary hydro-
static states to arbitrary EoS [10–13]. High order methods of this type are given in [14]
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for one spatial dimension and in [15] for two spatial dimensions. The most general well-
balanced method of this type is presented in [16]. It can be applied to balance any station-
ary solution and follow any time-dependent solution exactly in a high order method. It
can be utilized for any multi-dimensional hyperbolic balance law. In many applications
the hydrostatic solution which is of interest is known à priori, either analytically or as
discrete data.

The second type of methods is developed to well-balance certain classes of hydrostatic
solutions.

Definition 1.2 (Type 2). A numerical method is well-balanced (type 2) if it exactly pre-
serves hydrostatic states that satisfy a certain barotropic condition.

Examples for these barotropic conditions are constant temperature or entropy or a
polytropic relation between density and pressure. Other hydrostatic states still lead to
truncation errors. Well-balanced methods of type 2 are given in [17–25] and there are also
higher order methods [26, 27]. The restriction to certain classes of hydrostatic solutions
usually also manifests in a restriction to the EoS, which is in most cases the ideal gas EoS.
The presence of such additional condition provides an algebraic relation which can be
used to perform hydrostatic reconstruction.

However, there are also situations, in which a more complicated structure can be
expected for the hydrostatic solution and no à priori knowledge can be assumed. If the
relevant hydrostatic state is not known and cannot be expected to be of one of the classes
balanced in the first type of methods (for example because a complicated non-ideal gas
EoS is used), a method of the third type can be useful.

Definition 1.3 (Type 3 - discretely well-balanced methods). A numerical method is well-
balanced (type 3) if it exactly preserves a discrete approximation of a hydrostatic state
without additional assumptions and à priori knowledge of the hydrostatic solution. We
then refer to the method as discretely well-balanced method.

These methods are based on balancing some approximation to a hydrostatic state. The
second order methods introduced in [21,28,29], for example, are exactly well-balanced for
certain classes of hydrostatic states; otherwise they balance a second order discretization
to any hydrostatic state. A high order method of this type has been presented in [30] in the
framework of Lagrangian+remap schemes for the ideal gas EoS. This article also formally
introduces the concept of discretely well-balanced methods. There are also methods,
which balance a global approximation to any hydrostatic state [17,31], rather than a local
one.

Note that this classification into three different approaches is not strict. Some methods
of the third type, for example, can also be seen to be of the second type, since they also
might balance certain classes of solutions exactly [21, 29]. Recently, methods have been
developed that are able to balance stationary solutions of the Euler equations with non-
vanishing velocity [16,32,33]. In this article, however, we only consider hydrostatic states,
i.e., stationary solutions with zero velocity.
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In the present article, we develop a method of type 3 following the approach of bal-
ancing a local approximation to any hydrostatic state. A high order accurate local dis-
crete approximation to a hydrostatic state is constructed based on the local distribution
of density and gravitational acceleration. Well-balancing is then achieved using hydro-
static reconstruction in the manner of [3] and a suitable source term discretization. The
construction of our method allows for general EoS. For one spatial dimension it can be
shown that a high order discretization of any hydrostatic state can be well-balanced ex-
actly. The method is extended to two spatial dimensions using a local approximation
to the hydrostatic state in each cell. Numerical tests validate a significant increase of
accuracy on small perturbations to hydrostatic states. An increased order of accuracy
in the convergence to exact hydrostatic states is observed in one and two spatial dimen-
sions. The method allows a free choice of the components of a Runge–Kutta finite volume
scheme, including reconstruction method, numerical flux function, and ODE solver. The
only restriction is that the numerical flux function has to satisfy the contact preservation
property. The methods can be implemented as simple modifications to existing Runge–
Kutta finite volume codes.

In this paper, we extend the one-dimensional well-balanced finite volume schemes
[28, 34] beyond second-order accuracy. The proposed scheme possesses the following
novel set of features and properties:

(i) An arbitrary high-order accurate one-dimensional local hydrostatic profile is con-
structed without any explicit assumption on the thermal stratification such as the
entropy, temperature or any other barotropic relation.

(ii) An arbitrarily high-order accurate one-dimensional equilibrium preserving recon-
struction based on the local equilibrium profile is built.

(iii) A source term discretization is designed such that the scheme is well-balanced for
gravitational forces aligned with one computational axis, i.e., the scheme preserves
a discrete high-order approximation of one-dimensional hydrostatic equilibrium.

(iv) The scheme requires only standard components: a high-order reconstruction proce-
dure and a consistent and Lipschitz continuous numerical flux function capable of
resolving stationary contact discontinuities exactly. Hence, it can be implemented
with ease within any standard high-order finite volume code.

(v) The scheme can handle any form of equation of state including tabulated, which is
particularly important in astrophysical applications.

(vi) Although the scheme is not well-balanced for general multi-dimensional hydro-
static configurations, the presented numerical experiments demonstrate the never-
theless vastly increased resolution capabilities.

The rest of the article is structured as follows. In Section 2.1, the one-dimensional
compressible Euler equations with gravity source term are introduced. A standard high
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order finite volume method for these is revised in Section 2.2. In Section 2.3 we develop
the discretely well-balanced method (DWB) for an ideal gas law and add the description
for general EoS in Section 2.3.1. The well-balanced property and high order accuracy are
stated in Theorem 2.1. The method is modified in Section 2.4 to reduce the stencil and
the local approximation method (LA) is obtained. In Section 3, numerical experiments in
one spatial dimension are conducted. It is verified numerically that the DWB method is
exactly well-balanced on the discrete approximation to a hydrostatic state and DWB and
LA methods are numerically shown to converge towards exact hydrostatic states with an
increased order of convergence (Section 3.1). The capability of the methods to accurately
resolve small perturbations on hydrostatic states is illustrated in Section 3.2. Tests with
a non-ideal gas EoS are presented in Section 3.3. In Section 3.4 we verify the robustness
of the methods in the presence of discontinuities. Section 4 is dedicated to the extension
to two spatial dimensions. In Section 4.1 we introduce the two-dimensional Euler equa-
tions with gravity source term. Subsequently, the LA method is extended to two spatial
dimensions (Section 4.3). In Section 5, numerical tests of the LA method in two spatial
dimensions are presented. On a two-dimensional polytrope, which is a hydrostatic state,
the increased order of accuracy is observed also for two spatial dimensions (Section 5.1).
A perturbation is added to the polytrope in Section 5.2. Rayleigh–Taylor instabilities on
a radial setup are simulated in Section 5.4 and the increased accuracy of the LA method
is shown. In Section 6 we close the article with some conclusions and an outlook.

2 One-dimensional finite volume methods

2.1 One-dimensional compressible Euler equations with gravity

We consider the one-dimensional compressible Euler equations with gravitation in Carte-
sian coordinates and write them in the following compact form

∂tq+∂xf=s, (2.1)

where

q=





ρ
ρu
E



, f(q)=





ρu
ρu2+p

u(E+p)



 and s(q,g)=





0
ρg

ρug



 (2.2)

are the vectors of conserved variables, fluxes and source terms, respectively. Moreover,
the total energy is given by E= ε+ρu2/2 and we denote the primitive variables by w=
[ρ,u,p]T . The equation of state (EoS) closes the system by relating the pressure p to the
mass density ρ and internal energy density ε, i.e. p= p(ρ,ε). A simple EoS is provided by
the ideal gas law

p=(γ−1)ε, (2.3)
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where γ is the ratio of specific heats. However, we stress that the well-balanced schemes
elaborated below are not restricted to any particular EoS, which is important especially
in astrophysical applications.

2.2 Standard high-order finite volume methods

In this section, we briefly describe a high order accurate standard high-order finite vol-
ume scheme in order to fix the notation and set the stage for the detailed presentation of
our novel well-balanced schemes. The spatial domain of interest Ω is discretized into a
finite number N of cells or finite volumes Ωi =

[

xi− 1
2
,xi+ 1

2

]

, i= 1,··· ,N. The xi∓ 1
2

denote

the left/right cell interfaces and the point xi =
(

xi− 1
2
+xi+ 1

2

)

/2 is the cell center.

A semi-discrete finite volume scheme is then obtained by integrating Eq. (2.1) over a
cell Ωi

∂tQ̂i(t)=L
(

Q̂i

)

=− 1

∆x

[

Fi+ 1
2
−Fi− 1

2

]

+Ŝi. (2.4)

Here Q̂i denotes the approximate cell average of the conserved variables in cell Ωi at time
t

Q̂i(t)≈ q̂i(t)=
1

∆x

∫

Ωi

q(x,t) dx, (2.5)

where q̂i(t) denotes the cell average of the exact solution q(x,t). In the following, a
quantity with a hat ·̂ indicates a cell average and one without a hat indicates a point
value. Note that this distinction is essential for higher-order methods of order greater
than two. Likewise, Ŝi denotes the approximate cell average of the source terms at time t

Ŝi(t)≈ ŝi(t)=
1

∆x

∫

Ωi

s(q(x,t),g(x)) dx, (2.6)

where ŝi(t) denotes the cell average of the exact source terms s(q,g).

Reconstruction. As the basic unknowns in the finite volume method are cell average
values, we need some reconstruction procedure to recover the detailed spatial variation
of the solution in order to obtain high order accuracy. We denote a reconstruction proce-
dure that recovers an m-th (m odd) order accurate point value of the conserved variables
at location x within cell Ωi from the cell averages by

Qrec
i (x)=R

(

x;
{

Q̂j

}

j∈Si

)

, (2.7)

where Si =
{

i− m−1
2 ,··· ,i,··· ,i+ m−1

2

}

is the stencil of the reconstruction.

Many such reconstruction procedures have been developed in the literature, and
a non-exhaustive list includes the Total Variation Diminishing (TVD) and the Mono-
tonic Upwind Scheme for Conservation Laws (MUSCL) methods [35–40], the Piecewise
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Parabolic Method (PPM) [41], the Essentially Non-Oscillatory (ENO) [42], Weighted ENO
(WENO) (see [43] and references therein) and Central WENO (CWENO) methods [44].

