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Abstract. In this work we are interested in the stationary preserving (SP) property of asymptotic preserving4
(AP) schemes for kinetic models. Our key observation is that as far as some macroscopic quantities can be updated5
explicitly, a large class of AP schemes have the SP property as well. To illustrate the generality of our observa-6
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analytically and tested numerically, which confirms our observations.8
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1. Introduction. Kinetic models describe the time evolution of probability density distribu-12

tion of particles that travel freely for a certain distance and then change their directions due to13

collision or scattering. They usually include a transport term that takes into account the move-14

ment of the particles and integral terms that take into account the scattering, tumbling or colliding.15

When the average distance between two successive velocity change is small, i.e. the mean free path16

is small, one has to use resolved space and time steps that are less than the mean free path. More-17

over, the probability density function in kinetic models depends not only on space and time but18

also on velocity. The high dimensionality and the small mean free path lead to an extremely high19

computational cost and AP schemes that allow mean free path independent meshes become popular20

in last decades.21

AP schemes were first proposed in [15, 14] for the neutron transport equation and have been suc-22

cessfully extended to a lot of applications, we refer to the review paper [21] for more discussions.23

Different AP schemes have been developed for various kinetic models, including the neutron trans-24

port equation [1, 13, 15, 16], the velocity jump model for E.coli chemotaxis [3, 6] and the Boltzmann25

equation [8, 23, 4, 12].26

The Knudsen number is the ratio of the mean free path and the domain typical length scale27

[14]. To prove that a scheme is AP, one has to show that when the Knudsen number goes to zero28

in the discretized scheme, it converges to a good discretization of the corresponding limit model.29

The main advantage of AP schemes is that their stability and convergence are independent of the30

Knudsen number. On the other hand, there are situations when in applications the solution after31

some time reaches a quasi-stationary state, meaning that numerically the difference between the32

global equilibrium and the solution after finite time is smaller than machine precision. In semi-33

conductor models such a state is the mode of operation of the electronic device, namely the state34

where the applied voltage is in equilibrium so that no current flows. Thus it is of interest to have35

a numerical scheme maintains stationary solutions up to machine precision. We call such schemes36

stationary preserving (SP).37
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2 C.EMAKO, F.KANBAR, C.KLINGENBERG AND M.TANG

Our key observation is that as far as some macroscopic quantities can be updated explicitly, a38

large class of AP schemes have the SP property as well. To illustrate the idea, we present here a39

glimpse of the proof of the SP property for an AP scheme for the BGK model [4]. The BGK model40

writes:41

(1.1) ∂tf + v.∇xf =
1

τ
[Mf − f ].42

where f(x, v, t) is the probability density function at time t, position x and moving with velocity43

v. Mf is the Maxwellian distribution and τ is the relaxation time. At the macroscopic level, mass,44

momentum and energy are moments of the distribution function f in velocity space that are given45

by:46

ρ(x, t) =

∫
V

f(x, v, t)dv,47

48

ρu(x, t) =

∫
V

vf(x, v, t)dv,49

50

E(x, t) =

∫
V

1

2
|v|2f(x, v, t)dv.51

As τ → 0, these moments solves the Euler equations,52

ρt +∇.(ρu) = 0,

(ρu)t +∇.(ρu⊗ u+ p) = 0,

Et +∇.((E + p)u) = 0.

(1.2)53

As in [8], we consider the following AP IMEX scheme54

(1.3)
fn+1 − fn

∆t
+ v.∇xfn =

1

τ
[Mn+1

f − fn+1].55

Suppose that the solution reaches the stationary state at time tn, i.e. fn satisfies the following56

equation:57

(1.4) v.∇xfn =
1

τ
[Mn

f − fn].58

Multiplying (1.4) by α(v) with α(v) = (1, v, 1
2 |v|

2) and integrating over the velocity space leads to59

(1.5)

∫
V

α(v)v.∇xfn = 0.60

Now multiplying (1.3) by α(v) and integrating over V , one gets61

(1.6)

∫
v
α(v)fn+1 −

∫
v
α(v)fn

∆t
+

∫
V

α(v)v.∇xfn = 0.62
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STATIONARY PRESERVING AP SCHEMES 3

From (1.5), the moments are preserved. The Maxwellian can be updated explicitly and it is exactly63

equal to the Maxwellian at the previous time step, i.e. Mn+1 = Mn. Hence, the discritized64

equation can be now written as,65

fn+1 − fn

∆t
+ v.∇xfn =

1

τ
[Mn

f − fn + fn − fn+1].66

Noting that fn satisfies (1.4), thus67

fn+1 − fn

∆t
+

[fn+1 − fn]

τ
= 0,68

which yields fn+1 = fn and the stationary solution is preserved. Our proof of the SP property69

is independent of ε. In other words no matter how small ε is, the SP property holds. In the70

subsequent part, we will consider three different classes of AP schemes for which one can prove71

their SP properties. To get the SP property, it is crucial to show that the macroscopic quantities72

in these AP schemes are being updated explicitly, even though the schemes are implicit or IMEX.73

