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1. Introduction. The objective of this paper is to investigate the approxima-11

tion of the p-system using a finite volume technique based on the so-called Suliciu12

relaxation method and explicit time stepping. This technique, initially introduced13

in Suliciu [10] to study phase transition in fluid flows, has been adopted in the nu-14

merical community to design approximate Riemann solvers; we refer the reader to15

Bouchut [1, §4.7] and Coquel et al. [4] and the references therein for more details on16

the method. We restrict ourselves in the present paper to the p-system and show17

that the first-order finite volume technique based on Suliciu’s approximate Riemann18

solver, while being positive under a standard CFL assumption, violates the invariant19

domain properties of the PDE.20

One motivation for the present work is the construction of robust schemes. We21

say that a scheme is robust if, under reasonable CFL condition and if the data are ad-22

missible, it never fails to produce a a solution that satisfies some reasonable (physical)23

bounds. Of course, one would want such a scheme to be at least second-order accu-24

rate in space (accuracy in time is easily achieved by using strong stability preserving25

Runge Kutta techniques). One possible route to construct such a scheme consists of26

computing at each time step a high-order solution and then limiting the high-order27

solution is some way if it violates some local physical bounds. The natural question28

that follows is what to limit and how to limit it? The strategy proposed in Guermond29

et al. [7] consists of using the notion of local convex invariant domain to do the limit-30

ing. We recall that convex invariant domains are convex sets in the phase space that31

are invariant by the PDE. This notion is the natural generalization of the maximum32

principle for scalar equations to hyperbolic systems. For instance, positivity of the33

density, positivity of the internal energy, and the local minimum principle on the spe-34

cific entropy are convex invariant properties for the compressible Euler system. The35

Riemann invariants define convex invariant domains for the p-system. The technique36

proposed in Guermond et al. [7] consists at each time step to compute a low-order37

solution that is guaranteed to be invariant domain preserving and to limit the high-38

order solution by forcing it to be inside some local invariant domain generated by the39
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2 J.-L. GUERMOND, C. KLINGENBERG, B. POPOV, I. TOMAS

low-order solution. This method guarantees that the high-order method is as robust40

as the low-order one. Of course this strategy works well only if the low-order method41

is robust. The purpose of the present note is to show that the first-order finite volume42

technique based on the Suliciu approximate Riemann solver is not robust in the sense43

defined above. More specifically, while the method is definitely positive, we show that44

it violates the invariant domain properties of the p-system.45

The paper is organized as follows. We introduce the problem and notation, and46

recall key results that are used in the rest of the paper in §2. Suliciu’s approximate47

Riemann solver is recalled in §3. Positivity of this method is established in this section.48

The main result of this paper is reported in §4. It is proved therein that the first-order49

finite volume technique based on Suliciu’s approximate Riemann solver violates the50

invariant domain property of the p-system. This statement is proved by producing a51

counterexample. Originality is claimed only for the material presented in §4.52

2. Preliminaries. The objective of this section is to introduce notation and53

preliminary results that will be useful in the rest of the paper. We use the notation54

and the terminology of Hoff [8, 9] and Chueh et al. [3, §6].55

2.1. p-system. The so-called p-system describes the one-dimensional motion of56

an isentropic gas in Lagrangian coordinates57

(2.1)

{
∂tτ − ∂xu = 0,

∂tu+ ∂xp(τ) = 0, for (x, t) ∈ R×R+.
58

The dependent variables are the velocity u and the specific volume τ , i.e., the recip-59

rocal of density. The mapping τ 7→ p(τ) is the pressure and is assumed to be of class60

C2(R+;R) and to satisfy the following properties:61

(2.2) p′ < 0, 0 < p′′,

∫ ∞
1

p(s) ds <∞.62

A typical example is the so-called gamma-law, p(τ) = rτ−γ , where r > 0 and γ > 1.63