In this paper, we will use the m-th order CWENO reconstructions [44] with m being an
odd integer. A distinctive feature of CWENO reconstruction is that it provides an analytic
expression for the reconstruction polynomial and not just a value at some particular point
within the cell. This is particularly useful for solving balance laws which require the
source terms to be integrated over each cell. In particular, for the numerical tests, we will
use the third-order accurate CWENO3 from [45] and the fifth-order accurate CWENO5
from [46]. However, the schemes developed in this paper are not restricted to this choice
of reconstruction schemes as long as the reconstruction yields a function available in the
whole cell and extendable to neighboring cells.

Numerical flux. At each cell face, we have obtained two solution values from the re-
constructions in the two surrounding cells. The flux across the i+ 1

2 face is obtained from
a numerical flux formula F ,

Fi+ 1
2
=F

(

Qrec
i

(

xi+ 1
2

)

,Qrec
i+1

(

xi+ 1
2

))

, (2.8)

which is usually based on (approximately) solving Riemann problems at cell interfaces.
The numerical flux function F is required to be consistent, i.e. F(Q,Q)= f(Q) and Lips-
chitz continuous. Moreover, we will require that it satisfies the contact property.

Definition 2.1 (Contact property). Let ρL (ρR) be the density on the left (right) side of a
contact discontinuity and p the constant pressure. A numerical flux function F for the
one-dimensional Euler equations that satisfies the condition

F (Q(ρL,0,p),Q(ρR,0,p))= [0,p,0]T (2.9)

is said to have the contact property. Here, Q=Q(ρ,u,p) denotes the transformation from
primitive to conserved variables.

This property ensures the ability of a numerical flux to exactly capture stationary
contact discontinuities of the Euler equations. In our tests below, we will use the well-
known approximate Riemann solver by Roe [47]. Another well-known flux with the
contact property is the HLLC flux [48]. The Rusanov flux is not able to capture contact
discontinuities since it does not satisfy Definition 2.1. Note, that the contact property
is, besides consistency, the only requirement for a numerical flux to use with the well-
balanced methods proposed in this article. This gives a lot of freedom, since there are
many contact property satisfying numerical fluxes with different properties available in
literature. This includes for example entropy stable fluxes (e.g. [49–51]) and numerical
fluxes suitable for the simulation of low Mach number flows (e.g. [51–56]).
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Source term discretization. We assume that the gravitational acceleration is given and
can be evaluated anywhere in the computational domain as needed by the scheme.

If the gravitational acceleration g(x) is a given function, it can be evaluated directly
at the quadrature nodes. If the gravitational acceleration g(x) is only known at discrete
points, then a suitable interpolation can be used. Note that the interpolation needs to be
at least as accurate as the desired design order of the scheme. In the numerical examples
below, and also in the construction of our well-balanced method, we assume that point
values gi of gravitational acceleration are given at all cell centers xi. These point values
are then interpolated using sufficiently high order polynomial interpolation. In an m-th
order accurate method we define

gint
i (x)=

m−1

∑
k=0

ak(x−xi)
k for x∈Ωi, (2.10)

where the coefficients a0,··· ,am−1∈R are defined via demanding

gint
i (x)= gj for j∈

{

i−m−1

2
,··· ,i+m−1

2

}

. (2.11)

If the gravitational acceleration is not smooth enough, a CWENO interpolation can be
applied instead. An accurate approximation of the cell average of the source terms is
then obtained by integration:

Ŝi(t)=
1

∆x

∫

Ωi







0
si(x)

(ρu)rec
i (x)

ρrec
i (x)

si(x)






dx with si(x)=ρrec

i (x)gint
i (x), (2.12)

where ρrec
i ,and (ρu)rec

i are obtained from the reconstruction procedure Eq. (2.7). In this
article we use exact integration which is possible because of the way we obtain gint. In
general, however, exact integration is not always possible. In that case a sufficiently
accurate quadrature rule has to be applied.

Time-stepping. For the temporal integration, the time domain of interest [0,T] is dis-
cretized into time steps ∆t= tn+1−tn, where the superscripts label the different time lev-
els. The semi-discrete scheme Eq. (2.4) is evolved in time using some ODE integrator. For
this purpose, we apply explicit Runge–Kutta methods. To achieve third-order accuracy
in time, we use a third-order accurate, four stage explicit Runge–Kutta method [57]. To
achieve fifth-order accuracy in time, we apply a fifth-order accurate Runge–Kutta method
(the standard-method from [58]). Furthermore, the time step ∆t is required to fulfill a CFL
condition for stability.

This concludes the description of a standard high-order accurate finite volume scheme.
We refer to the many excellent available textbooks for further information and detailed
derivation, see [38–40, 59]. However, a standard finite volume method is in general not
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able to exactly balance hydrostatic equilibrium solutions. Next, we present the necessary
modifications to the reconstruction procedure, which render this precise balance possible,
and result in a family of high-order well-balanced schemes able to preserve a high-order
accurate discrete form of the equilibrium.

2.3 The discretely well-balanced method

The main idea of achieving well-balancing lies in a carefully designed reconstruction
process in two steps. In the first step, a local equilibrium profile is determined within
each cell that is consistent up to the desired order of accuracy with the cell-averaged con-
served variables. We emphasize that this step is the principal novelty of the presented
schemes. It generalizes the second-order schemes [28, 34], able to preserve discrete hy-
drostatic states without any explicit assumption of thermal equilibrium, to arbitrary or-
ders of accuracy. In the second step, the cell’s equilibrium profile is extrapolated to its
neighboring cells and a high-order reconstruction of the equilibrium perturbation is per-
formed.

Step 1. We begin by the construction of the local high-order equilibrium profile within
the i-th cell

Q
eq
i (x)=





ρ
eq
i (x)

0

ε
eq
i (x)



 (2.13)

fulfilling

dp
eq
i

dx
= si(x). (2.14)

We define the local equilibrium source term related to the i-th cell as

si(x)= ∑
k∈Si

ρ
eq
k (x)gint

k (x) 1Ωk
(x) and 1Ωk

(x)=

{

1 if x∈Ωk,

0 if x /∈Ωk,
(2.15)

where Si is the stencil of the reconstruction R. The equilibrium mass density ρ
eq
i (x),

internal energy density ε
eq
i (x) and the pressure p

eq
i (x) are related through the EoS

ε
eq
i (x)= ε

(

ρ
eq
i (x),p

eq
i (x)

)

. (2.16)

As a matter of fact, the hydrostatic equilibrium stratification Eq. (2.13) is not uniquely
specified by Eqs. (2.14) and (2.16) (indeed, we have three physical quantities and only
two equations linking them). To fully determine the equilibrium, one additional relation
is needed. For that purpose, we demand that the local equilibrium density profile ρ

eq
i (x)

corresponds to the density profile obtained from the standard reconstruction procedure
Eq. (2.7)

ρ
eq
i (x)=ρrec

i (x). (2.17)
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Note that this is the major difference with well-balanced schemes assuming an explicit
thermal equilibrium, e.g., isothermal, isentropic, polytropic or, in general, barotropic
(density is a function of pressure only) conditions. The density profile can be arbitrary
and we do not impose any further restriction on the structure of the hydrostatic solution.

Now, we construct the equilibrium pressure profile within the i-th cell by simply in-
tegrating Eq. (2.14) as

p
eq
i (x)= p0,i+

∫ x

xi

si(ξ) dξ, (2.18)

where p0,i is the point value of the pressure anchoring the equilibrium profile at cell
center xi. Note that the above integral can be evaluated analytically for any x∈Ωi since
the equilibrium density ρ

eq
i (x) (Eq. (2.17)) and the interpolated gravitational acceleration

gint
i are simply polynomials.

It remains to fix the equilibrium pressure p0,i at cell center. To this end, we require
that the equilibrium profile Q

eq
i (x) matches the cell-averaged conserved variables Q̂i in

the cell Ωi up to the desired order of accuracy. For the equilibrium density, this is fulfilled
by construction (since it is identical to the profile from the standard reconstruction pro-
cedure). For the internal energy density, the requirement leads to the following equation

ε̂ i =
1

∆x
Qi

(

ε(ρ
eq
i ,p

eq
i )
)

=
1

∆x

Nq

∑
α=1

ωα ε(ρ
eq
i (xi,α),p

eq
i (xi,α)), (2.19)

where Qi is a q-th order accurate quadrature rule with ∑α ωα =∆x. Moreover, ε̂ i on the
left-hand side is an estimate of the cell-averaged internal energy density in cell Ωi. We
estimate ε̂ i directly from the cell-averaged conserved variables as

ε̂ i = Êi−
1

2∆x
Qi

(

(

(ρu)rec
i

)2

ρrec
i

)

, (2.20)

where (ρu)rec
i has been obtained via the standard reconstruction procedure.

For readability we restrict to an ideal gas EoS in the following. The procedure for
general EoS in described in Section 2.3.1. For an ideal gas law, Eq. (2.19) can be solved
analytically

p0,i =(γ−1)ε̂ i−
1

∆x
Qi

(

∫ x

xi

si(ξ) dξ

)

=(γ−1)ε̂ i−
1

∆x

Nq

∑
α=1

ωα

∫ xi,α

xi

si(ξ) dξ, (2.21)

where we used the ideal gas EoS (Eq. (2.3)) and that for the quadrature weights we have

∑α ωα=∆x. Again, since the equilibrium density ρ
eq
i (x) and the interpolated gravitational

acceleration gint
i are polynomials, the integral can be evaluated analytically in a straight-

forward manner. Now that the pressure at cell center p0,i is fixed, we have completely
specified the high-order accurate local representation of the equilibrium conserved vari-
ables Eq. (2.13) within cell Ωi.
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Step 2. Next, we develop the high-order equilibrium preserving reconstruction proce-
dure. To this end, we follow the existing methodology (see the references in the Section 1)
and decompose in every cell the solution into an equilibrium and a (not necessarily small)
perturbation part. The equilibrium part in cell Ωi is simply given by Q

eq
i (x) of Eq. (2.13).

The perturbation part in cell Ωi is obtained by applying the standard reconstruction pro-
cedure R to the cell-averaged equilibrium perturbation

δQrec
i (x)=R

(

x;

{

Q̂k−
1

∆x
Qk

(

Q
eq
i

)

}

k∈Si

.