As one can see from the SP proof, once we are able to show that the macroscopic quantities are74

preserved, the SP property follows immediately. To show the universality of our observation, we75

test different kinetic models for different AP schemes, as listed in Table 1.76

The paper is structured as follows: In section 2, the parity equations-based AP scheme developed77

in [21] for the neutron transport equation is considered and then the SP property of the scheme is78

proved. In section 3, the unified gas kinetic scheme [16, 23, 24](UGKS) is extended to the velocity79

jump chemotaxis model and then we prove that this extension has the SP property. In section 4,80

we consider the penalization method proposed in [8] for the Boltzmann equation and prove its81

SP property. Finally, we present some numerical results to show the AP and SP properties of82

each numerical scheme in section 5. All three different strategies of developing AP schemes (Parity-83

equations based scheme, UGKS, penalization method) have been extended to various kinetic models84

and thus the extension of our observation is natural.85

Section Kinetic Model Scheme
2 Neutron transport equation Parity-equations based scheme
3 Chemotaxis kinetic model UGKS
4 Boltzmann equation IMEX scheme with the Penalization method

Table 1
A list of kinetic models together with their corresponding schemes.

2. Parity equations-based scheme for the Neutron transport equation. In this section86

we check the Parity equations-based AP scheme for the neutron transport equation in [21, 22]. This87

scheme is then proved to be SP as well.88

2.1. The neutron transport equation. Consider the one-dimensional neutron transport89

equation:90

∂tf +
1

ε
v.∇xf =

σT
ε2

(
1

2

∫ 1

−1

fdv′ − f)− σa(
1

2

∫ 1

−1

fdv′) + q(2.1)91
92

with x ∈ [xL, xR] and v ∈ [−1, 1]. We present the scheme for a simplified neutron transport equation93

with σT = 1, σa = 0 , q = 0. The extension to more general cases does not add any difficulties.94
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4 C.EMAKO, F.KANBAR, C.KLINGENBERG AND M.TANG

2.2. Discretization of the model. When σT = 1, σa = 0 , q = 0 in (2.1), the Parity95

equations-based scheme in [22] can be summarized by the following steps:96

• Rewrite (2.1) into two equations. For v ≥ 0,97

(2.2)

ε∂tf(v) + v∂xf(v) =
1

ε
(
1

2

∫ 1

−1

fdv − f(v)),

ε∂tf(−v)− v∂xf(−v) =
1

ε
(
1

2

∫ 1

−1

fdv − f(−v)).

98

• Introduce the even and odd parities that are99

r(t, x, v) =
1

2
[f(t, x, v) + f(t, x,−v)], j(t, x, v) =

1

2ε
[f(t, x, v)− f(t, x,−v)].100

101

• Add and subtract the equations in (2.2) and rewrite them into the following diffusive102

relaxation system,103

∂tr + v∂xj = − 1

ε2
(r − ρr),

∂tj + ηv∂xr = − 1

ε2
[j + (1− ε2η)v∂xr],

(2.3)104

where ρr =
∫ 1

0
rdv′ and η(ε) = min(1, 1

ε ).105

• Split the equations (2.3) into two steps:106

– Relaxation step:107 {
∂tr = − 1

ε2 (r − ρr),
∂tj = − 1

ε2 [j + (1− ε2η)v∂xr].
108

– Transport step:109 {
∂tr + v∂xj = 0,

∂tj + ηv∂xr = 0.
110

• Discretize the two steps as follows:111

– For the transport step, we use an explicit first order upwind scheme on its diagonal112

from such that113 {
r
n+ 1

2
i = rni − v ∆t

∆xD
ujni ,

j
n+ 1

2
i = jni − ηv ∆t

∆xD
urni .

(2.4)114

115

where Dufni = fni+1 − fni and Dcfni =
fn
i+1−f

n
i−1

2 are respectively the upwind and the116

central spatial differences.117

– For the relaxation step, we use an implicit backward Euler method that writes118 
rn+1
i −r

n+1
2

i

∆t = − 1
ε2 (rn+1

i − ρn+1
ri ),

jn+1
i −j

n+1
2

i

∆t = − 1
ε2 (jn+1

i + (1− ε2η)vD
c

∆xr
n+1
i ).

