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ASYMPTOTIC PRESERVING SCHEMES FOR KINETIC EQUATIONS THAT
ARE ALSO STATIONARY PRESERVING*

C.EMAKOT, F.KANBAR f, C. KLINGENBERG!, AND M.TANG &

Abstract. In this work we are interested in the stationary preserving (SP) property of asymptotic preserving
(AP) schemes for kinetic models. Our key observation is that as far as some macroscopic quantities can be updated
explicitly, a large class of AP schemes have the SP property as well. To illustrate the generality of our observa-
tion, three different AP schemes for three different kinetic models are considered. Their SP properties are proved
analytically and tested numerically, which confirms our observations.

Key words. Asymptotic preserving, Stationary preserving, Neutron transport equation, Chemotaxis kinetic
model, The Boltzmann equation, Parity based schemes, UGKS, Penalty method.

AMS subject classifications. 65M08, 35Q20, 35Q92

1. Introduction. Kinetic models describe the time evolution of probability density distribu-

tion of particles that travel freely for a certain distance and then change their directions due to
collision or scattering. They usually include a transport term that takes into account the move-
ment of the particles and integral terms that take into account the scattering, tumbling or colliding.
When the average distance between two successive velocity change is small, i.e. the mean free path
is small, one has to use resolved space and time steps that are less than the mean free path. More-
over, the probability density function in kinetic models depends not only on space and time but
also on velocity. The high dimensionality and the small mean free path lead to an extremely high
computational cost and AP schemes that allow mean free path independent meshes become popular
in last decades.
AP schemes were first proposed in [15, 14] for the neutron transport equation and have been suc-
cessfully extended to a lot of applications, we refer to the review paper [21] for more discussions.
Different AP schemes have been developed for various kinetic models, including the neutron trans-
port equation [1, 13, 15, 16], the velocity jump model for E.coli chemotaxis [3, 6] and the Boltzmann
equation [8, 23, 4, 12].

The Knudsen number is the ratio of the mean free path and the domain typical length scale
[14]. To prove that a scheme is AP, one has to show that when the Knudsen number goes to zero
in the discretized scheme, it converges to a good discretization of the corresponding limit model.
The main advantage of AP schemes is that their stability and convergence are independent of the
Knudsen number. On the other hand, there are situations when in applications the solution after
some time reaches a quasi-stationary state, meaning that numerically the difference between the
global equilibrium and the solution after finite time is smaller than machine precision. In semi-
conductor models such a state is the mode of operation of the electronic device, namely the state
where the applied voltage is in equilibrium so that no current flows. Thus it is of interest to have
a numerical scheme maintains stationary solutions up to machine precision. We call such schemes
stationary preserving (SP).

*Submitted to the editors 13.01.2020.
Funding: 2nd author: National Council for Scientific Research of Lebanon (CNRS-L). 2nd, 3rd author: Bay-
erisches Hochschulzentrum for China.
fSorbonne University, UPMC Univ Paris 06, UMR 7598, Laboratoire Jacques-Louis Lions, F-75005, Paris, France.
TUniversity of Wuerzburg, Germany.
§Department of Mathematics and Institute of Natural Sciences, Jiao Tong Univ., Shanghai, China.
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Our key observation is that as far as some macroscopic quantities can be updated explicitly, a
large class of AP schemes have the SP property as well. To illustrate the idea, we present here a
glimpse of the proof of the SP property for an AP scheme for the BGK model [4]. The BGK model
writes:

(1.1) 0tf+v.fo:$[Mfff].

where f(x,v,t) is the probability density function at time ¢, position z and moving with velocity
v. My is the Maxwellian distribution and 7 is the relaxation time. At the macroscopic level, mass,
momentum and energy are moments of the distribution function f in velocity space that are given
by:

p(x,t):/vf(a:,v,t)dv,
putait) = [ ofa,v,t)do,
v

1
BGw.t) = [ Sl re0.0.
V 2
As 7 — 0, these moments solves the Euler equations,

pt + V.(pu) =0,
(1.2) (pu)e + V. (pu®@u+p) =0,
E,+V.((E+p)u) =0.

As in [8], we consider the following AP IMEX scheme

n+l _ fn
(1.3) i A f + 0.V, "= %[M}L“ — .

