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Abstract We derive a multi-species BGK model with velocity-dependent collision
frequency for a non-reactive, multi-component gas mixture. The model is derived
by minimizing a weighted entropy under the constraint that the number of particles
of each species, total momentum, and total energy are conserved. We prove that this
minimization problem admits a unique solution for very general collision frequencies.
Moreover, we prove that the model satisfies an H-Theorem and characterize the form
of equilibrium.

Keywords multi-fluid mixture · kinetic model · BGK approximation · plasma
physics · velocity-dependent collision frequency · entropy minimization

1 Introduction

In this paper, we present a BGK-type model for gas mixtures that, in the case of two
species, takes the form

∂t f1 + v ·∇x f1 = ν11(M11− f1)+ν12(M12− f1),

∂t f2 + v ·∇x f2 = ν22(M22− f2)+ν21(M21− f2),
(1)
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along with appropriate boundary and initial conditions. Here f1 = f1(x,v, t) and f2 =
f2(x,v, t) are the number densities of species of mass m1 and m2, respectively, with
respect to the phase space measure dxdv; x ∈ R3 is the position coordinate of phase
space; v ∈R3 is the velocity coordinate; and t ≥ 0 is time. The relaxation operator on
the right hand side of (1) involves target functions of the form

Mk j = exp(mkλ
k j
0 +mkλ

k j
1 · v+mkλ

k j
2 |v|

2), (2)

which depend on parameters λ k j =(λ k j
0 ,λ k j

1 ,λ k j
2 )∈R×R3×R+, and (non-negative)

collision frequencies νk j. These parameters depend implicitly on f1 and f2, and once
specified, determine the BGK operator.

The purpose of the relaxation operator in (1) is to provide an approximation of the
multi-species Boltzmann collision operator that is more computationally tractable,
but still maintains important structural properties. In the single-species case, the orig-
inal BGK model [2] serves this purpose. In particular, it has the same collision in-
variants as the Boltzmann operator (which lead to conservation of number, momen-
tum, and energy) and it satisfies an H-Theorem. In the multi-species case, these re-
quirements are not as straight-forward to satisfy, but it can be done. There are many
BGK models for gas mixtures proposed in the literature [14,16,10,12,26,21,15,5,
1], many of which satisfy these basic requirements and, in addition, are able to match
some prescribed relaxation rates and/or transport coefficients that come from more
complicated physics models or from experiment. Many of these approaches have
been extended to accommodate ellipsoid statistical (ES-BGK) models, polyatomic
molecules, chemical reactions or quantum gases; see for example [22,29,13,23,24,
3,4,25].

A common feature of all the models mentioned above is that they only allow for
collision frequencies which are independent of the microscopic velocity v of the parti-
cles [28]. However, the collision frequencies in principle should depend on the micro-
scopic velocity, which is typically neglected for the reason of simplicity. In the case
of neutral gases, velocity independent collision frequency leads to transport proper-
ties in the fluid regime that are inconsistent with the full kinetic collision operator,
e.g., the Prandtl number. Models such as the ES-BGK model and the Shakov model
make changes to the target Maxwellian to provide extra degrees of freedom to the
system, but still retain the constant collision frequency assumption. Some attempts
have been proposed to re-introduce velocity dependence in the case of variable hard
spheres interactions for neutral gases [20], for which velocity-dependent collision
frequencies are monotonically increasing and are well-defined. For particles interact-
ing with long-ranged Coulomb interactions, i.e., a plasma, the canonical collision rate
definition using the cross section is no longer well defined due to a singularity at a
zero relative velocity. A velocity-dependent collision frequency is instead defined by
the momentum transfer cross section without an integral, which results in a collision
frequency that is decreasing in the limit of large relative velocities [19,18].

In this paper, we derive a model of the form (1) that allows for velocity-dependent
collision frequencies. Our derivation includes as a by-product the single-species BGK
model with velocity-dependent collision frequency that was proposed in [27]. We
identify target functions that are consistent with the conservation laws for (1) and
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satisfy an entropy minimization principle. In particular, intra-species collisions (be-
tween the same species) should preserve mass, momentum, and energy within a
species; that is,

∫
mkνkk

 1
v
|v|2

(Mkk− fk)dv = 0, k ∈ {1,2}. (3)

Meanwhile inter-species collisions (between different species) should preserve the
mass of each species, but only the combined momentum and energy of both; that is,∫

m1ν12(M12− f1)dv = 0,
∫

m2ν21(M21− f2)dv = 0∫
m1ν12

(
v
|v|2
)
(M12− f1)dv+

∫
m2ν21

(
v
|v|2
)
(M21− f2)dv = 0.

