
TASK-BASED PARALLELIZATION OF AN IMPLICIT KINETIC SCHEME

JAYESH BADWAIK, MATTHIEU BOILEAU, DAVID COULETTE, EMMANUEL FRANCK,
PHILIPPE HELLUY, CHRISTIAN KLINGENBERG, LAURA MENDOZA, HERBERT OBERLIN

Abstract. In this paper we present and implement the Palindromic Discontinuous Galerkin
(PDG) method in dimensions higher than one. The method has already been exposed and
tested in [4] in the one-dimensional context. The PDG method is a general implicit high order
method for approximating systems of conservation laws. It relies on a kinetic interpretation of
the conservation laws containing stiff relaxation terms. The kinetic system is approximated with
an asymptotic-preserving high order DG method. We describe the parallel implementation of
the method, based on the StarPU runtime library. Then we apply it on preliminary test cases.

1. Introduction

In this work we consider the time discretization of compressible fluid models that appear in gas
dynamics, biology, astrophysics or plasma physics for tokamaks. These models can be unified in
the following form

(1.1) ∂tw +

D∑
k=1

∂kq
k(w) = s,

where w : RD × [0, Tmax] −→ Rm is the vector of conservative variables, qk(w) : Rm −→ Rm is
the flux and s : RD×R× Rm −→ Rm is a source term. D represents the physical space dimension
and m the number of unknowns.
In many physical applications such as MHD flows, low Mach Euler equations, Shallow-Water with
sedimentation, the model presents several time scales associated to the propagation of different
waves. When the time scale of fast phenomena, which constrains the explicit CFL condition, is
very small compared to the time scale of the most relevant phenomena, it becomes necessary to
switch to implicit schemes. However classical implicit schemes are very costly in 2D or 3D because
they require the resolution of linear or non-linear systems at each time step. In addition, the
matrices associated with the hyperbolic systems are generally ill-conditioned.
In this paper, we propose to follow another approach for avoiding the resolution of complicated
linear systems. Instead of solving the full fluid model (1.1) directly, we replace it by a simpler kinetic
interpretation made of a set of transport equations coupled through a stiff relaxation term [1, 3, 7].
See also [4] and included references. The kinetic system is then solved by a splitting method where
the transport and relaxation stages are treated separately. The method is then well adapted to
parallel optimizations. The method is already presented in [4] in the one-dimensional case. Here
we present its implementation in higher dimensions. We particularly focus our presentation of the
massive parallelization of the method with the StarPU runtime system [2].
The outlines are as follows.
First we recall that it is possible to provide a general kinetic interpretation of any system of
conservation laws. The interest of this representation is that the complicated non-linear system is
replaced by a (larger) set of scalar linear transport equations that are much easier to solve. The
transport equations are coupled through a non-linear source term that is fully local in space.
Then, we detail the approximation which allows to solve the transport equation in an efficient way.
We adopt a Discontinuous Galerkin (DG) method based on an upwind numerical flux and Gauss-
Lobatto quadrature points. Thanks to the upwind flux, the matrix of the discretized transport
operator has a block-triangular structure.

Key words and phrases. Lattice Boltzmann; Discontinuous Galerkin; implicit; high order; runtime system;
parallelism.

1

TASK-BASED PARALLELIZATION OF AN IMPLICIT KINETIC SCHEME 2

The main part of this work is devoted to the task parallelization based on the StarPU library for
treating the transport and relaxation steps efficiently. We use the MPI version of StarPU, which
allows to address clusters of multicore processors. We also describe the domain decomposition and
the macrocell approach that we have used to achieve better performance.
Finally, we give some numerical results for measuring the efficiency of the parallelism and the
ability of the method to compute realistic problems.

2. Kinetic model

We consider the following kinetic equation

(2.1) ∂tf +

D∑
k=1

Vk∂kf =
1

τ
(feq(f)− f) + g.

The unknown is a vectorial distribution function f(x, t) ∈ Rnv depending on the space variable
x = (x1 . . . xD) ∈ RD and time t ∈ R. g(x, t, f) is a vectorial source term, possibly depending on
space, time and f . The partial derivatives are noted

∂t =
∂

∂t
, ∂k =

∂

∂xk
.

The relaxation time τ is a small positive constant. The constant matrices Vk, 1 ≤ k ≤ D are
diagonal

Vk =

vk1

vk2
. . .

vknv

In other words, (2.1) is a set of nv transport equations at constant velocities vi = (v1

i , . . . , v
D
i),

coupled through a stiff BGK relaxation, and with an optional additional source term. We denote
by V · ∂ =

∑D
k=1 Vk∂k the transport operator, and by Nf = (feq(f) − f)/τ the BGK relaxation

term (also called the “collision” term).
Generally, this kinetic model represents an underlying hyperbolic system of conservation laws. The
macroscopic conservative variables w(x, t) ∈ Rm are obtained through a linear transformation

(2.2) w = Pf ,

where P is a m × nv matrix. Generally the number of conservative variables is smaller than the
number of kinetic data: m < nv. The equilibrium (or “Maxwellian”) distribution feq(f) is such
that

Pf = Pfeq(f),

and

(2.3) w = Pf1 = Pf2 ⇒ feq(f1) = feq(f2),

which states that the equilibrium actually depends only on the macroscopic data w. We could
have used the notation feq = feq(w) = feq(Pf), but we have decided to respect a well-established
tradition.
When τ → 0, the kinetic equations provide an approximation of the system of conservation laws

(2.4) ∂tw +

D∑
k=1

∂kq
k(w) = s,

where the flux is given by

qk(w) = PVkfeq(f).

