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Abstract. This work is devoted to the numerical simulation of the Vlasov-BGK equation for two4
species in the fluid limit using a particle method. Thus, we are interested in a plasma consisting of5
electrons and one species of ions without chemical reactions assuming that the number of particles of6
each species remains constant. We consider the kinetic two species model proposed by Klingenberg,7
Pirner and Puppo in [17], which separates the intra and interspecies collisions. Then, we propose8
a new model based on a micro-macro decomposition (see Bennoune, Lemou and Mieussens[3] and9
Crestetto, Crouseilles and Lemou[7]). The kinetic micro part is solved by a particle method, whereas10
the fluid macro part is discretized by a standard finite volume scheme. Main advantages of this11
approach are: (i) the noise inherent to the particle method is reduced compared to a standard12
(without micro-macro decomposition) particle method, (ii) the computational cost of the method is13
reduced in the fluid limit since a small number of particles is then sufficient.14
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1. Introduction. We want to model a plasma consisting of two species, elec-18

trons and one species of ions. The kinetic description of a plasma is based on the19

Vlasov equation. In [7], Crestetto, Crouseilles and Lemou developed a numerical sim-20

ulation of the Vlasov-BGK equation in the fluid limit using particles. They consider a21

Vlasov-BGK equation for the electrons and treat the ions as a background charge. In22

[7] a micro-macro decomposition is used as in [3] where asymptotic preserving schemes23

have been derived in the fluid limit. In [7], the approach in [3] is modified by using a24

particle approximation for the kinetic part, the fluid part being always discretized by25

standard finite volume schemes. Other approaches where kinetic description of one26

species is written in a micro-macro decomposition can be seen in [8, 9].27

In this paper, we want to model both the electrons and the ions by a Vlasov-BGK28

equation instead of treating one only as a background charge. Such a two compo-29

nent kinetic description of the gas mixture has for example importance in a tokamak30

plasma. In regions nest to the wall of the tokamak, the plasma is close to a fluid, but31

the kinetic description is mandatory in the core plasma so that a hybrid fluid/kinetic32

description is adequate. For this, we want to use the approach in [7], since it has the33

following advantages: the presented scheme has a much less level of noise compared to34

the standard particle method and the computational cost of the micro-macro model35

is reduced in the fluid regime since a small number of particles is needed for the micro36

part.37

From the modelling point of view, we want to describe this gas mixture using two dis-38

tribution functions via the Vlasov equation with interaction terms on the right-hand39

side. For the interactions we use the BGK approach. BGK models give rise to efficient40

numerical computations, see for example [19, 13, 12, 3, 11, 4, 7]. In the literature one41
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2 A. CRESTETTO, C. KLINGENBERG, AND M. PIRNER

can find two types of models for gas mixtures. Just like the Boltzmann equation for42

gas mixtures contains a sum of collision terms on the right-hand side, one type of43

model also has a sum collision terms in the relaxation operator. One example is the44

model of Klingenberg, Pirner and Puppo [17] which we will consider in this paper.45

It contains the often used models of Gross and Krook [14] and Hamel [15] as special46

cases. The other type of model contains only one collision term on the right-hand47

side. Example of this is the well-known model of Andries, Aoki and Perthame in [1].48

In this paper we are interested in the first type of models, and use the model developed49

in [17]. In this type of model the two different types of interactions, interactions of a50

species with itself and interactions of a species with the other one, are kept separated.51

Therefore we can see how these different types of interactions influence the trend to52

equilibrium. From the physical point of view, we expect two different types of trends53

to equilibrium. For example, if the collision frequencies of the particles of each species54

with itself are larger compared to the collision frequencies related to interspecies col-55

lisions, we expect that we first observe that the relaxation of the two distribution56

functions to its own equilibrium distribution is faster compared to the relaxation to-57

wards a common velocity and a common temperature. This effect is clearly seen in58

the model presented in [17] since the two types of interactions are separated.59

The outline of the paper is as follows: In section 2 we present the model for a60

plasma consisting of electrons and one species of ions and write it in dimensionless61

form. In section 3 we derive the micro-macro decomposition of the model presented62

in section 2. In section 4 we prove some convergence rates in the space-homogeneous63

case of the distribution function to a Maxwellian distribution and of the two velocities64

and temperatures to a common value which we will verify numerically later on. In65

section 5, we briefly present the numerical approximation, based on a particle method66

for the micro equation and a finite volume scheme for the macro one. In section 6, we67

present some numerical examples.First, we verify numerically the convergence rates68

obtained in section 4. Then, in the general case, we are interested in the evolution in69

time of the system. We consider different possibilities for the values of the collision70

frequencies. When the collision frequencies are very small we obtain the effect of71

Landau damping. When the collision frequencies are very large we observe relaxations72

towards Maxwellian distributions. Finally, if we vary the relationships between the73

different collision frequencies, we observe a corresponding variation in the speed of74

relaxation towards Maxwellians and the relaxation towards a common value of the75

mean velocities and temperatures. Finally, section 7 presents a brief conclusion.76

2. The two-species model. In this section we present in 1D the Vlasov-BGK77

model for a mixture of two species developed in [17] and mention its fundamental78

properties like the conservation properties. Then, we present its dimensionless form.79

2.1. 1D Vlasov-BGK model for a mixture of two species. We consider a80

plasma consisting of electrons denoted by the index e and one species of ions denoted81

by the index i. Thus, our kinetic model has two distribution functions fe(x, v, t) > 082

and fi(x, v, t) > 0 where x ∈ [0, Lx], Lx > 0, v ∈ R are the phase space variables and83

t ≥ 0 the time.84

Furthermore, for any fi, fe : [0, Lx]× R× R+
0 → R+ with (1 + |v|2)fi,85

(1 + |v|2)fe ∈ L1(R), we relate the distribution functions to macroscopic quantities86
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by mean-values of fk, k = i, e87

∫
fk(v)

 1
v

mk|v − uk|2

 dv =:

 nk
nkuk
nkTk

 , k = i, e,(1)88

89

where mk is the mass, nk the number density, uk the mean velocity and Tk the mean90

temperature of species k, k = i, e. Note that in this paper we shall write Tk instead91

of kBTk, where kB is Boltzmann’s constant.92

We want to model the time evolution of the distribution functions by Vlasov-BGK93

equations. Each distribution function is determined by one Vlasov-BGK equation to94

describe its time evolution. The two equations are coupled through a term which95

describes the interaction of the two species. We consider binary interactions. So the96

particles of one species can interact with either themselves or with particles of the97

other species. In the model this is accounted for introducing two interaction terms in98

both equations. Here, we choose the collision terms as BGK operators, so that the99

model writes100

∂tfi + v∂xfi +
FLi
mi

∂vfi = νiini(Mi − fi) + νiene(Mie − fi),

∂tfe + v∂xfe +
FLe
me

∂vfe = νeene(Me − fe) + νeini(Mei − fe),
(2)101

102

with the mean-field forces FLi and FLe specified later and the Maxwell distributions103

Mk(x, v, t) =
nk√
2π Tk

mk

exp(−|v − uk|
2

2 Tk

mk

), k = i, e,

Mkj(x, v, t) =
nkj√
2π

Tkj

mk

exp(−|v − ukj |
2

2
Tkj

mk

), k, j = i, e, k 6= j,

(3)104

105

where νiini and νeene are the collision frequencies of the particles of each species106

with itself, while νiene and νeini are related to interspecies collisions. To be flexible107

in choosing the relationship between the collision frequencies, we now assume the108

relationship109

νie = ενei, 0 < ε ≤ 1,

νii = βiνie, νee = βeνei =
βe
ε
νie, βi, βe > 0.