Suppose that the solution reaches the stationary state at time t”, i.e. f™ satisfies the following
equation:

1
1.4 Vo f" = —[M7 — fm].
(14) v.of" = 1M} ~ 7]
Multiplying (1.4) by a(v) with a(v) = (1,v, 2|v|?) and integrating over the velocity space leads to
(1.5) / a(v)v.V, f* = 0.
1%

Now multiplying (1.3) by «a(v) and integrating over V, one gets

J,e@)fr = [ a(w)f" n_
(1.6) A7 + /Voz(v)v.vmf =0.
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STATIONARY PRESERVING AP SCHEMES 3

From (1.5), the moments are preserved. The Maxwellian can be updated explicitly and it is exactly
equal to the Maxwellian at the previous time step, i.e. M"T1 = M™. Hence, the discritized
equation can be now written as,

n+l _ fn 1
% +vafn — ;[M}L 7fn+fn 7fn+1]'

Noting that f™ satisfies (1.4), thus

n+1 n n+1 n
I ) n [fr = f7]
At T
which yields f**! = f" and the stationary solution is preserved. Our proof of the SP property
is independent of £. In other words no matter how small ¢ is, the SP property holds. In the
subsequent part, we will consider three different classes of AP schemes for which one can prove
their SP properties. To get the SP property, it is crucial to show that the macroscopic quantities
in these AP schemes are being updated explicitly, even though the schemes are implicit or IMEX.
As one can see from the SP proof, once we are able to show that the macroscopic quantities are
preserved, the SP property follows immediately. To show the universality of our observation, we
test different kinetic models for different AP schemes, as listed in Table 1.
The paper is structured as follows: In section 2, the parity equations-based AP scheme developed
in [21] for the neutron transport equation is considered and then the SP property of the scheme is
proved. In section 3, the unified gas kinetic scheme [16, 23, 24](UGKS) is extended to the velocity
jump chemotaxis model and then we prove that this extension has the SP property. In section 4,
we consider the penalization method proposed in [8] for the Boltzmann equation and prove its
SP property. Finally, we present some numerical results to show the AP and SP properties of
each numerical scheme in section 5. All three different strategies of developing AP schemes (Parity-
equations based scheme, UGKS, penalization method) have been extended to various kinetic models
and thus the extension of our observation is natural.

:07

Section Kinetic Model Scheme
2 Neutron transport equation Parity-equations based scheme
3 Chemotaxis kinetic model UGKS
4 Boltzmann equation IMEX scheme with the Penalization method
TABLE 1

A list of kinetic models together with their corresponding schemes.

2. Parity equations-based scheme for the Neutron transport equation. In this section
we check the Parity equations-based AP scheme for the neutron transport equation in [21, 22]. This
scheme is then proved to be SP as well.

2.1. The neutron transport equation. Consider the one-dimensional neutron transport
equation:

1 1t 1!
(2.1) of+ gv.sz = %(5[1 fdv' — f) 70'(1(5/71 fdv') +q

with ¢ € [z, zg] and v € [—1,1]. We present the scheme for a simplified neutron transport equation
with op = 1,0, =0, ¢ = 0. The extension to more general cases does not add any difficulties.

This manuscript is for review purposes only.
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95 2.2. Discretization of the model. When o = 1,0, = 0, ¢ = 0 in (2.1), the Parity
96 equations-based scheme in [22] can be summarized by the following steps:
97 e Rewrite (2.1) into two equations. For v > 0,

e f(v) +v0, f (v 1 1/ fdv — f(v)),

98 (2.2) L1
o (o)~ 0ug(-0) = 1 [ o= g,

99 e Introduce the even and odd parities that are

- 1 ) 1
%8[1) T(t,I,’l}) = 5[f(t,$,’l])+f(t,$,*v)], j(t7I7U) = %[f(t,x,v)—f(t,x, 71})]
102 e Add and subtract the equations in (2.2) and rewrite them into the following diffusive
103 relaxation system,

. 1
Oyr + an] = _7<T - pr)7
104 (2.3) g
8tj + 771)8937“ = _?[] + (1 - 62’17)’0817“],

105 where p, = fol rdv’ and n(e) = min(1, ).
106 e Split the equations (2.3) into two steps:

107 — Relaxation step:

or =—%(r—p,),
108 ) L )
Oj = —=1+ (1 —e*n)vdyr].

