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EXACT SOLUTION AND THE MULTIDIMENSIONAL GODUNOV SCHEME

FOR THE ACOUSTIC EQUATIONS

Wasilij Barsukow1 and Christian Klingenberg2

Abstract. The acoustic equations derived as a linearization of the Euler equations are a valuable
system for studies of multi-dimensional solutions. Additionally they possess a low Mach number
limit analogous to that of the Euler equations. Aiming at understanding the behaviour of the multi-
dimensional Godunov scheme in this limit, first the exact solution of the corresponding Cauchy problem
in three spatial dimensions is derived. The appearance of logarithmic singularities in the exact solution
of the 4-quadrant Riemann Problem in two dimensions is discussed. The solution formulae are then
used to obtain the multidimensional Godunov finite volume scheme in two dimensions. It is shown
to be superior to the dimensionally split upwind/Roe scheme concerning its domain of stability and
ability to resolve multi-dimensional Riemann problems. It is shown experimentally and theoretically
that despite taking into account multi-dimensional information it is, however, not able to resolve the
low Mach number limit.
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1. Introduction

Hyperbolic systems of PDEs in multiple spatial dimensions exhibit a richer phenomenology than their one-
dimensional counterparts. In the context of ideal hydrodynamics the most prominent such feature is vorticity.
Vortical structures appear virtually everywhere in multi-dimensional flows, for example also in regions of hy-
drodynamical instability. Nontrivial incompressible flows also only exist in multiple spatial dimensions.

Numerical methods should reproduce such features. The methods that are dealt with in the paper are finite
volume methods. They interpret the discrete degrees of freedom as averages over the computational cells. The
temporal evolution of the averages is given by fluxes over the cell boundaries. One possibility to deal with the
multi-dimensionality is to compute these fluxes using only one-dimensional information perpendicular to the cell
boundary. Thus for the complete cell update one-dimensional information is collected from different directions.
Such methods are called dimensionally split, and widely used due to their simplicity.

Several shortcomings of such methods have been noticed e.g. in [MR01, GM04, DOR10]. They concern
the treatment of vorticity and the incompressible (low Mach number) limit, i.e. a bad resolution of multi-
dimensional features. Therefore it has been suggested to incorporate truly multi-dimensional information into
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the finite volume methods in a variety of ways: [Col90, MR01, Bal12, LeV97, Fey98a, Fey98b, Roe17] and many
others. Attempts to construct Godunov schemes using exact solutions of multi-dimensional Riemann Problems
(see e.g. [Zhe12]) suffer from the high complexity of the occurring solutions.

A path that circumvents solving the Euler equations directly has been suggested e.g. in [GR13, CGK13,
Roe17]. The advective operator contained in the Euler equations is taken into account differently than the rest of
the equations (which often is called acoustic operator). Whereas the solution to advection in multiple dimensions
is not very different from its one-dimensional counterpart, acoustics exhibits a number of new features. This
has led [LS02, MR01, LMMW04, AG15, DOR10, Bar17, Bar18] and others to studies of the linearized acoustic
operator.

This paper aims at deriving the multi-dimensional Godunov scheme for linear acoustics. In order to follow
the reconstruction–evolution–average strategy the exact solution of the corresponding Cauchy problem shall be
used. In other words, the aim is to have a numerical scheme where the evolution operator is exact.

The exact solution may be expressed in various representations, which differ by their applicability to the
derivation of a Godunov scheme. Using bicharacteristics, for example, in [Ost97,LMMW04] analytical relations
of the shape

q(t+ ∆t) = L1[q(t)] +

t+∆t∫
t

L2[q(τ)]dτ (1)

are derived, which connect the solution q(t + ∆t) at time t + ∆t with the data q(t) at time t via a so called
mantle integral. This latter involves the solution at all intermediate times. L1 and L2 are certain linear
operators, see e.g. Equations (2.14)–(2.16) in [LMMW04] for details. E.g. in [LMMW04], numerical schemes
are derived by carefully approximating the integral in (1) (e.g. in [Ost97], or [LMSWZ04], Equations (4.12)-
(4-15), or [LMMW00], Equations (4.13)–(4.15)). Moreover, in order to extend the methodology to the Euler
equations, a local linearization is employed (e.g. in [LMMW04], p. 18).

The derivation of any numerical scheme makes use of a number of approximations. The studies of this paper
shall help understanding the influence of these approximations, among others, on the ability of the scheme to
resolve the low Mach number limit. The Godunov scheme has been chosen because here an exact evolution
operator is used and the only approximation is in the reconstruction step. Therefore formulae derived and used
in [LMSWZ04, LMMW04] cannot be employed here. An exact solution operator is needed which relates the
solution at time t+ ∆t solely to the data at time t.

Such operators have appeared in [ER13, FG17] under the assumption of smooth initial data. Having the
Godunov scheme in mind, however, it is necessary to study the Cauchy problem with discontinuous initial data.
In order to achieve this, it turns out to be necessary to consider distributional solutions. This paper thus for
the first time gives a detailed derivation of the distributional solution to the Cauchy problem of linear acoustics,
without the restriction to smooth initial data. In this paper a formula is obtained for the exact evolution which
expresses the solution at time t in function of the initial data at t = 0 directly.

Our exact solution formulae are interesting from a theoretical viewpoint as well. Before using them for the
derivation of a numerical scheme, some of the analytical properties of solutions to linear acoustics are studied.
The new formulae are applied to a two-dimensional Riemann Problem for linear acoustics. In [LMLW03] the
solution outside the sonic circle is presented. Based on [GLR93, GLR96], in [LS02] and [AG15] (Chapter 6.2)
the solution inside the sonic circle is derived for linear acoustics using a self-similarity ansatz. It has been
found that the velocity of the solution, in general, is unbounded at the origin, and that measure-valued (Dirac
delta) vorticity appears. This demonstrates once more the need to interpret the solution to a multi-dimensional
Riemann problem as a distributional one. In this paper we justify the observed singularity by using the
framework of distributional solutions. It is shown that the singularity of the velocity is a logarithmic one, and
its precise shape is obtained.

The exact solution is finally used to derive a Godunov method according to the reconstruction–evolution–
average strategy. This demonstrates that the exact solution formulae, despite their complexity, can be efficiently
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used to derive numerical schemes, of which the Godunov scheme is only one example. A similar approach has
been followed in [BZW01]. Here, the Godunov scheme is derived using the framework of distributional solutions,
as the initial data of a Riemann Problem are discontinuous. Focusing on the acoustic equations allows to study
the effects of an exact evolution step.

In order to reduce the work necessary for the derivation of the Godunov scheme, it is first shown that for
linear systems, evolution and average can be interchanged. The new strategy reconstruction–average–evolution
leads to the same scheme, but shortens the derivation considerably. A piecewise constant reconstruction is
thus found to be equivalent to a staggered bilinear reconstruction endowed with a different interpretation of
the discrete degree of freedom. This should not, however, be confused with bilinear reconstructions aimed at
deriving schemes of second order.

The paper is organized as follows. After deriving the equations of linear acoustics in Section 2, an exact solu-
tion in three spatial dimensions is presented in Section 3. The solution operator needs to allow for discontinuous
initial data. It is shown that the natural class in multiple spatial dimensions are distributional solutions. A brief
review of distributions is given in the Appendix in Section A, followed by a detailed derivation in Section B of
the Appendix. The properties of the solution operator are discussed in Section 3.3, as it has a number of strik-
ing differences to its one-dimensional counterpart. Section 3.4 exemplifies the formulae on a two-dimensional
Riemann Problem and in Section 4 a Godunov method is derived according to the reconstruction–evolution–
average strategy. Numerical examples are shown in Section 4.4. The ability of the method to resolve the low
Mach number limit is studied both theoretically and experimentally there as well.

2. Acoustic equations

2.1. Linearization of the Euler equations

The acoustic equations are obtained as linearizations of the Euler equations. These latter govern the motion
of an ideal compressible fluid. In d spatial dimensions, the state of the fluid is given by specifying a density
ρ : R+

0 × Rd → R+ and a velocity v : R+
0 × Rd → Rd. Additionally, the pressure p of the fluid is needed to close

the system. Its role depends on the precise model of the fluid motion.
Consider the isentropic Euler equations

∂tρ+ div (ρv) = 0

∂t(ρv) + div (ρv ⊗ v + p1) = 0

Here the pressure is a function of the density and is taken as p(ρ) = Kργ (K > 1, γ ≥ 1). Linearization around
the state (ρ,v) = (ρ̄, 0) yields

∂tρ+ ρ̄ div v = 0 (2)

∂tv + c2
grad ρ

ρ̄
= 0 (3)

where one defines c =
√
p′(ρ̄). Linearization with respect to a fluid state moving at some constant speed U can

be easily removed or added via a Galilei transform.
The same system can be obtained from the Euler equations endowed with an energy equation

∂tρ+ div (ρv) = 0

∂t(ρv) + div (ρv ⊗ v + p1) = 0

∂te+ div (v(e+ p)) = 0
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with the total energy density e = p
γ−1 + 1

2ρ|v|
2, γ > 1 which closes the system. Linearization around (ρ,v, p) =

(ρ̄, 0, p̄) yields

∂tρ+ ρ̄div v = 0 (4)

∂tv +
grad p

ρ̄
= 0 (5)

∂tp+ ρ̄c2 div v = 0 (6)

Equations (5)–(6) are (up to rescaling and renaming) the same as (2)–(3). Both can be linearly transformed to
the symmetric version

∂tv + c grad p = 0 (7)

∂tp+ cdiv v = 0 (8)

p will be called pressure and v the velocity – just to have names. Due to the different linearizations and the
symmetrization they are not exactly the physical pressure or velocity any more, but still closely related. These
equations describe the time evolution of small perturbations to a constant state of the fluid.