The flux is indeed a function of w only because of (2.3).
Similarly the source term is given by

(2.5) s(x, t,w) = Pg(x, t, feq)

TASK-BASED PARALLELIZATION OF AN IMPLICIT KINETIC SCHEME 3

System (2.1) has to be supplemented with conditions at the boundary ∂Ω of the computational
domain Ω. We denote by n = (n1 . . . nD) the outward normal vector on ∂Ω. For simplicity, we
shall only consider very simple imposed and time-independent boundary conditions f b. We note

V · n =

D∑
k=1

Vknk, V · n+ = max(V · n, 0), V · n− = min(V · n, 0).

A natural boundary condition, which is compatible with the transport operator V · ∂, is
(2.6) V · n−f(x, t) = V · n−f b(x), x ∈ ∂Ω.

It states that for a given velocity vi, the corresponding boundary data f bi is used only at the inflow
part of the boundary.
Let us point out that the programming optimization that we propose in this paper rely in an
essential way on the nature of the boundary condition (2.6). For other boundary conditions, such
as periodic or wall conditions, additional investigations are still needed.

3. Numerical method

3.1. Discontinuous Galerkin approximation. For solving (2.1) we shall treat the transport
operator V ·∂ and the collision operator N efficiently, thanks to a splitting approach. This allows
to achieve a better parallelism. Let us start with the description of the transport solver.
For a simple exposition, we only consider one single scalar transport equation for f(x, t) ∈ R at
constant velocity v

(3.1) ∂tf + v · ∇f = 0.

The general vectorial case is easily deduced.
We consider a meshM of Ω made of open sets, called “cells”,M = {Li, i = 1 . . . Nc}. In the most
general setting, the cells satisfy

(1) Li ∩ Lj = ∅, if i 6= j;
(2) ∪iLi = Ω.

In each cell L ∈ M we consider a basis of functions (ϕL,i(x))i=0...Nd−1 constructed from polyno-
mials of order d. We denote by h the maximal diameter of the cells. With an abuse of notation
we still denote by f the approximation of f , defined by

f(x, t) =

Nd−1∑
j=0

fL,j(t)ϕL,j(x), x ∈ L.

The DG formulation then reads: find the fL,j ’s such that for all cell L and all test function ϕL,i

(3.2)
∫
L

∂tfϕL,i −
∫
L

fv · ∇ϕL,i +

∫
∂L

(v · n+fL + v · n−fR)ϕL,i = 0.

In this formula (see Figure 4.1):

• R denotes the neighboring cell to L along its boundary ∂L ∩ ∂R, or the exterior of Ω on
∂L ∩ ∂Ω.

• n = nLR is the unit normal vector on ∂L oriented from L to R.
• fR denotes the value of f in the neighboring cell R on ∂L ∩ ∂R.
• If L is a boundary cell, one may have to use the boundary values instead: fR = f b on
∂L ∩ ∂Ω.

• v · n+fL + v · n−fR is the standard upwind numerical flux encountered in many finite
volume or DG methods.

In our application, we consider hexahedral cells. We have a reference cell

L̂ =]− 1, 1[D

and a smooth transformation x = τL(x̂), x̂ ∈ L̂, that maps L̂ on L

τL(L̂) = L.

TASK-BASED PARALLELIZATION OF AN IMPLICIT KINETIC SCHEME 4

nLR

∂L ∩ ∂R

L

R

Figure 3.1. Convention for the L and R cells orientation.

We assume that τL is invertible and we denote by τ ′L its (invertible) Jacobian matrix. We also
assume that τL is a direct transformation

det τ ′L > 0.

In our implementation τL is a quadratic map based on hexahedral curved “H20” finite elements
with 20 nodes. The mesh of H20 finite elements is generated by gmsh [6].

On the reference cell, we consider the Gauss-Lobatto points (x̂i)i=0...Nd−1, Nd = (d+1)D and asso-
ciated weights (ωi)i=0...Nd−1. They are obtained by tensor products of the (d+ 1) one-dimensional
Gauss-Lobatto (GL) points on]− 1, 1[. The reference GL points and weights are then mapped to
the physical GL points of cell L by

(3.3) xL,i = τL(x̂i), ωL,i = ωi det τ ′L(x̂i) > 0.

In addition, the six faces of the reference hexahedral cell are denoted by Fε, ε = 1 . . . 6 and the
corresponding outward normal vectors are denoted by n̂ε. A big advantage of choosing the GL
points is that the volume and the faces share the same quadrature points. A special attention is
necessary for defining the face quadrature weights. If a GL point x̂i ∈ Fε, we denote by µεi the
corresponding quadrature weight on face Fε. We also use the convention that µεi = 0 if x̂i does not
belong to face Fε. A given GL point x̂i can belong to several faces when it is on an edge or in a
corner of L̂. Because of symmetry, we observe that if µεi 6= 0, then the weight µεi does not depend
on ε.

We then consider basis functions ϕ̂i on the reference cell: they are the Lagrange polynomials
associated to the Gauss-Lobatto point and thus satisfy the interpolation property

ϕ̂i(x̂j) = δij .

The basis functions on cell L are then defined according to the formula

ϕL,i(x) = ϕ̂i(τ
−1
L (x)).

In this way, they also satisfy the interpolation property

(3.4) ϕL,i(xL,j) = δij .

In this paper, we only consider conformal meshes: the GL points on cell L are supposed to match
the GL points of cell R on their common face. Dealing with non-matching cells is the object of a
forthcoming work.

Let L and R be two neighboring cells. Let xL,j be a GL point in cell L that is also on the common
face between L and R. In the case of conformal meshes, it is possible to define the index j′ such
that

xL,j = xR,j′ .