)

(2.22)

We note that the cell average of the equilibrium perturbation in cell Ωk is obtained by
taking the difference between the cell average Q̂k and the cell average of the local high
order equilibrium profile Q̂

eq
i in cell Ωk. This construction results in a min(q,r)-th order

accurate representation of the equilibrium perturbation in cell Ωi.
The complete equilibrium preserving reconstruction W is obtained by the sum of the

equilibrium and perturbation reconstruction

Qrec
i (x)=W

(

x;{Q̂k}k∈Si

)

=Q
eq
i (x)+δQrec

i (x). (2.23)

By construction, this reconstruction will preserve any equilibrium of the form Eq. (2.14)
since the perturbation δQrec

i (x) vanishes under these conditions.
This concludes the description of the equilibrium preserving reconstruction proce-

dure. Replacing only this component in a standard finite volume method renders it well-
balanced for the above discrete form of arbitrary hydrostatic equilibrium, i.e., only a
mechanical equilibrium and no thermal equilibrium needs to be explicitly assumed. In
the rest of the article, we will refer to the method introduced in this section as discretely
well-balanced (DWB) method.

2.3.1 The discretely well-balanced method for arbitrary EoS

In this section, we present the details for using the developed well-balanced schemes
with a general EoS. In that case, Eq. (2.19) is not explicitly solvable for the cell center
equilibrium pressure p0,i in cell Ωi, which can be rewritten as

f (p0,i)=0, (2.24)

where

f (p)= ε̂ i−
1

∆x

Nq

∑
α=1

ωα ε

(

ρ
eq
i (xi,α), p+

∫ xi,α

xi

si(ξ) dξ

)

. (2.25)

Here, ε̂ i is the estimate of the cell-averaged internal energy density Eq. (2.20) and Qi is
the previously introduced q-th order accurate quadrature rule over Ωi with nodes xi,α

and weights ωα. We again stress that the equilibrium density ρ
eq
i and the gravitational

acceleration gint
i are polynomials and, consequently, almost everything can be evaluated
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analytically in a straightforward manner. Only the EoS conversion to internal energy den-
sity given density and pressure ε= ε(ρ,p) is in general not explicitly available. Therefore,
solving Eq. (2.24) for p0,i requires some iterative procedure such as Newton’s method

p
(k+1)
0,i = p

(k)
0,i −

f (p
(k)
0,i )

f ′(p
(k)
0,i )

, (k=0,1,···) (2.26)

where the superscript in parenthesis labels the iteration number and the derivative of
Eq. (2.25) is given by

f ′(p)=− 1

∆x

Nq

∑
α=1

ωα
∂ε

∂p

(

ρ
eq
i (xi,α), p+

∫ xi,α

xi

si(ξ) dξ

)

. (2.27)

The iteration is started with the pressure computed from the cell-averaged conserved
variables as initial guess

p
(0)
0,i = p(ρ̂i, ε̂ i). (2.28)

The iteration is stopped and the cell-centered pressure p0,i= p
(k)
0,i returned if the condition

∣

∣

∣

∣

∣

∣

f
(

p
(k)
0,i

)

f ′
(

p
(k)
0,i

)

∣

∣

∣

∣

∣

∣

<τ

is met, where we chose τ=10−13 in the numerical experiments conducted in this article.
As is well-known, the global convergence properties of Newton’s method are poor.

However, it is straightforward to build a robust solver by combining it with, for example,
the bisection method (see [60, 61] and references therein for details). Such a modification
was not necessary for the presented numerical examples using the ideal gas with radia-
tion pressure EoS.

Simplified approach. However, for many applications it might be sufficient to use a
simplified approach to determine the value of p0,i. Choose

ε0,i :=Erec
i (xi)−

1

2

(

(ρu)rec
i (xi)

)2

ρrec
i (xi)

,

which is the cell-centered internal energy computed from the CWENO reconstruction
polynomials. Then apply the EoS to compute

p0,i := pEoS(ρ
rec
i (xi),ε0,i).

The resulting method will be referred to as DWB-S.
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2.3.2 Well-balanced property of the discretely well-balanced method

We summarize the well-balancing property of the DWB method in the following theorem.

Theorem 2.1. Consider the scheme (2.4) with a consistent, Lipschitz continuous, and contact
property fulfilling (Definition 2.1) numerical flux F , an m-th order accurate spatial reconstruc-
tion procedure R, a q-th order accurate quadrature rule Q, the hydrostatic reconstruction W
(Eq. (2.23)) and the standard gravitational source term discretization (Eq. (2.12)).

This scheme has the following properties:

(i) The scheme is consistent with Eq. (2.1) and it is min(q,m)-th order accurate in space (for
smooth solutions).

(ii) The scheme is well-balanced in the sense that it exactly preserves a discrete hydrostatic equi-
librium approximating an arbitrary non-periodic hydrostatic equilibrium weq=[ρeq,0,peq]T

to min(q,m)-th order accuracy (for smooth equilibrium weq).

Proof. (i) The overall accuracy of the scheme is determined by the accuracy of recon-
struction and source term integration. It is straightforward to show the source term dis-
cretization is min(q,m)-th order accurate. The order of the accuracy of the hydrostatic
reconstruction in energy, however, requires a discussion.

Assume a smooth solution q̃=
(

ρ̃,ρ̃u,Ẽ
)T

at a fixed time t (which we omit in the fol-

lowing), with the pressure value p̃0,i := p(ρ̃(xi),Ẽ(xi)− ˜(ρu)(xi)
2/(2ρ̃(xi)) at the point

xi. The functions p̃
eq
i and ε̃

eq
i defined by p̃

eq
i (x) := p̃0,i+

∫ x
xi

ρ̃(ξ)g(ξ)dξ and ε̃
eq
i (x) :=

εEoS

(

ρ̃(x), p̃
eq
i (x)

)

respectively are then smooth functions provided that the EoS is smooth.
In the following step we show that the piecewise smooth equilibrium energy profile

ε
eq
i that is used in our method approximates the smooth profile ε̃

eq
i to min(q,m)-th order:

By construction, the cell-averaged internal energy estimate ε̂ i (Eq. (2.20)) is m order accu-
rate and p0,i obtained as described in Eq. (2.21) or the iterative procedure in Section 2.3.1
approximates p̃0,i to µ :=min(q,m)-th order. Consequently, we have

p
eq
i (x)= p0,i+

∫ x

xi

ρrec(ξ)gint(ξ)dξ

= p̃0,i+O((x−xi)
µ)+

∫ x

xi

(ρ̃(ξ)+O((x−xi)
m))(g(ξ)+O((x−xi)

m))dξ

= p̃0,i+
∫ x

xi

ρ̃(ξ)g(ξ)dξ+O((x−xi)
µ)= p̃

eq
i (x)+O((x−xi)

µ)

and thus

ε
eq
i (x)= εEoS

(

ρrec(x),p
eq
i (x)

)

= εEoS

(

ρ̃(x)+O((x−xi)
µ), p̃

eq
i (x)+O((x−xi)

µ)
)

= εEoS

(

ρ̃(x), p̃
eq
i (x)

)

+O((x−xi)
µ)
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for sufficiently smooth EoS.
With this we can finally show the µ-th order accuracy of the hydrostatic reconstruction

in the energy:

Erec
i (x)= ε

eq
i (x)+R

(

x;

{

Êk−
1

∆x
Qk

(

ε
eq
i

)

}

j∈Si

)

= ε̃
eq
i (x)+O(∆xµ)+R

(

x;

{

Êk−
1

∆x

∫

Ωk

ε
eq
i (ξ)dξ+O(∆xµ)

}

j∈Si

)

= ε̃
eq
i (x)+R

(

x;

{

Êk−
1

∆x

∫

Ωk

ε
eq
i (ξ)dξ

}

j∈Si

)

+O(∆xµ) (2.29)

= ε̃
eq
i (x)+

(

Ẽ(x)− ε̃
eq
i (x)

)

+O(∆xµ)= Ẽ(x)+O(∆xµ) (2.30)

for x∈Ωi. In Eq. (2.29) the Lipschitz continuity of the reconstruction R (which is given for
consistent reconstruction methods on smooth flows) is applied and the step to Eq. (2.30)
holds because ε

eq
i is a smooth function in the whole reconstruction stencil Si and R is

m-th order accurate. This concludes the proof that the hydrostatic reconstruction in the
energy is µ=min(q,m)-th order accurate.

The consistency of the scheme follows directly from the order of accuracy.

(ii) The proof of this item consists of two parts. First, we construct a discrete equilib-
rium, consistent with the local equilibrium reconstruction procedure W , and show that
it approximates an arbitrary hydrostatic equilibrium with high-order accuracy. Second,
we show that the just constructed discrete hydrostatic equilibrium is exactly preserved
by the scheme.

We begin by part one. Let an arbitrary (but smooth enough) hydrostatic equilibrium
be given

weq(x)= [ρeq(x),0,peq(x)]T

with gravitational acceleration g(x). The corresponding equilibrium conserved variables
are then

qeq(x)= [ρeq(x),0,εEoS(ρ
eq(x),peq(x))]T.

We stress that these are exact profiles†. Let the density cell averages in every cell be given
by the q-th order accurate quadrature rule Qi

ρ̂i =
1

∆x
Qi(ρ

eq).

By applying the m-th order accurate standard reconstruction procedure R to the density
cell averages ρ̂i,

ρrec
i (x)=R

(

x;{ρ̂k}k∈Si

)

,

†Note that ρeq(x) is the exact hydrostatic profile, which is generally unknown, whereas ρ
eq
i (x) is a locally

reconstructed profile.
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we obtain a min(q,m)-th order accurate approximation of ρeq(x) within every cell Ωi.
Because the local equilibrium density profile ρ

eq
i (x) coincides with ρrec

i (x) in the scheme,
it approximates ρeq(x) with the same accuracy.

Let us now focus on a particular cell Ωi and anchor the local equilibrium pressure
profile at its center by setting p0,i = peq(xi) in Eq. (2.18):

p
eq
i (x)= peq(xi)+

∫ x

xi

si(ξ)dξ.

We emphasize that exact integration is used in the definition of the local equilibrium
profile. This is straightforward because ρ

eq
i (x) and gint

i are simply polynomials. Then
it is clear that the above p

eq
i (x) is a min(q,m)-th order approximation of peq(x) within

this particular cell. With the local equilibrium density and pressure profile available, we
readily obtain the internal energy density through the EoS with Eq. (2.16). Applying the
quadrature rule Qi as in Eq. (2.19), we obtain the cell-averaged internal energy density
within cell Ωi. Note that the so obtained cell-averaged conserved variables within the i-th
cell are min(q,m)-th order accurate approximation of the exact cell-averaged equilibrium
conserved variables, i.e.

q̂
eq
i =

1

∆x

∫

Ωi

qeq(x)dx=[ρ̂i,0, ε̂ i]
T+O(∆xmin(q,m))= Q̂

eq
i +O(∆xmin(q,m)).