It is to be noted that system (7)–(8) does not in general reduce to the usual wave equation, and thus does
not admit the usual Kirchhoff solution ( [Eva98]). The equation for the scalar p is indeed the usual scalar wave
equation

∂2
t p− c2∆p = 0 (9)

but v fulfills

∂2
t v − c2grad div v = 0 (10)

The identity ∇× (∇× v) = ∇(∇ · v)−∆v links this operator to the vector Laplacian in 3-d. By (7)

∂t(∇× v) = 0 (11)

but∇×v needs not be zero initially. Equation (10) cannot be split into scalar wave equations for the components.
This is why the solution to linear acoustics is more complicated than that of a scalar wave equation. Equation
(10) so far has not been given much attention in the literature. However, its behaviour differs from that of
the scalar wave equation, which manifests itself, for example, in the occurrence of a vorticity singularity in the
solution of a multi-dimensional Riemann Problem (as observed in [AG15]). This is a feature of the particular
vector wave equation (10) only. This singularity is studied in more detail in Section 3.4.

2.2. Low Mach number limit

The system (7)–(8) has a low Mach number limit just as the Euler equations (compare [DOR10] and for the
Euler case see e.g. [KM81, Kle95, MS01]). One introduces a small parameter ε and inserts the scaling ε−2 in
front of the pressure gradient in (5) such that the system and its symmetrized version read, respectively,

∂tv +
1

ε2
grad p = 0 (12)

∂tp+ c2 div v = 0 (13)
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and

∂tv +
c

ε
grad p = 0 (14)

∂tp+
c

ε
div v = 0 (15)

In one spatial dimension the transformation which symmetrizes the Jacobian J =

(
0 1

ε2

c2 0

)
is

S =

(
1

cε

)
(16)

such that J = S

(
0 c

ε
c
ε 0

)
S−1. In multiple spatial dimensions the upper left entry in S has to be replaced by

an appropriate block-identity-matrix. In the following preference is given to the symmetric version if nothing
else is stated. Regarding the low Mach number limit the non-symmetrized version is more natural and will be
reintroduced for studying the low Mach number properties of the scheme. The variables of the two systems are
given the same names to simplify notation.

3. Exact solution

Consider the Cauchy problem for the multi-dimensional linear hyperbolic system

∂tq + (J · ∇)q = 0 q : R+
0 × Rd → Rn (17)

q(0,x) = q0(x) (18)

where x ∈ Rd and J is the vector of the Jacobians into the different directions1.
For the symmetrized system (7)–(8) in 3-d one has q := (v, p) and

J =




0 c
0

0
c 0

 ,


0

0 c
0

c 0

 ,


0

0
0 c
c 0


 (19)

3.1. Review of the one-dimensional case

The 1-d system

∂tp(t, x) + c∂xv(t, x) = 0 (20)

∂tv(t, x) + c∂xp(t, x) = 0 (21)

with the initial data (x ∈ R)

p(0, x) = p0(x) v(0, x) = v0(x) (22)

is easily solved via characteristics, observing that

∂t(p± v)± c∂x(p± v) = 0 (23)

1Only vectors with d components are typeset in boldface letters.
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i.e.

p(t, x) =
1

2

[
p0(x− ct) + p0(x+ ct)

]
+

1

2

[
v0(x− ct)− v0(x+ ct)

]
(24)

v(t, x) =
1

2

[
v0(x− ct) + v0(x+ ct)

]
+

1

2

[
p0(x− ct)− p0(x+ ct)

]
(25)

With respect to the numerics of the 1-d system (20)–(21), one can write down the exact Godunov scheme by
solving the 1-d Riemann problem for this system which is the upwind/Roe solver [Roe81]. The dimensionally
split case applied to multiple dimensions is discussed in [GZI+76].

In the one-dimensional case one observes a discrepancy in the required regularity of the initial data: the
solution in (20)–(21) has to be differentiable, whereas the solution formula (24)–(25) does not even require
continuity of the initial data. The discrepancy is removed by generalizing the notion of a solution to all objects
for which the solution formula makes sense. An essential ingredient of later discussion is the Riemann Problem,
i.e. the Cauchy Problem for discontinuous initial data. Therefore a generalization of the notion of a solution
to discontinuous data is necessary. How this generalization is to be chosen depends on the precise shape of the
solution formula. Contrary to formulae (24)–(25), which only contain the values of the initial data, the solution
formula for (7)–(8) turns out to contain derivatives of the initial data (Section 3.2). This makes it necessary
to consider distributional solutions, in order to be able to differentiate a jump. A brief review of distributions
is given in Section A of the Appendix. This is needed in order to fix the notation used. For the sake of better
readability, the derivation of the distributional solution of linear acoustics is performed in Section B of the
Appendix, whereas Section 3.2 only states the resulting solution formulae.

3.2. Solution formulae for the multi-dimensional case

The following notation is used throughout: Choosing r ∈ R+ and d ∈ N+ the d-ball of radius r is denoted by
Bdr := {x ∈ Rd : |x| ≤ r} and let the sphere Sd−1

r denote its boundary.

Definition 3.1 (Evolution operator). The evolution operator Tt maps suitable initial data q0(x) to the solution
of the corresponding Cauchy problem for (17) (that is assumed to exist and be unique) at time t:

(Tt q0)(t,x) = q(t,x) (26)

Obviously T0 = id.

Theorem 3.1. The evolution operator Tt is linear in the initial data.

Proof. Consider two initial data q0 and q′0 and their time evolutions Tt q0 and Tt q
′
0. Then, by linearity of (17)

for λ, µ ∈ R

(∂t + J · ∇)(Tt(λq0 + µq′0)− λTt q0) = 0 (27)

Therefore by uniqueness of the solution to the Cauchy problem Tt(λq0 + µq′0) − λTt q0 = Tt(µq
′
0). If µ = 0,

linearity of Tt is shown. Otherwise, again by linearity of (17)

(∂t + J · ∇)

(
1

µ
Tt(µq

′
0)

)
= 0 (28)

and thus in total Tt(λq0 + µq′0) = λTt q0 + µTt q
′
0. �

The distributional solution cannot be stated prior to introducing corresponding notation. Therefore the full
Theorem is stated as Theorem B.3 and proven in the Appendix. Below only the case of smooth initial data is
shown to simplify the presentation.
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Theorem 3.2 (Solution formulae). If all the derivatives exist in the sense of functions and are integrable, then

p(t,x) = p0(x) +

∫ ct

0

dr r
1

4π

∫
S2

1

dy (div grad p0)(x + ry)− ct 1

4π

∫
S2

1

dy div v0(x + cty) (29)

v(t,x) = v0(x) +

∫ ct

0

dr r
1

4π

∫
S2

1

dy (grad div v0)(x + ry)− ct 1

4π

∫
S2

1

dy (grad p0)(x + cty) (30)

is solution to

∂tq + J · ∇q = 0 (31)

with J given by (19), d = 3, n = d+ 1 and compactly supported initial data v0(x), p0(x).

The proof of this Theorem is given in Section B of the Appendix (Theorem B.3 and Corollary B.1 therein).
One observes the appearance of a spherical average

1

4π

∫
S2

1

dy f(x + ry) (32)

of a function f(x). The distributional analogue can be found in Definition B.2.
Spherical means appear already in the study of the scalar wave equation (see e.g. [Joh78,Eva98]). As has been

discussed in Section 2.1, only the evolution of the scalar variable p is governed by a scalar wave equation. The
equation for v is a vector wave equation. However, usage of the Helmholtz decomposition allows to write down a
scalar wave equation for the curl-free part of v, whereas the time evolution of the curl is given by ∂t(∇×v) = 0.
The solution to the scalar wave equation can be used and the Helmholtz decomposition of the two parts of the
velocity conveniently reassembles into (29)–(30). The above formulae appear without proof in [ER13] where
they have been obtained by this analogy with the scalar wave equation. A similar approach is taken in [FG17],
again assuming that the solution is smooth enough. It is important to note however, that the initial data onto
which the solution formulae are applied in [ER13] are not sufficiently well-behaved for the second derivatives to
exist, such that a justification in the sense of distributions was needed. This is now accomplished in Theorem
B.3. However, the notational overhead of distribution theory might obscure interesting properties of the solution
operator that are discussed below. Although they are valid for the distributional solution, they are presented
using Theorem 3.2. Although they are equally true for the distributional case, they are rather discussed now
with only Theorem 3.2. The distributional solution is presented as a self-contained Section B.

From the solution in Equation (30) on observes that v changes in time by a gradient of a function. Applying
the curl, this gradient vanishes – indeed, the curl must be stationary due to Eq. (11).

The spatial derivatives that appear in the solution formulae (29)–(30) can be transformed into derivatives
with respect to r only. The new formulae are more useful in certain situations (as will be seen later), and display
interesting properties of the solution that are discussed after stating the Theorem.