(4)110

111

The restriction ε ≤ 1 is without loss of generality. If ε > 1, exchange the notation i and112

e and choose 1
ε . We assume that all collision frequencies are positive. In addition, we113

take into account an acceleration due to interactions using mean-field Lorentz forces114

FLi , F
L
e . We assume that the magnetic field is negligible compared to the electric115

field. Therefore the Lorentz forces are given by116

FLi (x, t) = e E(x, t) and FLe (x, t) = −e E(x, t),(5)117118

where e denotes the elementary charge. For simplicity, we assumed that the ions have119

the charge e. The electric field is given by the Maxwell equation120

(6) ∂xE(x, t) = ρ(x, t),121
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4 A. CRESTETTO, C. KLINGENBERG, AND M. PIRNER

where122

ρ(x, t) = e

∫ ∞
−∞

(fi(x, v, t)− fe(x, v, t))dv(7)123
124

describes the charge density.125

The functions fk and E are submitted to the following periodic condition126

fk(0, v, t) = fk(Lx, v, t), for every v ∈ R, t ≥ 0,127

E(0, t) = E(Lx, t), for every t ≥ 0.128129

In order to get a well-posed problem, a zero-mean electrostatic condition has to be
added, ∫ Lx

0

E(x, t)dx = 0, for every t ≥ 0,

together with an initial condition

fk(x, v, 0) = f0
k (x, v), for every x ∈ [0, Lx], v ∈ R.

From the initial condition on fk, we can compute an initial condition of the charge130

density ρ given by (7). From this we can compute the initial data of E using (6).131

The Maxwell distributions Mi and Me in (3) have the same moments as fi and fe132

respectively. With this choice, we guarantee the conservation of mass, momentum and133

energy in interactions of one species with itself (see section 2.2 in [17]). The remaining134

parameters nie, nei, uie, uei, Tie and Tei will be determined using conservation of total135

momentum and energy, together with some symmetry considerations.136

If we assume that137

nie = ni and nei = ne,(8)138

uie = δui + (1− δ)ue, δ ∈ R,(9)139

Tie = αTi + (1− α)Te + γ|ui − ue|2, 0 ≤ α ≤ 1, γ ≥ 0,(10)140141

we have conservation of the number of particles, of total momentum and total energy142

provided that143

uei = ue −
mi

me
ε(1− δ)(ue − ui), and(11)144

Tei =

[
εmi(1− δ)

(
mi

me
ε(δ − 1) + δ + 1

)
− εγ

]
|ui − ue|2

+ ε(1− α)Ti + (1− ε(1− α))Te,

(12)145

146

see theorem 2.1, theorem 2.2 and theorem 2.3 in [17].147

In order to ensure the positivity of all temperatures, we need to impose restrictions148

on δ and γ given by149

0 ≤ γ ≤ mi(1− δ)
[
(1 +

mi

me
ε)δ + 1− mi

me
ε

]
, and(13)150

mi

me
ε− 1

1 + mi

me
ε
≤ δ ≤ 1,(14)151

152

see theorem 2.5 in [17].153
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2.2. Dimensionless form. We want to write the BGK model presented in sub-
section 2.1 in dimensionless form. The principle of non-dimensionalization can also
be found in chapter 2.2.1 in [20] for the Boltzmann equation and in [5] for macro-
scopic equations. First, we define dimensionless variables of the time t ∈ R+

0 , the
length x ∈ [0, Lx], the velocity v ∈ R, the distribution functions fi, fe, the number
densities ni, ne, the mean velocities ui, ue, the temperatures Ti, Te, the electric field E
and of the collision frequency νie. Then, dimensionless variables of the other collision
frequencies νii, νee, νei can be derived by using the relationships (4). We start with
choosing typical scales denoted by a bar.

t′ = t/t̄, x′ = x/x̄, v′ = v/v̄,

f ′i(x
′, v′, t′) =

x̄v̄

Ni
fi(x, v, t), f ′e(x

′, v′, t′) =
x̄v̄

Ne
fe(x, v, t),

where Ni is the total number of ions and Ne the total number of electrons in the
volume x̄. We assume Ni = Ne =: N . This assumption is in accordance with the
typical values in a plasma described in [5]. Further, we choose

n′i = ni/n̄i, n′e = ne/n̄e, n̄i = n̄e =
N

x̄
,

E′ = E/Ē

u′i = ui/ūi, u′e = ue/ūe, ūe = ūi = v̄,

T ′i = Ti/T̄i, T ′e = Te/T̄e, T̄e = T̄i = miv̄
2,

ν′ie = νie/ν̄ie.

Now we want to write equations (2) in dimensionless variables. We start with the154

Maxwellians (3) and with (9)-(12). We replace the macroscopic quantities ni, ui and155

Ti in Mi by their dimensionless expressions and obtain156

Mi =
n′in̄i√
2π

T̄iT ′
i

mi

exp(−|v
′v̄ − u′iūi|2mi

2T ′i T̄i
).(15)157

158

If we assume that v̄2 = |ūi|2 = T̄i

mi
, we obtain159

Mi =
n̄i
v̄

n′i√
2πT ′i

exp(−|v
′ − u′i|2

2T ′i
) =:

n̄i
v̄
M ′i .(16)160

161

The relationship on ūi and T̄i used here is in accordance with the typical values in a162

plasma described in [5]. In the Maxwellian Me we assume T̄i = T̄e =: T̄ and obtain163

in the same way as for Mi164

Me =
n̄e
v̄

(
me

mi

) 1
2 n′e√

2πT ′e
exp(−|v

′ − u′e|2

2T ′e

me

mi
) =:

n̄e
v̄
M ′e.(17)165

166
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6 A. CRESTETTO, C. KLINGENBERG, AND M. PIRNER

Now, we consider the Maxwellian Mie in (3), its velocity uie in (9) and its temperature167

Tie in (10). Again we use v̄ = ūi = ūe and v̄2 = T̄
mi

= T̄i

mi
= T̄e

me

me

mi
and obtain168

uie = δu′iūi + (1− δ)u′eūe = (δu′i + (1− δ)u′e)v̄ =: v̄u′ie,

Tie = αT ′i T̄i + (1− α)T ′eT̄e + γ|v̄|2|u′i − u′e|2

= mi|v̄|2[αT ′i + (1− α)T ′e +
γ

mi
|u′i − u′e|2] =: |v̄|2miT

′
ie,

Mie =
n′in̄i√
2πv̄2T ′ie

exp(−|v
′ − u′ie|2

2T ′ie
) =:

n̄i
v̄
M ′ie.