TASK-BASED PARALLELIZATION OF AN IMPLICIT KINETIC SCHEME 5

Applying a numerical integration to (3.2), using (3.3) and the interpolation property (3.4), we
finally obtain

(3.5) ∂tfL,iωL,i −
Nd−1∑
j=0

v · ∇ϕL,i(xL,j)fL,jωL,j+

6∑
ε=1

µεi
(
v · nε(xL,i)+fL,i + v · nε(xL,i)−fR,i′

)
= 0.

We have to detail how the gradients and normal vectors are computed in the above formula. Let
A be a square matrix. We recall that the cofactor matrix of A is defined by

(3.6) co(A) = det(A)
(
A−1

)T
.

The gradient of the basis function is computed from the gradients on the reference cell using (3.6)

∇ϕL,i(xL,j) =
1

det τ ′L(x̂i)
co(τ ′L(x̂j))∇̂ϕ̂i(x̂j).

In the same way, the scaled normal vectors nε on the faces are computed by the formula

nε(xL,i) = co(τ ′L(x̂i))n̂ε.

We introduce the following notation for the cofactor matrix

cL,i = co(τ ′L(x̂i)).

The DG scheme then reads

(3.7) ∂tfL,i −
1

ωL,i

Nd−1∑
j=0

v · cL,j∇̂ϕ̂i(x̂j)fL,jωj+

1

ωL,i

6∑
ε=1

µεi
(
v · cL,in̂ε+fL,i + v · cL,in̂ε−fR,i′

)
= 0.

On boundary GL points, the value of fR,i′ is given by the boundary condition

fR,i′ = f b(xL,i), xL,i = xR,i′ .

For practical reasons, it is interesting to also consider fR,i′ as an artificial unknown in the fictitious
cell. The fictitious unknown is then a solution of the differential equation

(3.8) ∂tfR,i′ = 0.

In the end, if we put all the unknowns in a large vector F(t), (3.7), (3.8) read as a large system of
coupled differential equations

(3.9) ∂tF = LhF.

In the following, we call Lh the transport matrix. The transport matrix satisfies the following
properties:

• LhF = 0 if the components of F are all the same.
• Let F be such that the components corresponding to the boundary term vanish. Then

FTLhF ≤ 0. This dissipation property is a consequence of the choice of an upwind numer-
ical flux [9].

• In many cases, and with a good numbering of the unknowns in F, Lh has a triangular
structure. This aspect is discussed in Subsection 4.1.

As stated above, we actually have to apply a transport solver for each constant velocity vi.
Let L be a cell of the mesh M and xi a GL point in L. As in the scalar case, we denote by fL,i
the approximation of f in L at GL point i. In the sequel, with an abuse of notation and according
to the context, we may continue to note F(t) the big vector made of all the vectorial values fL,j at
all the GL points j in all the (real or fictitious) cells L.
We may also continue to denote by Lh the matrix made of the assembly of all the transport
operators for all velocities vi. With a good numbering of the unknowns it is possible in many
cases to suppose that Lh is block-triangular. More precisely, because in the transport step the

TASK-BASED PARALLELIZATION OF AN IMPLICIT KINETIC SCHEME 6

equations are uncoupled, we see that Lh can be made block-diagonal, each diagonal block being
itself block-triangular. See Section 4.1.

3.2. Palindromic time integration. We can also define an approximation Nh of the collision
operator N. We define by Feq(F) the big vector made of all the feq(fL,i), L ∈M, i = 0 . . . Nd− 1.

We set

(3.10) NhF =
1

τ
(Feq(F)− F).

Similarly we note Gh the discrete approximation of the kinetic source term g.
The DG approximation of (2.1) finally reads

∂tF = LhF + NhF + GhF.

We use the following Crank-Nicolson second order time integrator for the transport equation:

(3.11) exp(∆tLh) ' T2(∆t) := (I +
∆t

2
Lh)(I− ∆t

2
Lh)−1.

Similarly, for the collision integrator, we use

exp(∆tNh) ' C2(∆t) := (I +
∆t

2
Nh)(I− ∆t

2
Nh)−1.

Because during the collision step, the conservative variables w = Pf do not change, the collision
integrator is only apparently implicit. We have the explicit formula:

(3.12) C2(∆t)F =
(2τ −∆t)F

2τ + ∆t
+

2∆tFeq(F)

2τ + ∆t
.

The source operator is also approximated by a Crank-Nicolson integrator

exp(∆tGh) ' S2(∆t) := (I +
∆t

2
Gh)(I− ∆t

2
Gh)−1,

requiring to solve a nonlinear local equation whenever g depends on f .
If τ > 0, we observe that the operators T2 and C2 are time-symmetric: if we set O2 = T2 , O2 = C2,
or O2 = S2, then O2 satisfies

(3.13) O2(−∆t) = O2(∆t)−1, O2(0) = Id.

This property implies that O2 is necessarily a second order approximation of the exact integrator
[10, 8]. When τ = 0, we also remark that

C2(∆t)F = 2Feq(F)− F 6= F

and then C2 does not satisfy (3.13) anymore.
For τ > 0, the Strang formula permits us to construct a five steps second order time-symmetric
approximation

Ms
2 (∆t) = T2(

∆t

2
)S2(

∆t

2
)C2(∆t)S2(

∆t

2
)T2(

∆t

2
) = exp (∆t (Lh + Nh + Sh)) +O(∆t3),

and a three step one

M2(∆t) = T2(
∆t

2
)C2(∆t)T2(

∆t

2
) = exp (∆t (Lh + Nh)) +O(∆t3),

in the source-less case.
However this formula is no more a second order approximation of (2.1) when τ → 0. Indeed, when
τ = 0

M2(0)F = 2Feq(F)− F.