€

a

109 — Transport step:
110 atr+7}8xj:0,
0¢j +mud,r = 0.
111 e Discretize the two steps as follows:
112 — For the transport step, we use an explicit first order upwind scheme on its diagonal
113 from such that
ntg n At Hyu ;n

T =7 — U—D !
114 (2.4) { i oo
115 Ji t =0 g DUl
116 where D f" = fi" | — f{* and Df]* = % are respectively the upwind and the
117 central spatial differences.
118 — For the relaxation step, we use an implicit backward Euler method that writes

pH T2 1+l
119 e = =T = e,
l ooyt Lt Jntl

120 =m0 = E ).
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STATIONARY PRESERVING AP SCHEMES 5

By integrating the above first equation over V we find, p”+1 p . Then,

= APtV BTt R
.71n+1 A]n+2 —B(l _ e ,'7) n+1

’L b

(2.5)

with A and B being defined as:
2
A=t and B=o0
The fully space-time discretized parity equations-based AP scheme is given by the transport step
(2.4) and the relaxation step (2.5). The boundary conditions for r and j are the same as in [22]
and are obtained using the following relations:

(2.6) T+ &jlpms, = Fr(v) and v — €jlp=z, = Fr(v)
when € << 1, j can be approximated by,
(2.7) Jj = —v0yr

from the second equation in (2.3). Hence, the boundary conditions for » and j are (2.8) and (2.9),

(2.8) r— ev0yT|ome, = Fr(v) and r+ cv0y7|p—zy, = Fr(v)

(2.9) Jj = —v0yr

where F,(v) and Fg(v) are the inflow boundary conditions of f. The AP proof of the scheme has
been done in [22], [21], [3].

2.3. SP Property. We will prove that the above AP scheme is SP as well. Plugging (2.4)

n+1 n+1

in (2.5) and using the fact that prJr2 = p"Tl the equations for updating r and j;'" can be

written as:

n+1 n u

T —r! D 1 n "
(2.10a) g tUAG T —52( ),

-n+1 ‘n u c

Ji Ji D* . Lot o v D i
2.10b L Ji == (4! 1— n+ly
(2.10b) A TR, S0 A (A =)o)

DEFINITION 2.1. A steady state solution of (2.3) is a function pair (r™,j™) that satisfies:
N 1 n n
v0pg" = =5 (" = pi),
n 1 N n
NUO,r™ = —5—2[] + (1 = €2n)vd,r™).

with the same boundary conditions as in (2.8) and (2.9).

DEFINITION 2.2. A discrete stationary solution to (2.10) are r? and jI' that satisfies:

Du 1 n n
(2.11a) vl = T =),

D" 1, be .
(2.11b) mkmri = —?[ i T (1 _5277)UAxri]'
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LEMMA 2.3. When r* and jI* are discrete stationary solution that satisfies (2.11), the scheme

n (2.10) will lead to T"H =r! and j”“ = jI'. Hence the parity equations-based scheme is SP.

Proof. e For 1: Since p;, = fo rl', integrating (2.11a) over [0, 1] yields

1 Du
2.12 — v = 0.
(2.12) | o zgivan=0

Integrating (2.10a) with respect to v over [0, 1] and using (2.12), one finds,

n+1 n 1 u

Pr; "~ — Pr, D .n

i i ) ndy =
Al +/0 Vaghi =0

and thus p"* = p. Using (2.11a) and p"* = p, (2.10a) gives

n+1 n
e R P S SN n+1
At EQ (ri pn) - EQ ( prl)
Hence,
1 n+1 n
(Kt+62)(ri Tz):O
and then r]' ™! =77,
e For j: Usmg r" Tt =" (2.10b) becomes
gt — e D" 1 i , . De
2.1 =+ -t — —— 5" 1—
(2.13) A TALTE = T A (- emur]
From (2.11b), (2.13) writes,
n+1 N c c
Ji i Lo o\ DY o 1o 2y, D
AL :2[;71' +(1—e U)UAxri] = —:gbi +(1—¢ W)”Aa:ﬁ J.
Then,
(A T ) =3 =0
and thus j”“ =jm
The SP property of the parity equations-based AP scheme is concluded. 0

3. UGKS scheme for the chemotaxis kinetic model. In this section we first extend

the UGKS in [16, 23, 24] to the time evolutionary chemotaxis model, then show its AP and SP
properties.