These are the discrete equilibrium cell-averaged conserved variables within this particu-
lar i-th cell obtained from qeq(x).

Next, we construct the discrete equilibrium cell-averaged conserved variables in the
remaining cells, i.e. all other cells than Ωi. It would seem that one could simply repeat
the above procedure for the internal energy density in every cell. However, this will not
result in a consistent discrete equilibrium. Indeed, we need to make sure that the discrete
equilibrium in all cells is consistent with the particular cell Ωi, where we anchored the
equilibrium, and also among each other. To achieve this, we extrapolate the local equilib-
rium profile from the particular cell Ωi to its immediate neighbors by enforcing pressure
equality at the touching cell interfaces. Indeed, if the pressure is not equal at a cell in-
terface, then there is no equilibrium and a net force arises. Operationally, this consistent
equilibrium extrapolation from cell Ωi to any cell Ωj can be written as

p0,j = p0,i+
∫ xj

xi

sh(ξ) dξ, (2.31)

where

sh(x)=∑
k

ρ
eq
k (x)gint

k (x) 1Ωk
(x) and 1Ωk

(x)=

{

1 if x∈Ωk,

0 if x /∈Ωk

is the characteristic function of the k-th cell. This allows the definition of the discrete
equilibrium cell averages in all cells Q̂

eq
j consistent with the equilibrium in cell Ωi where
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it was anchored. For all the cells we have now

q̂
eq
j =

1

∆x

∫

Ωj

qeq(x)dx= Q̂
eq
j +O(∆xmin(q,m))

because it is clear that
peq(xj)= pj,0+O(∆xmin(q,m)).

Reciprocally, it is easy to obtain the same local equilibrium profiles from the discrete
equilibrium cell-averaged conserved variables Q̂

eq
i . To guarantee this, we need to make

sure that, given such equilibrium cell-averaged conserved variables, the same equilib-
rium pressure at cell center p0,i in Eq. (2.18) is obtained when solving Eq. (2.19). For the
ideal gas EoS this is clear, because there is only solution Eq. (2.21). For general EoS, this is
shown in Appendix A with the requirement that the equilibrium within the cell is away
from any phase transition.

We now conclude this item with part two. Given discrete cell-averaged equilibrium
conserved variables Q̂

eq
i as constructed in part one, the well-balanced reconstruction pro-

cedure W guarantees that matching local equilibrium profiles Q
eq
i (x) are found within

each cell and that, consequently, the equilibrium perturbations δQrec
i (x) vanish in all cells.

Therefore, we have pressure equilibrium at cell interfaces

p
eq
i (xi+ 1

2
)= p0,i+

∫ x
i+ 1

2

xi

si(ξ)dξ= p0,i+1+
∫ x

i+ 1
2

xi+1

si+1(ξ)dξ= p
eq
i+1(xi+ 1

2
).

A contact property fulfilling numerical flux F then results in

F
(

Q(ρ
eq
i (xi+ 1

2
),0,p

eq
i (xi+ 1

2
)),Q(ρ

eq
i+1(xi+ 1

2
),0,p

eq
i+1(xi+ 1

2
))
)

=
[

0,pi+ 1
2
,0
]T

with
pi+ 1

2
= p

eq
i (xi+ 1

2
)= p

eq
i+1(xi+ 1

2
).

Plugging this into the momentum component of the scheme’s flux difference Eq. (2.4)

1

∆x

[

F
[ρu]

i+ 1
2

−F
[ρu]

i− 1
2

]

=
1

∆x

[

pi+ 1
2
−pi− 1

2

]

=
1

∆x

[(

p0,i+
∫ x

i+ 1
2

xi

si(ξ)dξ

)

−
(

p0,i+
∫ x

i− 1
2

xi

si(ξ)dξ

)]

=
1

∆x

∫ x
i+ 1

2

x
i− 1

2

si(ξ)dξ

= Ŝ
[ρu]
i .

The density and energy component flux difference vanish as does the energy component
source term. To conclude, we obtain

∂tQ̂
eq
i (t)=L

(

Q̂
eq
i

)

=− 1

∆x

[

Fi+ 1
2
−Fi− 1

2

]

+Ŝi=0

and the scheme is well-balanced as claimed.
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Remark 2.1. Periodic hydrostatic solutions have been excluded in Theorem 2.1 since the
construction of the discrete approximation which is used in the proof can fail for periodic
boundary conditions. Periodic hydrostatic states are anyway academic problems, since
they can not appear in real physical situations. However, the DWB method can still be
beneficially applied to periodic hydrostatic states as will be demonstrated in Sections 3.1,
3.2 and 3.5.

Remark 2.2. For the equilibrium density reconstruction we chose to use the same recon-
struction procedure R as used in the equilibrium perturbation reconstruction. In prin-
ciple, a different reconstruction procedure Req for the equilibrium density can be used.
However, we do not further explore this possibility in this work.

Remark 2.3. The schemes developed here reduce to the second-order accurate scheme
presented in [28, 34] when setting the quadrature rule Q to the midpoint rule, the equi-
librium density reconstruction ρ

eq
i (x) to piecewise constant and the equilibrium pertur-

bation reconstruction procedure to piecewise linear.

2.3.3 Well-balanced boundary conditions

In the following we discuss the different kinds of boundary conditions and how to realize
them in order to comply with the well-balancing property as stated in Theorem 2.1. All of
the boundary conditions we discuss are based on a sufficient number of ghost cells, which
have to be added on either side of the domain and which are set to certain values before
reconstruction, depending on the chosen boundary condition.

Dirichlet boundary conditions. If the initial data of a simulation satisfy the relation
Eq. (2.31) in the whole domain and in the ghost cells, Dirichlet boundary conditions can
be realized by simply never updating the ghost cell values.

Hydrostatic extrapolation. First, the states in the ghost cells Ωj for j∈
{

1−Ngc,··· ,Ω0

}

(for brevity we only describe the left boundary) are set to

Q̂j=
1

∆x

∫

Ωj

Qrec
1+ m−1

2
(x)dx.

We compute p0,1 according to Eq. (2.19) and the hydrostatic pressure

p
eq
1 (x)= p0,1+

∫ x

x1

s1(ξ)dξ,

where s1 is defined as in Eq. (2.15). The total energy in each cell is then corrected to

Êj=
1

∆x

∫

Ωj

ε
(

ρrec
1 (x),p

eq
1 (x)

)

+
1

2

((ρu)rec
1 (x))2

ρrec
1 (x)

dx

to achieve a well-balanced treatment of the boundaries.
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Solid wall boundaries. Before reconstructing in every cell, fill the ghost cells with the
data obtained from the hydrostatic reconstruction discussed above. After reconstruction,
use the following boundary fluxes:

F 1
2
=F









ρL
1

(ρu)L
1

EL
1



,





ρL
1

−(ρu)L
1

EL
1







, FN+ 1
2
=F









ρR
N

(ρu)R
N

ER
N



,





ρR
N

−(ρu)R
N

ER
N







,

where
(

ρL
1 ,(ρu)L

1 ,EL
1

)T
=Q̂rec

1

(

x 1
2

)

and
(

ρR
N ,(ρu)R

N ,ER
N

)T
=Q̂rec

N

(

xN+ 1
2

)

are obtained via the

well-balanced reconstruction procedure W .

2.3.4 Stencil of the discretely well-balanced method

In the whole article, we have assumed that the order of reconstruction m is odd, due
to the use of CWENO schemes. To update the cell-average values Q̂i, a standard m-th
order method requires Q̂i− m+1

2
,··· ,Q̂i+ m+1

2
. This includes m−1

2 cells in each direction for

the reconstruction and one for the flux computations from the reconstructed values in
the i−1,i, and i+1 cell.

The DWB method increases the stencil in the following way. The transformation to
local hydrostatic variables requires the values of sh in each cell in the reconstruction sten-
cil. This adds m−1

2 cells in each direction to the stencil. In total, to update the cell-average

values Q̂i, the methods require the values Q̂i−m,··· ,Q̂i+m. The stencil is visualized in
Fig. 1. Depending on the application (especially in parallel computing using a domain
decomposition), this increased stencil can lead to a considerable increase in computation
time and memory requirements. As a possible solution to this problem, we propose a
modified method in the next section.

2.4 The local approximation method

The reason for the increased stencil in the previous methods is that the source term has
to be discretized in each cell of the CWENO stencil. To avoid this, we will now do the
following. To compute the hydrostatic pressure with respect to the i-th cell, we only use
the source term discretization from the i-th cell. This definition is extended to the whole
domain in a trivial way without using additional information. Consequently, there is
no unique source term discretization; instead it depends on the cell in which we aim to
reconstruct.

To achieve this, we only have to modify Eq. (2.15) to

si(x)=ρ
eq
i (x)gint

i (x) for x∈
⋃

k∈Si

Ωk (2.32)

for performing the hydrostatic reconstruction in the i-th cell. Thus, we extrapolate the
source term polynomial from the i-th cell to the neighboring cells. This only effects the
reconstruction of the energy deviations. The rest of the method remains unmodified.
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i−2 i−1 i i+1 i+2

ρrec
i−1gint

i−1

ρrec
i+1gint

i+1

ρrec
i gint

i

si

i−1 i i+1

p
eq
i , Qrec

i

Figure 1: Stencil of the third order accurate discretely well-balanced method method. The local hydrostatic
reconstruction which yields Qrec

i requires the source term approximations si−1, si,si+1 in the i−1, i, and i+1
cell respectively (shown at the bottom of the figure). Each of these source term approximation has a stencil
involving one neighboring cell per dimension. The total stencil to determine Qrec

i thus involves five cells.

In the rest of the article, we refer to this modified method as local approximation (LA)
method. Obviously, this method can also be applied for non-ideal EoS using the proce-
dures described in Section 2.3.1. The resulting methods will be referred to as LA when
Newton’s method is applied to determine p0,i and LA-S if the simplified method is ap-
plied.