As explained in [4] it is better to consider the following method, which remains second order
accurate even for infinitely fast relaxation:

Mkin
2 (∆t) = T2(

∆t

4
)C2(

∆t

2
)T2(

∆t

2
)C2(

∆t

2
)T2(

∆t

4
).

TASK-BASED PARALLELIZATION OF AN IMPLICIT KINETIC SCHEME 7

By palindromic compositions of the second order method Mkin
2 it is then very easy to achieve any

even order of accuracy (see [4]). However, in this paper, we concentrate on the parallel optimization
of the method and we shall only present numerical results at second order for the limit system 2.4.
To that end it is sufficient to use the method M2, as PM2(0) properly converges towards identity
on the macroscopic variable space when τ → 0.

4. Optimization of the kinetic solver

In this section, we describe the optimizations that can be applied in the implementation of the
previous numerical method.

4.1. Triangular structure of the transport matrix. Because of the upwind structure of the
numerical flux, it appears that the transport matrix is often block-triangular. This is very inter-
esting because this allows to apply implicit schemes to (3.9) without the costly inversion of linear
systems [11]. We can provide the formal structure of Lh through the construction of a directed
graph G with a set of vertices V and a set of edges E ⊂ V × V. The vertices of the graph are
associated to the (real or fictitious) cells ofM. Consider now two cells L and R with a common
face FLR. We denote by nLR the normal vector on FLR oriented from L to R. If there is at least
one GL point x on FLR such that

nLR(x) · v > 0,

then the edge from L to R belongs to the graph:

(L,R) ∈ E ,
see Figure 4.1.
In (3.7) we can distinguish between several kinds of terms. We write

∂tfL + ΓL←LfL +
∑

(R,L)∈E

ΓL←RfR,

with

ΓL←LfL = − 1

ωL,i

Nd−1∑
j=0

v · cL,j∇̂ϕ̂i(x̂j)fL,jωj+

1

ωL,i

6∑
ε=1

µεiv · cL,in̂ε+fL,i,

and, if (R,L) ∈ E ,
ΓL←RfR =

1

ωL,i
µεiv · cL,in̂ε−fR,i′ .

We can use the following convention

(4.1) (R,L) /∈ E ⇒ ΓL←R = 0.

ΓL←L contains the terms that couple the values of f inside the cell L. They correspond to diagonal
blocks of size (d+1)D× (d+1)D in the transport matrix Lh. ΓL←R contains the terms that couple
the values inside cell L with the values in the neighboring upwind cell R. If R is a downwind
cell relatively to L then µεiv · CL,in̂ε− = 0 and ΓL←R = 0 is indeed compatible with the above
convention (4.1).
Once the graph G is constructed, we can analyze it with standard tools. If it contains no cycle,
then it is called a Directed Acyclic Graph (DAG). Any DAG admits a topological ordering of its
nodes. A topological ordering is a numbering of the cells i 7→ Li such that if there is a path from
Li to Lj in G then j > i. In practice, it is useful to remove the fictitious cells from the topological
ordering. In our implementation they are put at the end of the list.
Once the new ordering of the graph vertices is constructed, we can construct a numbering of the
components of F by first numbering the unknowns in L0 then the unknowns in L1, etc. More
precisely, we set

FkNd+i = fLk,i.

TASK-BASED PARALLELIZATION OF AN IMPLICIT KINETIC SCHEME 8

0

1 3

2 4

5

10

6

7

8

9

Figure 4.1. Construction of the dependency graph. Left: example of mesh (it
is structured here but it is not necessary) with 9 interior cells. The velocity field
v is indicated by red arrows. We add two fictitious cells: one for the upwind
boundary condition (cell 9) and one for the outflow part of ∂Ω (cell 10). Right:
the corresponding dependency graph G. By examining the dependency graph, we
observe that the values of Fn+1 in cell 0 have to be computed first, using the
boundary conditions. Then cells 1 and 3 can be computed in parallel, then cells
2, 4, and 6 can be computed in parallel, then etc.

Then, with this ordering, the matrix Lh is lower block-triangular with diagonal blocks of size
(d+ 1)D × (d+ 1)D. It means that we can apply implicit schemes to (3.9) without inverting large
linear systems.

As stated above, we actually have to apply a transport solver for each constant velocity vi. In the
sequel, with another abuse of notation and according to the context, we continue to note F the
big vector made of all the vectorial values fL,j at all the GL points j in all the (real or fictitious)
cells L.

We may also continue to denote by Lh the matrix made of the assembly of all the transport
operators for all velocities vi. With a good numbering of the unknown it is still possible to
suppose that Lh is block-triangular. More precisely, as in the transport step the equations are
uncoupled, we see that Lh can be made a block-diagonal matrix, each diagonal block being itself
block-triangular.

4.2. Parallelization of the implicit solver. In this section, we explain how it is possible to
parallelize the transport solver. Here again we consider the single transport equation (3.1) and the
associated differential equation (3.9). We apply a second order Crank-Nicolson implicit scheme.
We have explained in Section 3.2 how to increase the order of the scheme. We compute an
approximation Fn of F(n∆t). The implicit scheme reads

(4.2) (I−∆tLh)Fn+1 = (I + ∆tLh)Fn.

