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Abstract. We present a novel well-balanced second order Godunov-type finite volume scheme for compress-
ible Euler equations with gravity. The well-balanced property is achieved by a specific combination of source
term discretization, hydrostatic reconstruction and numerical flux that exactly resolves stationary contacts. The
scheme is able to preserve isothermal and polytropic stationary solutions upto machine precision. It is applied
on several examples using the numerical flux of Roe to demonstrate its well-balanced property and the improved
resolution of small perturbations around the stationary solution.
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1. Introduction. Conservation laws with gravitational source terms occur in many PDE
models like shallow water equations and Euler equations. These equations possess non-trivial
stationary solutions which are refered to as hydrostatic solutions in the case of Euler equations.
Euler equations with gravity are useful models for atmospheric flows and stellar structure simula-
tions in astrophysical applications. The hydrostatic Euler equation takes the form of an ordinary
di↵erential equation in which the pressure forces are balanced by the gravitational forces. This
precise balancing has to be achieved at the numerical level in order to preserve the stationary
solution. Since the gravitational source terms are non-conservative this precise balancing is not
easy to achieve in the numerical scheme. Conventional numerical schemes in which the source
term may be discretized in a consistent manner are not able to preserve such stationary solutions
especially on coarse meshes. This leads to erroneous numerical solutions especially when trying
to compute small perturbations around the stationary solution necessitating the need for very
fine meshes. However in practical 3-D computations it may not be possible to use very fine
meshes. The discretization errors in a non-well-balanced scheme can completely mask the small
perturbations. Moreover, even a very high order accurate scheme can lead to wrong prediction
of small perturbations if the scheme is not well-balanced [15]. A well-balanced scheme is de-
signed so that it maintains the precise balance of pressure and gravitational forces in case of the
hydrostatic solution. This enables such schemes to more accurately resolve small perturbations
around the stationary solution.

To solve the hydrostatic Euler equations exactly, we have to make additional assumptions, for
example, constant temperature or constant entropy or a more general polytropic relation. Most
of the existing schemes are constructed to preserve one class of hydrostatic solutions, either
isothermal or polytropic. The path integral approach is used to construct a wave propagation
algorithm which is well-balanced for isentropic solutions in [8] and isothermal solutions in [9]. A
well-balanced WENO finite volume scheme which preserves isothermal hydrostatic solutions is
presented in [15] by rewriting the gravitational source terms in an equivalent form that precise
balancing. In [6] a second order well-balanced scheme is presented using hydrostatic reconstruc-
tion and under the assumption of an isentropic flow, which for an ideal gas obeys the relation
p = K⇢� . However an isentropic hydrostatic atmosphere is only neutrally stable [7]. A scheme
for ideal, compressible, MHD equations which is well-balanced for non-isothermal hydrostatic so-
lutions under ideal gas model is given in [3] for the case of constant gravitational acceleration. A
gas-kinetic scheme which is well-balanced for isothermal stationary solutions is presented in [10].
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2 Well-balanced scheme for Euler equations with gravity

Using the source term formulation of [15], a non-staggered central scheme which is well-balanced
for isothermal stationary solutions is developed in [14]. Well-balanced schemes that satisfy an
approximation to the hydrostatic equations have been developed using the approach of relaxation
schemes [2, 1], in which an approximation to the hydrostatic solution is built into the solution
of the approximate Riemann solver.

In this paper, we propose a novel second order accurate well-balanced scheme for Euler equa-
tions with gravity under the ideal gas assumption. The basic approach we take is a Godunov-type
finite volume scheme with reconstruction to achieve higher order accuracy. The same scheme
is automatically well-balanced for both isothermal and polytropic hydrostatic solutions, i.e., it
exactly (upto machine precision) preserves the exact hydrostatic solution and this property is
independent of the type of gravitational potential. The proposed scheme involves a special dis-
cretization of the source terms which is similar to [15] and a reconstruction scheme that uses
scaled variables, combined with a numerical flux which preserves stationary contact waves. The
scaled variables are chosen so that the pressure is constant in case of the hydrostatic solution,
which is crucial to achieving well-balanced property. The scheme only requires the gravitational
potential to be known at the cell centers where the other variables are also located. These prop-
erties make it attractive to implement the proposed scheme in production codes which also rely
on second order reconstruction schemes and contact-preserving numerical flux functions, which
can be done with small modifications to the reconstruction process and source term discretiza-
tion. In more recent work, the current scheme has also been extended to the case of curvilinear
meshes which are useful in some applications, like simulation of stellar interiors. We have also
extended the current scheme to general equation of state where we can preserve an approximate
hydrostatic solution upto machine precision.