Theorem 3.3 (Solution formulae with radial derivatives only). Consider the setup of Theorem 3.2. If all the
derivatives exist and the functions are integrable, the solution (29)–(30) can be rewritten as

p(t,x) = ∂r

(
r

1

4π

∫
S2

1

dy p0

)
− 1

r
∂r

(
r2 1

4π

∫
S2

1

dy y · v0

)
(33)

v(t,x) =
2

3
v0(x)− 1

r
∂r

(
r2 1

4π

∫
S2

1

dy p0y

)
+ ∂r

(
r

1

4π

∫
S2

1

dy (v0 · y)y

)

− 1

4π

∫
S2

1

dy [v0 − 3(v0 · y)y]−
∫ ct

0

dr
1

r

1

4π

∫
S2

1

dy [v0 − 3(v0 · y)y] (34)
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and Equation (34) is equivalent to

v(t,x) = v0(x)− 1

r
∂r

(
r2 1

4π

∫
S2

1

dy p0y

)

+

∫ ct

0

dr
1

r
∂r

[
1

r
∂r

(
r3 1

4π

∫
S2

1

dy(v0 · y)y

)
− r 1

4π

∫
S2

1

dyv0

]
(35)

Note: Everything (if not stated explicitly) is understood to be evaluated at x + ry, and wherever r remains,

r = ct is to be taken at the very end. For example, the term ∂r

(
r 1

4π

∫
S2

1
dy p0

)
appearing in (33), if written

explicitly, reads

∂r

(
r

1

4π

∫
S2

1

dy p0(x + ry)

)∣∣∣∣∣
r=ct

(36)

This Theorem follows from its distributional counterpart Theorem B.5, proven in the Appendix. Therein it
is in particular shown that the integral∫ ct

0

dr
1

r

∫
S2

1

dy [v0 − 3(v0 · y)y] (37)

is finite for continuous v0.

3.3. Properties of the solution

There is a number of striking differences to the one-dimensional case that appear in multiple spatial dimen-
sions.

For the one-dimensional problem (20)–(21) only the values of the initial data appear in the solution formulae
(24)–(25), not their derivatives. This is different in multiple dimensions and can already be observed for the
scalar wave equation (as discussed e.g. in [Eva98]). A similar statement is true for the solution to Equations
(7)–(8). (As explained in Section 2.1 this system cannot be reduced to scalar wave equations.) (29)–(30) make
the impression that second derivatives of the initial data need to be computed, but Theorem 3.3 states that the
solution can be rewritten into Equation (34), which involves only first spatial derivatives.

In one spatial dimension, according to formulae (24)–(25), the solution at a point x depends only on initial
data at points y for which |y − x| = ct. This motivates the following (compare e.g. [O’N83], Chapter 14)

Definition 3.2 (Causal structure). Let (t,x) ∈ R+
0 × Rd. The restriction of the initial data onto the set

T(t,x) := {y : |x− y| < ct}

is called timelike initial data for (t,x). The restriction of the initial data onto the set

N(t,x) := {y : |x− y| = ct}

is called null initial data for (t,x).

In one spatial dimension the solution to the acoustic equations depends on null initial data only. In multiple
spatial dimensions the situation is more complicated. The solution of just the scalar wave equation (9) depends
on null initial data for odd dimensions d = 1, 3, 5, . . ., whereas in even spatial dimensions d = 2, 4, . . . it also
depends on timelike initial data (see e.g. [Joh78, Eva98]). For the acoustic system (7)–(8), which involves a
scalar as well as a vector wave equation (10), the solution depends on timelike initial data both in odd and even
number of spatial dimensions.
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3.4. Example of a singularity in the two-dimensional Riemann problem

In this Section, the exact solution is applied to a two-dimensional Riemann problem. As the solution formulae
are applied to discontinuous initial data, here Theorems 3.2 and 3.3 are not sufficient, and the distributional
versions B.3, B.5 need to be used. Therefore in this section, notation and results from Sections A and B are
used. The reader might thus want to consult them first. The result of the computation is Equation (46).

It shall be shown in the following how a multi-dimensional Riemann Problem can exhibit a logarithmic
singularity in its evolution. This is due to the fact that the acoustic system does not reduce to scalar wave
equations, but also contains the vector wave equation (10).

For computational convenience the Riemann Problem is considered in the x-z-plane. The initial velocity
shall be v0 = (0, 0, 1)T in the first quadrant and vanish everywhere else (see Fig. 1). Also everywhere p0 = 0.

Figure 1. Setup of the 2-dimensional Riemann Problem. The only non-vanishing initial datum
is the z-velocity in the first quadrant, indicated by the arrow. As the problem is linear its
magnitude is of no importance and is chosen to be 1.

Denote the independent variable x =: (x, y, z) and the components of v =: (vx, vy, vz), v0 =: (v0x, v0y, v0z).
The distribution σij defined in Theorem B.4 acts onto test functions as

〈σij(ct)|ψ〉 :=

∫ ct

0

dr
1

r
∂r

[
1

r
∂r

(
r

∫
S2
r

dy
yiyj
|y|2

ψ(y)

)
− 1

r

∫
S2
r

dyψ(y)

]
(38)

Define the components of y =: (yx, yy, yz). Inserting v0z(x) = Θ(x)Θ(z), v0x = v0y = 0 into (153) gives

〈vx(t, ·)|ψ〉 =
1

4π
〈σzxct ∗ v0z |ψ〉 (39)

=
1

4π

∫ ct

0

dr
1

r
∂r

[
1

r
∂r

(
r

∫
S2
r

dy
yxyz
|y|2

∫
dx Θ(x)Θ(z)ψ(x + y)

)]
(40)

Compute first ∫
S2
r

dy
yxyz
|y|2

∫
dx Θ(x)Θ(z)ψ(x + y) =

∫
dx

∫
S2
r

dy
yxyz
r2

Θ(x− yx)Θ(z − yz)ψ(x) (41)
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This defines a regular distribution associated to∫
dy
yxyz
r2

Θ(x− yx)Θ(z − yz) (42)

Evaluating the integral for the special case of x = 0 one obtains

=

∫ min(r,z)

−r
dyz

∫ 0

−
√
r2−y2

z

dyx
2yxyz

r2
√

1− y2
x − y2

z

=
2(r2 − z2)

3
2

3r
Θ(r − |z|) (43)

Here the first fundamental form of the unit sphere (1− y2
x − y2

z)−
1
2 was used to express the surface integral.

The velocity becomes

vx(t,x) =
1

4π

∫ ct

z

dr
1

r
∂r

[
1

r
∂r

(
r

2(r2 − z2)3/2

3r

)]
(44)

and using that for any function f

1

r
∂rf(r2) = 2f ′(r2) (45)

one obtains

vx(t,x) =
1

2π

∫ ct

z

dr(r2 − z2)−1/2 =
1

2π
L
( z
ct

)
(46)

having defined

L (s) := ln
1 +
√

1− s2

s
= − ln

s

2
− s2

4
+O(s4) (47)

One can verify that e−L (s) = tan
arcsin s

2
.

Note that due to the appearance of the factor Θ(r−|z|) above, vx(t,x) vanishes outside |x| ≤ ct by causality.
Therefore the x-component of the velocity has a logarithmic singularity at the origin, which is the corner

of the initial discontinuity of the z-component. Such a behaviour of the solution does not have analogues
in one spatial dimension because two different components of the velocity v are involved. The appearance of
singularities has already been mentioned in [AG15] in the context of self-similar solutions to Riemann Problems.
Here it has been obtained by application of the general formula (151)–(153) which is not restricted to self-similar
time evolution. Moreover a careful derivation using distributional solutions, adequate for the low regularity of
the initial data, has been presented.

The solution obtained so far was restricted to x = 0 to simplify the presentation. This was also sufficient
in order to study the appearance of a singularity. For Fig. 2–3 the integrals in (153) have been computed in
the x-z-plane numerically using standard quadratures. They give an impression of the entire solution of the
two-dimensional Riemann Problem. It is not very difficult to obtain analytic expressions in all the plane by
slightly adapting the above calculations.

A vector plot of the flow is shown in Fig. 3.

4. Godunov finite volume scheme

The exact evolution operator for linear acoustics (8)–(7) already appears in [ER13, Roe17], albeit without
the justification as distributional solution. It has been taken as inspiration for a new kind of numerical schemes
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Figure 2. Solution of Riemann problem at time ct = 0.25. Left: Pressure. Center: x-velocity.
Right: y-velocity. The smoothed out discontinuities are due to finite size sampling of the
solution. In green the location of the initial discontinuity.

Figure 3. Solution of Riemann problem at time ct = 0.2. The direction of the velocity v(t,x)
is indicated by the arrows, colour coded is the absolute value |v|.

in [ER13]: the active flux method contains additional, pointwise degrees of freedom which are evolved in
time exactly. A finite volume scheme of the usual kind was derived in [FG17], but has taken the only an
approximation of this exact solution into account. Among others, [LMMW00] considered the bicharacteristics
relation ( [CH62]) in order to derive schemes which incorporate multi-dimensional information. However, the
bicharacteristics involve mantle integrals along the characteristic cone and do not allow to write down the
solution as a function of initial data directly. Thus again, these schemes only use an approximation of the exact
relation.

The conceptually simplest finite volume is a Godunov scheme with the Riemann Problem as a building
block. [AG15, LS02] studied the solutions to multi-dimensional Riemann Problems for linear acoustics using a
self-similarity ansatz. However, no numerical scheme has been derived there.
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This paper presents a full derivation of such a scheme and discusses numerical results obtained with it. This
is similar in spirit to an idea by Gelfand mentioned in [GZI+76,God97] (a translated version is [God08]).