The PDE system (2.1) is supplemented with the initial data64

(2.3) τ(x, 0) = τ0(x) > 0, u(x, 0) = u0(x), for x ∈ R.65

We further assume that the fluid at infinity approaches constants states. We shall be66

using these boundary conditions in the rest of the paper without explicitly mentioning67

it.68

2.2. Invariant domain. Defining U := (τ, u)T, F (U) := (−u, p(τ))T, we can69

re-write the p-system in vector form: ∂tU + ∂xF (U) = 0. The Jacobian matrix70

(2.4) DF =

(
0 −1

p′(τ) 0

)
71

is diagonalizable with eigenpairs72

λ1(U) = −
√
−p′(τ), r1(U) = (1,−λ1(U))T,(2.5)73

λ2(U) =
√
−p′(τ), r2(U) = (−1, λ2(U))T.(2.6)7475

The two eigenvalues are distinct and real, thereby showing that this nonlinear system76

is strictly hyperbolic for all τ > 0. Moreover the identitiesDλ1(U)·r1 = Dλ2(U)·r2 =77
p′′(τ)

2
√
−p′(τ)

show that the system is genuinely nonlinear under the condition p′′(τ) > 0.78
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Robustness of the Suliciu approximate Riemann solver 3

Using the notation dµ :=
√
−p′(s) ds, and recalling that we assumed

∫∞
1

dµ <79

∞, the system also has two families of global Riemann invariants:80

(2.7) W1(U) := u+

∫ ∞
τ

dµ, and W2(U) := u−
∫ ∞
τ

dµ.81

We call A := R+×R the admissible set for (2.1). The reasons for this terminology are82

as follows. The Riemann problem with any data in A is uniquely solvable, see Young83

[11, 12]. For any smooth initial data with value in a bounded subset of A there is84

short time existence of a smooth solution to (2.1). Finally, for any smooth initial data85

with value in a bounded subset of A, the parabolic regularization of the (2.1) stays86

in A, see Chueh et al. [3, p. 385].87

For any set A ⊂ A such that supU∈AW1(U) <∞ and −∞ < infU∈AW2(U) we88

define the mappings Wmax
1 ,Wmin

2 : A → R by setting89

(2.8) Wmax
1 (A) := sup

U∈A
W1(U), Wmin

2 (A) := inf
U∈A

W2(U).90

This then leads us to introduce the following set:91

(2.9) C(A) := {U ∈ A |Wmin
2 (A) ≤W2(U), W1(U) ≤Wmax

1 (A)}.92

It is known that W1 is convex and W2 is concave. These two conditions imply that93

C(A) is convex for any admissible set A and A ⊂ C(A) ⊂ A.94

In the rest of the paper we abuse the notation and view the initial data U0 of95

(2.1) as a set in the phase space R+×R, i.e., {U0(x) | x ∈ R}, and using this abuse96

of notation we consider the set C(U0). A remarkable fact is that C(U0) is invari-97

ant for smooth solutions of (2.1), meaning that U(x, t) ∈ C(U0) for all x ∈ R and98

all t until smoothness is lost. Also, the invariance property holds for the parabolic99

regularization of (2.1) as shown in Chueh et al. [3, p. 385]. A natural expectation100

is that any physically relevant solution of (2.1) should satisfy this invariance prop-101

erty, which we henceforth refer to as invariant domain property. One now faces the102

question of constructing numerical approximations that also satisfy the invariant do-103

main property. For instance, it is known that C(U0) is invariant for a variety of104

first-order explicit numerical methods based on finite volumes on uniform grids, see105

e.g., Hoff [9, Thm. 4.1,4.2] and Hoff [8, Thm 2.1]; this property holds true also for106

the continuous finite element technique introduced in Guermond and Popov [6]. The107

purpose of this paper is to show that the first-order finite volume technique based on108

the Suliciu’s approximate Riemann solver, while being positive, violates the invariant109

domain property of the p-system.110

2.3. Riemann problem. Let us consider (2.1) equipped with Riemann data,111

U0(x) = (τR, uR)T =: UL ∈ A if x < 0, U0(x) = (τR, uR)T =: UR ∈ A if 0 < x:112

(2.10) ∂tu + ∂xF (u) = 0, u(·, 0) = U0.113

It is well-known that this problem has a unique entropy satisfying solution; we refer114

the reader to Young [11, 12] for the details.115

Let us denote by ALR := {UL,UR} ⊂ A. It is known that the entropy solution to116

the Riemann problem stays in the set C(ALR). A schematic representation of the set117