2.4.1 Stencil of the local approximation method

In this modified method, the reconstruction routine only requires the local hydrostatic
pressure polynomial from the i-th cell. The stencil of the method is now the same as the
stencil of the standard method of the same formal order of accuracy. It is visualized in
Fig. 2.

2.4.2 Well-balanced property of the local approximation method

For the LA method defined in Section 2.4, there is no globally defined hydrostatic pres-
sure function. Consequently, in general there is no well-defined cell-to-cell relation like
Eq. (2.31), which is balanced to machine precision. The relation only holds if the hydro-
static pressure polynomials in different cells can be described as one global polynomial.
Whether the LA methods actually succeeds in significantly reducing the discretization
error at hydrostatic solutions has to be tested in the numerical experiments.

2.5 Summary of the scheme

The well-balancing techniques we propose are within the framework of high order Runge–
Kutta finite volume methods. To make it more evident, we outline all of the steps neces-
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i−1 i i+1

ρrec
i gint

i

si

i−1 i i+1

p
eq
i , Qrec

i

Figure 2: Stencil of the third order accurate local approximation method method. Different from the discretely
well-balanced method method (see stencil in Fig. 1), the local hydrostatic reconstruction only requires the source
term approximation computed in the i-th cell to compute Qrec

i . The source term approximation si is for this
purpose extrapolated to the neighboring cells. Thus the total stencil of the reconstruction only includes three
cells, equivalent to a non-well-balanced standard method.

sary to obtain the interface states and source term discretization from the cell-averaged
states Q̂i.

1. Reconstruct density and momentum and interpolate the gravitational acceleration
in each cell to obtain ρrec

i , (ρu)rec
i , and gint

i .

2. Compute the source term representation si as defined in

(a) Eq. (2.15) for the DWB method;

(b) Eq. (2.32) for the LA method.

The source term discretization Ŝi is obtained from Eq. (2.12).

3. Define the hydrostatic pressure polynomial p
eq
i for the i-th cell according to Eq. (2.18).

For this, the value of p0,i is obtained from

(i) Eq. (2.21) if an ideal gas EoS is used to close the Euler system;

(ii) one of the methods presented in Section 2.3.1 if any other EoS is used to close
the Euler system.

4. Define the cell-averaged high order accurate representation of the equilibrium con-
served variables Q̂

eq
i for each cell Ωi as in Eq. (2.13) and apply the hydrostatic re-

construction routine given in Eqs. (2.22) and (2.23) to obtain the interface states.

We like to repeat and emphasise at this point, that all of the steps above are local such that
the methods are suitable to be implemented in parallelized codes. It is not necessary to
complete each step on the whole grid before commencing to the next one.
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3 Numerical experiments in one spatial dimension

In all numerical experiments in this section we use the standard Roe flux [47]. For the
third order methods we use the third order accurate CWENO3 reconstruction proposed
in [45] and the third-order accurate, four stage explicit Runge–Kutta method from [57].
For the fifth order accurate methods we use the fifth order accurate CWENO5 recon-
struction proposed in [46] and the fifth order accurate standard Runge–Kutta method
from [58].

The results are often compared to the results obtained with a standard scheme, i.e. a
non-well-balanced scheme. For this we use exactly the same methods as for the LA and
DWB scheme with the only difference that instead of the hydrostatic reconstruction pro-
cedure W (Eq. (2.23)) the standard reconstruction procedure R on the conserved quanti-
ties is applied.

3.1 Isothermal hydrostatic solution

We consider an isothermal hydrostatic solution of the 1-d compressible Euler equations
with gravitational source term and the ideal gas equation of state (we choose γ = 1.4)
given by

ρ̃(x)= p̃(x)=exp(−φ(x)), ũ≡0, (3.1)

which corresponds to taking the gravitational acceleration g(x) =−φ′(x). We set these
initial conditions in the domain Ω= [0,1] for φ(x)= 10x with Dirichlet boundary condi-
tions and φ(x)= sin(2πx) with periodic boundary conditions. Dirichlet boundary con-
ditions are realized via constant-in-time ghost-cells, which are initialized with the exact
solution (i.e. Eq. (3.1) in this case). For this isothermal solution the speed of sound is
c=
√

γp/ρ=
√

γ. The sound crossing time is defined as

τ :=
∫

Ω

1

c
dx, (3.2)

which yields τ=
√

1/γ and we run the test up to final time t=2τ≈1.7. Convergence rates
for the standard method and the proposed well-balanced methods can be seen in Tables 1
and 2 for the energy density. The density and momentum show the same trends and are
not shown for brevity. The standard method shows convergence rates as expected. The
well-balanced methods are not only more accurate than the standard method, they also
show better convergence rate. Using the DWB method increases the order of accuracy by
one order, using the LA method increases it by two orders.

The initial condition used in the above tests does not satisfy the discrete hydrostatic
conditions in the theorem, so the errors are not exactly (machine) zero. We now apply
the DWB method to a slightly modified setup; we use the density given in Eq. (3.1) and
integrate the internal energy such that it satisfies Eq. (2.31). This initial data are a third
or fifth order accurate discretization of Eq. (3.1) respectively. We apply the three different
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Table 1: L1-errors and rates in total energy for an isothermal hydrostatic solution of the Euler equations after two
sound crossing times computed using different methods. The setup is described in Section 3.1, the gravitational
potential is φ(x)=10x.

N
Std-O3 DWB-O3 LA-O3 Std-O5 DWB-O5 LA-O5

E error rate E error rate E error rate E error rate E error rate E error rate

128 1.07e-04
3.0

2.03e-07
4.0

1.65e-06
5.1

3.19e-07
5.0

6.59e-10
6.0

6.03e-10
6.5

256 1.29e-05
3.0

1.23e-08
4.0

4.95e-08
5.1

1.01e-08
5.0

1.03e-11
6.1

6.60e-12
7.0

512 1.59e-06 7.60e-10 1.42e-09 3.14e-10 1.52e-13 5.11e-14

Table 2: L1-errors and rates in total energy for an isothermal hydrostatic solution of the Euler equations after two
sound crossing times computed using different methods. The setup is described in Section 3.1, the gravitational
potential is φ(x)=sin(2πx).

N
Std-O3 DWB-O3 LA-O3 Std-O5 DWB-O5 LA-O5

E error rate E error rate E error rate E error rate E error rate E error rate

128 3.00e-04
3.0

1.48e-07
4.0

7.02e-07
4.8

2.55e-07
5.0

5.45e-10
6.0

5.15e-10
6.9

256 3.64e-05
3.0

9.14e-09
4.0

2.50e-08
4.8

8.07e-09
5.0

8.61e-12
5.4

4.36e-12
4.3

512 4.65e-06 5.55e-10 9.14e-10 2.53e-10 2.01e-13 2.17e-13

Table 3: L1-errors for an discrete isothermal hydrostatic solution of the Euler equations after two sound crossing
times computed using different methods with a resolution of 128 cells. The initial data satisfy Eq. (2.31). The
setup is described in Section 3.1.

Method boundary condition ρ error ρu error E error

Dirichlet 1.28e-16 7.64e-17 7.44e-16

DWB-O3 hydrostatic extrapolation 7.62e-16 5.52e-16 3.05e-15

solid wall 7.62e-16 5.52e-16 3.05e-15

Dirichlet 1.33e-16 1.57e-16 1.67e-16

DWB-O5 hydrostatic extrapolation 4.30e-16 3.15e-16 1.20e-16

solid wall 4.30e-16 3.15e-16 1.20e-16

boundary conditions introduced in Section 2.3.3 and the errors can be seen in Table 3. The
DWB method maintains the discretized hydrostatic solution to machine precision. This
is valid for the third as well as the fifth order methods and for all boundary conditions .

3.2 1-d hydrostatic solution with perturbation

Now we use the periodic potential φ(x)=sin(2πx) and g(x)=−φ′(x) for the isothermal
solution and add a perturbation
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Table 4: L1-errors and rates in total energy for the isothermal hydrostatic solution with perturbation η=10−1 of
the Euler equations after time t=0.5 computed using different methods. The setup is described in Section 3.2.

N
Std-O3 DWB-O3 LA-O3 Std-O5 DWB-O5 LA-O5

E error rate E error rate E error rate E error rate E error rate E error rate

128 5.73e-04
2.6

7.59e-04
2.6

7.55e-04
2.6

1.16e-05
4.7

1.59e-05
4.7

1.59e-05
4.7

256 9.78e-05
2.5

1.26e-04
2.8

1.25e-04
2.8

4.49e-07
5.0

6.33e-07
4.8

6.33e-07
4.8

512 1.73e-05 1.80e-05 1.80e-05 1.42e-08 2.20e-08 2.20e-08

Table 5: L1-errors and rates in total energy for the isothermal hydrostatic solution with perturbation η=10−5 of
the Euler equations after time t=0.5 computed using different methods. The setup is described in Section 3.2.

N
Std-O3 DWB-O3 LA-O3 Std-O5 DWB-O5 LA-O5

E error rate E error rate E error rate E error rate E error rate E error rate

128 2.05e-04
2.6

6.51e-07
4.0

5.47e-07
4.5

1.38e-07
4.9

2.10e-09
5.8

1.24e-09
5.6

256 3.43e-05
2.7

4.06e-08
4.0

2.49e-08
4.0

4.51e-09
5.0

3.79e-11
5.4

2.61e-11
5.2

512 5.16e-06 2.55e-09 1.56e-09 1.43e-10 8.85e-13 7.31e-13

ρ(x)= ρ̃(x), u(x)= ũ(x), p(x)= p̃(x)+ηexp

(

−100

(

x− 1

2

)2
)

, (3.3)

with η = 10−1. We compute this test up to time t = 0.5. We compare the results with a
simulation obtained from a seventh order standard method on a grid of 2024 cells. The
errors and convergence rates in total energy of the standard and well-balanced methods
are shown in Table 4. Since they show the same trend, we omit showing errors in density
and momentum for brevity. All methods show rates close to the expected rates for third
and fifth order convergence, respectively. Next, to illustrate the capability of the well-
balanced methods to capture small perturbations on the hydrostatic solution on a coarse
grid, we use different grid sizes and methods for a perturbation amplitude of η = 10−5.
The corresponding energy errors and rates at time t=0.5 are presented in Table 5 and the
density perturbations from the hydrostatic state are visualized in Figs. 3 and 4. The well-
balanced methods succeed in resolving the perturbation significantly more accurately
than the non-well-balanced standard method; the errors from the standard method are
so large that they are not completely visible in the figures. The LA method is able to
capture the small perturbations as accurately as the DWB well-balanced method.