4.1. Procedure

In this Section the aim is to derive a two-dimensional finite volume scheme, which updates the numerical
solution qnij in a Cartesian cell Cij = [xi− 1

2
, xi+ 1

2
] × [yj− 1

2
, yj+ 1

2
] at a time tn to a new solution qn+1

ij at time

tn+1 = tn + ∆t using qnij and information from the neighbours of Cij . The grid is taken equidistant.
The knowledge of the exact solution makes it possible to derive a Godunov scheme via the procedure of

reconstruction-evolution-averaging ( [Tor09, LeV02]). In the following it is shown that for linear systems this
can be achieved using just one evaluation of the solution formula at a single point in space by suitably modifying
the initial data.

Consider the general linear n× n hyperbolic system (17) in d spatial dimensions

∂tq + (J · ∇)q = 0 (48)

with initial data

q(0,x) = q0(x) (49)

Recall the Definition 3.1 of the time evolution operator Tt: (Tt q0)(t,x) satisfies (17) with (at t = 0) initial
data q0(x).

Definition 4.1 (Sliding average). Define the sliding average operator A in two spatial dimensions by its action
onto a function q : Rd → Rn as

(Aq)(x) :=
1

∆x∆y

∫
[−∆x

2 ,∆x
2 ]×[−∆y

2 ,∆y
2 ]

ds q(x + s) (50)

The objective is to construct a Godunov scheme by introducing a reconstruction q0(x) using the discrete
values {qnij} in the cells and computing its exact time evolution. The reconstruction needs to be conservative,
i.e. (Aq0)(xij) = qij . The easiest choice is a piecewise constant reconstruction

q0(x) := qij if x ∈ Cij (51)

It is shown in Fig. 4 (left) and obviously is locally integrable.
The Godunov procedure reconstruction-evolution-averaging can be written as

qn+1
ij = (AT∆t q0)(xij) (52)

Lemma 4.1. Provided all expressions exist, the two operators commute:

AT∆t q0

∣∣∣
xij

= T∆tAq0

∣∣∣
xij

(53)
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Figure 4. Left: Piecewise constant reconstruction. Right: Application of the sliding average
to the same data amounts to a bilinear interpolation of the values qij interpreted as point values
at xij . The two reconstructions are equivalent for linear problems, i.e. they lead to the same
Godunov scheme.

Proof. By linearity of T∆t (Theorem 3.1),

(AT∆t q0)(x) =
1

∆x∆y

∫
[−∆x

2 ,∆x
2 ]×[−∆y

2 ,∆y
2 ]

ds (T∆t q0)(x + s) (54)

=
1

∆x∆y
T∆t

∫
[−∆x

2 ,∆x
2 ]×[−∆y

2 ,∆y
2 ]

ds q0(x + s) (55)

= T∆t (Aq0)(x) (56)

�

In short, for linear systems the last two steps of reconstruction-evolution-averaging can be turned around
to be reconstruction-averaging-evolution which tremendously simplifies the derivation. It should be noted that
in practice, evaluating the solution formulae can be technically demanding. Therefore the straightforward
derivation that first obtains a solution in the entire cell requires a lot of effort. Employing the structure of the
conservation law allows to rewrite the volume integral into a time integral over the boundary. Now the exact
solution is only needed along the boundary of the cell, and one of the components of x is zero. Still however one
needs to evaluate the solution formulae at a continuous set of x values. The strategy presented above allows to
choose a coordinate system in which the solution formulae need to be computed only once at x = 0 by taking
the sliding-averaged initial data Aq0.

The sliding average of a piecewise constant reconstruction on a 2-d grid is a bilinear interpolation of the
values qij , which are interpreted pointwise at locations xij (see Fig. 4, right). This staggered reconstruction
is continuous. It should not, however, be confused with bilinear reconstructions aimed at deriving schemes of
second order: the staggered bilinear reconstruction shown in Figure 4 contains exactly the same amount of
information as the piecewise constant reconstruction. The reason is that between the two reconstructions the
interpretation of the discrete degree of freedom changes as well. For the piecewise constant reconstruction the
discrete degree of freedom is a point value. Although derived from a different viewpoint, the scheme remains
conservative, of course.
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4.2. Notation

In order to cope with the lengthy expressions for the numerical scheme, the following notation is used:

[q]i+ 1
2

:= qi+1 − qi {q}i+ 1
2

:= qi+1 + qi (57)

[q]i±1 := qi+1 − qi−1 (58)

[[q]]i± 1
2

:= [q]i+ 1
2
− [q]i− 1

2
{{q}}i± 1

2
:= {q}i+ 1

2
+ {q}i− 1

2
(59)

The only nontrivial identity is

{[q]}i± 1
2

= [q]i+ 1
2

+ [q]i− 1
2

= [q]i±1 (60)

For multiple dimensions the notation is combined, e.g.

[[qi]]j± 1
2

= qi,j+1 − 2qij + qi,j−1 (61)

[[q]i±1]j±1 = qi+1,j+1 − qi−1,j+1 − qi+1,j−1 + qi−1,j−1 (62)

The brackets for different directions commute.

4.3. Finite volume scheme

Performing the evaluation of the exact solution formulae as outlined in Section 4.1 is straightforward: In
every one of the four quadrants all the derivatives of the initial data exist. At the locations where the quadrants
meet, the initial data are continuous with, in general, discontinuous first derivatives. However, the derivatives
are continuous in r-direction, as the kinks are all oriented towards the location xij (see Fig. 4, right). Thus the
radial derivatives never lead to the appearance of actual distributions and the solution is a function. The reason
for the different behaviour as compared to the Riemann Problem in Section 3.4 is that here the evolution operator
is applied onto sliding-averaged discontinuities which are continuous. This goes back to the averaging-step of
the Godunov procedure.

Consider the center of the cell (i, j) to be the origin of the coordinate system. The bilinear reconstruction
Aq0 on [0,∆x]× [0,∆y] interpolates the values qij , qi+1,j , qi,j+1 and qi+1,j+1 at the four corners:

(Aq0)(x) = qij +
[q]i+ 1

2 ,j

∆x
x+

[qi]j+ 1
2

∆y
y +

[[q]i+ 1
2
]j+ 1

2

∆x∆y
xy x ∈ [0,∆x]× [0,∆y] (63)

Analogous formulae are easily obtained for the other three quadrants. This allows to compute spherical averages
at x = 0 by summing over averages in the four quadrants:

1

4π

∫
S1

dy(Aq0)(ry) = qij +

(
[[qi]]j± 1

2

4∆y
+

[[q]]i± 1
2 ,j

4∆x

)
r +

[[[[q]]i± 1
2
]]j± 1

2

6π∆x∆y
r2 (64)

For linear acoustics, q = (v, p). Analogously the other spherical averages are obtained, for instance

1

4π

∫
S1

dy y · (Av0)(ry) =

(
[u]i±1,j

6∆x
+

[vi]j±1

6∆y

)
r +

[[[v]]i± 1
2
]j±1 + [[[u]i±1]]j± 1

2

32∆x∆y
r2 (65)
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Using Equation (33) gives

p(t, 0) = pij +

(
[[pi]]j± 1

2

2∆y
+

[[p]]i± 1
2 ,j

2∆x

)
ct+

[[[[p]]i± 1
2
]]j± 1

2

2π∆x∆y
(ct)2

−
(

[u]i±1,j

2∆x
+

[vi]j±1

2∆y

)
ct−

[[[v]]i± 1
2
]j±1 + [[[u]i±1]]j± 1

2

8∆x∆y
(ct)2

(66)

In order to obtain the time evolution of the velocity further spherical means are computed in complete
analogy. After carefully collecting all the different terms, and taking care of the correct ε-scalings one obtains
the following numerical scheme

un+1 = unij −
c∆t

2ε∆x

(
[pn]i±1,j − [[un]]i± 1

2 ,j

)
− 1

2

(c∆t)2

ε2∆x∆y

(
− 1

2π
[[[[un]]i± 1

2
]]j± 1

2
− 1

4
[[vn]i±1]j±1 +

1

4
[[[pn]i±1]]j± 1

2

)
(67)

vn+1 = vnij −
c∆t

2ε∆y

(
[pn]i,j±1 − [[vn]]i,j± 1

2

)
− 1

2

(c∆t)2

ε2∆x∆y

(
− 1

2π
[[[[vn]]i± 1

2
]]j± 1

2
− 1

4
[[un]i±1]j±1 +

1

4
[[[pn]]i± 1

2
]j±1

)
(68)

pn+1 = pij −
c∆t

2ε∆x

(
[un]i±1,j − [[pn]]i± 1

2 ,j

)
− c∆t

2ε∆y

(
[vn]i,j±1 − [[pn]]i,j± 1

2

)
− 1

2

(c∆t)2

ε2∆x∆y

(
1

4
[[[un]i±1]]j± 1

2
+

1

4
[[[vn]]i± 1

2
]j±1 − 2 · 1

2π
[[[[pn]]i± 1

2
]]j± 1

2

)
(69)

This scheme is conservative because it is a Godunov scheme, and can be written as

qn+1 = qn − ∆t

∆x

(
f

(x)

i+ 1
2 ,j
− f (x)

i− 1
2 ,j

)
− ∆t

∆y

(
f

(y)

i,j+ 1
2

− f (y)

i,j− 1
2

)
(70)

One can identify the x-flux through the boundary located at xi+ 1
2
:

f
(x)

i+ 1
2

=
1

2

c

ε

 {p}i+ 1
2 ,j
− [u]i+ 1

2 ,j

0
{u}i+ 1

2 ,j
− [p]i+ 1

2 ,j


+

1

2

c∆t

ε∆y
· c
ε

 − 1
2π [[[u]i+ 1

2
]]j± 1

2
− 1

4 [{v}i+ 1
2
]j±1 + 1

4 [[{p}i+ 1
2
]]j± 1

2

0
1
4 [[v]i+ 1

2
]j±1 − 1

2π [[[p]i+ 1
2
]]j± 1

2

 (71)

The corresponding perpendicular flux is its symmetric analogue. The first bracket is the flux obtained in a
dimensionally split situation. As the scheme is a Godunov scheme for piecewise constant reconstruction, it is
first order in space and time.