(4)

When the collision frequencies are independent of v, the integrals in (3) and (4) can
be computed explicitly, thereby providing relationships between the parameters λ k j

and the moments of f1 and f2 with respect to {1,v, |v|2}. In the single-species case,
this relationship defines the target function as the Maxwellian associated to f , while
in the multi-species case, additional constraints must be imposed. However, when
the collision frequencies depend on v, the aforementioned integrals are not always
computable in closed form and the relationship between the parameters λ k j and the
moments of f1 and f2 with respect to {1,v, |v|2} cannot be written down analytically.

In spite of the difficulty of relating the target parameters to the moments of the
kinetic distributions, the entropy minimization formulation can be still used to es-
tablish a unique set of parameters, under the conditions λ 12

1 = λ 21
1 and λ 12

2 = λ 21
2 .

We do so by adapting the strategy from [17] to fit the current setting. While a more
abstract approach based solely on convex optimization tools can also be used [6], we
follow [17] because it provides a more concrete connection to the application at hand.
Our proof provides a rigorous justification for the target function used in [27] for the
single species case. It also leads to an H-Theorem for the multi-species system (1).

The remainder of the paper is organized as follows. In Section 2, we motivate
the choice of the target Maxwellians as solutions of minimization problems of the
entropy under certain constraints. In Section 3, we prove existence and uniqueness of
the minimization problems. In Section 4, we prove consistency of the model meaning
that it satisfies the conservation properties, the H-Theorem and Maxwell distributions
with equal mean velocity and temperature in equilibrium. In Section 5, we briefly
summarize the straightforward extension to the case of N species, still with binary
interactions.

2 The structure of the target functions

In this section, we motivate the form of the target functions in (2). It will be conve-
nient in what follows to define the strictly convex function

h(z) = z lnz− z, z > 0, (5)
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and the vector-valued function

ak(v) =

ak
0(v)

ak
1(v)

ak
2(v)

=

 mk
mkv

mk|v|2

 . (6)

Since h is convex and h′(z) = ln(z), it follows that

h(x)≥ h(y)+ ln(y)(x− y), ∀ y,x ∈ R+. (7)

2.1 The one species target Maxwellians

We seek a solution of the weighted entropy minimization problem

min
g∈χk

∫
νkkh(g)dv, k ∈ {1,2}, (8)

where

χk =

{
g
∣∣∣ g≥ 0, νkk(1+ |v|2)g ∈ L1(R3),

∫
νkkak(v)(g− fk)dv = 0

}
. (9)

The choice of the set χk ensures the conservation properties (3) for intra-species col-
lisions. The motivation for weighting the usual objective by the collision frequencies
in (8) is that the ansatz will take the form (2). Indeed, by standard optimization the-
ory, any critical point (Mkk,λ

kk) of the Lagrange functional Lk : χk×R5→ R, given
by

Lk(g,α) =
∫

νkkh(g)dv−α ·
∫

νkkak(v)(g− fk)dv, (10)

satisfies the first-order optimality condition

δLk

δg
(Mkk,λ

kk) = νkk(lnMkk−λ
kk ·ak(v)) = 0, (11)

which implies then that

Mkk = exp(λ kk ·ak) = exp(mkλ
kk
0 +mkλ

kk
1 · v+mkλ

kk
2 |v|2). (12)

In Section 3.1, we prove in a rigorous way that there exists a unique function of the
form (12) that satisfies these constraints.

Theorem 1 Suppose that there exists λ kk ∈ R×R3×R such that the function Mkk
given in (12) is an element of χk. Then Mkk is the unique minimizer of (8).

Proof According to (7)

h(g)≥ h(Mkk)+λ
kk ·ak(g−Mkk), (13)

point-wise in v. Thus, because νkk ≥ 0, it follows that for all g ∈ χk,∫
νkkh(g)dv≥

∫
νkkh(Mkk)dv+

∫
νkkλ

kk ·ak(g−Mkk)dv =
∫

νkkh(Mkk)dv (14)

Hence Mkk is a minimizer of (8), and uniqueness follows directly from the strict
convexity of h.
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2.2 The mixture target Maxwellians

For interactions between species, we seek a solution of the weighted entropy mini-
mization problem

min
g1,g2∈χ12

∫
ν12h(g1)dv+

∫
ν21h(g2)dv, (15)

where

χ12 =

{
(g1,g2)

∣∣∣ g1,g2 > 0, ν12(1+ |v|2)g1, ν21(1+ |v|2)g2 ∈ L1(R3),∫
m1ν12g1dv =

∫
m1ν12 f1dv,

∫
m2ν21g2dv =

∫
m2ν21 f2dv,∫

m1ν12

(
v
|v|2
)
(g1− f1)dv+

∫
m2ν21

(
v
|v|2
)
(g2− f2)dv = 0

}
.