3.1. The chemotaxis kinetic model. The chemotaxis kinetic model models bacteria that

undergo run and tumble process as mentioned in [10, 19, 20]. During the run phase, bacteria move
along a straight line and change their directions during the tumble phase. This is called the velocity
jump process and can be modeled by the Othmer-Dunbar-Alt model that writes [2, 17]:

(3.1) {8tf+ f0.Vaf = Flny [y (L+eo(v'.0.9)) f

(v )dv = (1 +e¢(v.0:9)) f(v)],
0,8 — DAS +aS =Bp,  pla,t) = i [y, f(v)

This manuscript is for review purposes only.
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STATIONARY PRESERVING AP SCHEMES 7

Here f(z,v,t) is the probability density function at time ¢, position « and moving with velocity v;
¢ is an odd decreasing function such that ¢(—u) = —¢(u); S(z,t) is the concentration of a chemical
substance where the parameters D, a, 8 are positive constants; ¢ is the Knudsen number. When
¢ = 0, the chemotaxis kinetic model reduces to the neutron transport equation.

Ase — 0, f(z,v,t) converges to po(x,t) where pg(z,t) solves the following Keller-Segel equation
[5, 11, 18]:

(3.2) Opo = %Apo + V<<\71| fV vp(v0,S)dv)po),
0S — DAS + oS = Bpo.

3.2. Discretization of the model. Before discussing about the more complex equation for f,
we first discretize the equation for the chemical concentration S. Let S ~ S(x;,t™), the following
centered finite difference method is used to update S:

Sit sy Sui -2t 4 s

At Ax?

(3.3) — a8 + Bplt.

. After S{‘H are obtained, we approximate 9,5"*! by a piecewise constant function such that

Sn+1 SnJrl

(3.4) 028 (2, ") ~ 0, 59(z Tiga ) & ZHTZ =041, for Vo € [z, Ti41).
T
The UGKS is a finite volume approach for discretizing the kinetic equation f. By inte-
grating the chemotaxis kinetic model (3.1) over [z, 1,2; 1 ] [t",t"+1] x V and letting fI* =

ﬁ ;:jf flzyv,t™) dx, pl IV\ fvf dv, the total density p ! and density fluxes fi"+1 are up-

dated as2 follows

pit =t Py — Moy
At Aa? ’

=, B _(Di_% : = (=)
At Z

p;
(3.6) (|V| [ oo - oo it ).

Here the numerical fluxes are given by

(3.5)

tn+1
1

n e
i+% - eAt /n Uf('ri+%7vvt) dtv

tn+1
FH—% \V\ / sAt/ Uf(xi-‘r%)v)t) dt) dv.

It is important to note that o, 1 approximates 0,5 in the interval [z;, x; 1) while f7 is the average

(3.7)

density over the cell [x,_ 1T +%). This choice is important to get the correct advection term in the
limit Keller-Segel model when ¢ becomes small.

We use discrete ordinate method for the velocity discretization, but for convenience of explana-
tion, we write the scheme in continuous velocity. The most crucial step for UGKS is to determine

<I>’.‘+1 and F.’fFl . the details are listed below:
T3 L)

This manuscript is for review purposes only.
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e Find the approximation of f(xH%,v,t). The 1d chemotaxis model (3.1) can be

rewritten as:

1+ ep(v0,S°)
-2

(33) ouf + f+l0.p = 5T,

where (T1f) (. 1) = ﬁ /V (14 £6(v/0,8)) f (z, o', £)dv.

(1+ep(vo, 1)
Consider the interval [z;,z;11), multiplying both sides of (3.8) by exp (862“‘75)
yields
1+ ep(vo; 1 1 t 14+ ep(vo; 1
_ f(x+ Et,v,t) exp Mt — mexp Mt .
dt € g2 g2 g2

Integrating the above equation over (¢",t) yields to,

(LI

f(aji—i-%avat) = f($z+ 52 2 (t - tn)

Nl

(t—t"),v,1")exp (
(1+ep(voy1) )ds.