C(ALR) is shown in the right panel of Figure 1. Let us denote by λmax(UL,UR) the118

maximum wave speed in the problem; that is, let λmax(UL,UR) := max(|λ−1 |, |λ
+
2 |)119

where λ−1 is the maximum wave speed of the 1-wave and λ+
2 is the maximum wave120
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4 J.-L. GUERMOND, C. KLINGENBERG, B. POPOV, I. TOMAS

speed of the 2-wave. In general one needs to solve exactly the Riemann problem to121

estimate λmax(UL,UR), but in practice it is often enough to have an upper bound122

on λmax(UL,UR) to devise numerical schemes that guarantee that the approximate123

solution to (2.10) stays in C(ALR). This can be done without solving the Riemann124

problem; for instance, the following result established in Guermond and Popov [6,125

Lem. 2.5] gives such an upper bound.126
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ÛÛ
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Fig. 1. Left: Riemann invariants of two states (UL,UR) for the p-system; the state Û is

obtained by solving W1(Û) = Wmax
1 (ALR) and W2(Û) = Wmin

2 (ALR). Right: the shaded region is
the invariant domain C(ALR) for the states UL,UR.

Lemma 2.1. Assume that p(τ) = rτ−γ with γ > 1 and r > 0. Let127

τ̂ := (γr)
1

γ−1

(
4

(γ − 1)(Wmax
1 (ALR)−Wmin

2 (ALR))

) 2
(γ−1)

.128

then λmax(UL,UR) ≤
√
−p′(τ̂).129

In the rest of the paper we denote by λ̂max(UL,UR) any upper bound on the maximum130

wave speed λmax(UL,UR); for instance, for the γ-law, p(τ) = rτ−γ , λ̂max(UL,UR) :=131 √
−p′(τ̂) is such an upper bound as stated in Lemma 2.1. The computation of τ̂ is132

illustrated in the left panel of Figure 1; the state Û is obtained by solving W1(Û) =133

Wmax
1 (ALR) and W2(Û) = Wmin

2 (ALR).134

3. Suliciu’s approximate Riemann solver. We recall in this section impor-135

tant properties of the approximate Riemann solver that we are going to use. No136

originality is claimed on the material presented in this section.137

3.1. The approximate Riemann solution. In this section we produce a con-138

sistent approximate Riemann solution to (2.1). To this end we consider the so-139

called relaxation/projection approximation to the p-system (2.1) described in Bouchut140

[1], Coquel et al. [4]. The relaxation system in question is written as follows:141

(3.1)


∂tτ

ε − ∂xuε = 0,

∂tu
ε + ∂xπ = 0,

∂tπ + a2∂xu
ε = 1

ε (p(τ ε)− π),

142

where we choose a large enough, and ε > 0 is a small parameter (relaxation time). We143

are going to be more precise on how large a should be in the next section. In Carbou144

et al. [2] it is proven under the assumption that if infs∈R+
p′(s) > 0, sups∈R+

p′(s) <145
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Robustness of the Suliciu approximate Riemann solver 5

∞, and a2 > sups∈R+
p′(s), then for any smooth initial data there exists a time146

interval (depending on the data) such that the solution to the system (3.1) converges147

to that of (2.1) as ε→ 0.148

In order to construct an approximate solution to the Riemann problem (2.10) with149

the initial data UL = (τL, uL),UR = (τR, uR), we consider (3.1) with zero right-hand150

side and with the extended initial data ŨL := (τL, uL, p(τL)), ŨR := (τR, uR, p(τR)):151

(3.2)


∂tτ̃ − ∂xũ = 0,

∂tũ+ ∂xπ̃ = 0,

∂tπ̃ + a2∂xũ = 0.

152

The solution to this linear first order PDE consists of four constant states separated by153

three contact lines: x
t = −a < x

t = 0 < x
t = a. Denoting by ξ = x

t the self-similarity154

variable, the solution to the above problem is described as follows:155

(3.3)

ξ ≤ −a −a < ξ ≤ 0 0 < ξ < a a < ξ
τ̃ τL τ∗L τ∗R τR
ũ uL u∗ u∗ uR
π̃ p(τL) π∗ π∗ πR

156

with the notation157 
u∗ := u∗(UL,UR) := uL+uR

2 − p(τR)−p(τL)
2a

π∗ := π∗(UL,UR) := p(τL)+p(τR)
2 − a

2 (uR − uL)

τ∗L := τ∗L(UL,UR) := τL + uR−uL
2a + p(τL)−p(τR)

2a2

τ∗R := τ∗R(UL,UR) = τR + uR−uL
2a + p(τR)−p(τL)

2a2 .