(16)

Here, χ12 is chosen such that the constraints (3) for inter-species collisions are satis-
fied. Similar to the case of intra-species collisions, we consider the Lagrange func-
tional L : χ×R×R×R3×R→ R

L(g1,g2,α
1
0 ,α

2
0 ,α1,α2) =

∫
ν12h(g1)dv+

∫
ν21h(g2)dv

−α
1
0

∫
m1ν12(g1− f1)dv−α

2
0

∫
m2ν21(g2− f2)dv

−α1 ·
(∫

m1ν12v(g1− f1)dv+
∫

m2ν21v(g2− f2)dv
)

−α2

(∫
m1ν12|v|2(g1− f1)dv+

∫
m2ν21|v|2(g2− f2)dv

)
.

(17)

Any critical point (M12,M21,λ
1
0 ,λ

2
0 ,λ1,λ2) of L satisfies the first-order optimality

conditions

δL
δg1

(M12,M21,λ
1
0 ,λ

2
0 ,λ1,λ2) = ν12(lnM12−λ

12 ·a1(v)) = 0, (18)

δL
δg2

(M12,M21,λ
1
0 ,λ

2
0 ,λ1,λ2) = ν21(lnM21−λ

21 ·a2(v)) = 0, (19)

where λ 12 = (λ 1
0 ,λ1,λ2) and λ 21 = (λ 2

0 ,λ1,λ2). Therefore

M12 = exp(λ 12 ·a1(v)) = exp
(
m1λ

12
0 +m1λ1 · v+m1λ2|v|2

)
(20)

M21 = exp(λ 21 ·a2(v)) = exp
(
m2λ

21
0 +m2λ1 · v+m2λ2|v|2

)
. (21)

Since we only require conservation of the combined momentum and kinetic energy,
there is only one Lagrange multiplier for the momentum constraint and one Lagrange
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multiplier for the energy constraint. Therefore, λ 12
1 = λ 21

1 and λ 12
2 = λ 21

2 in (2). When
the collision frequency is constant, this restriction is the same as the one used in [15],
but more restrictive than the model in [21].

In the next section, we prove the existence of functions of the form (2) that satisfy
the constraints in (3) and (4). As in the single species case, it follows that these
functions are unique minimizer of the corresponding minimization problem.

Theorem 2 Assume that there exist λ 12
0 ∈ R, λ 21

0 ∈ R, λ 12
1 = λ 21

1 ∈ R3, and λ 12
2 =

λ 21
2 ∈ R such that the pair (M12,M21), where Mk j is defined in (2), is an element of

χ12. Then (M12,M21) is the unique minimizer of (15).

Proof According to (7)

h(g)≥ h(Mk j)+λ
k j ·ak(g−Mk j), (22)

point-wise in v, for any measurable function g and k, j ∈ {1,2}. Therefore, since
νk j ≥ 0, it follows that for any measureable functions g1 and g2,

∫
ν12h(g1)dv+

∫
ν21h(g2)dv≥

∫
ν12h(M12)dv+

∫
ν21h(M21)dv

+λ
12 ·
∫

ν12a1(g1−M12)dv+λ
21 ·
∫

ν21a2(g2−M21)dv.

(23)

Since λ 12
1 = λ 21

1 and λ 12
2 = λ 21

2 ,

λ
12 ·
∫

ν12a1(g1−M12)dv+λ
21 ·
∫

ν21a2(g2−M21)dv

= λ
12
0

∫
ν12m1(g1−M12)dv+λ

21
0

∫
ν21m2(g2−M21)dv

+λ
12
1 ·
(∫

ν12m1v(g1−M12)dv+
∫

ν21m2v(g2−M21)dv
)

+λ
12
2

(∫
ν12m1|v|2(g1−M12)dv+

∫
ν21m2|v|2(g2−M21)dv

)
.

(24)

If (g1,g2) and (M12,M21) are elements of χ12, then the constraints in (16) imply that
each of the terms above is zero. In such cases, (23) reduces

∫
ν12h(g1)dv+

∫
ν21h(g2)dv≥

∫
ν12h(M12)dv+

∫
ν21h(M21)dv, (25)

which shows that (M12,M21) solves (15). Since the collision frequencies ν12 and ν21
are non-negative and h is strictly convex, it follows that this solution is unique.
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3 Existence and uniqueness of the target Maxwellians

In this section, we prove the existence of the multipliers λ 11, λ 22, λ 12 and λ 21 such
that the single-species targets M11 and M22 satisfy (3) and the mixture targets M12
and M21 satisfy (4). We follow closey the strategy laid out in [17], although some
variations will be needed to account for the velocity-dependent collision frequencies
and the mixture targets.

Throughout the paper, we denote a distribution function of exponential form by

expk
λ
(v) := exp(λ ·ak(v)), λ = (λ0,λ1,λ2) ∈ R5. (26)

and let

Dk j = {g≥ 0 | νk j(1+ |v|2)g ∈ L1(R3), g 6≡ 0}, Λ
k j = {λ ∈ R5 | expk

λ
∈ Dk j}.