119

120
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By integrating the above first equation over V we find, ρn+1
ri = ρ

n+ 1
2

ri . Then,121 {
rn+1
i = Ar

n+ 1
2

i +Bρ
n+ 1

2
ri ,

jn+1
i = Aj

n+ 1
2

i −B(1− ε2η)vD
c

∆xr
n+1
i ,

(2.5)122

123

with A and B being defined as:124

A = ε2

ε2+∆t and B = ∆t
ε2+∆t .125

The fully space-time discretized parity equations-based AP scheme is given by the transport step126

(2.4) and the relaxation step (2.5). The boundary conditions for r and j are the same as in [22]127

and are obtained using the following relations:128

(2.6) r + εj|x=xL
= FL(v) and r − εj|x=xR

= FR(v)129

when ε << 1, j can be approximated by,130

(2.7) j = −v∂xr131

from the second equation in (2.3). Hence, the boundary conditions for r and j are (2.8) and (2.9),132

(2.8) r − εv∂xr|x=xL
= FL(v) and r + εv∂xr|x=xR

= FR(v)133

134

(2.9) j = −v∂xr135

where FL(v) and FR(v) are the inflow boundary conditions of f . The AP proof of the scheme has136

been done in [22], [21], [3].137

2.3. SP Property. We will prove that the above AP scheme is SP as well. Plugging (2.4)138

in (2.5) and using the fact that ρ
n+ 1

2
r = ρn+1

r , the equations for updating rn+1 and jn+1
i can be139

written as:140

rn+1
i − rni

∆t
+ v

Du

∆x
jni = − 1

ε2
(rn+1
i − ρn+1

ri ),(2.10a)141

jn+1
i − jni

∆t
+ ηv

Du

∆x
rni = − 1

ε2
(jn+1
i + (1− ε2η)v

Dc

∆x
rn+1
i ).(2.10b)142

143

Definition 2.1. A steady state solution of (2.3) is a function pair (rn, jn) that satisfies:144

v∂xj
n = − 1

ε2
(rn − ρnr ),145

ηv∂xr
n = − 1

ε2
[jn + (1− ε2η)v∂xr

n].146
147

with the same boundary conditions as in (2.8) and (2.9).148

Definition 2.2. A discrete stationary solution to (2.10) are rni and jni that satisfies:149

v.
Du

∆x
jni = − 1

ε2
(rni − ρnri),(2.11a)150

ηv.
Du

∆x
rni = − 1

ε2
[jni + (1− ε2η)v

Dc

∆x
rni ].(2.11b)151

152
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6 C.EMAKO, F.KANBAR, C.KLINGENBERG AND M.TANG

Lemma 2.3. When rni and jni are discrete stationary solution that satisfies (2.11), the scheme153

in (2.10) will lead to rn+1
i = rni and jn+1

i = jni . Hence the parity equations-based scheme is SP.154

Proof. • For r: Since ρnri =
∫ 1

0
rni , integrating (2.11a) over [0, 1] yields155

(2.12)

∫ 1

0

v.
Du

∆x
jni dv = 0.156

Integrating (2.10a) with respect to v over [0, 1] and using (2.12), one finds,157

ρn+1
ri − ρnri

∆t
+

∫ 1

0

v.
Du

∆x
jni dv = 0,158

and thus ρn+1
r = ρnr . Using (2.11a) and ρn+1

r = ρnr , (2.10a) gives159

rn+1
i − rni

∆t
− 1

ε2
(rni − ρnri) = − 1

ε2
(rn+1
i − ρnri).160

Hence,161

(
1

∆t
+

1

ε2
)(rn+1

i − rni ) = 0.162

and then rn+1
i = rni .163

• For j: Using rn+1 = rn, (2.10b) becomes164

(2.13)
jn+1
i − jni

∆t
+ ηv

Du

∆x
rni = − 1

ε2
[jn+1
i + (1− ε2η)v

Dc

∆x
rni ].165

From (2.11b), (2.13) writes,166

jn+1
i − jni

∆t
− 1

ε2
[jni + (1− ε2η)v

Dc

∆x
rni ] = − 1

ε2
[jn+1
i + (1− ε2η)v

Dc

∆x
rni ].167

Then,168

(
1

∆t
+

1

ε2
)(jn+1

i − jni ) = 0169

and thus jn+1
i = jni .170

The SP property of the parity equations-based AP scheme is concluded.171

3. UGKS scheme for the chemotaxis kinetic model. In this section we first extend172

the UGKS in [16, 23, 24] to the time evolutionary chemotaxis model, then show its AP and SP173

properties.174

3.1. The chemotaxis kinetic model. The chemotaxis kinetic model models bacteria that175

undergo run and tumble process as mentioned in [10, 19, 20]. During the run phase, bacteria move176

along a straight line and change their directions during the tumble phase. This is called the velocity177

jump process and can be modeled by the Othmer-Dunbar-Alt model that writes [2, 17]:178

(3.1)

{
∂tf + 1

εv.∇xf = 1
ε2 [ 1
|V |
∫
V

(1 + εφ(v′.∂xS))f(v′)dv′ − (1 + εφ(v.∂xS))f(v)],

∂tS −D∆S + αS = βρ, ρ(x, t) := 1
|V |
∫
V
f(v)dv.