158

We then consider the following expression as an approximation of the flux F (u(0, t)),159

where u is the exact solution of the Riemann problem (2.10) with the Riemann data160

UL = (τL, uL),UR = (τR, uR):161

(3.4) F ∗(UL,UR) := (−u∗(UL,UR), π∗(UL,UR))T.162

Notice that denoting by F̃ (ũ(x, t)) the flux of the extended system (3.2), F ∗(UL,UR)163

is the vector composed of the first two components of F̃ (ũ(0, t)).164

3.2. Positivity. We now want to establish that the solution defined by (3.3) is165

positive in the sense that τ̃(x, t) ≥ 0 for all x ∈ R and all t > 0. To do so we have to166

establish that τ∗L ≥ 0 and τ∗R ≥ 0. Let us introduce the state U defined by167

(3.5) U =
UL + UR

2
− F (UR)− F (UL)

2a
.168

It is well-known that if a ≥ λmax(UL,UR), then U belongs to the invariant set169

C(ALR), see e.g., [6, Lem. 2.1]. In particular, setting U =: (τ , u)T, we have170

inf
(τ,u)∈C(UL,UR)

τ ≤ τ ,(3.6)171

Wmin
2 (ALR) = inf

(τ,u)∈C(UL,UR)
u ≤ u ≤ sup

(τ,u)∈C(UL,UR)

u = Wmax
1 (ALR).(3.7)172

173
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6 J.-L. GUERMOND, C. KLINGENBERG, B. POPOV, I. TOMAS

Lemma 3.1. UL,UR be two states in the admissible set of the p-system. Let174

∆W := Wmax
1 (ALR)−Wmin

2 (ALR). Let a be such that175

(3.8) a ≥ max(λmax(UL,UR),
∆W

min(τL, τR)
),176

then τ∗L(UL,UR) ≥ 0 and τ∗R(UL,UR) ≥ 0.177

Proof. We first notice that178

τ∗L = τL +
1

a
(u− uL), τ∗R = τR +

1

a
(uR − u).179

As a result, positivity holds if a ≥ max( (uL−u)+
τL

, (u−uR)+
τR

). Notice that if a ≥180

λmax(UL,UR) then max(|u − uL|, |uR − u|) ≤ ∆W owing to (3.7). Therefore the181

desired result holds true if a ≥ ∆W/min(τL, τR).182

Remark 3.2 (Expansion wave). In order to have some intuition on the relative183

magnitude of the quantities appearing on the right-hand side of (3.8), let us assume184

that UL and UR are located on a 1-wave and τL < τR; i.e., the Riemann solution185

is an expansion wave. This case will be used to construct the counterexample in186

§4.2. Let us further assume that the equation of state is a γ-law p(τ) = rτ−γ .187

Then λmax(UL,UR) =
√
−p′(τL) = (γr)

1
2 τ
− γ+1

2

L . Moreover, ∆W = W1(UL) −188

W2(UL) = 2
∫∞
τL

√
−p′(s) ds; that is, min(τL, τR)−1∆W = 4

γ−1 (γr)
1
2 τ
− γ+1

2

L . In this189

case we have min(τL, τR)−1∆W = 4
γ−1λmax(UL,UR); in particular, for γ ∈ (1, 5),190

we have min(τL, τR)−1∆W > λmax(UL,UR). No claim is made on the optimality191

of the bound (3.8). The results reported at the end of §4.2 have been obtained with192

a = max(λ̂max(UL,UR) ≥ max(λmax(UL,UR). �193

4. The main result. We describe in this section the Godunov-type finite volume194

scheme using the approximate Riemann solver defined in §3 to solve (2.1), and we195

show that the scheme is positive but violates the invariant domain property.196

4.1. Finite volume discretization. Let Th := {xi+ 1
2
}i∈Z be a sequence of197

distinct points in R. We denote Ii := [xi− 1
2
, xi+ 1

2
], hi := xi+ 1

2
− xi− 1

2
. We are going198

to solve (2.1) with a Godunov-type finite volume technique using the approximation199