(18)169

170

With the same assumptions we obtain for uei, Tei and Mei in a similar way the171

expressions172

uei = [(1− mi

me
ε(1− δ))u′e +

mi

me
ε(1− δ)u′i]v̄ =: u′eiv̄,173

Tei = [(1− ε(1− α))T ′e + ε(1− α)T ′i ]T̄174

+ (εmi(1− δ)(
mi

me
ε(δ − 1) + δ + 1)− εγ)|u′i − u′e|2|v̄|2175

= [(1− ε(1− α))T ′e + ε(1− α)T ′i ]|v̄|2me
mi

me
176

+ (εmi(1− δ)(
mi

me
ε(δ − 1) + δ + 1)− εγ)|u′i − u′e|2|v̄|2 =: |v̄|2me

mi

me
T ′ei,177

Mei =
n̄e
v̄

me

mi

n′e√
2πT ′ei

exp(−|v
′ − u′ei|2

2T ′ei

me

mi
) =:

n̄e
v̄
M ′ei.178

179

Now we replace all quantities in (2) by their non-dimensionalized expressions. For the180

left-hand side of the equation for the ions we obtain181

∂tfi + v∂xfi +
e

mi
E∂vfi

=
1

t̄

N

x̄v̄
∂t′f

′
i +

1

x̄

N

x̄v̄
v̄v′∂x′f ′i +

N

x̄v̄

1

v̄
Ē
e

mi
E′∂v′f

′
i

(19)182

183

and for the right-hand side using that n̄k = N
x̄ , k = i, e, (4), (16) and (18), we get184

νiini(Mi − fi) + νiene(Mie − fi) = νieβini(Mi − fi) + νiene(Mie − fi)

= βiν̄ie
N

x̄v̄

N

x̄
ν′ien

′
i(M

′
i − f ′i) + ν̄ie

N

x̄v̄

N

x̄
ν′ien

′
e(M

′
ie − f ′i).

(20)185

186

Multiplying by t̄x̄v̄
N and dropping the primes in the variables leads to187

∂tfi +
t̄v̄

x̄
v∂xfi + t̄

Ē

v̄

e

mi
E∂vfi188

= βiν̄iet̄
N

x̄
νieni(Mi − fi) + ν̄iet̄

N

x̄
νiene(Mie − fi).189

190

In a similar way we obtain for electrons191

∂tfe +
t̄v̄

x̄
v∂xfe − t̄

Ē

v̄

e

me
E∂vfe192

=
βe
ε
ν̄iet̄

N

x̄
νiene (Me − fe) +

1

ε
ν̄iet̄

N

x̄
νieni (Mei − fe) ,193

194

This manuscript is for review purposes only.



KINETIC/FLUID MICRO-MACRO NUMERICAL SCHEME FOR TWO COMPONENT PLASMA7

and the non-dimensionalized Maxwellians given by195

Mi(x, v, t) =
ni√
2πTi

exp(−|v − ui|
2

2Ti
),

Me(x, v, t) =
ne√
2πTe

(
me

mi

) 1
2

exp(−|v − ue|
2

2Te

me

mi
),

Mie(x, v, t) =
ni√

2πTie
exp(−|v − uie|

2

2Tie
),

Mei(x, v, t) =
ne√
2πTei

(
me

mi

) 1
2

exp(−|v − uei|
2

2Tei

me

mi
),

(21)196

197

with the non-dimensionalized macroscopic quantities198

uie = δui + (1− δ)ue,(22)199

Tie = αTi + (1− α)Te +
γ

mi
|ui − ue|2,(23)200

uei = (1− mi

me
ε(1− δ))ue +

mi

me
ε(1− δ)ui,(24)201

Tei = [(1− ε(1− α))Te + ε(1− α)Ti]

+ (ε(1− δ)(mi

me
ε(δ − 1) + δ + 1)− ε γ

mi
)|ui − ue|2.

(25)202

203

204

Defining dimensionless parameters205

A =
t̄v̄

x̄
, Bi = t̄

Ē

v̄

e

mi
, Be = t̄

Ē

v̄

e

me
,

1

εi
= βiν̄iet̄

N

x̄
,

1

ε̃i
= ν̄iet̄

N

x̄
,

1

εe
=
βe
ε
ν̄iet̄

N

x̄
,

1

ε̃e
=

1

ε
ν̄iet̄

N

x̄
,

(26)206

207

we get208

∂tfi +A∂xvfi +BiE∂vfi =
1

εi
νieni(Mi − fi) +

1

ε̃i
νiene(Mie − fi),

∂tfe +Av∂xfe −BeE∂vfe =
1

εe
νiene(Me − fe) +

1

ε̃e
νieni(Mei − fe).

(27)209

210

In addition, we want to write the moments (1) in non-dimensionalized form. We can211

compute this in a similar way as for (2) and obtain after dropping the primes212 ∫
fkdv = nk,

∫
vfkdv = nkuk, k = i, e,

1

ni

∫
|v − ui|2fidv = Ti,

me

mi

1

ne

∫
|v − ue|2fedv = Te.

(28)213

214

For the non-dimensionalized form of the Maxwell equation (6) we obtain after drop-215

ping the primes216

Ē

eN
∂xE = ρ.(29)217

218

We assume that Ē
eN = 1.219
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8 A. CRESTETTO, C. KLINGENBERG, AND M. PIRNER

Remark 2.1. According to [2] there are the following relationships between the
collision frequencies in the case of ions and electrons

νee = νei =

√
mi

me
νii =

mi

me
νie,

which means

ε =
me

mi
, βe = 1, βi =

√
mi

me
.

3. Micro-Macro decomposition. In this section, we derive the micro-macro220

model equivalent to (27).221

First, we take the dimensionless equations (27) and choose A = Be = mi

me
Bi = 1.222

The choice A = 1 means v̄ = x̄
t̄ . The choice Be = 1 means that the reciprocal unit223

time scales are given by the cyclotron frequency of electrons in the Ē
v̄ − field, that is224

1
t̄ = Ē

v̄
e
me

.225

Now, we propose to adapt the micro-macro decomposition presented in [3] and226

[7]. It is used for numerical methods to solve Boltzmann-like equations for mixtures227

to capture the right compressible Navier-Stokes dynamics at small Knudsen numbers.228

The idea is to write each distribution function as the sum of its own equilibrium part229

(verifying a fluid equation) and a rest (of kinetic-type). So, we decompose fi and fe230

as231

fi = Mi + gii, fe = Me + gee.(30)232233

Let us introduce m(v) :=

 1
v
|v|2

 and the notation 〈·〉 :=
∫
· dv. Since fi and Mi234

(resp. fe and Me) have the same moments: 〈m(v)fi〉 = 〈m(v)Mi〉 (resp. 〈m(v)fe〉 =235

〈m(v)Me〉), then the moments of gii (resp. gee) are zero:236 ∫
m(v)giidv =

∫
m(v)geedv = 0.(31)237

238

With this decomposition we get from equation (27) of ions in dimensionless form239

∂tMi + ∂tgii + v∂xMi + v∂xgii +
me

mi
E∂vMi +

me

mi
E∂vgii

= − 1

εi
νienigii +

1

ε̃i
νiene(Mie −Mi − gii),

(32)240

241

and a similar equation for electrons.242

Now we consider the Hilbert spaces L2
Mk

= {φ such that φM
− 1

2

k ∈ L2(R)}, k = i, e,243

with the weighted inner product 〈φψM−1
k 〉. We consider the subspace Nk =span244

{Mk, vMk, |v|2Mk}, k = i, e. Let ΠMk
the orthogonal projection in L2

Mk
on this245

subspace Nk. This subspace has the orthonormal basis246

B̃k = { 1
√
nk
Mk,

(v − uk)√
Tkmi/mk

1
√
nk
Mk, (

|v − uk|2

2Tkmi/mk
− 1

2
)