TASK-BASED PARALLELIZATION OF AN IMPLICIT KINETIC SCHEME 9

As explained above, the matrices (I − ∆tLh) and (I + ∆tLh) are lower triangular. It is thus
possible to solve the linear system explicitly cell after cell, assuming that the cells are numbered
in a topological order.
It is possible to perform further optimization by harnessing the parallelism exhibited by the de-
pendency graph. Indeed, once the values of f in the first cell are computed, it is generally possible
to compute in parallel the values of f in neighboring downwind cells. For example, as can be seen
on Figure 4.1, once the values in cells 0, 1 and 2 are known, we can compute independently, and
in parallel, the values in cells 2, 4 and 6.
We observe that at the beginning and at the end of the time step, the computations are “less
parallel” than in the middle of the time step, where the parallelism is maximal.
Implementing this algorithm with OpenMP or using pthread is not very difficult. However, it
requires to compute the data dependencies between the computational tasks carefully, and to set
adequate synchronization points in order to get correct results. In addition, a rough implementation
will probably not exhibit optimized memory access. Therefore, we have decided to rely on a more
sophisticated tool called StarPU1 for submitting the parallel tasks to the available computational
resources.
StarPU is a runtime system library developed at Inria Bordeaux [2]. It relies on the data-based
parallelism paradigm.
The user has first to split its whole problem into elementary computational tasks. The elementary
tasks are then implemented into codelets, which are simple C functions. The same task can be
implemented differently into several codelets. This allows the user to harness special acceleration
devices, such as vectorial CPU cores, GPUs or Intel KNL devices, for example. In the StarPU
terminology these devices are called workers.
For each task, the user has also to describe precisely what are the input data, in read mode, and the
output data, in write or read-write mode. The user then submits the task in a sequential way to the
StarPU system. StarPU is able to construct at runtime a task graph from the data dependencies.
The task graph is analyzed and the tasks are scheduled automatically to the available workers
(CPU cores, GPUs, etc.). If possible, they are executed in parallel into concurrent threads. The
data transfer tasks between the threads are automatically generated and managed by StarPU,
which greatly simplifies the programming.
When a StarPU program is executed, it is possible to choose among several schedulers. The
simplest eager scheduler adopts a very simple strategy, where the tasks are executed in the order
of submission by the free workers, without optimization. More sophisticated schedulers, such as the
dmda scheduler, are able to measure the efficiency of the different codelets and the data transfer
times, in order to apply a more efficient allocation of tasks.
Recently a new data access mode has been added to StarPU: the commute mode. In a task,
a buffer of data can now be accessed in commute mode, in addition to the write or read-write
modes. A commute access tells to StarPU that the execution of the corresponding task may be
executed before or after other tasks containing commutative access. This allows StarPU to perform
additional optimizations.
There exists also a MPI version of StarPU. In the MPI version, the user has to decide an initial
distribution of data among the MPI nodes. Then the tasks are submitted as usual (using the
function starpu_mpi_insert_task instead of starpu_insert_task). Required MPI communications
are automatically generated by StarPU. For the moment, this approach does not guarantee a good
load balancing. It is the responsibility of the user to migrate data from one MPI node to another
for improving the load balancing, if necessary.

4.3. Macrocell approach. StarPU is quite efficient, but there is an unavoidable overhead due to
the task submissions and to the on-the-fly construction and analysis of the task graph. Therefore it
is important to ensure that the computational tasks are not too small, in which case the overhead
is not amortized, or not too big, in which case some workers are idle.
For achieving the right balance, we have decided not to apply directly the above task submission
algorithm to the cells but to groups of cells instead.

1http://starpu.gforge.inria.fr

http://starpu.gforge.inria.fr

TASK-BASED PARALLELIZATION OF AN IMPLICIT KINETIC SCHEME 10

Figure 4.2. Macrocell approach: an example of a mesh made of five macrocells.
Each macrocell is then split into several subcells. Only the subcells of the top
macrocell are represented here (in green).

The implementation of the whole kinetic scheme has been made into the schnaps software2.
schnaps is a C99 software dedicated to the numerical simulation of conservation laws.
In schnaps we construct first a macromesh of the computational domain. Then each macrocell of
the macromesh is split into subcells. See Figure 4.2. We also arrange the subcells into a regular
sub-mesh of the macrocells. In this way, it is possible to apply additional optimizations. For
instance, the subcells L of a same macrocell L can now share the same geometrical transformation
τL, which saves memory.
In schnaps we have also defined an interface structure in order to manage data communications
between the macrocells. An interface contains the faces that are common to two neighboring
macrocells. We do not proceed exactly as in Section 4.1 where the vertices of graph G were
associated to cells and the edges to faces. Instead, we construct an upwind graph whose vertices
are associated to macrocells, and edges to interfaces. This graph is then sorted, and the macrocells
are numbered in a topological order.
For solving one time step of one transport equation (4.2), we split the computations into several
elementary operations: for all macrocell L taken in a topological order, we perform the following
tasks:

(1) Volume residual assembly: this task computes in the macrocell L the part of the right
hand side of (4.2) that comes from the values of f inside L;

(2) Interface residual assembly: this task computes, in the macrocell L, the part of the right
hand side of (4.2) that comes from upwind interface values;

(3) Boundary residual assembly: this task computes, in the macrocell L, the part of the right
hand side of (4.2) that comes from upwind boundaries values.

(4) Volume solve: this task solves the local transport linear system in the macrocell.
(5) Extraction: this task copies the boundary data of L to the neighbor downwind interfaces.