The appearance of prefactors which contain π in schemes derived using the exact multi-dimensional evolution
operators has already been noticed in [LMMW00], but none of the schemes mentioned therein matches the one
presented here.

For better comparison to other schemes, the scheme (67)–(69) can be rewritten in the variables prior to
symmetrization, i.e. such that it is a numerical approximation to (12)–(13). This is achieved by applying the
transformation (16) or, which is equivalent, by replacing p 7→ p

cε everywhere.
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Dimensionally split schemes in two spatial dimensions have a stability condition ( [GZI+76], Eq. 8.15, p. 63)

c∆t <
1

1
∆x + 1

∆y

(72)

which for square grids gives a maximum cfl number of 0.5. As the present scheme is an exact multidimensional
Godunov scheme it is stable up to the physical cfl number.

4.4. Numerical examples

The scheme (67)–(69) is applied to several test cases. First, multi-dimensional Riemann Problems are con-
sidered, among them the one considered analytically in Section 3.4. The last test is devoted to the low Mach
number abilities of the scheme.

4.4.1. Riemann Problems

Two Riemann Problems are considered. The first setup is that of Section 3.4 (Fig. 1); it is solved on a
square grid of 101 × 101 cells on a domain that is large enough such that the disturbance produced by the
corner has not reached the boundaries for t = 0.25. Here, c = ε = 1. The results are shown in Fig. 5. In Fig.
6 the y-component of the velocity obtained with the numerical scheme is compared to the analytic solution
(46) found in Section 3.4. The analytic solution is radially symmetric, this is why the numerical solution is
plotted against the radius. The numerical error leads to a slight scatter of the points depending on the angle.
For low cfl numbers, the multi-dimensional scheme here does not seem to show any advantage. The stability
domain of the dimensionally split scheme, however, only extends up to cfl = 0.5. For high cfl numbers, the
multi-dimensional scheme is able to capture the features of the solution slightly better. Here the advantage of
the multi-dimensional scheme becomes obvious – the increased stability region allows to run computations with
a cfl condition close to the physical limit.

A set of multi-dimensional Riemann Problem has been presented in [AG15]. The Riemann Problem no. 3,
p. 101 is given by

p0(x) = 0 u0(x) = v0(x) = sign (xy) (73)

This Riemann Problem is chosen as another test case. Fig. 6.6 in [AG15] shows the analytic solution. Here,
this setup is computed with the multi-dimensional Godunov scheme and the dimensionally split upwind scheme
on a 51 × 51 grid. For the former, again, a high cfl number can be chosen. Figure 7 shows the results. One
observes that the multi-dimensional scheme is able to resolve the features of the multi-dimensional interaction
region much more sharply than the dimensionally split upwind scheme.

Additionally, the dimensionally split scheme produces incorrect jumps in the central region, shown in Figure
8. The multi-dimensional scheme yields a solution of much better quality with no detectable incorrect jumps.
In this case the multi-dimensional Godunov scheme is clearly superior because it takes into account truly
multi-dimensional interactions directly, and not via one-dimensional steps.

4.4.2. Low Mach number vortex

The second test shows the properties of the scheme in the limit ε → 0. The setup is that of a stationary,
divergencefree velocity field and constant pressure:

p0(x) = 1 (74)

v0(x) = eϕ


r
r0

r < r0

2− r
r0

r0 ≤ r < 2r0

0 else

(75)
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Figure 5. Results of a numerical computation of the Riemann problem of Section 3.4 at time
ct = 0.25 using scheme (67)–(69). Left: Pressure. Center: x-velocity. Right: y-velocity.
Compare the images to Fig. 2. The cfl number has been chosen very close to 1; for small
values the discontinuities are smoothed out more.

Figure 6. The y-component of the velocity obtained by the numerical scheme (67)–(69) for
cfl numbers 0.9 and 0.45 is shown together with the result obtained by a dimensionally
split scheme (cfl = 0.45) and the analytic solution (46). The values are plotted against the

radius
√
x2 + y2. One observes that the multi-dimensional scheme slightly outperforms the

dimensionally split one, because it can be run with high cfl numbers.

The velocity thus has a compact support, which is entirely contained in the computational domain, discretized
by 51×51 square cells. Here c = 1 and r0 = 0.2. Zero-gradient boundaries are enforced. Results of a simulation
are shown in Figure 9.

The dimensionally split solver is known to display artefacts in the limit ε→ 0 (see e.g. [GV99,Bar18]). For
comparison, results obtained with the dimensionally split scheme are shown in the same Figure 9. However, as
the dimensionally split scheme is only stable up to cfl = 0.5, it is not possible to run the setup with the same
cfl number.
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Figure 7. Results of a numerical computation of the Riemann problem from [AG15]. The
numerical solution shown at time ct = 0.5. Top row: Multi-dimensional scheme (67)–(69) with
cfl = 0.98, Bottom row: Dimensionally split scheme with cfl = 0.45. Left: Pressure. Center:
x-velocity. Right: y-velocity.

Figure 8. Left: The pressure at ct = 0.5 for the Riemann problem from [AG15] shown along
the diagonal x = y of the grid. The result obtained with the multi-dimensional scheme (67)–(69)
with cfl = 0.98 is compared to that of the dimensionally split scheme with cfl = 0.45. For the
latter one observes an unphysical jump and excessive smoothing. Center: The jumps are visible
in the two dimensional plot as well. Color coded is the absolute value |p| for better visibility
of the artefact. Right: The same region computed with the multi-dimensional Godunov scheme.

Knowing that the dimensionally split scheme fails to resolve the low Mach number limit, a visual comparison
of the two results indicates that the multi-dimensional Godunov scheme is equally unable to resolve it. This
can be theoretically confirmed. In [Bar18], a strategy has been presented how low Mach compliance can be
checked theoretically for linear schemes for acoustics. Therein the concept of stationarity preservation has been
introduced. A scheme is called stationarity preserving if it discretizes the entire set of the analytic stationary
states. It is found that most schemes add so much diffusion, that only trivial (e.g. spatially constant) stationary
states are not diffused away. It is moreover found that the low Mach number limit for linear acoustics is
equivalent to the limit of long times. In order to study the limit ε→ 0 one therefore needs to analyze the long
time behaviour of the numerical solutions. Here, the most prominent role is played by the stationary states.
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Figure 9. Solution of the vortex initial data at time ct = 1 for ε = 10−2. The quantity shown
in colour is the magnitude |v| of the velocity. Left: Exact solution = initial data. Center:
Multi-dimensional Godunov scheme (67)–(69) with cfl = 0.8. Right: Dimensionally split
scheme with cfl = 0.45.

Only if they are discretized correctly will the scheme be low Mach compliant. In [Bar18] a condition has been
found, which involves the so-called evolution matrix : The scheme is stationarity preserving if the determinant
of its evolution matrix vanishes. Given a numerical scheme, its evolution matrix can be easily constructed. For
more details the reader is referred to [Bar18] or [Bar17]. For the multi-dimensional Godunov scheme under
consideration it can be verified by explicit calculation that the evolution matrix fails to meet the condition
of stationarity preservation. The computation is lengthy, and is thus not reproduced here. The inability of
the multi-dimensional Godunov scheme to resolve the limit of low Mach number, however, thus can also be
understood theoretically.

The multi-dimensional Godunov scheme is not low Mach compliant. However, no approximations were made
in the evolution step of the scheme. It thus becomes obvious that the low Mach number problem is not cured
by just taking into account all the multi-dimensional interactions. As the evolution step was exact, the reason
for the failure is to be sought elsewhere.

5. Conclusions and outlook

This paper presents an exact solution of the acoustic equations in three spatial dimensions. It is a paramount
example of a solution operator that is very different to that of multi-dimensional linear advection: characteristic
cones and spherical means replace simple transport along a one-dimensional characteristic. On the other hand it
also shows differences to the well-understood scalar wave equation, thus emphasizing the additional difficulties
when dealing with systems of equations. The solution obtained is a distributional one, which allows to use
discontinuous initial data.

The multi-dimensional Riemann Problem for the acoustic equations is an example for the appearance of a
singularity in the solution, which is an intrinsically multi-dimensional feature. This paper presents the exact
shape of the solution and shows that the singularity is logarithmic.

Furthermore, using the exact solution formulae, a multi-dimensional Godunov scheme is obtained. It has
been found in experiments that, as expected, its stability region extends right up to the maximum allowed
physical cfl number, which is twice what is possible with a dimensionally split scheme. The method has been
shown to perform well when applied to multi-dimensional Riemann Problems, not suffering from the artefacts
found for dimensionally split schemes. It, however, does not allow calculations in the limit of low Mach numbers
in general. It fails to resolve the limit even though the evolution step of the Godunov scheme is exact.