(1+ed(voiiy) )

(3.9)

) . (t*S)

1/t 1 v
+€*2/;le f(xH_% *g(tfs),s)exp (

This is an exact expression for f(x; 1,0, t) that will be used to determine e ., ) in

2 2
(3.7). At this stage, we need to approximate f(z,v,t") and (71 f)(z,t) on the right hand
side of (3.9). f is approximated by a piecewise constant function and 7 f by a piecewise

linear function as follows:

n
faay =g C
» -
fzn-l—lv ‘T>zi+%7

1 pn L1 pn
TfH_%—i—(ST i+%(x—xi+

1 ¢n RA1 pn
T z+%+§ T i+%(l‘7$i+

), T <Tiyl,

[N

T f(x,t) =
%), $>$i+%'

Here 71 f™ ., 6¥T1fn , 68T f1' 1 are defined by:
2

i+%’ ,L'+%7
1 1
T R a V7(1 +ep(vo 1)) fi + Il V+(1 +ep(vo 1)) fi"
1 rn _Tl4n
sLTlpn .:T iy T
(- Azx/2 ’
1rn 1rn
5R7-1 n R T i+l T fH‘%
Y v

with VT =VNRT and V- =V NR".
Substituting the above approximations into (3.9) yields an expression for f(x;, 1,0, t) such

This manuscript is for review purposes only.
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227 that:
228 For v > 0,

. (1+ed(voiyy) . T 112
f@ig,0,0) = fi exp <52(tt )> * m

SETYHfR
229 (3.10) X (1 — exp ( w(t — t”))) + va( e

g2 1+ed(vo;y1))?

) [(H 1+a¢g(2 )(t—t")> o <_(1+€qi(2v0i+§)(t_tn)> _11 |

230 and for v < 0,

1+ e¢(vo; Ty
ey o= gy (L ) T

2 (311) <1exp< Areeoed )) toe 1+5RZU 7
X <1+1+w§£(2) (t—1t") ) exp< (1420 UUH )(t—t”)> —11 .
232 e Determine @:.:_%, F‘+ The flux o ( (3.7) can be approximated by
<I>+%(U) :Avfi + BuT fi+% —l—Cv 0T fi+%, for v > 0,

: where the coefficients A(v, e, At), B(v, e, At),C(v, e, At) can be determined explicitly such
235 that

14+ ep(vo, 1
A(v,e,At) : = c 1—exp ( — #At) ,
At(1 —l—a(b(va”%)) €
1
B At) : =
(1},8, t) 5(1 +5¢(’U0i+%))
5 1+ep(voy 1)
o - 1— _ L TPV e A
236 (3.13) AU+ 20(vor11))? ( exp ( = t) ],
2 1+ c6(00,, )
At) 1 = 1-— -2 A
Clo.e M) = i T eoloo ) ( ex ( e2 f)
1 1+ep(vo;y1)
- 1 ——2At) | .
T+ c0(00,51))? < +em( = )
237 Furthermore, F[, , in (3.7) is given by
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(3.14)
1 1 1
F', = — Avf dv—l——/ Avfldv + —T'f /dev
oy Ty, At gy AR TRy

1 1
—531."1/0261 —5L1@1/02d.
+|V| T Y- v U+|V| T it ), vedv

This concludes the construction of the scheme. For the proof of its AP property, one can refer to

Appendix A.

3.3. SP Property. Assume that we start from a steady state solution that at the discrete
level satisfies,

HER A 1/ 1 ) o .
B15) Lo+ (g [ e rea - so ).

€
Integrating (3.15) over v yields
E i+i E i—1 -0
Ax ’
From (3.5) one can deduce that,

(3.16) p;(”rl = P?,

which indicates that the macroscopic density is preserved. Using (3.15), the equation of updating
"1 in (3.6) can be written as,

At 82 <( i 1 i ) ( g ' i ))
Chen from (3.16),

A
1+ U = =0,

which gives fi”+1 = f*. This concludes the SP property of the UGKS.

4. TMEX scheme with the Penalization method for the Boltzmann equation. In this
section, we consider the penalization method developed in [8] for the Boltzmann equation. This
method together with an IMEX discretization of the equation give an AP scheme for the Boltzmann
equation. One can find the AP proof in [8]. Here we show that the penalization method is not only
AP but also SP as well.