Let us point out that in step 4 above, the macrocell local transport solver is reassembled and
refactorized at each time step: we have decided not to store a sparse linear system in the macrocell
for each velocity vi, in order to save memory. The local sparse linear system is solved thanks to
the KLU library [5]. This library is able to detect efficiently sparse triangular matrix structures,

2http://schnaps.gforge.inria.fr/

http://schnaps.gforge.inria.fr/

TASK-BASED PARALLELIZATION OF AN IMPLICIT KINETIC SCHEME 11

which makes the resolution quite efficient. In practice, the factorization and resolution time of the
KLU solver is of the same order as the residual assembly time.
In schnaps, we use the MPI version of StarPU. The macromesh is initially split into several subdo-
mains and the subdomains are distributed to the MPI nodes. Then the above tasks are launched
asynchronously with the starpu_mpi_insert_task function. MPI communications are managed
automatically by StarPU.
It is clear that if we were solving a single transport equation our strategy would be very inefficient.
Indeed, the downwind subdomains would have to wait for the end of the computations of the
upwind subdomains. We are saved by the fact that we have to solve many transport equations
in different directions. This helps the MPI nodes to be equally occupied. Our approach is more
efficient if we avoid a domain decomposition with internal subdomains, because these subdomains
have to wait the results coming from the boundaries.
In our approach it is also essential to launch the tasks in a completely asynchronous fashion. In
this way, if a MPI node is waiting for results of other subdomains for a given velocity vi it is not
prevented from starting the computation for another velocity vj .

4.4. Collisions. In this section we explain how is computed the collision step (3.12). The compu-
tations are purely local to each GL point, which makes the collision step embarrassingly parallel.
However it is not so obvious to attain high efficiency because of memory access. If the values of
F are well arranged in memory in the transport stage, it means that the values of f attached to a
given velocity vi are close in memory, for a better data locality. On the contrary, in the collision
step at a given GL point, a better locality is achieved if the values of f corresponding to different
velocities are close in memory. Additional investigations and tests are needed in order to evaluate
the importance of data locality in our algorithm.
In our implementation, we have adopted the following strategy. We have first identified the fol-
lowing task:

(1) Reduction task for a velocity vi: this task is associated with one macrocell L. It computes
the contribution to w of the components of f that have been transported at velocity vi with
formula (2.2). The StarPU access to the buffer containing w is performed in read-write
and commute modes. In this way the contribution from each velocity can be added to w
as soon as it is available.

(2) Relaxation task for a velocity vi: this task is associated to one macrocell L. Once w is
known, it computes the components of feq corresponding to velocity vi. Then it computes
the relaxation step (3.12) for the associated component of f .

In step 2 we can separate the computations for each velocity because the collision term (3.10) is
diagonal. Some Lattice Boltzmann Methods rely on non-diagonal relaxations. It can be useful for
representing more general viscous terms for instance. For non-diagonal relaxation we would have
to change a little the algorithm.
We can now make a few comments about the storage cost of the method. In the end, we have to
store at each GL point xi and each cell L the values of fL,i and wL,i. We do not have to keep the
values of the previous time-step, fL,i and wL,i can be replaced by the new values as soon as they
are available. In this sense, our method is “low-storage”. As explained in [4] it is also possible to
increase the time order of the method, without increasing the storage.

4.5. Scaling test. For all performance tests presented in this section, we used standard models
from the family Lattice-Boltzmann-Method (LBM) kinetic models devised for the simulation of
Euler/Navier Stokes systems. We will not give a detailed description of their properties from the
modeling point of view: we simply take them as good representative of the typical workload of
kinetic relaxation schemes. The most relevant feature impacting the performance of our algorithm
is the discrete velocity set of the kinetic model, which determines the task graph structure of the
transport step when combined with a particular mesh topology. In standard LBM models, velocity
sets are usually built-up from a sequence of pairs of opposite velocities with an additional zero
velocity node. On Figure 4.3 we show the two representative velocity sets of the 2DQ9 and 3DQ27
LBM models.

TASK-BASED PARALLELIZATION OF AN IMPLICIT KINETIC SCHEME 12

0 1

2

3

4

56

7 8
D2Q9

0

1

2

3

4

5

6

7

8
9

10

11

12

13

14

15

16

17

18

19

20
21

22

23

24
25

26

D3Q27

Figure 4.3. D2Q9 and D3Q27 velocity grids.

4.5.1. Multithread performance (D2Q9, D3Q*). We first tested the multithread performance of
our implementation for the full (transport + relaxation) scheme for the standard D2Q9 model.
All tests were performed on a single node of the IRMA-ATLAS cluster, with 24 available cores.
We considered several square meshes build-up from 1 to 64 macrocells. The number of geometric
degrees of freedom per element has been kept constant with a value of 3375 points per macrocell,
so that the workload per macrocell did not change. For each mesh, we allowed StarPu to use from
1 to the full 24 cores of the node and measured the total wall time. The results for this first batch
of performance measurements are given in Fig. 4.4. First we verify that for 1 unique macrocell,
parallel performance saturates when the number of cores roughly equals the number of velocities
in the model. This is to be expected, as no topological parallelism can be exploited in that case.
Increasing the number of macro-element allows to take advantage of topological parallelism. For
that workload, parallel efficiency saturates at about 80, which is quite good. On Fig. 4.5, we
considered on the same cubic mesh three different models differing by the number of velocity
values. Those cases exhibit a large amount of potential parallelism, due to the large number of
velocities combined with the macrocell decomposition. On an ideal machine, they could in theory
scale perfectly up to 24 cores. The observed saturation, still around 80 efficiency, is still quite good
and comes from the unavoidable concurrency in memory access between the various cores and the
scheduling overhead. It is important to note when considering those results that the bulk of the
computational cost occurs in the transport step of the algorithm: though the collision step forces
synchronization between all the fields corresponding to individual velocities for the computation
of the macroscopic fields, its actual cost is negligible in regard of the transport step.