All the necessary results for the derivation of the numerical scheme could be obtained analytically. This shows
that the exact solution operator can be efficiently used in such circumstances. The exact evolution operator
may be an important ingredient in order to endow the numerical scheme with certain, desirable properties.
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Future work will try to generalize aspects of these findings to the full Euler equations. We hope that the study
of linear acoustics in multiple spatial dimensions is a first step in this direction.
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Appendix A. Distributions

In order to use discontinuous initial data for the equations of linear acoustics in multiple spatial dimensions
one needs distributional solutions. This is not necessary in one spatial dimension. In multiple spatial dimensions,
however, the solution formula involves derivatives of the initial data. If the data are discontinuous, the solution
formula thus needs to be generalized in the sense of distributions.

In this Section a brief review of definitions and results from the theory of distributions is given. This is done
in order to present the notation that will be used. Therefore many standard results are stated without proofs.
The reader interested in a thorough introduction is, for example, referred to [Sch78,GS64,Hör13,Rud91].

In Section B distributional solutions of linear acoustics in three spatial dimensions are derived.

Definition A.1 (Distribution). A distribution is a continuous linear functional on the set D(Rd) of compactly
supported smooth test functions ψ. The evaluation of the distribution f on a test function ψ is denoted by
〈f |ψ〉 ∈ R (or C). The set of all distributions is denoted by D′(Rd).

It is possible to show (see e.g. [Rud91]) that a function h ∈ L1
loc(Rd) gives rise to a distribution h ∈ D′(Rd)

in the following way: the action 〈h |ψ〉 of h onto any test function ψ ∈ D(Rd) is defined as:

〈h |ψ〉 :=

∫
Rd

dxh(x)ψ(x) (76)



22 TITLE WILL BE SET BY THE PUBLISHER

Definition A.2 (Regular distribution). Given h ∈ L1
loc(R

d), the distribution h , defined by its action onto a

test function ψ ∈ D(Rd) as in (76), is called regular distribution.

In order to make explicit the independent variable, the notation 〈h |ψ(x)〉 will be used. Two regular distri-
butions h1 and h2 are equal, if h1 = h2 almost everywhere.

Definition A.3 (Tempered distribution). The Schwartz space S(Rd) of rapidly decreasing functions f on Rd

is defined as

S(Rd) :=
{
f ∈ C∞(Rd) : sup

x∈Rd

|xa1
1 . . . xa2

d ∂
b1
x1
· · · ∂bdxd

f | <∞

∀(a1, . . . , ad, b1, . . . , bd) ∈ (N0)2d
}

(77)

The set S′(Rd) of tempered distributions is the continuous dual of S(Rd).

It is possible to show that the derivative ∇xT of a distribution T ∈ D′(Rd), defined in the following, is again
a distribution (see e.g. [Rud91]).

Definition A.4. i) The derivative of a distribution T ∈ D′(Rd) is defined as

〈∇xT |ψ(x)〉 := −〈T |∇xψ(x)〉 ∀ψ ∈ D(Rd)

ii) The Fourier transform Ft,x applied to an integrable function f : R+
0 × Rd → R is defined by

f̂(ω,k) := Ft,x[f ](ω,k) :=
1√
2π

∫
dt

1

(2π)d/2

∫
dx exp(−iωt+ ik · x)f(t,x)

Generically, k denotes the dual variable to x and ω the dual to t. Note the symmetric prefactor convention
chosen here, and that ω is used with the reverse sign. Also, generically, the tilde denotes a Fourier transform
in the following.

iii) The Fourier transform Ft,x[T ](ω,k) of a distribution T is defined by

〈F[T ]|ψ〉 := 〈T |F[ψ]〉 ∀ψ ∈ D(Rd+1) (78)

or, making explicit the independent variables,

〈Ft,x[T ](ω,k)|ψ(ω,k)〉 := 〈T (t,x)|Fω,k[ψ](t,x)〉 ∀ψ ∈ D(Rd+1)

The class S(Rd) allows to put the Fourier transform to maximal use:

Theorem A.1. The Fourier transform is an automorphism on S′(Rd).

For a proof see e.g. [Rud91].
The usual rules of differentiation apply:

Theorem A.2. Consider a distribution q and its Fourier transform q̂. Then

i)

∇xF−1
k [q̂(k)] = F−1

k [ikq̂(k)] (79)

ii)

F−1
k [∇kq̂] = −ixF−1

k [q̂] (80)

Fx[∇xq] = ikFx[q] (81)
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Proof. i) For every test function ψ ∈ S(Rd)

〈∇xF−1
k [q̂(k)]|ψ(x)〉 = −〈q̂(k)|F−1

x [∇xψ(x)]〉 = 〈F−1
k [ikq̂(k)]|ψ〉 (82)

ii) Analogously,

〈F−1
k [∇kq̂(k)]|ψ(x)〉 = 〈∇kq̂(k)|F−1

x [ψ]〉 = −〈q̂(k)|∇kF−1
x [ψ]〉 (83)

= −〈q̂(k)|F−1
x [ixψ]〉 = 〈−ixF−1

k [q̂(k)]|ψ(x)〉 (84)

The other equation is shown by repeating the argumentation for Fx[q].
�

The Fourier transform of 1 is (up to factors) the Dirac distribution δ0:

Definition A.5 (Dirac distribution). The Dirac distribution δx′ , or δx=x′ , is defined as 〈δx′ |ψ〉 := ψ(x′)
∀ψ ∈ D(Rd).

Distributional solutions to partial differential equations are discussed in e.g. [Joh78].

Definition A.6 (Distributional solution). Given a first order linear differential operator L containing deriva-
tives with respect to t ∈ R and x ∈ Rd and given initial data q0 ∈ D′(Rd), q is called a distributional solution of
Lq = 0 if it holds as an identity in D′(Rd); i.e. if 〈Lq|ψ〉 = 0 ∀ψ ∈ D(Rd+1) and q|t=0 = q0.

Whenever a solution f ∈ L1
loc in the sense of functions exists, then f is a distributional solution. In general

in the following the solution will not be a function, but the initial data q0 will. If the initial data are locally
integrable functions, then in the context of a distributional initial value problem they are to be interpreted as
regular distributions q0 .

The convolution F ∗G of two distributions F and G can be defined in certain cases. Here only the following
definition is needed, and the reader is referred to e.g. [Rud91] for further details.

Definition A.7 (Convolution). The convolution F ∗ G of F,G ∈ D′(Rd), with at least one of them having
compact support, is defined ∀ψ ∈ D(Rd) as

〈(F ∗G)(x)|ψ(x)〉 =
〈
F (x)|〈G(y)|ψ(x + y)〉

〉
(85)

If F and G are regular distributions, i.e. F = f , G = g , with f, g having compact support, then

〈 f ∗ g |ψ〉 =

∫
dxf(x)

∫
dyg(y)ψ(x+ y) =

∫
dξ

(∫
dyf(ξ − y)g(y)

)
ψ(ξ) (86)

It can be shown that δ0 acts as the identity upon convolution, and δx′ as translation by x′. For F,G ∈ S′(Rd)
and at least one of them compactly supported, the product of Fourier transforms is the Fourier transform of
the convolution:

Fx[F ](k) · Fx[G](k) =
1

(2π)d/2
Fx[F ∗G](k) (87)

Appendix B. Derivation of the solution formulae

The very standard procedure of finding a solution to any linear equation such as (17) for sufficiently regular
initial data q0(x) is to decompose them into Fourier modes

q0(x) =
1

(2π)d/2

∫
dk q̂0(k) exp(ik · x) (88)
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where d ∈ N is the dimensionality of the space. The coefficients q̂0(k) = (v̂0(k), p̂0(k)) of this decomposition
are the Fourier transform of q0 and k here characterizes the mode. The time evolution of any single Fourier
mode can be found via the ansatz

Tt

(
exp(ik · x)

)
= exp(−iω(k)t+ ik · x) (89)

where the function ω(k) is to be determined from the equations by inserting the ansatz. The time evolution
q(t,x) of the initial data q0(x) is given by adding all the time evolutions of the individual modes. For the
acoustic system (7)–(8) the solution can then be found to be

p(t,x) =
1

(2π)d/2

∫  p̂0(k) + k·v̂0(k)
|k|

2
exp(ik · x− ic|k|t)

+
p̂0(k)− k·v̂0(k)

|k|

2
exp(ik · x + ic|k|t)

 dk (90)

v(t,x) =
1

(2π)d/2

∫  p̂0(k) + k·v̂0(k)
|k|

2

k

|k|
exp(ik · x− ic|k|t)

+

k·v̂0(k)
|k| − p̂0(k)

2

k

|k|
exp(ik · x + ic|k|t)

+

{
v̂0(k)− k

|k|
k · v̂0(k)

|k|

}
exp(ik · x)

)
dk (91)

An analogous formula is valid in the sense of distributions:

Theorem B.1. Given q̂0 = (v̂0, p̂0) ∈ (S′(Rd))n, n = d+ 1, the distributional solution to (7)–(8) is

p(t,x) = F−1
k

 p̂0(k) + k·v̂0(k)
|k|

2
exp(−ic|k|t) +

p̂0(k)− k·v̂0(k)
|k|

2
exp(ic|k|t)

 (x) (92)

v(t,x) = F−1
k

 p̂0(k) + k·v̂0(k)
|k|

2

k

|k|
exp(−ic|k|t) +

k·v̂0(k)
|k| − p̂0(k)

2

k

|k|
exp(ic|k|t)

+

{
v̂0(k)− k

|k|
k · v̂0(k)

|k|

}]
(x) (93)

Proof. The use of S′ makes sure that the Fourier transforms exist according to Theorem A.1. Denoting the
solution q = (v, p) (with independent variables t, x) and its Fourier transform q̂ (with independent variables
ω,k), one has q = F−1

ω,k[q̂]. q being the distributional solution to ∂tq + J · ∇q = 0 means〈
(∂t + J · ∇)F−1

ω,k[q̂]
∣∣∣ψ〉 = 0 ∀ψ ∈ S(Rd) (94)

which by (79) is 〈
F−1
ω,k[i(−ω + J · k)q̂]

∣∣∣ψ〉 = 0 (95)
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This is only true if ω equals to one of the eigenvalues ωn (n = 1, . . . d + 1) of J · k. For the acoustic system
(7)–(8) J · k is symmetric and ωn ∈ {0,±c|k|}.