1
√
nk
Mk} =: {bk1 , bk2 , bk3}.247

248
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Using this orthonormal basis of Nk, one finds for any function φ ∈ L2
Mk

the following249

expression of ΠMk
(φ)250

ΠMk
(φ) =

3∑
n=1

(φ, bkn)bkn =
1

nk
[〈φ〉+

(v − uk) · 〈(v − uk)φ〉
Tkmi/mk

251

+ (
|v − uk|2

2Tkmi/mk
− 1

2
)2〈( |v − uk|

2

2Tkmi/mk
− 1

2
)φ〉]Mk.(33)252

253

This orthogonal projection ΠMk
(φ) has some elementary properties.254

Lemma 3.1 (Properties of ΠMk
). We have, for k = i, e,255

(1−ΠMk
)(Mk) = (1−ΠMk

)(∂tMk) = 0,256

ΠMk
(gkk) = ΠMk

(∂tgkk) = (1−ΠMk
)(E∂vMk) = 0,257258

and259

ΠMi
(Mie) = (1 +

(v − ui)(uie − ui)
Ti

260

+ (
|v − ui|2

2Ti
− 1

2
)(
Tie
Ti

+
|uie − ui|2

Ti
− 1))Mi,(34)261

ΠMe
(Mei) = (1 +

(v − ue)(uei − ue)
Temi/me

262

+ (
|v − ue|2

2Temi/me
− 1

2
)(
Tei
Te

+
|uei − ue|2

Temi/me
− 1))Me.(35)263

264

265

Proof. The proof of the first five equalities is analogue to the one species case and266

is given in [3]. Besides, using the explicit expression of ΠMk
, k = i, e, given by (33)267

we obtain (34)-(35) by direct computations.268

Now we apply the orthogonal projection 1 − ΠMi to (32), use lemma 3.1 and269

obtain270

∂tgii + (1−ΠMi)(v∂xMi) + (1−ΠMi)(v∂xgii) + (1−ΠMi)(
me

mi
E∂vgii)271

=
1

ε̃i
νiene(Mie −ΠMi

(Mie))− (
1

εi
νieni +

1

ε̃i
νiene)gii.272

273

Again with lemma 3.1 we replace ΠMi
(Mie) by its explicit expression274

∂tgii + (1−ΠMi
)(v∂xMi) + (1−ΠMi

)(v∂xgii) + (1−ΠMi
)(
me

mi
E∂vgii)

=
1

ε̃i
νiene(Mie − (1 +

(v − ui)(uie − ui)
Ti

+ (
|v − ui|2

2Ti
− 1

2
)(
Tie
Ti

+
1

Ti
|uie − ui|2 − 1))Mi)− (

1

εi
νieni +

1

ε̃i
νiene)gii.

(36)275

276

We take the moments of equation (32), use (31), and we get277

∂t〈m(v)Mi〉+ ∂x〈m(v)vMi〉+ ∂x〈m(v)vgii〉278

+〈m(v)
me

mi
E∂vMi〉+ 〈m(v)

me

mi
E∂vgii〉 =

1

ε̃i
νiene(〈m(v)(Mie −Mi)〉).279

280
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Using partial integration and the fact that the moments of gii are zero we get that281

the term 〈mE∂vgii〉 vanishes and so we have282

∂t〈m(v)Mi〉+ ∂x〈m(v)vMi〉+ ∂x〈m(v)vgii〉+ 〈m(v)
me

mi
E∂vMi〉

=
1

ε̃i
νiene(〈m(v)(Mie −Mi)〉).

(37)283

284

In a similar way, we get an analogous coupled system for the electrons which is285

coupled with the system of the ions286

∂tgee + (1−ΠMe
)(v∂xMe) + (1−ΠMe

)(v∂xgee)− (1−ΠMe
)(E∂vgee)

=
1

ε̃e
νieni(Mei − (1 +

(v − ue)(uei − ue)
Te

me

mi

+ (
|v − ue|2

2Te

me

mi
− 1

2
)(
Tei
Te

+
me

miTe
|uei − ue|2 − 1))Me)

− (
1

εe
νiene +

1

ε̃e
νieni)gee,

(38)287

∂t〈mMe〉+ ∂x〈m(vMe)〉+ ∂x〈m(vgee)〉 − 〈mE∂vMe〉

=
1

ε̃e
νieni(〈m(Mei −Me)〉).

(39)288

289

Now we have obtained a system of two microscopic equations (36), (38) and two290

macroscopic equations (37), (39). One can show that this system is an equivalent291

formulation of the BGK equations for ions and electrons. This is analogous to what292

is done in [7].293

4. Space-homogeneous case without electric field. In this section, we con-294

sider our model in the space-homogeneous case, without electric field, where we can295

prove an estimation of the decay rate of ||fk(t) −Mk(t)||L1(dv), |ui(t) − ue(t)|2 and296

|Ti(t)− Te(t)|2.297

In the space-homogeneous case without electric field, the BGK model for mixtures298

(2) simplifies to299

∂tfi =
1

εi
νieni(Mi − fi) +

1

ε̃i
νiene(Mie − fi),

∂tfe =
1

εe
νiene(Me − fe) +

1

ε̃e
νieni(Mei − fe),

(40)300

301

and we let the reader adapt the micro-macro decomposition (36)-(37)-(38)-(39) to this302

case.303

4.1. Decay rate for the BGK model for mixtures in the space-homo-304

geneous case. We denote by H(f) =
∫
f ln fdv the entropy of a function f and by305

H(f |g) =
∫
f ln f

g dv the relative entropy of f and g.306

Theorem 4.1. In the space homogeneous case without electric field (40), we have
the following decay rate of the distribution functions fi and fe

||fk −Mk||L1(dv) ≤ 4e−
1
2Ct[H(f0

i |M0
i ) +H(f0

e |M0
e )]

1
2 , k = i, e,

where C is a constant.307

This manuscript is for review purposes only.



KINETIC/FLUID MICRO-MACRO NUMERICAL SCHEME FOR TWO COMPONENT PLASMA11

Proof. We consider the entropy production of species i defined by308

Di(fi, fe) = −
∫

1

εi
νieni ln fi(Mi − fi)dv −

∫
1

ε̃i
νiene ln fi(Mie − fi)dv.309

310

Define φ : R+ → R, φ(x) := x lnx. Then φ′(x) = lnx+ 1, so we can deduce311

Di(fi, fe) = −
∫

1

εi
νieniφ

′(fi)(Mi − fi)dv −
∫

1

ε̃i
νieneφ

′(fi)(Mie − fi)dv,312
313

since
∫

(fi −Mi)dv =
∫

(fi −Mie)dv = 0. Moreover, we have φ′′(x) = 1
x . So φ is314

convex and we obtain315

Di(fi, fe) ≥
∫

1

εi
νieni(φ(fi)− φ(Mi))dv +

∫
1

ε̃i
νiene(φ(fi)− φ(Mie))dv

=
1

εi
νieni(H(fi)−H(Mi)) +

1

ε̃i
νiene(H(fi)−H(Mie)).

(41)316

317

In the same way we get a similar expression for De(fe, fi) just exchanging the indices318

i and e.319

If we use that lnMi is a linear combination of 1, v and |v|2, we see that
∫

(Mi −320

fi) lnMidv = 0 since fi and Mi have the same moments. With this we can compute321

that322

H(fi|Mi) = H(fi)−H(Mi).(42)323324

Moreover in the proof of theorem 2.7 in [17], we see that325

1

ε̃i
νieneH(Mie) +

1

ε̃e
νieniH(Mei) ≤

1

ε̃i
νieneH(Mi) +

1

ε̃e
νieniH(Me).(43)326

327

With (42) and (43), we can deduce from (41) that328

Di(fi, fe) +De(fe, fi) ≥ (
1

εi
νieni +

1

ε̃i
νiene)H(fi|Mi)

+(
1

εe
νiene +

1

ε̃e
νieni)H(fe|Me).