3.3 Hydrostatic solution for a non-ideal gas equation of state

3.3.1 Polytropic hydrostatic solution

Polytropic solutions of Eq. (1.1) are given by
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Figure 3: Density deviation from the hydrostatic background for η=10−5 using different grids at t=0.5. Third
order methods have been used. The test setup is described in Section 3.2.

θ(x) :=1− ν−1

ν
φ(x), ρ̃(x)= θ(x)

1
ν−1 , p̃(x) := ρ̃(x)ν, (3.4)

and u=0. Eq. (3.4) describes a static state of the compressible Euler equations indepen-
dent from the EoS. We choose the equation of state for an ideal gas which is additionally
subject to radiation pressure [62]

p=ρT+T4, (3.5)

where the temperature T is defined implicitly via

ε=
ρT

γ−1
+3T4. (3.6)

The conversion between pressure p and internal energy density ε (while knowing the
density ρ) cannot be computed explicitly. Instead, we use Newton’s method to convert
between p and ε. The speed of sound for this EoS can be computed by

c=

√

Γ1p

ρ
, where Γ1=β+

(4−3β)2(γ−1)

β+12(γ−1)(1−β)
with β=

ρT

p
. (3.7)



690 J. P. Berberich et al. / Commun. Comput. Phys., 30 (2021), pp. 666-708

Figure 4: Density deviation from the hydrostatic background for η=10−5 using different grids at t=0.5. Fifth
order methods have been used. The test setup is described in Section 3.2.

The speed of sound is also computed using Newton’s method. As for the ideal gas we
use γ = 1.4. For the gravity potential we choose φ(x) = gx with constant g =−1. The
domain is Ω= [0,1] and Dirichlet boundary conditions are applied. The sound crossing
time for this setup, computed from Eq. (3.2) and Eq. (3.7), is τ ≈ 0.7. We run the test to
a final time of t= 10≈ 14τ. We use a standard method and the extensions of the DWB
and LA methods for general EoS as described in Section 2.3.1. For the DWB method we
use the iterative (DWB) and the fast (DWB-S) computation of the cell-centered pressure.
For the LA method we only use the fast computation (LA-S) since the LA method is an
approximately well-balanced method anyway.

The L1-errors and convergence rates in total energy with respect to the initial stratifi-
cation are shown in Table 6. Using the well-balanced methods significantly reduces the
errors (about one to two orders of magnitude). Note, that the difference between the two
different versions of the DWB method is small. This justifies the usage of the simplified
and much faster computation of p0. The LA-S method performs best. For the general EoS
we do not observe the increased order of convergence that was observed in Section 3.1 in
the case of the ideal gas EoS.
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Table 6: L1-errors and rates in total energy for the polytropic hydrostatic solution with an EoS for ideal gas with
radiation pressure at time t=10 computed using different third order accurate methods. The setup is described
in Section 3.3.1.

N
Std-O3 DWB-O3 DWB-S-O3 LA-S-O3

E error rate E error rate E error rate E error rate

16 1.01e-05
3.2

4.85e-07
3.2

4.83e-07
3.2

4.27e-07
3.2

32 1.10e-06
3.3

5.48e-08
3.3

5.42e-08
3.3

4.71e-08
3.3

64 1.08e-07 5.65e-09 5.65e-09 4.69e-09

3.3.2 Perturbation on a polytropic hydrostatic solution

Now we add a Gaussian perturbation to the hydrostatic solution and use the initial data

ρ(x)= ρ̃(x), p(x)= p̃(x)+ηexp
(

−100(x−0.3)2
)

,

and u = 0 with η = 10−7. We evolve these initial data up to time t = 0.1 with 128 grid
cells resolution. Third order standard and well-balanced methods are applied. In the
well-balanced methods we use the simplified way of computing the cell-centered pres-
sure as described in Section 2.3.1 (DWB-S, LA-S). The result is shown in Fig. 5. The
reference solution is computed using the seventh order accurate exactly well-balanced
method from [16] on a grid of 2048 cells. Both well-balanced methods yield results much
closer to the reference solution compared to the standard method. It is evident from these
results that the approximate well-balanced methods can help resolve small perturbations
to hydrostatic states more accurately even with an equation of state different from ideal
gas.

Figure 5: Small perturbation (η = 10−7) on a polytropic hydrostatic solution with an EoS for ideal gas with
radiation pressure after time t = 0.1 computed using different third order accurate methods. The setup is
described in Section 3.3.2. Energy perturbations E− Ẽ are shown.
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3.4 Riemann problem on an isothermal hydrostatic state

In this test we use the initial data

ρ̃(x) :=

{

acexp(−aφ(x)) if x< x0,

bexp(−bφ(x)) if x≥ x0,
(3.8)

p̃(x) :=

{

cexp(−aφ(x)) if x< x0,

exp(−bφ(x)) if x≥ x0,
(3.9)

g(x)=−φ′(x), and Eqs. (3.8) to (3.9) describe a piecewise isothermal hydrostatic solution
with a jump discontinuity at x=x0, which gives rise to all three waves of the Euler equa-
tions; the parameters are chosen as x0 =0.125, a=0.5, b=1, c=2. An ideal gas EoS with
γ=1.4 is applied. We set these initial data on the domain [0,0.25] and evolve them to the
final time t= 0.02 using our third and fifth order methods on a grid with 128 cells and
Dirichlet boundary conditions. As a reference solution to compute the error we use a nu-
merical solution obtained using a standard first order method with 32768 cells. In Fig. 6,
we see the numerical results at final time for the LA methods. No spurious oscillations

Figure 6: Initial data (top left panel), reference solution (top right panel), and simulation results (bottom
panels) for the tests performed in Section 3.4. The formally third (bottom left) and fifth (bottom right) order
LA methods are used.
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Table 7: Errors and total variation for the robustness test from Section 3.4 at final time t=0.02. The formally
third and fifth order standard and well-balanced methods (DWB and LA) are used. The oscillation indicator θ
is defined in Eq. (3.10).

Method ρ error θ(ρ) ρu error θ(ρu) E error θ(E)

Std-O3 6.51e-04 -4.18e-02 8.30e-04 -2.76e-02 3.25e-03 -5.73e-06

DWB-O3 6.57e-04 -3.95e-02 8.33e-04 -2.70e-02 3.28e-03 -5.74e-06

LA-O3 6.56e-04 -3.96e-02 8.33e-04 -2.70e-02 3.28e-03 -5.74e-06

Std-O5 5.00e-04 -3.67e-02 6.82e-04 -2.50e-02 2.79e-03 -5.74e-06

DWB-O5 4.76e-04 -3.35e-02 6.48e-04 -2.35e-02 2.71e-03 -5.74e-06

LA-O5 4.76e-04 -3.36e-02 6.47e-04 -2.38e-02 2.71e-03 -5.74e-06

are visible. Using the DWB method leads to very similar results, hence we omit showing
them for brevity.

To give quantitative results, we also compute the total variation of the solution at final
time for all methods. The total variation of a quantity α=ρ,ρu,E of a numerical solution
is defined by

TV(α) :=
N

∑
i=1

|αi−αi−1|.

In Table 7 we present the difference in total variation relative to the total variation of the
reference solution

θ(α) :=
TV(α)

TV(αref)
−1. (3.10)

A negative value of θ indicates, that the total variation is smaller than in the reference
solution. A positive value of θ means that there are additional oscillations. In Table 7,
the θ values for different methods are presented together with the L1 errors. All methods
lead to a decrease in total variation in conserved variables. Note that there are small vis-
ible oscillations if the CWENO5 scheme is used. However, this is common for CWENO
methods since they are not exactly TVD.

3.5 Relaxation towards an unknown hydrostatic state

All the previous test cases have been based on isothermal or polytropic hydrostatic so-
lutions, i.e. hydrostatic solution for which the majority of the well-balanced methods in
literature can be applied. In this section we aim to show that the proposed methods can
also be applied in cases in which the hydrostatic solution is not isentropic, polytropic, or
isothermal and is also not known a priori. This ensures that the test case is suitable for
neither well-balancing methods of type 1 (Definition 1.1) nor type 2 (Definition 1.2).

For this purpose, we start with initial conditions that are not in hydrostatic state and
let the solution evolve using Euler equations with gravitational source term, an ideal gas
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EoS, and momentum damping as described below until it reaches a stationary state. We
choose

φ(x) :=10sin(2πx), ρ(t=0,x) :=1, p(t=0,x) :=1, u(t=0,x) :=0 (3.11)

on the domain [0,1] with periodic boundary conditions. In order to drive the solution
to a static state, we apply the simple momentum damping operator that implements the
damping

d

dt
(ρu)=−δ(ρu)

in a operator-split fashion in each Runge–Kutta sub-step with the damping-coefficient
δ=0.2. We apply the standard, DWB, and LA method on 128 and 256 cells. The maximal
velocity on the grid over time is shown in the top panel of Fig. 7. It gets evident that
the standard method fails to settle to a static configuration. Using the LA method signif-
icantly reduces the velocities in the final configuration and under refinement of the grid
the improved convergence behavior gets evident once more. Using the DWB method
allows the simulation to settle to a static stratification with velocities of the size of the
machine error. The bottom panel shows pressure over density in a log-log diagram for
the final stratification obtained using the different methods with different resolutions. It
gets evident that density and pressure can not be related by a power law which shows
that the stratification is not isothermal, isentropic, or polytropic. Furthermore, the figure
shows that the well-balanced methods significantly reduce the grid-dependency of the
final stationary state.