space P 0(Th) := {vh ∈ L∞(R;R2) | vh|Ii ∈ P0×P0, ∀i ∈ Z}, where P0 denotes the200

real vector space composed of the constant univariate polynomials. The interface flux201

will be computed by using the approximate flux (3.4).202

Given cell average {Un
i }i∈Z at time tn, n ∈ N, we define the update {Un+1

i }i∈Z203

by setting204

(4.1) hi(U
n+1
i −Un

i ) + ∆t(F ∗(Un
i ,U

n
i+1)− F ∗(Un

i−1,U
n
i )) = 0,205

where we recall that the interface flux is given by (3.4):206

(4.2) F ∗(Un
i ,U

n
i+1) := (−u∗(uni , uni+1), π∗(uni , u

n
i+1))T,207

where the speed a in (3.2) is denoted an
i+ 1

2

, i ∈ Z. This quantity is chosen by the user208

and should be large enough; for instance, based on Lemma 3.1 one could take209

(4.3) ani+ 1
2

= max(λmax(Un
i ,U

n
i+1),

∆Wn
i+ 1

2

min(τni , τ
n
i+1)

),210

with ∆Wn
i+ 1

2

:= max(W1(Un
i ),W1(Un

i+1))−min(W2(Un
i ),W2(Un

i+1)).211
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Robustness of the Suliciu approximate Riemann solver 7

Lemma 4.1 (Positivity). Given admissible states Un
i−1,U

n
i ,U

n
i+1, assume that212

the condition (4.3) on an
i− 1

2

and an
i+ 1

2

holds for the pairs (Un
i−1,U

n
i ) and (Un

i ,U
n
i+1).213

Assume also that (an
i− 1

2

+ an
i+ 1

2

)∆t < hi, then the scheme is positive, i.e., τn+1
i > 0.214

Proof. Since (an
i− 1

2

+ an
i+ 1

2

)∆t < hi, the definition of the flux (4.2) implies that215

Un+1
i =

ani− 1
2
∆t

hi
U∗,R
i− 1

2

+
ani+ 1

2
∆t

hi
U∗,L
i+ 1

2

+
(

1−
ani− 1

2
∆t

hi
−
ani+ 1

2
∆t

hi

)
Un
i ,216

where217

U∗,R
i− 1

2

:= (τ∗R(Un
i−1,U

n
i ), u∗(Un

i−1,U
n
i ))T,218

U∗,L
i+ 1

2

:= (τ∗L(Un
i ,U

n
i+1), u∗(Un

i ,U
n
i+1))T,219

220

and the functions τ∗L, τ∗R, and u∗ are defined in (3.3). We have established in221

Lemma 3.1 that τ∗R(Un
i−1,U

n
i ) ≥ 0 and τ∗L(Un

i ,U
n
i+1) ≥ 0 under the condition (4.3)222

for the pairs (Un
i−1,U

n
i ) and (Un

i ,U
n
i+1). Then τn+1

i is a convex combination of223

the three states τ∗R(Un
i−1,U

n
i ) ≥ 0, τni > 0, and τ∗L(Un

i ,U
n
i+1) ≥ 0 under the CFL224

condition (an
i− 1

2

+ an
i+ 1

2

)∆t < hi, which proves the result.225

4.2. Violation of the invariant domain property. We show in this section226

that it is possible to find initial data such that the scheme defined in (4.1)-(4.2) violates227

the invariant domain property of the p-system. The counterexample in question is228

built by considering an expansion wave.229

Let uL, uR ∈ R, and τL, τR ∈ R+. We set the initial data to (2.1) to be230

(4.4) u0h|Ii =: U0
i :=

{
(τL, uL)T if i < 1,

(τR, uR)T if 1 ≤ i.
231

Then, the following result demonstrates that the (4.1)-(4.2) is not invariant domain232

preserving.233

Theorem 4.2. Assume that τL < τR and W1(UL) = W1(UR). Assume that a0
1
2

234

satisfies (4.3) and
a01

2
∆t

h0
≤ 1. Then we have Wmax

1 (ALR) < W1(U1
0), i.e., the scheme235

(4.1)-(4.2) violates the invariant domain property of the p-system at the first time236

step.237

Proof. After observing that U∗,R− 1
2

= uL, we infer that238

U1
0 =

a0
1
2
∆t

h0
U∗,L1

2

+
(
1−

a0
1
2
∆t

h0

)
U0

0.239
240

Denoting α :=
a01

2
∆t

h0
and a := a0

1
2

we can write the components of U1
0 as follows:241

τ1
0 = τL +

α(uR − uL)