179
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Here f(x, v, t) is the probability density function at time t, position x and moving with velocity v;180

φ is an odd decreasing function such that φ(−u) = −φ(u); S(x, t) is the concentration of a chemical181

substance where the parameters D, α, β are positive constants; ε is the Knudsen number. When182

φ = 0, the chemotaxis kinetic model reduces to the neutron transport equation.183

As ε→ 0, f(x, v, t) converges to ρ0(x, t) where ρ0(x, t) solves the following Keller-Segel equation184

[5, 11, 18]:185

(3.2)

{
∂tρ0 = 1

3∆ρ0 +∇(( 1
|V |
∫
V
vφ(v∂xS)dv)ρ0),

∂tS −D∆S + αS = βρ0.
186

3.2. Discretization of the model. Before discussing about the more complex equation for f ,187

we first discretize the equation for the chemical concentration S. Let Sni ≈ S(xi, t
n), the following188

centered finite difference method is used to update S:189

(3.3)
Sn+1
i − Sni

∆t
= D

Sn+1
i+1 − 2Sn+1

i + Sn+1
i−1

∆x2
− αSn+1

i + βρni .190

. After Sn+1
i are obtained, we approximate ∂xS

n+1 by a piecewise constant function such that191

(3.4) ∂xS(x, tn+1) ≈ ∂xS(xi+ 1
2
, tn+1) ≈

Sn+1
i+1 − S

n+1
i

∆x
:= σi+ 1

2
, for ∀x ∈ [xi, xi+1).192

The UGKS is a finite volume approach for discretizing the kinetic equation f . By inte-193

grating the chemotaxis kinetic model (3.1) over [xi− 1
2
, xi+ 1

2
] × [tn, tn+1] × V and letting fni =194

1
∆x

∫ x
i+1

2
x
i− 1

2

f(x, v, tn) dx, ρni = 1
|V |
∫
V
fni dv, the total density ρn+1

i and density fluxes fn+1
i are up-195

dated as follows196

ρn+1
i − ρni

∆t
+
Fn
i+ 1

2

− Fn
i− 1

2

∆x
= 0,(3.5)197

fn+1
i − fni

∆t
+

Φn
i+ 1

2

− Φn
i− 1

2

∆x
=

1

ε2

(
ρn+1
i − fn+1

i

)
198

+
1

ε

(
1

| V |

∫
V

φ(v′σi+ 1
2
)fni (v′) dv′ − φ(vσi+ 1

2
)fni

)
.(3.6)199

200

Here the numerical fluxes are given by201

(3.7)

Φni+ 1
2

=
1

ε∆t

∫ tn+1

tn
vf(xi+ 1

2
, v, t) dt,

Fni+ 1
2

=
1

|V |

∫
V

( 1

ε∆t

∫ tn+1

tn
vf(xi+ 1

2
, v, t) dt

)
dv.

202

It is important to note that σi+ 1
2

approximates ∂xS in the interval [xi, xi+1) while fni is the average203

density over the cell [xi− 1
2
, xi+ 1

2
). This choice is important to get the correct advection term in the204

limit Keller-Segel model when ε becomes small.205

We use discrete ordinate method for the velocity discretization, but for convenience of explana-206

tion, we write the scheme in continuous velocity. The most crucial step for UGKS is to determine207

Φn
i+ 1

2

and Fn
i+ 1

2

. the details are listed below:208
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• Find the approximation of f(xi+ 1
2
, v, t). The 1d chemotaxis model (3.1) can be209

rewritten as:210

(3.8) ∂tf +
1 + εφ(v∂xS

ε)

ε2
f +

v

ε
∂xf =

1

ε2
T 1f,211

where (T 1f)(x, t) :=
1

| V |

∫
V

(
1 + εφ(v′∂xS)

)
f(x, v′, t)dv′.212

Consider the interval [xi, xi+1), multiplying both sides of (3.8) by exp

(
(1+εφ(vσ

i+1
2

)

ε2 t

)
213

yields214

d

dt

[
f(x+

v

ε
t, v, t) exp

(
(1 + εφ(vσi+ 1

2
)

ε2
t

)]
=
T 1f(x, t)

ε2
exp

(
(1 + εφ(vσi+ 1

2
)

ε2
t

)
.215

Integrating the above equation over (tn, t) yields to,216

(3.9)

f(xi+ 1
2
, v, t) = f(xi+ 1

2
− v

ε
(t− tn), v, tn) exp

(
−

(1 + εφ(vσi+ 1
2
)

ε2
(t− tn)

)

+
1

ε2

∫ t

tn
T 1f(xi+ 1

2
− v

ε
(t− s), s) exp

(
−

(1 + εφ(vσi+ 1
2
)

ε2
(t− s)

)
ds.

217

This is an exact expression for f(xi+ 1
2
, v, t) that will be used to determine Φn

i+ 1
2

, Fn
i+ 1

2

in218

(3.7). At this stage, we need to approximate f(x, v, tn) and (T 1f)(x, t) on the right hand219

side of (3.9). f is approximated by a piecewise constant function and T 1f by a piecewise220

linear function as follows:221

f(x, v, tn) =

{
fni , x < xi+ 1

2
,

fni+1, x > xi+ 1
2
,

T 1f(x, t) =

T
1fni+ 1

2
+ δLT 1fni+ 1

2
(x− xi+ 1

2
), x < xi+ 1

2
,

T 1fni+ 1
2

+ δRT 1fni+ 1
2
(x− xi+ 1

2
), x > xi+ 1

2
.