The matrix J · k appears in the study of the Cauchy problem and bicharacteristics (see e.g. [CH62], VI, §3).
Hyperbolicity guarantees its real diagonalizability. Choosing orthonormal eigenvectors en (n = 1, . . . , d + 1)
which fulfill

(J · k)en = ωnen (96)

the vector q̂ can be, for every k, decomposed according to the eigenbasis of J · k:

q̂(k) =

d+1∑
n=1

en(en · q̂(k)) (97)

Then

d+1∑
n=1

〈
F−1
ω,k[i(−ω + ωn)en(en · q̂0(k))]|ψ

〉
= 0 (98)

Thus, knowing that 〈xT |ψ(x)〉 = 0 is solved by T = δ0,

en(en · q̂0(k)) = δω=ωn
q̂0n(k)

√
2π (99)

with arbitrary distributions q̂0n(k) ∈ S′(Rd). The factor
√

2π has been chosen for convenience. Performing the
Fourier transform with respect to ω gives

q(t,x) =

d+1∑
n=1

F−1
k [q̂0n(k) exp(−iωn(k)t)] (100)

in the sense of distributions. Obviously, q̂0n(k) are related to the initial data:

q̂0n(k) = en(en · q̂0(k)) (101)

Using this, and computing the eigenvectors explicitly for (7)–(8) completes the proof. �

Given the Fourier transform of any initial data therefore the solution can easily be constructed. The solution
formulae are most conveniently expressed using spherical averages:

Definition B.1 (Radial Dirac distribution and step function). Choose r ∈ R+ and d ∈ N+.

i) The radial Dirac distribution δ|x|=r is defined as

〈
δ|x|=r|ψ(x)

〉
:=

∫
Sd−1
r

dxψ(x) ∀ψ ∈ D(Rd) (102)

ii) In order to restrict a suitable function f onto the ball Bdr define the following notation (multiplication by a
step function)

Θ|x|≤rf(x) :=

{
f(x) x ∈ Bdr
0 else

(103)
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Definition B.2 (Spherical average). In three spatial dimensions, the spherical average at a radius r of a
distribution T is given by

1

4π

δ|x|=r

r2
∗ T

If T is a regular distribution T = f , then by Definition A.7 ∀ψ ∈ S(R3)

1

4π

〈
δ|x|=r

r2
∗ T
∣∣∣ψ〉 =

1

4π

1

r2

∫
S2
r

dx

∫
dyf(y)ψ(x + y) (104)

=

〈
1

4π

∫
S2

1

dyf(x + ry)
∣∣∣ψ(x)

〉
(105)

Here,
∫
S2

1
dy denotes an integration over the surface of a 2-sphere of radius 1, i.e. in spherical polar coordinates

this amounts to ∫ π

0

dϑ sinϑ

∫ 2π

0

dϕ (106)

Theorem B.2 (Radial Dirac distribution). The radial derivative of the radial step function Θ|x|≤r is closely
related to the radial Dirac distribution:

−δ|x|=rn = ∇ Θ|x|≤r (107)

which can be rewritten as

−δ|x|=r = ∂rΘ|x|≤r (108)

Proof. Recall the definition of a ball Bd+1
r = {x ∈ Rd+1 : |x| ≤ r}. Use Definition B.1 and Gauss’ Theorem, for

any ψ ∈ D(Rd):

−〈δ|x|=rn|ψ〉 = −
∫
Sd
r

dx
x

|x|
· ψ = −

∫
Bd+1

r

dx∇ · ψ = −〈Θ|x|≤r |∇ψ〉 (109)

= 〈∇ Θ|x|≤r |ψ〉 (110)

Multiplying through with n proves the assertion. �

Lemma B.1 (Fourier transforms). i) In three spatial dimensions, given r ∈ R+, k ∈ R3,∫
S2
r

dx exp(ikx) = 4πr2 sin(|k|r)
|k|r

(111)

ii) In three spatial dimensions, the Fourier transform of the radial Dirac distribution δ|x|=r is given by

Fx[δ|x|=r](k) =
2

(2π)1/2
r2 sin(|k|r)

|k|r
(112)

iii) In three spatial dimensions, the Fourier transform of Θ|x|≤r
1
|x| is given by

Fx

[
Θ|x|≤r

|x|

]
(k) = − 2

(2π)1/2

cos(|k|r)− 1

|k|2
(113)
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Proof. i) Integrating in spherical polar coordinates:∫
S2
r

dx exp(ikx) = r2

∫ π

0

dϑ sinϑ

∫ 2π

0

dϕ exp(i|k|r cosϑ) = 4πr2 sin(|k|r)
|k|r

(114)

ii) Using i) and Definitions B.1 and A.4, for any ψ ∈ S(R3)

〈Fx[δ|x|=r]|ψ〉 = 〈δ|x|=r|Fk[ψ]〉 =

∫
S2
r

dx
1

(2π)3/2
dk exp(−ik · x)ψ(k) (115)

=
〈 1

(2π)3/2

∫
S2
r

dx exp(−ik · x)
∣∣∣ψ〉 (116)

=
〈 2

(2π)1/2
r2 sin(|k|r)

|k|r

∣∣∣ψ〉 (117)

iii) Note that Θ|x|≤r
1
|x| is an L1

loc compactly supported function in three spatial dimensions. Thus,

Fx

[
Θ|x|≤ρ

|x|

]
(k) =

1

(2π)3/2

∫ ρ

0

dr
1

r

∫
|x|=r

dx exp(−ik · x) (118)

=
2

(2π)1/2|k|

∫ ρ

0

dr sin(|k|r) = − 2

(2π)1/2

cos(|k|ρ)− 1

|k|2
(119)

�

Finally, with these results it is possible to derive solution formulae for (7)–(8).

Theorem B.3 (Solution formulae). Consider the distributions

q(t,x) = (v(t,x), p(t,x)) ∈ (S′(R3))n

with

p(t,x) = p0(x) − 1

4π

1

ct
(div v0 ∗δ|x|=ct)−

1

4π
(div grad p0 ∗

Θ|x|≤ct

|x|
) (120)

v(t,x) = v0(x) +
1

4π
(grad div v0 ∗

Θ|x|≤ct

|x|
)− 1

4π

1

ct
(grad p0 ∗δ|x|=ct) (121)

They are distributional solutions to

∂tq + J · ∇q = 0 (122)

with J given by (19), d = 3, n = d+ 1 and compactly supported2 L1
loc initial data v0(x), p0(x) such that

(v(0,x), p(0,x)) = ( v0(x) , p0(x) ) ∈ (S′(R3))n

Proof. Recall the differentiation rule in presence of the Fourier transform as formulated in (81). Denote by ∂i
differentiation with respect to the i-the direction and ki the corresponding component of k.

2Any other condition that makes a regular distribution be contained in the space S′(Rd) would fit here as well. For finite t,

the solution to hyperbolic PDEs only involves a compact subset of the initial data, such that the behaviour of the initial data at
spatial infinity can be chosen arbitrary.
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Inserting the definition of p̂0(k) and v̂0(k) into (92)–(93) yields

Fx[p(t,x)](k) = Fx[ p0 ](k) · cos(c|k|t)− Fx[div v0 ](k) · sin(c|k|t)
|k|

(123)

Fx[v(t,x)](k) = Fx[ v0 ](k)− Fx[grad div v0 ](k)
cos(c|k|t)− 1

|k|2

− Fx[grad p0 ](k)
sin(c|k|t)
|k|

(124)

Now using Lemma B.1 one rewrites

Fx[p(t,x)](k) = Fx[ p0 ](k)− Fx[div v0 ](k) · Fx[δ|x|=ct](k)

√
2π

2ct

− Fx[div grad p0 ](k) · Fx

[
Θ|x|≤ct

|x|

]
(k)

√
2π

2
(125)

Fx[v(t,x)](k) = Fx[ v0 ](k) + Fx[grad div v0 ](k) · Fx

[
Θ|x|≤ct

|x|

]
(k)

√
2π

2

− Fx[grad p0 ](k) · Fx[δ|x|=ct](k)

√
2π

2ct
(126)

When rewriting cos(c|k|t)− 1 as a Fourier transform, 1 = k·k
|k|2 has been inserted. As both