(27)

For any g ∈ Dk j the moment map µk j is given by

µ
k j(g) =

µ
k j
0

µ
k j
1

µ
k j
2

(g) =
∫

νk jak(v)g(v)dv. (28)

We make the following assumptions about the collision frequencies.

Assumption 1 Each frequency νk j is strictly positive and defined such that

Λ := Λ
k j = {λ | expk

λ
∈ L1(R3)}= {λ ∈ R5 | λ2 < 0} (29)

is independent of k and j.

Roughly speaking, these assumptions are used to ensure integrability properties that
are satisfied when the collision frequencies are independent of the velocity. They are
used in the technical details of the proofs below, but are in practice satisfied by many
realistic frequency models.

3.1 Target functions for intra-species collisions

We start the intra-species case; that is, for k ∈ {1,2}, we show the existence of mul-
tiplier λ kk such that Mkk satisfies (3). The basic idea is to show that the dual function

z(λ ;ρ) = µ
kk
0 (expk

λ
)−λ ·ρ (30)

is differentiable and attains its minimum on Λ for any ρ ∈ µkk(Dkk). Then the neces-
sary condition for an extremum in Λ yields

0 = ∇λ z(λ kk) =
∫

νkk(v)ak(v)exp(λ kk ·ak(v))dv−ρ, (31)

which gives ρ = µkk(expk
λ kk).
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Lemma 1 The function z is strictly convex and twice Fréchet differentiable on Λ .

Proof It is sufficient to prove that φ(λ ) = µkk
0 (expk

λ
) is strictly convex and twice

Fréchet differentiable, with first derivative Dφ(λ )= µkk(expk
λ
) and Hessian Hφ(λ )=∫

ak(v)⊗ak(v)expk
λ

dv. Convexity following immediately from convexity of the ex-
ponential function and linearity of the integral. Specifically, given λ (1), λ (2) and
two positive scalars θ1,θ2 such that θ1 + θ2 = 1, it follows that expk

θ1λ (1)+θ2λ (2) ≤
θ1 expk

λ (1) +θ2 expk
λ (2) . Hence

φ(θ1λ
(1)+θ2λ

(2)) = µ
kk
0 (expk

θ1λ (1)+θ2λ (2))≤ µ
kk
0 (θ1 expk

λ (1) +θ2 expk
λ (2))

= θ1φ(λ (1))+θ1φ(λ (2)).
(32)

For any nonzero δ ∈ R5

φ(λ +δ )−φ(λ )−Dφ(λ ) ·δ
|δ |

=
∫

fδ (v)dv, (33)

where

fδ (v) = νkk(v)expk
λ
(v)

(
expk

δ
(v)−1−ak(v) ·δ

|δ |

)
. (34)

A Taylor series expansion shows that∣∣∣∣∣expk
δ
(v)−1−δ ·ak(v)

|δ |

∣∣∣∣∣=
∣∣∣∣∣ ∞

∑
n=2

(δ ·ak(v))n

n!
1
|δ |

∣∣∣∣∣≤ |ak(v)|
∞

∑
n=1

|δ ·ak(v)|n

n!

≤ |ak(v)|exp(|δ ·ak(v)|)

(35)

Therefore fδ (v)≤ expk
λ/2(v)gδ (v), where

gδ (v) := νkk(v)|ak(v)|expk
λ/2(v)exp(|δ ·ak(v)|)

≤ νkk(v)|ak(v)|
(

expk
λ/2+δ

(v)+ expk
λ/2−δ

(v)
)
.

(36)

Because Λ is open, for |δ | sufficiently small, expλ/2+δ (v) and expλ/2−δ (v) are ele-
ments of Dkk, in which case gδ is integrable. Moreover, expλ/2 is bounded. Hence fδ

is bounded above by an integrable function and the dominated convergence theorem
gives

lim
δ→0

∫
fδ (v)dv =

∫
lim
δ→0

fδ (v)dv = 0. (37)

The existence of the Hessian can be proven in an analogous way.
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Lemma 2 For fixed λ ∈Λ , ξ ∈ S5, and ρ ∈ µkk(Dkk), the function

zξ (s) = z(λ + sξ ;ρ) (38)

attains its unique minimum in the open interval

I(ξ ,λ ) := (−sb(−ξ ,λ ),sb(ξ ,λ )) (39)

where

sb(ξ ,λ ) := sup{s : λ + sξ ∈Λ}

takes the value +∞ if the boundary ∂Λ is not met in the direction ξ .

Proof The fact that z is strictly convex and differentiable with respect to λ implies
that zξ is strictly convex and differentiable with respect to s. Hence it attains a unique
minimum on the closure of I(ξ ,λ ).