222

Here T 1fn
i+ 1

2

, δLT 1fn
i+ 1

2

, δRT 1fn
i+ 1

2

are defined by:223 

T 1fni+ 1
2

:=
1

| V |

∫
V −

(1 + εφ(vσi+ 1
2
))fni+1 +

1

| V |

∫
V +

(1 + εφ(vσi+ 1
2
))fni ,

δLT 1fni+ 1
2

:=
T 1fn

i+ 1
2

− T 1fni

∆x/2
,

δRT 1fni+ 1
2

:=
T 1fni+1 − T 1fn

i+ 1
2

∆x/2
,

224

with V + = V ∩ R+ and V − = V ∩ R−.225

Substituting the above approximations into (3.9) yields an expression for f(xi+ 1
2
, v, t) such226
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that:227

For v > 0,228

(3.10)

f(xi+ 1
2
, v, t) = fni exp

(
−

(1 + εφ(vσi+ 1
2
)

ε2
(t− tn)

)
+

T 1fn
i+ 1

2

1 + εφ(vσi+ 1
2
)

×

(
1− exp

(
−

(1 + εφ(vσi+ 1
2
)

ε2
(t− tn)

))
+ vε

δLT 1fn
i+ 1

2

(1 + εφ(vσi+ 1
2
))2

×

[(
1 +

1 + εφ(vσi+ 1
2
)

ε2
(t− tn)

)
exp

(
−

(1 + εφ(vσi+ 1
2
)

ε2
(t− tn)

)
− 1

]
,

229

and for v < 0,230

(3.11)

f(xi+ 1
2
, v, t) = fni+1 exp

(
−

(1 + εφ(vσi+ 1
2
)

ε2
(t− tn)

)
+

T 1fn
i+ 1

2

1 + εφ(vσi+ 1
2
)

×

(
1− exp

(
−

(1 + εφ(vσi+ 1
2
)

ε2
(t− tn)

))
+ vε

δRT 1fn
i+ 1

2

(1 + εφ(vσi+ 1
2
))2

×

[(
1 +

1 + εφ(vσi+ 1
2
)

ε2
(t− tn)

)
exp

(
−

(1 + εφ(vσi+ 1
2
)

ε2
(t− tn)

)
− 1

]
.

231

• Determine Φn
i+ 1

2

, Fn
i+ 1

2

. The flux Φn
i+ 1

2

(v) in (3.7) can be approximated by232

(3.12)
Φi+ 1

2
(v) = Avfni+1 +BvT 1fni+ 1

2
+ Cv2δRT 1fni+ 1

2
, for v < 0,

Φi+ 1
2
(v) = Avfni +BvT 1fni+ 1

2
+ Cv2δLT 1fni+ 1

2
, for v > 0,

233

where the coefficients A(v, ε,∆t), B(v, ε,∆t), C(v, ε,∆t) can be determined explicitly such234

that235

(3.13)

A(v, ε,∆t) : =
ε

∆t
(
1 + εφ(vσi+ 1

2
)
) (1− exp

(
−

1 + εφ(vσi+ 1
2
)

ε2
∆t
))

,

B(v, ε,∆t) : =
1

ε(1 + εφ(vσi+ 1
2
))

− ε

∆t(1 + εφ(vσi+ 1
2
))2

(
1− exp

(
−

1 + εφ(vσi+ 1
2
)

ε2
∆t
))

,

C(v, ε,∆t) : =
2ε2

∆t(1 + εφ(vσi+ 1
2
))3

(
1− exp

(
−

1 + εφ(vσi+ 1
2
)

ε2
∆t
))

− 1

(1 + εφ(vσi+ 1
2
))2

(
1 + exp

(
−

1 + εφ(vσi+ 1
2
)

ε2
∆t
))

.

236

Furthermore, Fn
i+ 1

2

in (3.7) is given by237
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(3.14)

Fni+ 1
2

=
1

|V |

∫
V −

Avfni+1dv +
1

|V |

∫
V +

Avfni dv +
1

|V |
T 1fni+ 1

2

∫
V

vBdv

+
1

|V |
δRT 1fni+ 1

2

∫
V −

Cv2dv +
1

|V |
δLT 1fni+ 1

2

∫
V +

Cv2dv.