(44)329

330

We want to relate the time derivative of the relative entropies331

d

dt
(H(fi|Mi) +H(fe|Me)) =

d

dt
[

∫
fi ln

fi
Mi

dv +

∫
fe ln

fe
Me

dv].332
333

to the entropy production in the following. First we use product rule and obtain334

d

dt
(H(fi|Mi) +H(fe|Me)) =

∫
∂tfi(ln

fi
Mi

+ 1)dv −
∫

fi
Mi

∂tMidv

+

∫
∂tfe(ln

fe
Me

+ 1)dv −
∫

fe
Me

∂tMedv.

(45)335

336

By using the explicit expression of ∂tMi, we can compute that
∫
fk

∂tMk

Mk
dv = ∂tnk =337

0, k = i, e, since nk is constant in the space-homogeneous case. In the first term on338

the right-hand side of (45), we insert ∂tfi and ∂tfe from equation (40) and obtain339

d

dt
(H(fi|Mi) +H(fe|Me)) =

∫
(

1

εi
νieni(Mi − fi) +

1

ε̃i
νiene(Mie − fi)) ln fidv340

+

∫
(

1

εe
νiene(Me − fe) +

1

ε̃e
νieni(Mei − fe)) ln fedv.341

342
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12 A. CRESTETTO, C. KLINGENBERG, AND M. PIRNER

Indeed, the terms with lnMi (resp. lnMe) vanish since lnMi (resp. lnMe) is a linear343

combination of 1, v and |v|2 and our model satisfies the conservation of the number344

of particles, total momentum and total energy (see section 2.2 in [17]). All in all, we345

obtain346

d

dt
(H(fi|Mi) +H(fe|Me)) = −(Di(fi, fe) +De(fe, fi)).(46)347

348

Using (44) we obtain349

d

dt
(H(fi|Mi) +H(fe|Me))350

≤ −[(
1

εi
νieni +

1

ε̃i
νiene)H(fi|Mi) + (

1

εe
νiene +

1

ε̃e
νieni)H(fe|Me)]351

≤ −min{ 1

εi
νieni +

1

ε̃i
νiene,

1

εe
νiene +

1

ε̃e
νieni}(H(fi|Mi) +H(fe|Me)).352

353

Define C := min{ 1
εi
νieni + 1

ε̃i
νiene,

1
εe
νiene + 1

ε̃e
νieni}, then we can deduce an expo-354

nential decay with Gronwall’s identity355

H(fk|Mk) ≤ H(fi|Mi) +H(fe|Me)356

≤ e−Ct[H(f0
i |M0

i ) +H(f0
e |M0

e )], k = i, e.357358

With the Ciszar-Kullback inequality (see proposition 1.1 in [18]) we get359

||fk −Mk||L1(dv) ≤ ||fi −Mi||L1(dv) + ||fe −Me||L1(dv)360

≤ 4e−
1
2Ct[H(f0

i |M0
i ) +H(f0

e |M0
e )]

1
2 .361362

4.2. Decay rate for the velocities and temperatures in the space-homo-363

geneous case. In this subsection we prove decay rates for the velocities ui, ue (resp.364

temperatures Ti, Te) to a common values in the space-homogeneous case. We start365

with a decay of |ui − ue|2.366

Theorem 4.2. Suppose that νie is constant in time. In the space-homogeneous367

case without electric field (40), we have the following decay rate of the velocities368

|ui(t)− ue(t)|2 = e
−2νie(1−δ)

(
1
ε̃i
ne+ ε

ε̃e

mi
me

ni

)
t|ui(0)− ue(0)|2.369

Proof. If we multiply the equations (40) by v and integrate with respect to v, we370

obtain by using (22), (24) and (26)371

∂t(niui) =
1

ε̃i
νieneni(uie − ui) =

1

ε̃i
νieneni(1− δ)(ue − ui),372

∂t(neue) =
1

ε̃e
νieneni(uei − ue) =

1

ε̃e
νieneni

mi

me
ε(1− δ)(ui − ue).373

374

Since in the space-homogeneous case the densities ni and ne are constant, we actually375

have376

∂tui =
1

ε̃i
νiene(1− δ)(ue − ui), ∂tue =

1

ε̃e
νieni

mi

me
ε(1− δ)(ui − ue).377

378
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With this we get379

1

2

d

dt
|ui − ue|2 = (ui − ue)∂t(ui − ue)380

= (ui − ue)νie(1− δ)
(

1

ε̃i
ne +

ε

ε̃e

mi

me
ni

)
(ue − ui)381

= −νie(1− δ)
(

1

ε̃i
ne +

ε

ε̃e

mi

me
ni

)
|ui − ue|2.382

383

From this, we deduce384

|ui(t)− ue(t)|2 = e
−2νie(1−δ)

(
1
ε̃i
ne+ ε

ε̃e

mi
me

ni

)
t|ui(0)− ue(0)|2.385386

We continue with a decay rate of |Ti(t)− Te(t)|.387

Theorem 4.3. Suppose νie is constant in time. In the space-homogeneous case388

without electric field (40), we have the following decay rate of the temperatures389

|Ti(t)− Te(t)|2 ≤ e−C1t

[
|Ti(0)− Te(0)|+ |C2|

C1 − C3
(e(C1−C3)t − 1)|ui(0)− ue(0)|2

]
,390

where the constants are defined by391

C1 = (1− α)νie

(
1

ε̃i
ne +

ε

ε̃e
ni

)
,392

C2 = νie

(
1

ε̃i
ne

(
(1− δ)2 +

γ

mi

)
− ε

ε̃e
ni

(
1− δ2 − γ

mi

))
,393

C3 = 2νie(1− δ)
(

1

ε̃i
ne +

ε

ε̃e

mi

me
ni

)
.394

395

Proof. If we multiply the first equation of (40) by 1
ni
|v − ui|2 and integrate with396

respect to v, we obtain397 ∫
1

ni
|v − ui|2∂tfidv =

1

ε̃i
νiene

1

ni

∫
|v − ui|2(Mie − fi)dv.(47)398

399

Indeed, the first relaxation term vanishes since Mi and fi have the same temperature.400

We simplify the left-hand side of (47) to401 ∫
1

ni
|v − ui|2∂tfidv =

∫
1

ni
∂t(|v − ui|2fi)dv + 2

∫
1

ni
fi(v − ui) · ∂tuidv402

= ∂t(Ti) + 0,403404

since the density ni is constant. The right-hand side of (47) simplifies to405

1

ε̃i
νiene

1

ni

∫
|v − ui|2(Mie − fi)dv =

1

ε̃i
νiene(Tie + |uie − ui|2 − Ti)406

=
1

ε̃i
νiene

(
(1− α)(Te − Ti) +

(
(1− δ)2 +

γ

mi

)
|ue − ui|2

)
.407

408

For the second species we multiply the second equation of (40) by me

mi

1
ne
|v−ue|2. For409

the left-hand side, we obtain by using (28)410 ∫
me

mi

1

ne
|v − ue|2∂tfedv = ∂tTe,411

412
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and for the right-hand side using (24), (25) and (26)413

1

ε̃e
νieni

me

mi

1

ne

∫
|v − ue|2(Mei − fe)dv =

1

ε̃e
νieni(Tei +

me

mi
|uei − ue|2 − Te)414

=
1

ε̃e
νieni [ε(1− α)(Ti − Te)415

+

(
ε(1− δ)