4.5.2. MPI scaling: D3Q15 in a torus. Having verified the good multithread performance of our
code on a single node, we now check whether for larger problem sizes the workload can be dis-
tributed among several computing nodes. To that end, accounting for the fact that we aim notably
at performing simulations for Tokamak physics, we considered a toroidal mesh subdivided into 720
macrocells. The workload distribution across nodes was made using a standard domain decomposi-
tion approach: the mesh was partitioned statically into as many sub-domains as computing nodes,
ranging from 1to 4 for our experiment on the IRMA-ATLAS cluster. From an implementation
point of view, the transition from a multithreaded code to a hybrid MPI/multithread one is made
fairly easy by StarPU. When declaring data to StarPU, one simply has to specify the MPI process
owning the data. At runtime, each MPI process hosts a local scheduler instance which acts only on
data relevant to the local execution graph. All MPI communications are handled transparently by
the local scheduler when inter-node data transfers are necessary. In table 1 we show the wall time
for a hundred iterations of the full scheme for the D3Q15 model. The number of available threads
per node was set to 14, matching the number of velocities actually participating in transport (there
is one null velocity in the model). We observe a super-linear scaling when the load is spread from
1to 4 node. This is not surprising for such an experiment with fixed total problem size as both the
memory load and size of the local task graph for each decrease when the number of sub-domains
increases.

TASK-BASED PARALLELIZATION OF AN IMPLICIT KINETIC SCHEME 13

0 5 10 15 20 25
cores

0

5

10

15

20

25

sp
ee

du
p

1x1x3375 D2Q9
2x2x3375 D2Q9
3x3x3375 D2Q9
4x4x3375 D2Q9
8x8x3375 D2Q9
ideal

Figure 4.4. Multithread scaling for the D2Q9 model and a collection of square
meshes from 1 to 64 macro-elements.

0 5 10 15 20 25
cores

0

5

10

15

20

25

sp
ee

du
p

4x4x4x8000 nv 15
4x4x4x8000 nv 19
4x4x4x8000 nv 27
ideal

Figure 4.5. Multithread scaling on a 4x4x4 macro-element mesh for models
D3Q15, D3Q19 and D3Q27

Figure 4.6. Toroidal macromesh (720 macrocells) - Mesh partitions used in the
MPI scaling tests.

TASK-BASED PARALLELIZATION OF AN IMPLICIT KINETIC SCHEME 14

Nthreads/Nmpi 1 2 3 4
14 6862 2772 1491 1014

Table 1. Wall time (in seconds) for the D3Q15 model for 1 to 4 mpi processes
with 14 threads per process.

5. Numerical results

5.1. Euler with gravity. For this test case we consider the isothermal Euler equations in two
dimensions with a constant gravity source term

(5.1) ∂tρ+ ∂k(ρuk) = 0,

(5.2) ∂t(ρu
k) + ∂jΠ

kj = ρg,

with Π =

[
ρc2 + ρu2

x ρuxuy
ρuxuy ρc2 + u2

y

]
and g = −gey.

The conservative variables vector is thus w = [ρ, ρux, ρuy]t . The kinetic model is the standard
D2Q9 one with nine velocities

(5.3) V = λdiag [(0, 0), (1, 0), (0, 1), (−1, 0), (0,−1), (1, 1), (−1, 1), (−1,−1), (1,−1)]

and the (3× 9) projection matrix P reads

(5.4) P =

1 1 1 1 1 1 1 1 1
0 λ 0 −λ 0 λ −λ −λ λ
0 0 λ 0 −λ λ λ −λ −λ

 ,
i.e ρ =

∑
i fi, ρu =

∑
i fivi.

The equilibrium distribution function is given by

(5.5) fi = wiρ

(
1 +

(u · vi)
c2

+
(u · vi)2

2c4
− u · u

2c2

)
with c = λ/

√
3, and the weights w0 = 4

9 , wi = 1
9 for i = 1, . . . , 4, wi = 1

36 for i = 5, . . . , 8.
The stationary solution for a fluid at rest in the gravity field is

(5.6) ρ = ρ0 exp(−gy/c2), u = 0

For this test case, the numerical scheme is made up of three stages: a transport step (T), a source
step (S) where the source is applied on the equilibrium part of the distribution function, and the
collision step (C). Due to the absence of explicit time dependency and the linearity in w of the
source, the local nonlinear resolution of the source operator converges in one Picard iteration. All
steps are implemented as weighted implicit schemes, parametrized by a weight θ and a time step∆t.
We compared several 1st and 2nd order splitting schemes built up from either fully implicit (θ = 1)
first order or Crank-Nicolson (θ = 1

2) steps:

• Lie first order splitting schemeMs
1 = T1(∆t)S1(∆t)C1(∆t) with first order building blocks.

• Lie first order splitting scheme Ms
1,2 = T2(∆t)S2(∆t)C2(∆t) with second order building

blocks, for which the order loss comes from the splitting error.
• a palindromic second order Strang scheme Ms

2 = T2(∆t
2)S2(∆t

2)C2(∆t)S2(∆t
2)T2(∆t

2) .
• a collapsed version of the second order Strang scheme Ms

2 for which the last transport
substep of each global step and the first transport substep of the next one are fused in a
single T2(∆t) substep except obviously for the first and last time steps of the simulation.

TASK-BASED PARALLELIZATION OF AN IMPLICIT KINETIC SCHEME 15

−5 −4 −3 −2 −1 0
log2(∆t/∆tref)

−14

−12

−10

−8

−6

−4

−2

0

lo
g

2
(ε
/ε
r
e
f
)

Ms
1

Ms
1,1

Ms
2

Ms
2 collapsed

Figure 5.1. Time order convergence for the 2D Euler gravity test case withD2Q9
model. Convergence is estimated using the relative L2 error ε on macroscopic
variables with respect to the analytical solution at tmax ≈ 0.12. The reference
values (∆tref , εref) of the logarithmic scale are ∆tref = 0.024, εref = 0.0143.