238

This concludes the construction of the scheme. For the proof of its AP property, one can refer to239

Appendix A.240

3.3. SP Property. Assume that we start from a steady state solution that at the discrete241

level satisfies,242

(3.15)
Φn
i+ 1

2

− Φn
i− 1

2

∆x
=

1

ε2
(ρni − fni ) +

1

ε

(
1

|V |

∫
V

φ(v′σi+ 1
2
)fni (v′) dv′ − φ(vσi+ 1

2
)fni

)
.243

Integrating (3.15) over v yields244

Fn
i+ 1

2

− Fn
i− 1

2

∆x
= 0,245

246

From (3.5) one can deduce that,247

(3.16) ρn+1
i = ρni ,248

which indicates that the macroscopic density is preserved. Using (3.15), the equation of updating249

fn+1 in (3.6) can be written as,250

fn+1
i − fni

∆t
=

1

ε2

(
(ρn+1
i − ρni )− (fn+1

i − fni )
)
.251

252

Then from (3.16),253 (
1 +

∆t

ε2
)
(fn+1
i − fni ) = 0,254

255

which gives fn+1
i = fni . This concludes the SP property of the UGKS.256

4. IMEX scheme with the Penalization method for the Boltzmann equation. In this257

section, we consider the penalization method developed in [8] for the Boltzmann equation. This258

method together with an IMEX discretization of the equation give an AP scheme for the Boltzmann259

equation. One can find the AP proof in [8]. Here we show that the penalization method is not only260

AP but also SP as well.261

4.1. The Boltzmann equation. The Boltzmann equation describes the time evolution of262

the density distribution of gas particles. It is given by263

∂tf + v∇xf =
Q(f)

ε
.264

265

Here f(x, v, t) is the probability density distribution of particles at time t, position x and with266

velocity v. Q is the Boltzmann collision operator where only binary interactions are considered.267
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Let (v, v∗) and (v′, v′∗) be respectively the velocities of the two colliding particles before and after268

the collision related by269 {
v′ = 1

2 ((v − v∗)− |v − v∗|σ),

v′∗ = 1
2 ((v − v∗) + |v − v∗|σ).

270

with σ ∈ Sdv−1. Q is given by271

Q(f)(v) =

∫
Rdv

∫
Sdv−1

B(|v − v∗|, cos θ)(f(v′∗)f(v′)− f(v∗)f(v))dσdv∗.272

The collision kernel B is a non-negative function given by B(|u|, cos θ) = Cα|u|α where u = (v−v∗)
|v−v∗|273

and cos θ = u · σ . For more details, one can look at the Boltzmann equation description in [8]. ε is274

the dimensionless Knudsen number and
∫
v
α(v)Q(f)dv = 0 for α(v) = (1, v, |v|2). The equilibrium275

distribution of Q is the Maxwellian distribution Mρ,u,T , i.e. Q(Mρ,u,T ) = 0. As ε → 0, the276

moments of the distribution function solve the Euler equations (1.2).277

4.2. IMEX scheme with the Penalization method. The penalization method was orig-278

inally developed in [8, 21]. The idea is to split the collision term of the Boltzmann equation into279

a stiff part and less stiff part. More precisely, the Boltzmann equation is written in the following280

form:281

∂tf + v∇xf =
Q(f)− P (f)

ε
+
P (f)

ε
,282

283

where Q(f) is the Boltzmann collision operator and P (f) is a relaxation operator, namely P (f) =284

β[Mρ,u,T (v) − f(v)] where β is a strictly positive parameter. P (f) has the same equilibrium as285

Q(f). It satisfies
∫
v
P (f)α(v)dv = 0 for α(v) = (1, v, |v|2) and P (Mρ,u,T ) = 0. As in [8], βn is286

chosen to be 2πρn such that both operators P (f) and the full Boltzmann operator Q(f) have the287

same loss term corresponding to the dissipative part.288

The following IMEX discretization of the Boltzmann equation is proposed in [8]:289

(4.1)
fn+1 − fn

∆t
+ v.∇xfn =

Q(fn)− P (fn)

ε
+
P (fn+1)

ε
.290

For the discretization of the Boltzmann operator one can use a fast spectral Fourier-Galerkin291

method [7], and for the transport part, a first or second order finite volume scheme can be employed.292

This gives an AP discretization for the Boltzmann equation as proved in [8].293

4.3. SP property. Suppose that the solution satisfies the stationary equation at time tn, i.e.294

(4.2) v.∇xfn =
Q(fn)− P (fn)

ε
+
P (fn)

ε
.295

It follows from the properties of the collision operator Q and the relaxation operator P that:296

(4.3)

∫
v

α(v)v.∇xfn = 0,297

with α(v) = (1, v, |v|2).298

Now multiply (4.1) by α(v) and integrate over the velocity space. Using the conservation properties299
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of Q, P and (4.3), one gets that the macroscopic quantities are preserved. ThenMn+1 =Mn and300

βn+1 = βn. By adding and subtracting βnfn/ε, Eq.(4.1) can be written as:301

fn+1 − fn

∆t
+ v.∇xfn =

Q(fn)− P (fn)

ε
+
βn[Mn − fn]

ε
− βn[fn+1 − fn]

ε
.302

Noting that fn satisfies the steady state equation (4.2) , one gets303

fn+1 − fn

∆t
+
βn[fn+1 − fn]

ε
= 0,304

Thus fn+1 = fn. The steady state is preserved.305

5. Experimental results. Three test cases are considered in this section, each validates the306

AP and SP properties of one scheme presented in section 2, 3 or 4.307

5.1. Neutron transport equation-Parity equations-based scheme. To validate the AP308

and SP properties of the parity equations-based scheme, we use the same initial and boundary309

conditions as problem 1 in section 6 in [22]. The initial distribution is f(x, v, t = 0) = 0 and the310

computational domain is x ∈ [0, 1]. The boundary conditions are as in (2.8) and (2.9) with311