(
mi

me
ε(δ − 1) + δ + 1

)
− ε γ

mi
+ ε2(1− δ)2mi

me

)
|ui − ue|2

]
416

=
1

ε̃e
νieni

(
ε(1− α)(Ti − Te) + ε(1− δ2 − γ

mi
)|ui − ue|2

)
.417

418

So, we obtain419

∂tTi =
1

ε̃i
νiene

(
(1− α)(Te − Ti) +

(
(1− δ)2 +

γ

mi

)
|ue − ui|2

)
,420

∂tTe =
1

ε̃e
νieni

(
ε(1− α)(Ti − Te) + ε

(
1− δ2 − γ

mi

)
|ui − ue|2

)
.421

422

We deduce423

∂t(Ti − Te) = −(1− α)νie

(
1

ε̃i
ne +

ε

ε̃e
ni

)
(Ti − Te)424

+ νie

(
1

ε̃i
ne

(
(1− δ)2 +

γ

mi

)
− ε

ε̃e
ni

(
1− δ2 − γ

mi

))
|ui − ue|2,425

426

or with the constants defined in this theorem 4.3427

∂t(Ti − Te) = −C1(Ti − Te) + C2|ui − ue|2.428429

Duhamel’s formula gives430

Ti(t)− Te(t) = e−C1t(Ti(0)− Te(0)) + C2e
−C1t

∫ t

0

eC1s|ui(s)− ue(s)|2ds.431
432

So we have the following inequality433

|Ti(t)− Te(t)| ≤ e−C1t|Ti(0)− Te(0)|+ |C2|e−C1t

∫ t

0

eC1s|ui(s)− ue(s)|2ds,434
435

and by using theorem 4.2, we have436

|Ti(t)− Te(t)| ≤ e−C1t|Ti(0)− Te(0)|+ |C2|e−C1t

∫ t

0

eC1se−C3sds|ui(0)− ue(0)|2,437

|Ti(t)− Te(t)| ≤ e−C1t

(
|Ti(0)− Te(0)|+ |C2|

C1 − C3
(e(C1−C3)t − 1)|ui(0)− ue(0)|2

)
.438

439

5. Numerical approximation. This section is devoted to the numerical ap-440

proximation of the two-species micro-macro system (36)-(37)-(38)-(39). Following441

the idea of [7], we propose to use a particle method to discretize both microscopic442

equations (36)-(38), in order to reduce the cost of the method when approaching the443

Maxwellian equilibrium. Macroscopic equations (37)-(39) are solved by a classical444

Finite Volume method.445
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In this paper, we only present the big steps of the method and refer to [7] for the446

details.447

For the microscopic parts, we use a Particle-In-Cell method (see for example [6]):448

we approach gii (resp. gee) by a set of Npi (resp. Npe) particles, with position xik(t)449

(resp. xek(t)), velocity vik(t) (resp. vek(t)) and weight ωik(t) (resp. ωek(t)), k =450

1, . . . , Npi (resp. k = 1, . . . , Npe). Then we assume that the microscopic distribution451

functions have the following expression:452

gii(x, v, t) =

Npi∑
k=1

ωik(t)δ(x− xik(t))δ(v − vik(t)),453

gee(x, v, t) =

Npe∑
k=1

ωek(t)δ(x− xek(t))δ(v − vek(t)),454

455

with δ the Dirac mass. Moreover, we have the following relations:456

ωik(t) = gii(xik(t), vik(t), t)
LxLv
Npi

, k = 1, . . . , Npi ,457

ωek(t) = gee(xek(t), vek(t), t)
LxLv
Npe

, k = 1, . . . , Npe ,458
459

where Lx ∈ R (resp. Lv ∈ R) denotes the length of the domain in the space (resp.460

velocity) direction.461

The method consists now in splitting the transport and the source parts of (36)462

(resp.(38)). Let us consider (36), the steps being the same for (38). The transport463

part464

∂tgii + v∂xgii + E∂vgii = 0,(48)465466

is solved by pushing the particles, that is evolving the positions and velocities thanks
to the equations of motion:

dtxik(t) = vik(t), dtvik(t) = E(xik(t), t), ∀ k = 1, . . . , Npi .

The source part467

∂tgii =− (1−ΠMi)(v∂xMi) + ΠMi(v∂xgii) + ΠMi(E∂vgii)

+
1

ε̃i
νiene(Mie − (1 +

(v − ui)(uie − ui)
Ti

+ (
|v − ui|2

2Ti
− 1

2
)(
Tie
Ti

+
1

Ti
|uie − ui|2 − 1))Mi)− (

1

εi
νieni +

1

ε̃i
νiene)gii,

(49)

468

469

is solved by evolving the weights. Let us denote by S(x, v, t) the right-hand side such
that ∂tgii = S(x, v, t). We compute the weight corresponding to S using the relation
sik(t) = S(xik(t), vik(t), t)LxLv

Npi
, k = 1, . . . , Npi and then solve

dtωik(t) = sik(t).

The strategy is the same as in paragraph 4.1.2 of [7], where only one species is con-470

sidered (and so there is no coupling terms). The supplementary terms coming from471
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the coupling of both species are treated in the source part as the other source terms.472

They do not add particular difficulty.473

A projection step, similar to the matching procedure of [10], ensures the preser-474

vation of the micro-macro structure (30) and in particular the property (31) on the475

moments of gii (resp. gee). Details are given in subsection 4.2 of [7].476

Finally, macroscopic equations (37)-(39) are discretized on a grid in space and477

solved by a classical Finite Volume method. For the one species case, this is detailed478

in subsection 4.3 of [7]. The electric field is discretized on the same grid and computed479

at each time step by solving the Maxwell equation (6) with Finite Differences or Fast480

Fourier Transform.481

6. Numerical results. We present in this section some numerical experiments482

obtained by the numerical approximation presented in section 5. A first series of tests483

aims at verifying numerically the decay rates of velocities and temperatures proved in484

subsection 4.2 in the space-homogeneous case without electric field. In a second series485

of tests, we are interested in the evolution in time of distribution functions, velocities,486

temperatures and electric energy in the general case. In particular, we want to see487

the influence of the collision frequencies.488

In all this section, we consider the phase-space domain (x, v) ∈ [0, 4π]× [−10, 10]489

(assuming that physical particles of velocity v such that |v| > 10 can be negligible),490

so that Lx = 4π and Lv = 20.491

6.1. Decay rates in the space-homogeneous case. We first propose to val-492

idate our model in the space-homogeneous case, without electric field, where we have493

an estimation of the decay rate of |ui(t)−ue(t)|2 and of |Ti(t)−Te(t)| (see section 4).494

Note that as in section 4, we simplify the notations: ui(x, t) = ui(t), ue(x, t) = ue(t),495

Ti(x, t) = Ti(t), Te(x, t) = Te(t).496

We apply a simplified version of the numerical approximation presented in sec-497

tion 5, adapted to the space-homogeneous system (40) in its micro-macro form. For498

different initial conditions, we plot the evolution in time of |ui(t) − ue(t)|2 (resp.499

|Ti(t) − Te(t)|) and compare it to the estimates given in theorem 4.2 (resp. theorem500

4.3). For all of these tests, we take Npi = Npe = 104 and ∆t = 10−4.501

The first initial condition we consider corresponds to two Maxwellian functions:502

fi(v, t = 0) =
ni√

2πTi(t = 0)
exp

(
−|v − ui(t = 0)|2

2Ti(t = 0)