4.1. The Boltzmann equation. The Boltzmann equation describes the time evolution of
the density distribution of gas particles. It is given by

atf+vvrf: @

Here f(xz,v,t) is the probability density distribution of particles at time ¢, position z and with
velocity v. Q is the Boltzmann collision operator where only binary interactions are considered.
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STATIONARY PRESERVING AP SCHEMES 11

Let (v,v,) and (v',v}) be respectively the velocities of the two colliding particles before and after
the collision related by

v =

v, =

with o € S%~1. Q is given by
oNe) = [ [ Bl el cost)(F@IW) ~ Fo)f(0))dodo.
Rdv JSdv—1

(v =) — v~ v.]o),
(0 =) + o = vio).

o= NI

_ (v—v.)
[v—v.]

and cos@ = u-o . For more details, one can look at the Boltzmann equation description in [8]. ¢ is
the dimensionless Knudsen number and [ a(v)Q(f)dv = 0 for a(v) = (1,v,|v|?). The equilibrium
distribution of Q is the Maxwellian distribution M, , 7, i.e. Q(M,,r) = 0. As ¢ — 0, the
moments of the distribution function solve the Euler equations (1.2).

The collision kernel B is a non-negative function given by B(|ul, cos8) = C,|u|* where u

4.2. IMEX scheme with the Penalization method. The penalization method was orig-
inally developed in [8, 21]. The idea is to split the collision term of the Boltzmann equation into
a stiff part and less stiff part. More precisely, the Boltzmann equation is written in the following
form:

Q(f) —P(f) | P(f)

Ouf +uVyf = E + .

where Q(f) is the Boltzmann collision operator and P(f) is a relaxation operator, namely P(f) =
BIMpur(v) — f(v)] where 3 is a strictly positive parameter. P(f) has the same equilibrium as
Q(f). It satisfies [ P(f)a(v)dv = 0 for a(v) = (1,v,[v|*) and P(M,.ur) = 0. As in [8], B is
chosen to be 2mp™ such that both operators P(f) and the full Boltzmann operator Q(f) have the
same loss term corresponding to the dissipative part.
The following IMEX discretization of the Boltzmann equation is proposed in [§]:

fro g Q") - P, PUY

4.1 - . n =
(4.1) At +oVef € €

For the discretization of the Boltzmann operator one can use a fast spectral Fourier-Galerkin
method [7], and for the transport part, a first or second order finite volume scheme can be employed.
This gives an AP discretization for the Boltzmann equation as proved in [8].

4.3. SP property. Suppose that the solution satisfies the stationary equation at time t", i.e.

QUM - PUM) | PUT

3 3

(4.2) VN f" =

It follows from the properties of the collision operator Q@ and the relaxation operator P that:

(4.3) /a(v)v.me" =0,

v

with a(v) = (1,, |v[?).
Now multiply (4.1) by a(v) and integrate over the velocity space. Using the conservation properties
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of Q, P and (4.3), one gets that the macroscopic quantities are preserved. Then M"+1 = M"™ and
B+l = g, By adding and subtracting 3" f" /e, Eq.(4.1) can be written as:

P g QU P M ]
At € € €

Noting that f™ satisfies the steady state equation (4.2) , one gets

fn+1 _ fn Bn[fn-i—l _ f"}
At + €

:O7

Thus f**! = f". The steady state is preserved.

5. Experimental results. Three test cases are considered in this section, each validates the
AP and SP properties of one scheme presented in section 2, 3 or 4.

5.1. Neutron transport equation-Parity equations-based scheme. To validate the AP
and SP properties of the parity equations-based scheme, we use the same initial and boundary
conditions as problem 1 in section 6 in [22]. The initial distribution is f(z,v,t = 0) = 0 and the
computational domain is x € [0, 1]. The boundary conditions are as in (2.8) and (2.9) with

Fr(v) =1 and Fr(v) =0.