2a
+
α(p(τL)− p(τR))

2a2
,242

u1
0 = uL +

α(uR − uL)

2
+
α(p(τL)− p(τR)

2a
.243

244
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8 J.-L. GUERMOND, C. KLINGENBERG, B. POPOV, I. TOMAS

We take uR−uL =
∫ τR
τL

dµ which corresponds to the states U0
0 := UL and U0

1 := UR245

being on a left expansion wave. Then Wmax
1 (ALR) = W1(U0

0) = W1(U0
1). Let us246

denote ∆W := W1(U1
0)−Wmax

1 (ALR). We have that247

∆W =
α(uR − uL)

2
+
α(p(τL)− p(τR))

2a
−
∫ τ1

0

τL

dµ.248

Observing that τL < τR implies that uR > uL, p(τL) > p(τR), and τ1
0 > τL. Using249

that dµ :=
√
−p′(s) ds and

√
−p′(s) is a strictly decreasing function we have250

∆W >
α(uR − uL)

2
+
α(p(τL)− p(τR))

2a
−
√
−p′(τL)(τ1

0 − τL).251

Recalling that τ1
0 − τL = α(uR−uL)

2a + α(p(τL)−p(τR))
2a2 , we conclude that252

∆W >
(α(uR − uL)

2
+
α(p(τL)− p(τR))

2a

)(
1−

√
−p′(τL)

a

)
.253

Notice that α(uR−uL)
2 +α(p(τL)−p(τR))

2a is positive. Recalling that a is an upper bound on254

the maximum speed of propagation in the Riemann problem, we have
√
−p′(τL) ≤ a.255

Hence, ∆W > 0 for any
√
−p′(τL) ≤ a and therefore U1

0 is not in the local invariant256

domain of the states U0
0 and U0

1. Notice in passing that we actually have established257

an upper bound and a lower bound on ∆W258

(4.5) 1 >
∆W

α(uR−uL)
2 + α(p(τL)−p(τR))

2a

>
(
1−

√
−p′(τL)

a

)
,259

and these two bounds are independent on the mesh size. This completes the proof.260

To illustrate Theorem 4.2, we compare the scheme (4.1)-(4.2) with the so-called261

GMS-GV1 scheme descried in Guermond and Popov [6]. (GMS stands for Guaranteed262

Maximum Speed and GV1 stands for first-order graph viscosity.) In the present263

context, the GMS-GV1 scheme can be rewritten as follows:264

(4.6) hi(U
n+1
i −Un

i ) + ∆t(FGMS(Un
i ,U

n
i+1)− FGMS(Un

i−1,U
n
i )) = 0,265

where266

FGMS(U ,V ) :=
1

2
(F (U) + F (V )) +

1

2
λ̂max(U ,V )(U − V ).267

The initial data that we use is similar to that invoked in the proof of Theorem 4.2: the268

states UL, UR are parts of an expansion (1-wave). We take τL := 0.01 and uL := 0.269

The following ratios τR/τL ∈ {1.1, 2, 8, 32} are tested, and the quantity uR is given270

by uR := uL +
∫ τR
τL

dµ. We use the equation of state p(τ) := 1/(γτγ) with γ := 1.4.271

The speed an
i+ 1

2

is computed by setting an
i+ 1

2

:= λ̂(Un
i ,U

n
i+1) using the estimate of272

λ̂(U ,V ) given in Lemma 2.1. The time step is defined by ∆t := CFLhi/
√
−p′(τL)273

where we set CFL := 0.9. The results shown in Figure 2 compare in the phase space274

(u(x, t) vs. τ(x, t)) the GMS-GV1 solution and the solution given by the scheme (4.1)-275

(4.2). The comparison is done after 3 time steps. Notice that the GMS-GV1 solution276

is invariant domain preserving, as proved in Guermond and Popov [6, Thm. 4.1]. The277

scheme (4.1)-(4.2) clearly steps out of the invariant domain; that is, there are states278