)
,(50)503

fe(v, t = 0) =
ne√

2πTe(t = 0)mi

me

exp

(
−|v − ue(t = 0)|2

2Te(t = 0)

me

mi

)
,(51)504

505

with the following parameters: ni = 1, ui(t = 0) = 0.5, Ti(t = 0) = 1, mi = 1,506

ne = 1.2, ue(t = 0) = 0.1, Te(t = 0) = 0.1, me = 1.5, chosen as in subsection507

5.1 of [16]. Results for εi = εe = ε̃i = ε̃e = 0.05 are given in figure 1 and results for508

εi = εe = ε̃i = ε̃e = 0.01 are given in figure 2. In these two cases, we plot |ui(t)−ue(t)|509

too. As in [16], we remark that when the Knudsen numbers are smaller, the velocities,510

as well as the temperatures, converge faster to the equilibrium.511
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Fig. 1. Space-homogeneous case. Maxwellians initial conditions. Evolution in time of |ui(t)−
ue(t)|, |ui(t) − ue(t)|2 (left) and |Ti(t) − Te(t)| (right). Comparison to the estimated decay rates.
Knudsen numbers: εi = εe = ε̃i = ε̃e = 0.05.
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Fig. 2. Space-homogeneous case. Maxwellians initial conditions. Evolution in time of |ui(t)−
ue(t)|, |ui(t) − ue(t)|2 (left) and |Ti(t) − Te(t)| (right). Comparison to the estimated decay rates.
Knudsen numbers: εi = εe = ε̃i = ε̃e = 0.01.

We propose now to consider Ti(t = 0) = 0.08 (other parameters are unchanged)512

and to study two other sets of Knudsen numbers. Results for εi = εe = ε̃i = ε̃e = 1513

are given in figure 3 and results for εi = εe = ε̃i = 1, ε̃e = 0.05 are given in figure 4.514
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Fig. 3. Space-homogeneous case. Maxwellians initial conditions. Evolution in time of |ui(t)−
ue(t)|2 (left) and |Ti(t)−Te(t)| (right). Comparison to the estimated decay rates. Knudsen numbers:
εi = εe = ε̃i = ε̃e = 1.
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Fig. 4. Space-homogeneous case. Maxwellians initial conditions. Evolution in time of |ui(t)−
ue(t)|2 (left) and |Ti(t)−Te(t)| (right). Comparison to the estimated decay rates. Knudsen numbers:
εi = εe = ε̃i = 1, ε̃e = 0.05.

We propose then to study the convergence for an other initial condition, consid-515

ering516

fi(v, t = 0) =
v4

3
√

2π
exp

(
−|v|

2

2

)
,(52)517

fe(v, t = 0) =
ne√

2πTe(t = 0)mi/me

exp

(
−|v − ue(t = 0)|2

2Te(t = 0)

me

mi

)
,(53)518

519

with the following parameters: ne = 1.2, ue(t = 0) = 0.1, Te(t = 0) = 0.1, me = 1.5.520

Here, the initial distribution of ions is not a Maxwellian, and then gii(v, t = 0) 6= 0.521

The estimates of theorems 4.2 and 4.3 are still verified, as we can see on figure 5 for522

εi = εe = ε̃i = ε̃e = 1. By taking now Te(t = 0) = 5 (the other parameters being523

unchanged), we obtain results presented on figure 6.524
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Fig. 5. Space-homogeneous case. Mixed initial conditions. Evolution in time of |ui(t)−ue(t)|2
(left) and |Ti(t) − Te(t)| (right). Comparison to the estimated decay rates. Knudsen numbers:
εi = εe = ε̃i = ε̃e = 1.
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Fig. 6. Space-homogeneous case. Mixed initial conditions. Evolution in time of |ui(t)−ue(t)|2
(left) and |Ti(t) − Te(t)| (right). Comparison to the estimated decay rates. Knudsen numbers:
εi = εe = ε̃i = ε̃e = 1.

6.2. Relaxation towards a global equilibrium. We present here numerical525

results in the general (non homogeneous) case. We consider micro-macro equations526

(36)-(37)-(38)-(39) and discretize them as explained in section 5.527

We are interested in the evolution in time of the distribution functions fi, fe528

and other quantities such as the electric energy E(t) :=
√∫

E(x, t)2dx, the differ-529

ence of ions and electrons velocities (resp. temperatures) in uniform norm ||ui(x, t)−530

ue(x, t)||∞ (resp. ||Ti(x, t)− Te(x, t)||∞). Different values of εi, εe, ε̃i and ε̃e are con-531

sidered in order to see the influence of the intra and interspecies collision frequencies.532

In the following tests, electrons and ions are initialized following533

fe(x, v, t = 0) = (1 + α cos(x/2))
v4

3
√

2π
exp

(
−|v|

2

2

)
,(54)534

fi(x, v, t = 0) =
1√
2π

exp

(
−|v − 1/2|2

2

)
.(55)535

536

So, for α 6= 0, electrons have initially a space dependent distribution. From the com-537

putation of 〈m(v)fe〉, we obtain ne(x, 0) = 1 + α cos(kx), ue(x, 0) = 0 and Te(x, 0) =538

5 (1 + α cos(kx)). Ions have initially a Maxwellian distribution with ni(x, 0) = 1,539

ui(x, 0) = 1/2 and Ti(x, 0) = 1. Here, we have taken me = mi = 1.540

For α = 0.1, we illustrate the initial distribution functions on figure 7, fe(x, v, t =541

0) is presented on the left, fi(x, v, t = 0) on the middle and a side view of them on542

the right.543
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Fig. 7. General case. Initial distribution functions for α = 0.1: fe(x, v, t = 0) in phase-space
(left), fi(x, v, t = 0) in phase-space (middle), side view of fe(x, v, t = 0) and fi(x, v, t = 0) (right).

First, we propose two testcases with the following parameters: α = 0.1, Npe =544

Npi = 5 · 105, Nx = 128 and ∆t = 10−2. The first one consists in the kinetic regime545
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εi = εe = ε̃i = ε̃e = 1000, collision frequencies are small and particles do not interact546

a lot with each other. Distribution functions are plotted at time T = 6 on figure 8547

and at time T = 60 on figure 9.548
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Fig. 8. General case, α = 0.1, εi = εe = ε̃i = ε̃e = 1000. Distribution functions at time
T = 6: fe(x, v, T ) in phase-space (left), fi(x, v, T ) in phase-space (middle), side view of fe(x, v, T )
and fi(x, v, T ) (right).
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Fig. 9. General case, α = 0.1, εi = εe = ε̃i = ε̃e = 1000. Distribution functions at time
T = 60: fe(x, v, T ) in phase-space (left), fi(x, v, T ) in phase-space (middle), side view of fe(x, v, T )
and fi(x, v, T ) (right).

For these values of collision frequencies, the convergence of fe towards its equi-549

librium Me is slow. Moreover, even at time T = 60, the convergence towards a global550

equilibrium fe = Me = Mi = fi can not be seen. To see the difference on macroscopic551

quantities, we present on figure 10 (left) the evolution in time of ||ui(x, t)−ue(x, t)||∞552

and ||Ti(x, t)− Te(x, t)||∞. Moreover, we present on figure 10 (right) the evolution in553

time of the electric energy E(t).554
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Fig. 10. General case, α = 0.1, εi = εe = ε̃i = ε̃e = 1000. Evolution in time of ||ui(x, t) −
ue(x, t)||∞ and ||Ti(x, t)− Te(x, t)||∞ (left), and of E(t) (right).