We now show that zξ cannot attain its minimum on the boundary of I(ξ ,λ ).
Suppose first that sb(ξ ,λ ) < ∞. According to Assumption 1, λ + sb(ξ ,λ )ξ 6∈ Λ .
Hence by Fatou’s Lemma,

lim
s→sb(ξ ,λ )

∫
νkk expk

λ+sξ
dv≥

∫
νkk expk

λ+sb(ξ ,λ )ξ
dv = ∞ (40)

which implies that lims→sb(ξ ,λ )
zξ (s) = +∞.

Suppose now that sb(ξ ,λ ) = ∞. There are two cases:

Case 1: ξ ·ak(v)≤ 0 for a.e. v ∈ R3. Since ρ ∈ µkk(Dkk), there exists g ∈ Dkk such
that ρ = µkk(g). By definition, g is not identically zero and by Assumption 1
νkk > 0. Thus the set

Ω := {v ∈ R3 | ξ ·ak(v)< 0}∩{v ∈ R3 | νkk(v)g(v)> 0} (41)

has positive measure. Hence

ξ ·ρ = ξ ·µkk(g) =
∫

νkk(v)ξ ·ak(v)g(v)dv < 0 (42)

so that

lim
s→∞

zξ (s) = lim
s→∞

∫
expk

λ+sξ
dv− (λ + sξ ) ·ρ ≥ lim

s→∞
−(λ + sξ ) ·ρ = ∞. (43)

Case 2: {v ∈ R3 : ξ ·ak(v)> 0} has positive measure.
Then there exists an ε > 0 such that B = {v ∈ R3 : ξ · ak(v) ≥ ε} has positive
measure. Hence

lim
s→∞

zξ (s)≥ lim
s→∞

((∫
B

νkk(v)expk
λ

dv
)

exp(sε)− (λ + sξ )ρ

)
= ∞ (44)

due to exponential growth in s.

Theorem 3 For any ρ ∈ µkk(Dkk), the function z(·;ρ) has a unique minimizer λ ∗ ∈
Λ .
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Proof Let {λ (`)}∞
`=0 be an infimizing sequence such that z(λ (`))→ z∗, where

z∗ = inf
λ∈Λ

z(λ ).

Let d(`) = λ (`)−λ (0); `≥ 1 and set ξ (`) = d(`)/||d(`)||. Then ξ (`)→ ξ ∗ ∈ S4 possibly
via a subsequence, because S4 is compact. For any ξ ∈ S4, let s∗(ξ )= argmins∈R z(λ (0)+
sξ ;ρ) which, according to Lemma 2, is well-defined. Because z is strictly convex and
twice differentiable,

(i) g(ξ ,s) := ∂sz(λ (0)+ sξ ;ρ) = 0 if and only if s = s∗(ξ )

(ii) ∂sg(ξ ,s)> 0

Thus the implicit function theorem implies that s∗ is a C1 function in a neighbourhood
N(ξ∗)⊂Λ that satisfies

g(ξ ,s∗(ξ )) = 0. (45)

Let `∗ be large enough that ξ (`) ∈ N(ξ∗) for all `≥ `∗. Then

z(λ (`);ρ) = z(λ (0)+d(`);ρ) = z(λ (0)+ ||d(`)||ξ (`);ρ)≥ z(λ (0)+ s∗(ξ (`))ξ (`);ρ).
(46)

Because s∗ is continuous on N(ξ∗) the sequence s∗(ξ (`))→ s∗(ξ ∗) with |s∗(ξ ∗)|<∞.
Moreover, since z is continuous

z∗ = lim
`→∞

z(λ (`))≥ lim
`→∞

z(λ (0)+ s∗(ξ (`))ξ (`)) = z(λ (0)+ s∗(ξ ∗)ξ ∗)≥ z∗, (47)

where first inequality follows from (46). Hence the infimum is attained at λ∗ = λ (0)+
s∗(ξ ∗)ξ∗ ∈Λ .

Corollary 1 Given any fk ∈ Dkk, there exists a unique multiplier λ kk such that Mkk

given by (2) solves (8).

Proof Let ρk = µkk( fk). According to Theorem 3, z(·,ρk) has a unique minimizer
in Λ , which we denote by λ kk. By Lemma 1, z(·,ρk) is also differentiable, so the
first-order optimality condition (31) implies that ρk = µkk(exp

λ kk). The result then
follows from Theorem 1.