U j such that W1(U j) > Wmax
1 (ALR), on the plots these states sit above the blue279
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curve, which is the graph of the exact solution in the phase space and is also the280

upper boundary of the invariant domain. Let us emphasize that the results shown in281

Figure 2 are independent of the number of grid points; More precisely, the amount of282

violation only depends on the CFL number and the number of time step, as established283

in (4.5).
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(d) τR = 32τL

Fig. 2. Illustration of Theorem 4.2. Comparison in the phase space (τ, u) of the GMS-GV1
solution and the solution given by the scheme (4.1)-(4.2) after 3 time steps: τL = 0.01; uL = 0;

p(τ) = 1/(γτγ); γ = 1.4; an
i+ 1

2

computed by setting an
i+ 1

2

= λ̂(Un
i ,U

n
i+1); ∆t = 0.9hi/

√
−p′(τL).

284

4.3. Artificial viscosity interpretation. In this section we reinterpret the285

scheme (4.1)-(4.2) in term of artificial viscosity and put the scheme in perspective286

with the parabolic regularization theory of Chueh et al. [3].287

We start by mentioning a result that will help us understand why the scheme (4.1)-288

(4.2) is not invariant domain preserving.289

Lemma 4.3 (Parabolic regularization). The following parabolic regularization of290

the system (2.1) ∂tu
ε,µ + ∂xF (uε,µ) = (ε∂xxτ

ε,µ, µ∂xxu
ε,µ)T with ε, µ > 0 preserves291

the invariant domains of (2.1) if and only if ε = µ.292

This results is proved in Chueh et al. [3, p. 385]. A somewhat similar result has been293

proved in Guermond and Popov [5, Thm. 4.1] for the Euler equations.294

Let us now rewrite the flux F ∗(Un
i ,U

n
i+1) introduced in (4.2) as the sum of the295
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10 J.-L. GUERMOND, C. KLINGENBERG, B. POPOV, I. TOMAS

centered flux plus a “viscous” perturbation:296

F ∗(Un
i ,U

n
i+1) =

 −u
n
i +uni+1

2 +
p(τni+1)−p(τni )

2an
i+1

2

p(τni )+p(τni+1)

2 −
an
i+1

2

2 (uni+1 − uni )

297

=
1

2
(F (Un

i ) + F (Un
i+1)) +

1

2
ani+ 1

2

(
p(τni+1)−p(τni )

(an
i+1

2

)2

uni − uni+1

)
.298

299

This expression shows that using the approximate flux F ∗(Un
i ,U

n
i+1) is strictly equiv-300

alent to using the centered flux augmented with the heterogenous viscous flux301

1

2
ani+ 1

2

(
− p(τni+1)−p(τni )

(an
i+1

2

)2(τni+1−τni ) (τni − τni+1)

uni − uni+1

)
.302

This argument shows in turn that the scheme (4.1)-(4.2) is a discrete realization of303

the following perturbed PDE:304

∂tu
ε + ∂xF (uε) =

(
∂x

(
1
2aε
|p′(τε)|
a2 ∂xτ

ε
)

∂x
(

1
2aε∂xu

ε
) )

,305

where the quantity ε plays the role of the meshsize. In the light of Lemma 4.3,306

we now understand that to make the scheme (4.1)-(4.2) invariant domain preserv-307

ing one should set (ani+ 1
2
)2 = −p(τ

n
i+1)−p(τni )

τni+1−τni
. But this choice is not good enough,308

since one should also have ani+ 1
2
≥ λmax(Un

i ,U
n
i+1) (see [5, Thm. 4.1]), which implies309

(ani+ 1
2
)2 > −p(τ

n
i+1)−p(τni )

τni+1−τni
because λ2

max(Un
i ,U

n
i+1) = −p′(τL) and p is a strictly de-310

creasing function. Hence the requirements (ani+ 1
2
)2 = −p(τ

n
i+1)−p(τni )

τni+1−τni
and (ani+ 1

2
)2 ≥311

λmax(Un
i ,U

n
i+1) cannot be achieved at the same time. In conclusion, we conjecture312

that the scheme (4.1)-(4.2) cannot be made invariant domain preserving for any choice313

of ani+ 1
2
.314
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