FL(v) = 1 and FR(v) = 0.312

This data is consistent as can be seen by (2.8) and (2.9). The mesh and time step sizes are313

respectively ∆x = 0.025 and ∆t = 0.0002. In Figure 1, we plot the density at time t = 0.05 for314

ε = 10−2, ε = 10−3, ε = 10−6 and compare it to its diffusion limit. The curves get close to each315

other when ε gets very small. The curve corresponding to ε = 10−6 is exactly on top of the curve316

of the diffusion limit equation. This verifies the AP property. Furthermore, we plot in Figure 2317

the time evolution of the distance between the numerical stationary solution ρsr and the numerical318

solution ρr of the time evolutionary equation given by the L∞ norm319

||ρr − ρsr||∞ = max
j
{ρrj − ρsrj}.320

One can see that this distance does not change after we reach the steady state at t = 10. After that321

we give the norm at discrete times in Table 2 where we also show that the SP property is valid for322

all ε << 1. Figure 2 and Table 2 indicate that the SP property is well satisfied.323

ε = 10−3 Time 0 2 4 10 20
L∞-norm 1 9.730× 10−4 5.042× 10−4 5.042× 10−4 5.042× 10−4

ε = 10−8 Time 0 4 8 10 20
L∞-norm 1 1.263× 10−6 1.053× 10−12 1.269× 10−12 1.269× 10−12

Table 2
Neutron Transport: L∞-norm of the difference between the solution and the stationary solution in the time

interval [0,20] for different ε.

5.2. Chemotaxis kinetic model-UGKS scheme. Parameters in (3.1) are chosen as in [9]324

such that,325

χS = 1, D = 15, β = 60, α = 3.326
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Fig. 1. Verification of the AP property of the parity equations-based scheme for the neutron Transport equation.
Left: The density ρr at time t = 0.05 for ε = 10−2, ε = 10−3, ε = 10−6 and the solution of the diffusion limit
equation; right: a zoomed part of the left plot.
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Fig. 2. Neutron Transport: Time evolution of the L∞-norm of the difference between the solution(starting
from initial data f = 0) and the stationary solution(starting from the steady f at time t = 10) in the time interval
[0,10] for ε = 10−8.

and φ is of the form327

φ(u) = −χS tanhu.328

The computational domain is set to be x ∈ [−1, 1]. We impose specular boundary conditions for f329

and Dirichlet conditions for S. The initial density distribution is composed of two bumps located330
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Fig. 3. Verification of the AP property of the UGKS for the chemotaxis kinetic model. Left: The density ρ at
time t = 1 for ε = 10−2, 10−3, 10−4, 10−5, 10−6; right: a zoomed part of the left plot.

at x = ±0.65 given by:331

f(x, v, 0) = 5(exp(−10(x− 0.65)2 − 20(v + 0.45)2) + exp(−10(x+ 0.65)2 − 20(v − 0.45)2)).332

We use ∆x = 2/500 for the space discretization and v ∈ [−1, 1] with the S32 Gaussian quadrature333

points for the velocity. The limiting scheme of the UGKS is an explicit solver for the diffusion334

equation. Therefore, to ensure the stability of the numerical scheme, the time step ∆t is chosen as335

below336

∆t =

{
0.5∆x2, for ε < ∆x,

0.5ε∆x, else.
337

In order to verify the AP property of our scheme, the total densities ρ at time t = 1 are displayed338

in Figure 3 for different values of ε ranging from 10−2 to 10−6. In order to check the SP property,339

we ran our simulations till it reaches a steady state then we consider this as our initial data. Time340

evolution of the L∞-norm of the difference between the solution (starting from initial data) and341

the stationary solution in the time interval [0,100] is displayed in Table 3 for ε = 1 and ε = 10−3.342

These results ensure that the SP property is independent of ε.

ε = 1 Time 0 30 60 65 100
L∞-norm 0.9064 8.192× 10−7 3.737× 10−11 7.385× 10−12 1.573× 10−12

ε = 10−3 Time 0 5 10 50 100
L∞-norm 0.6493 2.968× 10−7 9.999× 10−10 1.476× 10−10 1.476× 10−10

Table 3
Chemotaxis: L∞-norm of the difference between the solution and the stationary solution in the time interval

[0,100] for different ε.