This data is consistent as can be seen by (2.8) and (2.9). The mesh and time step sizes are
respectively Az = 0.025 and At = 0.0002. In Figure 1, we plot the density at time ¢t = 0.05 for
e =102 =10"3, ¢ = 1075 and compare it to its diffusion limit. The curves get close to each
other when ¢ gets very small. The curve corresponding to ¢ = 1079 is exactly on top of the curve
of the diffusion limit equation. This verifies the AP property. Furthermore, we plot in Figure 2
the time evolution of the distance between the numerical stationary solution p; and the numerical
solution p, of the time evolutionary equation given by the L* norm

llor = prlloe = max{pr; — p;}-
One can see that this distance does not change after we reach the steady state at ¢ = 10. After that

we give the norm at discrete times in Table 2 where we also show that the SP property is valid for
all e << 1. Figure 2 and Table 2 indicate that the SP property is well satisfied.

e=10"3 Time 0 2 4 10 20
Loo-norm | 1| 9.730 x 1074 | 5.042 x 10™* | 5.042 x 10~ | 5.042 x 10~*
e=10"8 Time 0 4 8 10 20
Loo-norm | 1| 1.263 x 107% | 1.053 x 10712 | 1.269 x 10712 | 1.269 x 10~'2
TABLE 2

Neutron Transport: Loo-norm of the difference between the solution and the stationary solution in the time
interval [0,20] for different €.

5.2. Chemotaxis kinetic model-UGKS scheme. Parameters in (3.1) are chosen as in [9]
such that,

ys=1,D =158 =60,a = 3.
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02k i 0.94 1
01 r 4
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F1a. 1. Verification of the AP property of the parity equations-based scheme for the neutron Transport equation.
Left: The density pr at time t = 0.05 for e = 1072, ¢ = 1073, ¢ = 1075 and the solution of the diffusion limit
equation; right: a zoomed part of the left plot.

0.8 q

0.7 | q

4 6 8 10 12
Time

Fic. 2. Neutron Transport: Time evolution of the Loo-norm of the difference between the solution(starting
from initial data f = 0) and the stationary solution(starting from the steady f at time t = 10) in the time interval
[0,10] for e = 10~8.

w
N
~

and ¢ is of the form
328 ¢(u) = —xs tanhu.

320 The computational domain is set to be x € [—1,1]. We impose specular boundary conditions for f
330 and Dirichlet conditions for S. The initial density distribution is composed of two bumps located
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-0.1 -0.05 0 0.05 0.1

Fic. 3. Verification of the AP property of the UGKS for the chemotaxis kinetic model. Left: The density p at
timet=1 fore=10"2,10"3,10"%,1075,1075; right: a zoomed part of the left plot.

at x = £0.65 given by:

f(z,v,0) = 5(exp(—10(x — 0.65)% — 20(v + 0.45)?) + exp(—10(x + 0.65)? — 20(v — 0.45)?)).

We use Az = 2/500 for the space discretization and v € [—1, 1] with the S3o Gaussian quadrature
points for the velocity. The limiting scheme of the UGKS is an explicit solver for the diffusion
equation. Therefore, to ensure the stability of the numerical scheme, the time step At is chosen as
below

0.5Az2, for e < Az,
At =
0.5e Az, else.

In order to verify the AP property of our scheme, the total densities p at time ¢t = 1 are displayed
in Figure 3 for different values of € ranging from 10~2 to 107%. In order to check the SP property,
we ran our simulations till it reaches a steady state then we consider this as our initial data. Time
evolution of the Lo,-norm of the difference between the solution (starting from initial data) and
the stationary solution in the time interval [0,100] is displayed in Table 3 for e = 1 and ¢ = 1073.
These results ensure that the SP property is independent of e.

e=1 Time 0 30 60 65 100
Loo-norm | 0.9064 | 8.192 x 10~7 | 3.737 x 107! | 7.385 x 107'2 | 1.573 x 10~ 12
e=10"73 Time 0 5 10 50 100
Loo-norm | 0.6493 | 2.968 x 10=7 | 9.999 x 10~10 | 1.476 x 10710 | 1.476 x 10~10
TABLE 3

Chemotazis: Loo-norm of the difference between the solution and the stationary solution in the time interval
[0,100] for different €.

5.3. The Boltzmann equation-IMEX scheme with the Penalization method . In this
section we consider the 2D Bose gas experiment 3.3 in [12] to test the AP and the SP property of
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Fic. 4. Boltzmann: cross section of the distribution function for different values of e(left) and a zoomed part
of the plot(right).

the penalization method presented in [8]. We solve the space homogeneous quantum Boltzmann
equation in 2D velocity space which is a special case of the classical Boltzmann equation for a
particular collision operator Q,(the quantum collision operator) [12].