Even at time T = 60, the velocities (resp. temperatures) of electrons and ions are555
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very different. There is no global equilibrium.556

Otherwise, these figures show that the results are affected by some numerical557

noise. This is a classical effect of particle methods, due to the probabilistic character558

of the initialisation. This noise affects macroscopic quantities because of the coupling559

between micro and macro equations. At fixed parameters (α, collision frequencies,560

Nx, etc.), the noise can be reduced by increasing the number of particles. In fact, the561

noise means that we have not enough particles per cell to represent the distribution562

function (gee or gii here). But thanks to the micro-macro decomposition, we only563

represent the perturbations gee and gii with particles, and not the whole functions564

fe and fi. So when gee (resp. gii) becomes smaller, fewer particles are necessary. It565

means that if fe (resp. fi) goes towards its equilibrium Me (resp. Mi), the required566

number of particles diminishes. This is the main reason for using a micro-macro567

scheme with a particle method for the micro part.568

The second testcase consists in an intermediate regime with εi = εe = ε̃i = ε̃e = 1.569

Collisions are enough frequent to bring the system towards a global equilibrium, as570

we can see on figure 11 at time T = 0.5 and then on figure 12 at time T = 6.571
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Fig. 11. General case, α = 0.1, εi = εe = ε̃i = ε̃e = 1. Distribution functions at time T = 0.5:
fe(x, v, T ) in phase-space (left), fi(x, v, T ) in phase-space (middle), side view of fe(x, v, T ) and
fi(x, v, T ) (right).
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Fig. 12. General case, α = 0.1, εi = εe = ε̃i = ε̃e = 1. Distribution functions at time
T = 6: fe(x, v, T ) in phase-space (left), fi(x, v, T ) in phase-space (middle), side view of fe(x, v, T )
and fi(x, v, T ) (right).

The evolution in time of ||ui(x, t)−ue(x, t)||∞ and ||Ti(x, t)−Te(x, t)||∞, presented572

on figure 13 (left), confirms the convergence towards a global equilibrium. On figure573

13 (right), the evolution in time of the electric energy E(t) is presented.574
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Fig. 13. General case, α = 0.1, εi = εe = ε̃i = ε̃e = 1. Evolution in time of ||ui(x, t) −
ue(x, t)||∞ and ||Ti(x, t)− Te(x, t)||∞ (left), and of E(t) (right).

We expect that the convergence towards a global equilibrium is faster when col-575

lisions are more frequent. We will highlight this in the following test. For a conver-576

gence of the densities in short time, we now take α = 10−2 and Npe = Npi = 5 · 103,577

Nx = 128 and ∆t = 10−3. Other parameters are unchanged and particularly we still578

have ne(x, 0) = 1 + α cos(kx), ue(x, 0) = 0, Te(x, 0) = 5 (1 + α cos(kx)), ni(x, 0) = 1,579

ui(x, 0) = 1/2 and Ti(x, 0) = 1. For εi = εe = ε̃i = ε̃e = 10−2, distribution functions580

are plotted on figure 14 at time T = 0.01 and then on figure 15 at time T = 0.1.581
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Fig. 14. General case, α = 10−2, εi = εe = ε̃i = ε̃e = 10−2. Distribution functions at
time T = 0.01: fe(x, v, T ) in phase-space (left), fi(x, v, T ) in phase-space (middle), side view of
fe(x, v, T ) and fi(x, v, T ) (right).
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Fig. 15. General case, α = 10−2, εi = εe = ε̃i = ε̃e = 10−2. Distribution functions at time
T = 0.1: fe(x, v, T ) in phase-space (left), fi(x, v, T ) in phase-space (middle), side view of fe(x, v, T )
and fi(x, v, T ) (right).

We can see that the distribution functions are very close from each other at582

T = 0.1. The evolution in time of ||ui(x, t) − ue(x, t)||∞ and ||Ti(x, t) − Te(x, t)||∞,583

presented on figure 16 (left), confirms the convergence of velocities and temperatures.584

We can see the evolution of E(t) on figure 16 (right).585
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Fig. 16. General case, α = 10−2, εi = εe = ε̃i = ε̃e = 10−2. Evolution in time of ||ui(x, t) −
ue(x, t)||∞ and ||Ti(x, t)− Te(x, t)||∞ (left), and of E(t) (right).

Finally, we propose a testcase in which the collisions between particles of the same586

species are frequent, whereas collisions between ions and electrons are infrequent.587

More precisely, we take α = 10−2, Npe = Npi = 5 · 103, Nx = 128, ∆t = 10−2,588

εi = εe = 10−2 and ε̃i = ε̃e = 1000. Distribution functions are presented on figure 17589

at time T = 0.01 and then on figure 18 at time T = 6.590
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Fig. 17. General case, α = 10−2, εi = εe = 10−2, ε̃i = ε̃e = 1000. Distribution functions
at time T = 0.01: fe(x, v, T ) in phase-space (left), fi(x, v, T ) in phase-space (middle), side view of
fe(x, v, T ) and fi(x, v, T ) (right).
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Fig. 18. General case, α = 10−2, εi = εe = 10−2, ε̃i = ε̃e = 1000. Distribution functions
at time T = 6: fe(x, v, T ) in phase-space (left), fi(x, v, T ) in phase-space (middle), side view of
fe(x, v, T ) and fi(x, v, T ) (right).

Electrons tend to have a Maxwellian distribution function, but collisions between591

them and ions are to infrequent to bring the system to a global equilibrium, at least592

at time T = 6. The evolution of ||ui(x, t) − ue(x, t)||∞ and ||Ti(x, t) − Te(x, t)||∞ is593

presented on figure 19 (left) and E(t) is presented on figure 19 (right).594
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Fig. 19. General case, α = 10−2, εi = εe = 10−2, ε̃i = ε̃e = 1000. Evolution in time of
||ui(x, t)− ue(x, t)||∞ and ||Ti(x, t)− Te(x, t)||∞ (left), and of E(t) (right).

The numerical noise that we see on figure 17 means that there is not enough595

particles initially to represent in a good way gee. Indeed, this quantity is big at T = 0596

since fe is far from an equilibrium. But fe goes fast towards a Maxwellian, so that597

gee becomes small and Npe = 5 × 103 particles is then sufficient. This explains why598

this noise is no longer perceptible as time goes by.599

Let us remark that in a full particle method on fe and fi (in a model without600

micro-macro decomposition), many more particles are necessary, since the distribution601

functions fe and fi keep the same order of magnitude as time goes by. So the cost602

of a full particle method is constant with respect to the collision frequencies. On the603

contrary, the cost of our micro-macro model is reduced when εe and εi decrease.604

7. Conclusion. In this paper, we first present a new model for a two species605

1D Vlasov-BGK system based on a micro-macro decomposition. This one, derived606

from [17], separates the intra and interspecies collision frequencies. Thus, the con-607

vergence of the system towards a global equilibrium can, depending on the values of608

the collision frequencies, be separated into two steps: the convergence towards the609

own equilibrium of each species and then towards the global one. Moreover, in the610

space-homogeneous case without electric field, we estimate the convergence rate of611

the distribution functions towards the equilibrium, as well as the convergence rate of612

the velocities (resp. temperatures) towards the same value.613

Then, we derive a scheme using a particle method for the kinetic micro part and614

a standard finite volume method for the fluid macro part. In the space-homogeneous615

case, we illustrate numerically the convergence rates of velocities and temperatures616

and verify that it is in accordance with the estimations. Finally, in the general case,617

we propose testcases to see the evolution in time of the distribution functions and618

their convergence towards equilibrium. The main advantage of this particle micro-619

macro approach is the reduction of the numerical cost, especially in the fuid limit,620

where few particles are sufficient.621
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