343

5.3. The Boltzmann equation-IMEX scheme with the Penalization method . In this344

section we consider the 2D Bose gas experiment 3.3 in [12] to test the AP and the SP property of345
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Fig. 4. Boltzmann: cross section of the distribution function for different values of ε(left) and a zoomed part
of the plot(right).

the penalization method presented in [8]. We solve the space homogeneous quantum Boltzmann346

equation in 2D velocity space which is a special case of the classical Boltzmann equation for a347

particular collision operator Qq(the quantum collision operator) [12].348

∂tf =
Qq(f)− P (f)

ε
+
P (f)

ε
.349

350

The idea can be extended to more general collision operators. Hence, scheme (4.1) is simplified to351

fn+1 =
ε

ε+ βn+1∆t
fn + ∆t

Qq(fn)− P (fn)

ε+ βn+1∆t
+

βn+1∆t

ε+ βn+1∆t
Mn+1.352

The initial distribution function is given as in [12],353

f0(v) =
ρ0

4πT0

(
exp

(
−|v − u0|2

2T0

)
+ exp

(
−|v + u0|2

2T0

))
,354

where ρ0 = 1, T0 = 3/8, and u0 = (1, 1/2). The computational domain is [−8, 8]
2

with 64 grid355

points. The quantum Maxwellian [12] is given as,356

Mq(v) =
1

θ0

1

z−1 exp (v−u)2

2T − 1
.357

where θ0 = 0.12, z = 0.001590, T = 1 is the temperature and u = 0 is the macroscopic velocity. In358

Figure 4 we test the AP property of the penalization method. A cross section of the distribution359

function for different values of ε is plotted on the left and a zoomed part of the plot on the360

right. The curves are getting closer to each other as ε converges to 0 which implies that the AP361

property is satisfied. Moreover, we investigate the SP property. Figure 5 is a comparison between362

the distribution function at the final time t = 100 and the Maxwellian distribution. We run our363

simulation till t = 100 where the equilibrium is reached and then use this equilibrium as new initial364
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Fig. 5. Boltzmann: contours of the 2D distribution function at the final time t = 100 (left) and the Maxevillian
distribution function (right).

data till t = 100. We computed the L∞-norm of the difference between f and its equilibrium in the365

time interval [0, 100] in Figure 6 as an evidence that f converges exponentially to the equilibrium.366

Table 4 presents the discrete times where one can find exactly when the initial distribution function367

reaches its equilibrium.368

 Time

0 10 20 30 40 50 60 70 80 90 100

 |
|f

-f
e

q
||
∞

0

0.1

0.2

0.3

0.4

0.5

0.6

Fig. 6. Boltzmann: Time evolution of the L∞-norm of the difference between the distribution function f and
its equilibrium in the time interval [0,100].

6. Conclusion. In this work we find out that these three AP schemes have something in369

common. In the three schemes, once one is able to show that the macroscopic quantities can be370

updated explicitly then we are able to prove that scheme is SP. Whether this is true in general or371
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Time 0 20 60 85 90 100
L∞-norm 0.5453 3.1× 10−3 1.393× 10−5 1.464× 10−5 1.464 ×10−5 1.464×10−5

Table 4
Boltzmann: L∞-norm of the difference between f and its equilibrium starting from t=0 till the final time t=100

for ε = 1.

not remains a future work.372

Appendix A. AP property of the UGKS. In this part, we give a formal derivation of the373

AP property for the UGKS proposed in (3.5)–(3.6).374

When ε goes to zero, asymptotic expansions of A,B,C given in (3.13) read A = O(ε), B =375
1
ε−φ(vσi+ 1

2
)+O(ε), C = −1+O(ε). The leading order term of (3.6) yields fn+1

i = ρn+1
i +O(ε)376

and we only need to show that (3.5) satisfies the equation for ρ in (3.2), at the discrete level. Suppose377

that fni = ρni +O(ε), then378 
T 1fni+ 1

2
=

1

2

(
ρni + ρni+1

)
+O(ε),

δLT 1fni+ 1
2

=
ρni+1 − ρni

∆x
+O(ε),

δRT 1fni+ 1
2

=
ρni+1 − ρni

∆x
+O(ε).

379

We deduce that the expansion of Fn
i+ 1

2

reads:380

Fni+ 1
2

= −
ρni + ρni+1

2|V |

(∫
V

vφ(vσi+ 1
2
)dv

)
−
ρni+1 − ρni

3∆x
+O(ε).381

Therefore,382

Fn
i+ 1

2

− Fn
i− 1

2

∆x
(A.1)383

=−
ρni+1 − 2ρni + ρni−1

3(∆x)2
+
(
−
( 1

|V |

∫
V

vφ(vσi+ 1
2
)dv
)ρni + ρni+1

2
(A.2)384

+
( 1

|V |

∫
V

vφ(vσi− 1
2
)dv
)ρni + ρni−1

2

)
+O(ε).(A.3)385

386

In the limit of ε→ 0, the discretization (3.5) becomes387

ρn+1
i − ρni

∆t
=
ρni+1 − 2ρni + ρni−1

3(∆x)2
388

+

(
1

|V |

(∫
V

vφ(vσi+ 1
2
)dv

)
ρni + ρni+1

2
− 1

|V |

(∫
V

vφ(vσi− 1
2
)dv

)
ρni + ρni−1

2

)
.389

390

which is a consistent discretization of the equation for ρ in (3.2). Therefore, the proposed scheme391

is AP after coupling with the discretization for S(x, t) in (3.3).392
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