4 Extension to two spatial dimensions

4.1 Two-dimensional compressible Euler equations with gravity

The two-dimensional compressible Euler equations which model the balance laws of
mass, momentum, and energy under the influence of gravity are given by

∂tq+∂xfx+∂yfy =s, (4.1)

where the conserved variables, fluxes and source terms are

q=









ρ
ρu
ρv
E









, fx =









ρu
p+ρu2

ρuv
(E+p)u









, fy=









ρv
ρuv

p+ρv2

(E+p)v









, s=









0
ρgx

ρgy

ρ(ugx+vgy)









, (4.2)

with ρ,p>0. Moreover, E=ε+ 1
2 ρ|v|2 is the total energy density with the velocity v=(u,v)T

and internal energy density ε. The vector valued function x 7→ g(x) = (gx(x),gy(x))T =
−∇φ(x) with x:=(x,y)T is a given gravitational field. As in the one-dimensional case the
system is closed using an EoS, which relates ρ, p, and ε.
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Figure 7: Data resulting from the test case described in Section 3.5. The stratification is driven to a hydrostatic
state by damping. Top: Maximal velocity over time. The standard method never settles at hydrostatic state
since the velocities never vanish. The LA method settles at a significantly lower level while the DWB method
is damped to a discrete static state with velocities on machine error. Bottom: Pressure over density in the final
stratification in a log-log diagram. This verifies that there is no isothermal, isentropic, or polytropic relation in
the hydrostatic state that is finally achieved in this test case.

4.2 Finite volume method in two spatial dimensions

We discretize the spatial domain Ω := [xmin,xmax]×[ymin,ymax] into Nx×Ny finite con-
trol volumes Ωij :=

[

xi− 1
2
,xi+ 1

2

]

×
[

yj− 1
2
,yj+ 1

2

]

for i= 1,··· ,Nx and j= 1,··· ,Ny. The inter-

face positions in the x and y-direction are xi+ 1
2

:= xmin+i∆x and yj+ 1
2

:= ymin+ j∆y with

∆x = (xmax−xmin)/Nx,∆y = (ymax−ymin)/Ny for i = 0,··· ,Nx and j= 0,··· ,Ny. The cell-

centered coordinates are given by xij = (xi,yj)
T =

(

1
2 (xi− 1

2
+xi+ 1

2
), 1

2(yj− 1
2
+yj+ 1

2
)
)

. The

compressible Euler equations with gravity (Eq. (4.1)) are integrated over each control
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volume and yields

∂tQ̂ij =− 1

|Ωij|
[

Fi+ 1
2 ,j−Fi− 1

2 ,j+Fi,j+ 1
2
−Fi,j− 1

2

]

+Ŝij, (4.3)

where the interface fluxes are approximated by

Fi+ 1
2 ,j :=Qy∈[y

j− 1
2

,y
j+ 1

2
]

(

Fx

(

Qrec
ij

(

xi+ 1
2
,y
)

,Qrec
i+1,j

(

xi+ 1
2
,y
)))

≈
∫ y

j+ 1
2

y
j− 1

2

fx(q(xi+ 1
2
,y))dy, (4.4)

Fi,j+ 1
2

:=Qx∈[x
i− 1

2
,x

i+ 1
2
]

(

Fy

(

Qrec
ij

(

x,yj+ 1
2

)

,Qrec
i,j+1

(

x,yj+ 1
2

)))

≈
∫ x

i+ 1
2

x
i− 1

2

fy(q(x,yj+ 1
2
))dx. (4.5)

Here, Q is an m-th order accurate quadrature rule, Fx and Fy are numerical fluxes as
defined in Section 2.2, i.e. they are consistent, Lipschitz-continuous in both arguments,
and they satisfy the contact property. The reconstructed quantities Qrec

ij are obtained from

an m-th order accurate reconstruction, i.e.

Qrec
ij (x) :=R

(

x,
{

Q̂kl

}

(k.l)∈Sij

)

,

where Sij is the set of all index tuples of cells in the stencil of the reconstruction. Ŝij is a
consistent source term discretization. In practical application of the standard method (in
Section 5) we use the source term discretization which is introduced later in Eq. (4.6). The
semi-discrete scheme is evolved in time using a sufficiently high order accurate Runge–
Kutta method.

4.3 Local approximation method

In the tests of the one-dimensional methods, we saw that the method with reduced sten-
cil (LA) converges better to hydrostatic states and gives more accurate results than the
method with the large stencil (DWB). Also, in two spatial dimensions, a relation like
Eq. (2.31) can not be easily defined for our polynomial approximation of the source term,
since the curve integral is in general path-dependent, unless the gravitational field is
parallel to grid lines. This rules out the formulation of a well-balanced theorem for a
genuinely two-dimensional method. Since in multi-dimensional simulations, the com-
pactness of the stencil is usually even more important, we only extend the LA method
to two spatial dimensions. These methods will not be exactly well-balanced and the nu-
merical experiments will show if they are useful in practice.
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4.3.1 Source term discretization

Let us define the source term approximation

sij(x) :=

(

sx
ij(x)

s
y
ij(x)

)

:=

(

ρrec
ij (x)(gx)int

ij (x)

ρrec
ij (x)(gy)int

ij (x)

)

,

(v·s)ij(x) :=(ρu)rec
ij (x)(gx)

int
ij (x)+(ρv)rec

ij (x)(gy)
int
ij (x),

where ρrec
ij and (ρv)rec

ij :=
(

(ρu)rec
ij ,(ρv)rec

ij

)T
are m-th order accurate CWENO reconstruc-

tion polynomials in the ij-th cell. gint
ij is an m-the order accurate interpolation polynomial

from the cell-centered point values of g; CWENO interpolation could be used if g is not
smooth. Due to the polynomial character of sij and (v·s)ij the source term integrals can
be computed explicitly.

The cell-averaged source term used in the finite volume method in the ij-th cell is
hence computed as

Ŝij :=
1

|Ωij|
∫

Ωij











0
sx

ij(x)

s
y
ij(x)

(v·s)ij(x)











dx. (4.6)

4.3.2 Reconstruction

We construct a local approximation to the hydrostatic pressure in the cell Ωij. For that,

we first define the local hydrostatic density ρ
eq
ij := ρrec

ij . To obtain the local hydrostatic

pressure, we integrate the hydrostatic equation from the cell center to any point which
yields

p
eq
ij (x) := p0

ij+
∫ 1

0
sij(xij+(x−xij)t)·(x−xij)dt (4.7)

for the approximation in the cell Ωij. The cell-centered pressure value p0
ij is determined

by demanding
1

|Ωij|
∫

Ωij

ε
eq
ij (x)dx= ε̂ ij , (4.8)

where

ε
eq
ij (x) := εEoS

(

ρ
eq
ij (x),p

eq
ij (x)

)

is defined via the EoS, and the cell-averaged internal energy density is computed using

ε̂ ij := Êij−
1

2∆x∆y
Qij







(

(ρu)rec
ij

)2
+
(

(ρv)rec
ij

)2

ρrec
ij






. (4.9)
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Assuming an ideal gas, Eqs. (4.7) and (4.8) yield

p0
ij =(γ−1)ε̂ ij−

1

|Ωij|
∫

Ωij

∫ 1

0
sij(xij+(x−xij)t)·(x−xij)dtdx. (4.10)

Now that the pressure at cell center p0,ij is fixed, we have fully specified the high-order
accurate representation of the equilibrium conserved variables in cell Ωij:

Q
eq
ij (x)=











ρ
eq
ij (x)

0
0

ε
eq
ij (x)











. (4.11)

Similarly, the equilibrium reconstruction of the primitive variables are given by

W
eq
ij (x)=











ρ
eq
ij (x)

0
0

p
eq
ij (x)











. (4.12)

We stress here that the equilibrium density reconstruction is simply the result provided
by the standard reconstruction procedure R.

Next, we develop the high-order equilibrium preserving reconstruction procedure.
To this end, as in e.g. [2], [63] , we decompose in every cell the solution into an equilibrium
and a (possibly large) perturbation part. The equilibrium part in cell Ωij is simply given

by Q
eq
ij (x) of Eq. (4.11) above. The perturbation part in cell Ωij is obtained by applying

the standard reconstruction procedure R to the cell-averaged equilibrium perturbation,

δQij(x)=R
(

x;

{

Q̂kl−
1

|Ωij|
Qkl

(

Q
eq
ij

)

}

(k,l)∈Sij

)

, (4.13)

where Qik is an at least m-th order accurate two-dimensional quadrature rule approxi-
mating the integral over the cell Ωkl. We note that the cell average of the equilibrium
perturbation in cell Ωkl is obtained by taking the difference between the cell average Q̂kl

and the cell average of the equilibrium Q
eq
ij in cell Ωkl .

The complete equilibrium preserving reconstruction W is then obtained by the sum
of the equilibrium and perturbation reconstruction

Qrec
ij (x)=W

(

x;
{

Q̂kl

}

(k,l)∈Sij

)

=Q
eq
ij (x)+δQij(x). (4.14)

Remark 4.1. (1) The method can be applied for arbitrary EoS by extending the modifi-
cations from Section 2.3.1 to two spatial dimensions in a straight forward way. (2) The
approximate well-balanced method presented in this section can be extended to three
spatial dimensions without further complications.
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5 Numerical experiments in two spatial dimensions

In all numerical experiments in this section we use the standard Roe flux [47], Gauss-
Legendre quadrature rules and the third order accurate CWENO3 reconstruction pro-
posed in [64]. The semi-discrete schemes are evolved in time using a third-order accu-
rate, four stage explicit Runge–Kutta method [57]. The two-dimensional LA method in-
troduced in Section 4.3 is applied and compared to a two-dimensional standard method
which is achieved by directly reconstructing the cell-averages as described in Section 4.2.

5.1 Two-dimensional polytrope

In this test, we apply our two-dimensional well-balanced method (LA) on a two-
dimensional polytrope. A polytrope is a hydrostatic configuration of an adiabatic
gaseous sphere held together by self-gravitation. The test setup is given by [27]

ρ̃(x) :=
sin
(√

2π |x|
)

√
2π |x|

, p̃(x) := ρ̃(x)γ, g :=−∇φ(x), φ(x) :=−2
sin
(√

2π |x|
)

√
2π |x|

, (5.1)

where we choose γ=2 and the functions ρ and φ are extended to x=0 continuously. We
set these initial conditions on Cartesian meshes for the domain [−0.5,0.5]2 and use our
third order accurate standard and LA method on these initial data. We evolve them until
time t= 5, which corresponds to approximately 6 sound crossing times. At the bound-
aries, we use Dirichlet boundary conditions. The resulting energy errors and convergence
rates at different resolutions are presented in Table 8. Using the well-balanced method
significantly reduces the error, even though the gravity is not aligned with a coordinate
direction in this setup. Moreover, as in previous tests, the increased order of accuracy on
the hydrostatic solution is observed for the LA method.