Θ|x|≤ct

|x|
and δ|x|=ct

have compact support, the convolutions that involve one of them are well defined (see Definition A.7). Thus
the products above can be converted into Fourier transforms of convolutions, which proves the assertion. �

Corollary B.1. If all the derivatives exist in the sense of functions and are integrable, then Equations (120)–
(121) become

p(t,x) = p0(x) +

∫ ct

0

dr r
1

4π

∫
S2

1

dy (div grad p0)(x + ry)− ct 1

4π

∫
S2

1

dy div v0(x + cty) (127)

v(t,x) = v0(x) +

∫ ct

0

dr r
1

4π

∫
S2

1

dy (grad div v0)(x + ry)− ct 1

4π

∫
S2

1

dy (grad p0)(x + cty) (128)

Proof. The formulae (120)–(121) are transformed into (127)–(128) by noting that if f is integrable, then for all
ψ ∈ D(Rd)

1

4π

(
f ∗

Θ|x|≤ct

|x|

)
=

1

4π

∫
|y|≤ct

dy
1

|y|
f(x− y) =

∫ ct

0

dr r
1

4π

∫
S2

1

dyf(x + ry) (129)

1

4π
〈 f ∗δ|x|=ct|ψ〉 =

〈 1

4π

∫
S2
ct

dyf(x− y)
∣∣∣ψ〉 =

〈
(ct)2 1

4π

∫
S2

1

dyf(x + cty)
∣∣∣ψ〉 (130)

�

The components of any vector y ∈ Rd are denoted by yi, i = 1, . . . , d. For example the components of the
unit normal vector n := x

|x| are denoted by ni, i = 1, . . . , d. The Kronecker symbol is

δij :=

{
1 i = j

0 else
(131)
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In order to simplify notation the following distributions will be used:

Theorem B.4. i) Given a test function ψ ∈ D(R3) the following integral exists

∫ ct

0

dr
1

r3

∫
S2
r

dy

(
3
yiyj
|y|2

− δij
)
ψ(y) (132)

This defines a distribution Σij(ct) whose action 〈Σij(ct)|ψ〉 onto a test function ψ is given by (132).
ii) Given a test function ψ ∈ D(R3) the following integrals exists

∫ ct

0

dr
1

r
∂r

[
1

r
∂r

(
r

∫
S2
r

dy
yiyj
|y|2

ψ(y)

)
− 1

r

∫
S2
r

dyδijψ(y)

]
(133)

This defines a distribution σij(ct) whose action 〈σij(ct)|ψ〉 onto a test function ψ is given by (133).

Proof. One needs to prove the existence of the integrals, because including the origin into the integration domain
might potentially be problematic. Therefore, for δ > 0, divide the integration over [0, ct] into two integrals over
[0, δ] and [δ, ct] and consider δ → 0.

The reason why the integrals exist is subtle. First of all, without the test function one finds upon explicit
computation

∫
S2

1

dy yiyj =
1

3

∫
S2

1

dyδij =
4π

3
δij (134)

Precisely this combination 3yiyj − δij appears in (132) and (132).

i) Recall that ψ ∈ C∞, and therefore by the mean value theorem there exists ξ(r,y) such that

ψ(ry) = ψ(0) + ry · ∇ψ(ξy) (135)

Then for δ > 0

∫ δ

0

dr
1

r3

∫
S2
r

dy

(
3
yiyj
|y|2

− δij
)
ψ(y)

S2
r↔S

2
1=

∫ δ

0

dr
1

r

∫
S2

1

dy (3yiyj − δij)ψ(ry) (136)

=

∫ δ

0

dr
1

r

∫
S2

1

dy (3yiyj − δij)
(
ψ(0) + ry · ∇ψ(ξy)

)
(137)

∣∣∣∣∣
∫ δ

0

dr
1

r3

∫
S2
r

dy

(
3
yiyj
|y|2

− δij
)
ψ(y)

∣∣∣∣∣ (134)
=

∣∣∣∣∣
∫ δ

0

dr

∫
S2

1

dy (3yiyj − δij)y · ∇ψ(ξy)

∣∣∣∣∣ (138)

≤ Cδ‖∇ψ‖∞ (139)
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ii) By expanding

〈σij(ct)|ψ〉 :=

∫ ct

0

dr
1

r
∂r

[
1

r
∂r

(
r3

∫
S2

1

dyyiyjψ(ry)

)
− r

∫
S2

1

dyδijψ(ry)

]
(140)

=

∫ ct

0

dr

[
1

r

∫
S2

1

dy (3yiyj − δij)ψ(ry) + 5∂r

∫
S2

1

dy (5yiyj − δij)ψ(ry)

+r∂2
r

∫
S2

1

dy yiyjψ(ry)

]
(141)

This reduces to the case discussed in i).

�

In the following the convention of summing over repeated indices is adapted.

Lemma B.2. The following laws of differentiation allow to transfer derivatives when working with spherical
means:

i)

∂r

(
f ∗δr

1

r2

)
= ∂i f (x) ∗ δr

1

r2
ni (142)

ii)

∂i( f ∗δ|x|=rni) = −∇x · ∇x f (x) ∗ Θ|x|≤r (143)

Proof. i) Consider a test function ψ ∈ D(R3):

〈 ∂
∂r

f ∗δr
1

r2
|ψ〉 =

〈
f (x)| ∂

∂r
〈δr(y)

1

|y|2
|ψ(x + y)〉

〉
= −

〈
f (x)|

∫
S2

1

dy
∂

∂r
ψ(x + ry)

〉
(144)

= −〈 f (x)|
∫
S2

1

dy y · ∇xψ(x + ry)〉 (145)

=

〈
∇x f (x)

∣∣∣ ∫
S2
r

dy
1

|y|2
y

|y|
· ψ(x + y)

〉
(146)

=

〈
∂

∂xi
f (x) ∗ δr

1

r2
ni

∣∣∣ψ〉 (147)

ii) Recall Theorem B.2 which states that −δ|x|=rn = ∇ Θ|x|≤r . Thus

〈
∂i( f ∗δ|x|=rni)

∣∣∣ψ〉 = −
〈
f
∣∣∣ 〈δ|x|=rni|∂iψ〉〉 (148)

=
〈
f
∣∣∣ 〈∂i Θ|x|≤r |∂iψ

〉〉
= −

〈
f
∣∣∣ 〈∂i∂i Θ|x|≤r |ψ

〉〉
(149)

= −
〈
∇x · ∇x f (x) ∗ Θ|x|≤r

∣∣∣ψ〉 (150)

�
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Note: Equation (142) is the distributional analogue to

∂r

∫
S2

1

dy f(x + ry) =

∫
S2

1

dy yi∂if(x + ry)

and Equation (143) is the distributional analogue to

r2

∫
S2

1

dy y · ∇p0(x + ry) =

∫ r

0

dr′ r′
2
∫
S2

1

dy∇ · ∇p0(x + r′y)

Theorem B.5 (Solution formulae with radial derivatives only). Consider the setup of Theorem B.3 and write
the components of the initial data v0 as v0i, i = 1, 2, 3. The solution (120)–(121) can be rewritten as

p(t,x) = ∂r

(
1

4π

δ|x|=r

r
∗ p0

)
− 1

r
∂r

(
1

4π
δ|x|=rni ∗ v0i

)
(151)

vj(t,x) =
2

3
v0j (x)− 1

r
∂r

(
1

4π
δ|x|=rnj ∗ p0

)
+ ∂r

(
1

4π

δ|x|=r

r
ninj ∗ v0j

)
−
(

1

4π

δ|x|=r

r2
(δij − 3ninj) ∗ v0i

)
+

1

4π
Σij(ct) ∗ v0i (152)

where all derivatives are to be evaluated at r = ct.
Equation (152) is equivalent to

vj(t,x) = v0j (x)− 1

r
∂r

(
1

4π
δ|x|=rnj ∗ p0

)
+

1

4π
σij(ct) ∗ v0i (153)

Note: The convolutions that appear in the above formulae show a particular structure of the solution: The
distribution which is convoluted with the initial data carries the name of Green’s function.

Proof. In order to transfer the r-derivatives in (151)–(153) into the derivative operators in (120)–(121) one uses
the Gauss theorem for the sphere of radius r. For example, differentiating

∂r

(
p0 ∗

δ|x|=r

r

)
(154)

with respect to r yields

∂2
r

(
p0 ∗

δ|x|=r

r

)
=

1

r
∂r

(
r2∂r

(
p0 ∗

δ|x|=r

r2

))
(155)

by elementary manipulations. According to Lemma B.2 i), differentiation with respect to r can be replaced by
n · ∇ inside the spherical mean:

=
1

r
∂r

(
r2

(
∂

∂xi
p0 ∗

δ|x|=rni

r2

))
(156)

and by Gauss theorem (Lemma B.2 ii)) as well as Theorem B.2

= −1

r
∂r

(
∇x · ∇x p0 ∗ Θ|x|≤r

)
=

1

r

(
∇x · ∇x p0 ∗δ|x|=r

)
(157)
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Integrating over r, and evaluating at r = ct yields the sought identity

∂r

(
p0 ∗

δ|x|=r

r

)∣∣∣∣
r=ct

= p0 +∇ · ∇ p0 ∗
Θ|x|≤ct

|x|
(158)

In a similar way the equivalence of the other terms can be shown and is omitted here.
�
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