Q) = PU) | PU)
3

€

atf =

The idea can be extended to more general collision operators. Hence, scheme (4.1) is simplified to

€ Q(f") - P(f") | B TiAt

n+1 __ n At
f PN T Ar s AL

— n+1
e+ prriAt M

The initial distribution function is given as in [12],

_po —|v — ug|? —|v + ug|?
fofo) = o (can (700 ) - cap (25200 ).

where po = 1, Ty = 3/8, and ug = (1,1/2). The computational domain is [—8,8])> with 64 grid
points. The quantum Maxwellian [12] is given as,

1 1

B0 zlexp L;}”Q -1

Mgy (v)

where 0y = 0.12, z = 0.001590, T' = 1 is the temperature and u = 0 is the macroscopic velocity. In
Figure 4 we test the AP property of the penalization method. A cross section of the distribution
function for different values of ¢ is plotted on the left and a zoomed part of the plot on the
right. The curves are getting closer to each other as € converges to 0 which implies that the AP
property is satisfied. Moreover, we investigate the SP property. Figure 5 is a comparison between
the distribution function at the final time ¢ = 100 and the Maxwellian distribution. We run our
simulation till ¢ = 100 where the equilibrium is reached and then use this equilibrium as new initial
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Fic. 5. Boltzmann: contours of the 2D distribution function at the final time t = 100 (left) and the Mazevillian

distribution function (right).

data till ¢ = 100. We computed the L.-norm of the difference between f and its equilibrium in the
time interval [0,100] in Figure 6 as an evidence that f converges exponentially to the equilibrium.
Table 4 presents the discrete times where one can find exactly when the initial distribution function

reaches its equilibrium.

0.6 T T T
05

04F

eallc

||f-f

02t

0.1

0 L .
0 10 20 30

40

50
Time

60

70

80

90

100

FiG. 6. Boltzmann: Time evolution of the Loo-norm of the difference between the distribution function f and

its equilibrium in the time interval [0,100].

6. Conclusion. In this work we find out that these three AP schemes have something in
common. In the three schemes, once one is able to show that the macroscopic quantities can be
updated explicitly then we are able to prove that scheme is SP. Whether this is true in general or
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Time

0

20

60

85

90

100

Lo

-norm

0.5453

31x1073 |1

393 x 107°

1.464 x 10~°

1.464 x107°

1.464x107°

TABLE 4

Boltzmann: Loo-norm of the difference between f and its equilibrium starting from t=0 till the final time t=100

not remains a future work.

Appendix A. AP property of the UGKS. In this part, we give a formal derivation of the
AP property for the UGKS proposed in (3.5)—(3.6).

When € goes to zero, asymptotic expansions of A, B, C given in (3.13) read A = O(e),

% _¢(U0i+%)+0(5)7

B:

C = —1+0(¢). The leading order term of (3.6) yields f/' = p?* +-0(e)
and we only need to show that (3.5) satisfies the equation for p in (3.2), at the discrete level. Suppose
that f' = pi' + O(e), then

1 s n
T 1T 5 (pi' + pii1) + O(e),
Piv1 — Py
5L 1 — +
T z+1 Az +O(€)v
V3 V2
R1 Pit1 — P
T 1+1 = T.’L‘+O(€)
We deduce that the expansion of F, reads:
2
Fn, = PP+ Py / vé(vo,, 1 )dv | — Piyy = PP +0(e).
“ta 2|V v e 3Azx
Therefore,
T
Al 2 2
(A.1) An
Piy1 — 207 + p?_l / Pi + P
A2 =— yv)
(4.2) 3(A7)? \V| ve(v >
pz +pz 1
(A.3) \V| / ve(vo,;_ % ) 5
In the limit of € — 0, the discretization (3.5) becomes
Pt —pp _ P — 200 i
At 3(Ax)?
1 PPt 1
+ | — / vp(vo; 1)dv) - vp(vo,;_1)dv
(|V| ( v e 2 VI \Jv z

pi + piq
2

)

which is a consistent discretization of the equation for p in (3.2). Therefore, the proposed scheme
is AP after coupling with the discretization for S(x,t) in (3.3).
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