3.2 Target functions for inter-species collisions

In this section we show the existence of the multipliers λ 12 = (λ 12
0 ,λ 12

1 ,λ 12
2 ) ∈ R×

R3×R and λ 21 = (λ 21
0 ,λ 21

1 ,λ 21
2 ) ∈R×R3×R such that λ 12

1 = λ 21
1 , λ 12

2 = λ 21
2 , and

M12 and M21 satisfy (4). Denote

λ = (λ 1
0 ,λ

2
0 ,λ1,λ2) λ

1 = (λ 1
0 ,λ1,λ2) λ

2 = (λ 2
0 ,λ1,λ2) (48)
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and use this notation for other vectors when appropriate. Given g1,g2 ∈ D, let

µ̄(g1,g2) =


µ12

0 (g1)
µ21

0 (g2)
µ12

1 (g1)+µ21
1 (g2)

µ12
2 (g1)+µ21

2 (g2)

 . (49)

For any ρ̄ ∈ µ̄(D12×D21), introduce the dual function

z̄(λ ; ρ̄) = µ
12
0 (exp1

λ 1)+µ
21
0 (exp2

λ 2)−λ · ρ̄. (50)

Similar to the intra-species case, our goal is to show that for any such ρ̄ , z(λ ; ρ̄)
attains its minimum on

Λ̄ = {λ ∈ R6 : λ
1,λ 2 ∈Λ}. (51)

Then the necessary first-order condition for a minimum at λ

0 = ∇λ z(λ ; ρ̄) = µ̄(exp1
λ 1(v),exp2

λ 2(v))− ρ̄, (52)

which recovers the required constraints in (4), if we set λ 12 = λ 1 and λ 21 = λ 2.

Lemma 3 The function z̄ defined in (50) is strictly convex and twice Fréchet differ-
entiable on Λ̄ .

Proof Differentiability of the z̄ can be deduced as in the intra-species case by simply
following the arguments of Lemma 1. We skip these details. Convexity also follows
in a similar way. Let φ̄(λ ) = µ12

0 (exp1
λ 1)+ µ21

0 (exp2
λ 2), then convexity of the expo-

nential function implies that for any θ ∈ (0,1), λ ∈ Λ̄ , and β ∈ Λ̄ ,

φ̄(θλ )+ φ̄((1−θ)β ) = µ
12
0 (exp1

θλ 1+(1−θ)β 1)+µ
21
0 (exp2

θλ 2+(1−θ)β 2)

≤ µ
12
0 (θ exp1

λ 1 +(1−θ)exp1
β 1)+µ

21
0 (θ exp2

λ 2 +(1−θ)exp2
β 2)

= θφ̄(λ )+(1−θ)φ̄(β )

(53)

Thus φ̄ is strictly convex, as is z̄, since the two functions differ only by a linear term.

Lemma 4 For λ ∈ Λ̄ ,ξ ∈ S5, and ρ̄ ∈ µ̄(D12×D21), the function

z̄ξ : s 7→ z̄(λ + sξ ; ρ̄) (54)

attains its unique minimum in the open interval

Ī(ξ ,λ ) := (−s̄b(−ξ ,λ ), s̄b(ξ ,λ )), (55)

where

s̄b(ξ ,λ ) = sup{s : λ
1 + sξ

1,λ 2 + sξ
2 ∈Λ}. (56)
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Proof We follow the arguments of the proof of Lemma 2. The fact that z̄ is strictly
convex and differentiable with respect to λ implies that z̄ξ is strictly convex and
differentiable with respect to s. Hence z̄ξ attains a unique minimum on the closure
of Ī(ξ ,λ ). We therefore need only show that z̄ξ cannot attain its minimum on the
boundary of Ī(ξ ,λ ).

Suppose first that s̄b(ξ ,λ )< ∞. By Fatou’s Lemma,

lim
s→s̄b(ξ ,λ )

{∫
ν12 exp1

λ 1+sξ 1 dv+
∫

ν21 exp2
λ 2+sξ 2 dv

}
≥
{∫

ν12 exp1
λ 1+s̄b(ξ ,λ )ξ 1 dv+

∫
ν21 exp2

λ 2+sb(ξ ,λ )ξ 2 dv
}

dv (57)

Assumption 1 implies that λ 1 + s̄b(ξ ,λ )ξ
1 6∈ Λ or λ 1 + s̄b(ξ ,λ )ξ

1 6∈ Λ . Hence at
least one of the integrals on the right-hand side above is ∞, which implies

lim
s→s̄b(ξ ,λ )

zξ (s) = µ
12
0 (exp1

λ 1)+µ
21
0 (exp2

λ 2)−λ · ρ̄ = ∞. (58)

Now suppose instead that s̄b(ξ ,λ ) = ∞. There are two cases:
Case 1: ξ 1 ·a1(v)≤ 0 and ξ 2 ·a2(v)≤ 0 for a.e v ∈ R3.