We performed time order convergence tests on a 2D square mesh partitioned into 4× 4 macrocells
with 1024 points per macrocell. As shown by Fig. 5.1, we obtain the expected convergence orders
for each of the splitting schemes used.

5.2. 2D Flow around a cylinder using a penalization method. In this test case we con-
sidered the flow of a fluid in a rectangular duct with a cylindrical solid obstacle. The simulation
domain is the rectangle [−1, 1]× [−5, 5]

The effect of the obstacle on the flow is modeled using a volumic source term of the form

(5.7) s = K(x)(w −ws),

with ws = [1.0, 0, 0]t the target fluid state in the “solid” part of the domain and the relaxation
frequency K(x) is given by

(5.8) K(x) = Ks exp(−κ(x− xc)
2),

with Ks = 300, xc = [−4, 0]tand κ = 40. The net effect is a very stiff relaxation towards a flow
with zero velocity and the reference density near the center xc of the frequency mask. The effective
diameter of the cylinder for this simulation is about 0.5. The initial state, which is also applied
at the duct boundaries for the whole simulation is ρ = 1, ux = 0.03, uy = 0. Accounting for the
fact that for this model the sound speed is 1/

√
3, the Mach number of the unperturbed flow is

approximately 0, 017. The simulation was performed on a macromesh with 16 × 16 macrocells
stretched with a 1 : 5 aspect ratio to match the domain dimension; each macrocell contains 12×60
integration points. On figure 5.2 we show the vorticity norm at t = 83, when turbulence is well
developed in the wake of the obstacle.

6. Conclusion

In this paper, we have presented an optimized implementation of the Palindromic Discontinuous
Galerkin Method for solving kinetic equations with stiff relaxation. The method presents the
following interesting features:

TASK-BASED PARALLELIZATION OF AN IMPLICIT KINETIC SCHEME 16

Figure 5.2. . Flow around cylindrical obstacle. Vorticity norm |∇×u| at t = 83,
showing the turbulent field behind the obstacle.

• It can be used for solving any hyperbolic system of conservation laws.
• It is asymptotic-preserving with respect to the stiff relaxation.
• It is implicit and thus is not limited by CFL conditions.
• Despite being formally implicit, it requires only explicit computations.
• It is easy to increase the time order with a composition method.
• It presents many opportunities for parallelization and optimization: in this paper we have

presented the parallelization of the method with the aid of the MPI version of the StarPU
runtime system. In this way we address both shared memory and distributed memory
MIMD parallelism.

Our perspectives are now to apply the method for computing MHD instabilities in tokamaks. We
will also try to extend the method to more general boundary conditions.

References

[1] Denise Aregba-Driollet and Roberto Natalini. Discrete kinetic schemes for multidimensional systems of conser-
vation laws. SIAM Journal on Numerical Analysis, 37(6):1973–2004, 2000.

[2] Cédric Augonnet, Olivier Aumage, Nathalie Furmento, Raymond Namyst, and Samuel Thibault. StarPU-
MPI: Task Programming over Clusters of Machines Enhanced with Accelerators. In Siegfried Benkner Jesper
Larsson Träff and Jack Dongarra, editors, EuroMPI 2012, volume 7490 of LNCS. Springer, September 2012.
Poster Session.

[3] François Bouchut, François Golse, and Mario Pulvirenti. Kinetic equations and asymptotic theory. Elsevier,
2000.

[4] David Coulette, Emmanuel Franck, Philippe Helluy, Michel Mehrenberger, and Laurent Navoret. Palindromic
discontinuous galerkin method for kinetic equations with stiff relaxation. arXiv preprint arXiv:1612.09422,
2016.

[5] Timothy A Davis and Ekanathan Palamadai Natarajan. Algorithm 907: Klu, a direct sparse solver for circuit
simulation problems. ACM Transactions on Mathematical Software (TOMS), 37(3):36, 2010.

[6] Christophe Geuzaine and Jean-François Remacle. Gmsh: A 3-d finite element mesh generator with built-in pre-
and post-processing facilities. International Journal for Numerical Methods in Engineering, 79(11):1309–1331,
2009.

[7] Benjamin Graille. Approximation of mono-dimensional hyperbolic systems: A lattice boltzmann scheme as a
relaxation method. Journal of Computational Physics, 266:74–88, 2014.

[8] Ernst Hairer, Christian Lubich, and Gerhard Wanner. Geometric numerical integration: structure-preserving
algorithms for ordinary differential equations, volume 31. Springer Science & Business Media, 2006.

[9] Claes Johnson, Uno Nävert, and Juhani Pitkäranta. Finite element methods for linear hyperbolic problems.
Computer methods in applied mechanics and engineering, 45(1):285–312, 1984.

[10] Robert I McLachlan and G Reinout W Quispel. Splitting methods. Acta Numerica, 11:341–434, 2002.
[11] Salli Moustafa, Mathieu Faverge, Laurent Plagne, and Pierre Ramet. 3d cartesian transport sweep for massively

parallel architectures with parsec. In Parallel and Distributed Processing Symposium (IPDPS), 2015 IEEE
International, pages 581–590. IEEE, 2015.

helluy@unistra.fr

mailto:helluy@unistra.fr

	1. Introduction
	2. Kinetic model
	3. Numerical method
	3.1. Discontinuous Galerkin approximation
	3.2. Palindromic time integration

	4. Optimization of the kinetic solver
	4.1. Triangular structure of the transport matrix
	4.2. Parallelization of the implicit solver
	4.3. Macrocell approach
	4.4. Collisions
	4.5. Scaling test

	5. Numerical results
	5.1. Euler with gravity
	5.2. 2D Flow around a cylinder using a penalization method

	6. Conclusion
	References