Table 8: L1-errors in total energy for the 2-d polytrope described in Section 5.1.

N
Std-O3 LA-O3

E error rate E error rate

16 7.01e-05
3.0

9.58e-08
4.9

32 8.79e-06
3.0

3.29e-09
4.8

64 1.10e-06 1.21e-10

5.2 Perturbation on the two-dimensional polytrope

As in [27], we now add a perturbation to the polytrope to study if the application of
our well-balanced methods can help resolving it more accurately. The initial pressure is
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Table 9: L1-errors and rates in total energy for perturbations of different size on the 2-d polytrope described in
Section 5.2. The third order accurate standard and LA methods are used.

N

A=10−2 A=10−6

Std-O3 LA-O3 exact WB-O3 Std-O3 LA-O3 exact WB-O3

E error rate E error rate E error rate E error rate E error rate E error rate

64 2.92e-05
2.5

3.83e-05
2.4

2.85e-05
2.5

2.63e-06
3.0

4.28e-09
2.5

2.85e-09
2.5

128 5.11e-06
3.0

7.31e-06
3.0

5.00e-06
3.1

3.35e-07
3.0

7.58e-10
3.0

5.01e-10
3.1

256 6.18e-07 9.38e-07 6.04e-07 4.19e-08 9.53e-11 6.04e-11

N

A=10−8

Std-O3 LA-O3 exact WB-O3

E error rate E error rate E error rate

64 2.60e-06
3.0

1.27e-09
4.0

2.85e-11
2.5

128 3.31e-07
3.0

7.76e-11
4.0

5.01e-12
3.1

256 4.17e-08 4.79e-12 6.04e-13

perturbed in the following way

ppert(x) :=

(

1+Aexp

(

− |x|2
0.052

))

p̃(x).

In our tests, we use different amplitude of the perturbation corresponding to A =
10−2,10−6,10−8. The spatial domain and numerical methods are the same as in Sec-
tion 5.1. For comparison, simulations using the exactly well-balanced method from [16]
have been added. The final time is reduced to t = 0.2, such that the perturbation can
not reach the boundary. As a reference solutions to compute the errors we use simu-
lations on a 512×512 grid obtained with the well-balanced method introduced in [12].
Since this well-balanced method is exact on the hydrostatic background, the solutions
are accurate enough to use them as reference. L1 errors and convergence rates in total
energy are presented in Table 9 which show that the LA method is better at resolving
the smaller perturbations than the standard method. The errors are comparable with the
ones obtained from the exactly well-balanced method from [16] for the large and medium
perturbation. On the small perturbation (A=10−8) the exactly well-balanced method is
more accurate than the LA method. The difference, however, is reduced on higher res-
olution due to the improved convergence of the LA method on the hydrostatic solution.
The convergence rates in density and momentum show a similar trend, hence we omit
them for brevity. In Fig. 8 the pressure perturbation for the test with A = 10−8 on the
256×256 grid is shown at final time, which again shows that the LA method is compa-
rable to the exactly well-balanced method and thus significantly more accurate than the
standard method.
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Figure 8: Pressure perturbation p− p̃ from the 2-d polytrope for the initial perturbation with A= 10−8 on a
256×256 cells grid after time t= 0.2. The test is described in Section 5.2. The reference solution is obtained
using the exactly well-balanced method from [12] on a 512×512 cells grid. In the top panels, the color ranges
(dark to light) from -0.8e-9 to 1.2e-9 in the first and third, and fourth plot (reference, LA method, and the
exactly well-balanced method from [16]) and from -1e-7 to 1e-8 in the central plot (standard method). The full

domain [−0.5,0.5]2 is shown. The bottom panels show the pressure perturbation over radius in a scatter plot.
The difference between the two bottom panels is the range of the values at the y-axis. In the bottom plots,
no difference can be seen between the data from all simulations except the one using the non-well-balanced
standard method.

5.3 Efficiency of the local approximation method

To compare the computational effort of the LA method to a standard method, we use the
test case presented in Section 5.2 with different sizes of perturbations given by η = 10−4

and η=10−8. The test case is run with the standard method and the local approximation
method method with different grid resolutions (N = 16,24,32,48,64,96,128,192). Each of
the tests is repeated 10 times to account for fluctuations in the machine’s performance.
The results of these tests are visualized in Fig. 9. For both sizes of perturbation using
the LA method is significantly more efficient. For the larger perturbation, e.g., the com-
putation time necessary to obtain a certain accuracy is reduced by one to two orders of
magnitude by using the LA method. As expected, the difference is larger for the smaller
perturbation: The computation time to obtain a certain accuracy is for this perturbation
reduced by two to four orders of magnitude.
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Figure 9: L1 density error over mean wall-clock time needed to compute the result for the test introduced in
Section 5.2 with different sizes for the perturbation (left pane: η=10−4, right panel: 10−8). Each of the crosses
is obtained by computing the mean value of 10 repetitions of the same test at a given resolution as described
in Section 5.3. The shaded area shows the area of the variance in computation time. For both tests using the
local approximation method method requires less computational effort to obtain the same accuracy than in the
standard method.

5.4 Radial Rayleigh–Taylor instability

In this test, we use a piece-wise isothermal hydrostatic state in the two-dimensional grav-
itational potential

φ(x) :=−20
sin
(√

2π |x|
)

√
2π |x|

and gravitational acceleration g :=−∇φ(x). The initial data are given by

(ρ,p)(x) :=

{

(ρ̃in, p̃in)(x) if ‖x‖2 < r0,

(ρ̃out, p̃out)(x) else,
v(x) :=

(

0
0

)

,

where

ρ̃in(x) := acexp(−aφ(x)) , ρ̃out(x) :=bexp(−bφ(x)) ,

p̃in(x) := cexp(−aφ(x)) , p̃out(x) :=exp(−bφ(x)),

and c = exp
(

(a−b)φ
(

(r0,0)T
))

. Choosing b > a makes the system unstable, such that
Raleigh–Taylor instabilities are expected to develop [65].

For the numerical computations, we use the above initial data with r0 = 0.2 and
(a,b)= (1,2) in the domain [0,0.5]2, and evolve them until time t= 0.6. We use the third
order accurate standard and LA method on a 64×64 cells grid. At the x = 0 and y = 0
boundaries we use wall-boundary conditions which are consistent with the symmetry of

the problem. At the outer boundaries we extrapolate (ρ− ρ̃out,ρu,ρv, E−(γ−1) p̃out)
T

in
order to not destroy the hydrostatic solution at the boundary. The results are visualized in
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Figure 10: Relative density deviation ρ/ρ̃out from the outer hydrostatic state of the radial Rayleigh–Taylor
instability. Setup and method are described in Section 5.4. Different times using the standard (left) and the
LA method (right). The simulation using the standard method crashes at t≈0.2981.

Figure 11: Relative density deviations ρ/ρ̃initial−1 from the initial density stratification over radius at time
t=0.298 for the standard and LA method. The simulation using the standard method crashes at t≈0.2981.

Figs. 10 and 11. The simulation with the standard method crashes approximately at time
t≈ 0.2981. In Fig. 11 the relative density deviations ρ/ρ̃initial−1 from the initial density
over radius are shown at time t= 0.298. While the LA method is capable of accurately
maintaining the hydrostatic solution away from the discontinuity, there are significant
spurious perturbations for the standard method, especially at the outer boundary. In
Fig. 10, the relative density deviation ρ/ρ̃out is presented at different times. As expected,
Rayleigh–Taylor instabilities appear at the interface between the light and the dense fluid.
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6 Conclusions and outlook

Novel well-balanced high order accurate finite volume methods have been introduced in
this work. The first method (DWB method) exactly balances a high order discretization
of any hydrostatic state with any EoS. The stencil of the method, however, is larger than
the stencil of a standard method with the same order of accuracy. Localizing the high
order approximation to the hydrostatic state in each cell (LA method) reduced the stencil
to that of a comparable standard method. For the LA method the well-balanced property
can not be shown analytically. However, in numerical tests it is found to be even more ac-
curate on analytical hydrostatic solutions than the DWB method. The LA method shows
superconvergence when computing hydrostatic solutions with the ideal gas EoS; the con-
vergence rate is increased by two. This was observed not only in one spatial dimension
but also in the two-dimensional extension. The high order accuracy and the robustness
of the DWB and LA method have been shown numerically. Also, numerical tests verified
the capability of the methods to accurately capture small perturbations on hydrostatic
states.

We conclude that the proposed well-balanced methods, in particular the LA method,
are especially useful in situations, in which no knowledge about the structure of the hy-
drostatic states, which will appear in the simulation, is available. It can be implemented
in an existing code and can be used as the default method which significantly improves
the accuracy at any hydrostatic state.
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A Equilibrium reconstruction for general EoS

In the following we discuss the existence and uniqueness of a cell center equilibrium
pressure p0,i >0 solving Eq. (2.24).

Existence. We only have to show that the discrete hydrostatic pressure approximation
peq is positive. Since the actual pressure p is assumed to be positive in the Euler equa-
tions, the domain Ω is compact, and the pressure is continuous in the hydrostatic state,
there is a minimal pressure value pmin. The discrete hydrostatic pressure approximation
has an error ‖peq−p‖l1 =O(∆xm). Consequently, for sufficiently small values of ∆x we
have ‖peq−p‖l1 < pmin which implies peq

>0.
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Uniqueness. Notice that the derivative of internal energy density with respect to pres-
sure at constant density in Eq. (2.27) is a fundamental EoS property. This expression is
related to the so-called Grüneisen coefficient Γ

Γ=

(

∂p

∂ε

)

ρ

, (A.1)

which measures the spacing of the isentropes in the p-V-plane (V = 1/ρ is the so-called
specific volume). The Grüneisen coefficient is a characteristic EoS variable and it is
positive away from phase transitions (see e.g. [66]). So, if we assume that the quadra-
ture weights are positive, the function’s derivative Eq. (2.27) will always keep the same
sign away from a phase transition. Therefore, the function whose root we are seeking
Eq. (2.25) is a strictly monotone function in the pressure variable and, if a root exists, it is
unique.
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