Since ρ̄ ∈ µ̄(D12×D21), there exist g1,g2 ∈ D12×D21 such that ρ̄ = µ̄(g1,g2);
that is

ρ̄ = µ̄(g1,g2) =


µ12

0 (g1)
µ21

0 (g2)
µ12

1 (g1)+µ21
1 (g2)

µ12
2 (g1)+µ21

2 (g2)

 . (59)

By definition, g1 and g2 are not identically zero, and by Assumption 1, νk j > 0. Thus
the sets

Ω1 := {v ∈ R3 | ξ 1 ·a1(v)< 0}∩{v ∈ R3 | ν12(v)g1(v)> 0} and (60)

Ω2 := {v ∈ R3 | ξ 2 ·a2(v)< 0}∩{v ∈ R3 | ν21(v)g2(v)> 0} (61)

both have positive measure. Hence

ξ · ρ̄ = ξ
1 ·µ12(g1)+ξ

2 ·µ21(g2) (62)

=
∫

ν12ξ
1 ·a1(v)g1(v)dv+

∫
ν21ξ

2 ·a2(v)g2(v)dv < 0, (63)

so that

lim
s→∞

z̄ξ (s) = lim
s→∞

{
µ

12
0 (exp1

λ 1+sξ 1)+µ
21
0 (exp2

λ 2+sξ 2)− (λ + sξ ) · ρ̄
}

(64)

> lim
s→∞
{−(λ + sξ ) · ρ̄}= ∞. (65)

Case 2: The set {v ∈ R3 | ξ 1 · a1(v) > 0} or {v ∈ Ω | ξ 2 · a2(v) > 0} has positive
measure.
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Without loss of generality, assume that {v ∈ R3 | ξ 1 · a1(v) > 0} has positive
measure. Then, there exists some ε > 0 such that B = {v ∈ R3 | ξ 12 ·a1(v)> ε} also
has positive measure. Hence

lim
s→∞

z̄ξ (s)≥ lim
s→∞

((∫
B

ν12 exp1
λ 1 dx

)
exp(sε)− (λ + sξ ) ·ρmix

)
= ∞. (66)

due to exponential growth in s.

Theorem 4 For any ρ̄ ∈ µ̄(D12×D21), the function z̄(·, ρ̄) has a unique minimizer
λ ∗ ∈ Λ̄ .

The proof of this theorem is analogous to the proof of Theorem 3 in the intra-species
case.

Corollary 2 Given any f1 ∈ D12 and f2 ∈ D21, there exist multipliers λ 12 and λ 21

such that λ 21
1 = λ 12

1 , λ 21
2 = λ 12

2 , and the corresponding functions M12 and M21 given
in (2) solve (4).

Proof Let ρ̄ = µ̄( f1, f2). According to Theorem 4, z̄(·, ρ̄) has a unique minimizer,
which we denote by λ ∗ = ((λ ∗)1

0,(λ
∗)2

0,(λ
∗)1,(λ

∗)2). By Lemma 1, z̄(·, ρ̄) is also
differentiable, so the first-order optimality condition (52) implies that ρ̄ = µ̄(exp1

(λ ∗)1 ,exp2
(λ ∗)2).

The result then follows from Theorem 2. Finally, we set

λ
12 = ((λ ∗)1

0,(λ
∗)1,(λ

∗)2) and λ
21 = ((λ ∗)2

0,(λ
∗)1,(λ

∗)2) (67)

and define M12 and M21 according to (2).

4 Consistency of the model

The conditions (3) and (4) lead to standard conservation laws and an entropy dissipa-
tion statement. We recall a few definitions:

Definition 2 The mass density, momentum, and energy of an integrable distribution
g = g(v) of particles with mass m are given by the moments

ρg =
∫

mg(v)dv, qg =
∫

mvg(v)dv, and Eg =
1
2

∫
m|v|2g(v)dv, (68)

respectively. The associated mean velocity and temperature are given by

ug =
qg

ρg
=

∫
vg(v)dv∫
g(v)dv

and Tg =
2
3

Eg

ρg/m
− 1

3
|qg|2

ρg
=

1
3

∫
m|v−ug|2g(v)dv∫

g(v)dv
. (69)

4.1 Conservation properties

An immediate consequence of (3) and (4) is the following.

Theorem 5 (Conservation of the number of each species, total momentum and
total energy) The space-homogeneous form of (1) satisfies

∂tρ f1 = ∂tρ f2 = 0, ∂t
(
q f1 +q f2

)
= 0, ∂t

(
E f1 +E f2

)
= 0 (70)
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4.2 Entropy dissipation and the structure of equilibria

Define the total entropy density

H(g1,g2) =
∫

h(g1)dv+
∫

h(g2)dv (71)

and the dissipation density

S(g1,g2) = S11(g1)+S12(g1,g2)+S21(g1,g2)+S22(g2) (72)

=
∫

ν11 lng1(M11−g1)dv+
∫

ν12 lng1(M12−g1)dv (73)

+
∫

ν21 lng2(M21− f2)dv+
∫

ν22 lng2(M22−g2)dv (74)

Theorem 6 Assume g1,g2 > 0. Then S(g1,g2)≥ 0 with equality if and only if g1 and
g2 are two Maxwellian distributions with equal mean velocity and temperature.

Proof In [27], it is shown that Skk(g)≥ 0 with equality if and only if g is a Maxwellian.
Thus it remains to show a similar result for the combined quantity S12(g1,g2) +
S21(g1,g2). We begin with the following claim:

I(g1,g2) :=
∫

ν12 lnM12(M12−g1)dv+
∫

ν21 lnM21(M21−g2)dv = 0. (75)

Indeed an explicit calculation gives

lnM12 = m1λ
12
0 +m1λ1 · v+m1λ2|v|2 and lnM21 = m2λ

21
0 +m2λ1 · v+m2λ2|v|2,

(76)

which when substituted into (75) gives

I(g1,g2) =
∫

ν12(m1λ
12
0 +m1λ1 · v+m1λ2|v|2)(M12−g1)dv (77)

+
∫

ν21(m2λ
21
0 +m2λ1 · v+m2λ2|v|2)(M21−g2)dv = 0, (78)

due to the constraints (4). From (75), it follows that

S12(g1,g2)+S21(g1,g2) = S12(g1,g2)+S21(g1,g2)− I(g1,g2)

=
∫

ν12 ln
(

g1

M12

)
(M12−g1)dv+

∫
ν21 ln

(
g2

M21

)
(M21−g2)dv

≤ 0.

(79)

with equality if and only if g1 = M12 and g2 = M21. Moreover, a direct calculation
shows that the functions M12 and M21 have the same mean velocity and temperature:

uM12 = uM21 =−
λ1

λ2
and TM12 = TM21 =−

1
2λ2

(80)
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Corollary 3 (Entropy inequality for mixtures) Assume that f1, f2 > 0 are a solu-
tion to (1) where the target Maxwellians have the shape (2), then we have the follow-
ing entropy inequality

∂t (H( f1, f2))+∇x ·
(∫

v(h( f1)+h( f2))dv
)
≤ 0 (81)

with equality if and only if f1 and f2 are two Maxwellian distributions with equal
mean velocity and temperature.

Proof A direct calculation with (1) gives

∂tH( f1, f2)+∇x ·
∫
(h( f1)+h( f2))vdv = S( f1, f2). (82)

The result then follows immediately from the previous theorem.

5 The N-species case

The two-species case can be extended to a system of N-species that undergo binary
collisions. We consider the N-species kinetic equation,

∂t fi + v ·∇x fi =
N

∑
j=1

νi j(Mi j− fi), i = 1, ...,N. (83)

The quantity νii is the collision frequency of particles of species i with itself whereas
νi j is the collision frequency of particles of species i with species j, with i, j =
1, ...,N, i 6= j. We only have terms of this form and not terms containing indices
of more than two species because we consider only binary interactions.

For fixed i, j ∈ {1, . . . ,N} the target Maxwellians Mii, M j j, Mi j and M ji are given
by (2). The single species target Maxwellians Mii and M j j will be determined such
that they satisfy (3). The functions Mi j and M ji will be determined such that we obtain
conservation of mass of each species and conservation of total momentum and total
energy in interactions between these two species, i.e.,∫

νi jMi jdv =
∫

νi j fidv,
∫

ν jiM jidv =
∫

ν ji f jdv∫
νi j

(
miv

mi|v|2
)
(Mi j− fi)dv =−

∫
ν ji

(
m jv

m j|v|2
)
(M ji− f j)dv.

(84)

as an obvious generalization of (4). All the proofs concerning existence and unique-
ness of the target Maxwellians and the H-Theorem can be proven exactly in the same
way as for two species. For the total entropy H( f1, ..., fN) =

∫
(h( f1)+ · · ·+h( fN))dv

we obtain

∂t (H( f1, ..., fN))+∇x ·
(∫

v(h( f1)+ · · ·+h( fN))dv
)
≤ 0. (85)
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Conclusion

We have presented a multi-species BGK model in which the collision frequencies
depend on the microscopic velocity. The model is formally derived based on an en-
tropy minimization principle, which implies that the target functions take the form of
Maxwellians. However, contrary to classical BGK models with velocity-independent
frequencies, the relationship between the Maxwellian parameters and the moments
of the distribution function is not analytic. Thus some effort is required to establish
rigorously the existence of parameters which satisfy first-order optimality conditions.
We also show that the derived model satisfies an H-Theorem and that it can be ex-
tended to the case of arbitrarily many species undergoing binary collisions.

In future work, we will develop numerical tools for discretizing the model devel-
oped here, including the numerical solution of the defining optimization problem. A
numerical code will enable computational explorations about how to choose the col-
lision frequencies and what benefit is providing by their flexibility. Also, because the
motivation for the model is the simulation of multi-species plasmas, we will extend
it for use in such contexts by adding self-consistent fields.
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