The rest of the paper is organized as follows. Section (2) introduces the 1-D Euler equations
and its hydrostatic solutions. Section (3) describes the newly proposed well-balanced scheme
in 1-D where we also show that the modified source term discretization we use is second order
accurate. Section (4) presents some 1-D numerical results to demonstrate its well-balanced
property. Section (5) extends the 1-D scheme to the case of 2-D Cartesian meshes. Section (7)
presents some 2-D results and we finally end the paper with some conclusions.

2. 1-D Euler equations with gravity. Consider the system of compressible Euler equa-
tions in one dimension which models conservation of mass, momentum and energy and are given
by
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Here ⇢ is the density, u is the velocity, p is the pressure, E is the energy per unit volume excluding
the gravitational energy and � is the gravitational potential. The pressure is given by
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where � is the ratio of specific heats at constant pressure and volume, which is taken to be
constant. We can write the above set of coupled equations in a compact notation as
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where q is the set of conserved variables and f is the corresponding flux vector. In the case
of self gravitating system, the gravitational potential � is governed by a Poisson-type equation
whose details are not relevant for the present discussion. We will consider the case of static
gravitational potential which is assumed to be given as a function of the spatial coordinates.

2.1. Hydrostatic states. Consider the hydrostatic stationary solution, i.e., for which the
velocity is zero

ue = 0

In this case, the mass and energy conservation equations are automatically satisfied. The mo-
mentum equation becomes an ordinary di↵erential equation given by

(2.2)
dpe
dx

= �⇢e
d�

dx

Assuming ideal gas and some temperature profile Te(x)

pe(x) = ⇢e(x)RTe(x)

where R is the gas constant, we can integrate the stationary momentum equation (2.2) to obtain

pe(x) = p
0

exp

✓
�
Z x

x0

�0(s)

RTe(s)
ds

◆

In the above equation, p
0

is the pressure at some reference position x
0

. If the hydrostatic state
is isothermal, i.e., Te(x) = Te = const, then

(2.3) pe(x) exp

✓
�(x)

RTe

◆
= const

If the hydrostatic solution is polytropic then we have following relations

(2.4) pe⇢
�⌫
e = const, peT

� ⌫
⌫�1

e = const, ⇢eT
� 1

⌫�1
e = const

where ⌫ > 1 is some constant. Using these polytropic relations in the hydrostatic equation (2.2)
and performing an integration, we obtain

(2.5)
⌫RTe

⌫ � 1
+ � = const

Remark 1. In [6], the authors use the isentropic assumption to show that h + � = const
for the hydrostatic solution, where h is the enthalpy. In case of ideal gas, this is identical to
equation (2.5) if we take ⌫ = �. However equation (2.5) is more general and includes the
polytropic cases for which ⌫ 6= �.

3. 1-D Finite volume scheme. In order to construct a well-balanced scheme we will
first rewrite the gravitational source terms in a specific form by exploiting the structure of the
equilibrium solution. To do this, first define⇤

 (x) = �
Z x

x0

�0(s)

RT (s)
ds

⇤These quantities are in general time dependent, but to simplify notation we do not explicitly specify the
dependance on time.
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where x
0

is some arbitrary location. Then

@ 

@x
= � @

@x

Z x

x0

�0(s)

RT (s)
ds = � �0(x)

RT (x)
and

@

@x
exp( (x)) = � exp( (x))

�0(x)

RT (x)

so that

(3.1) �⇢(x)@�
@x

= p(x) exp(� (x)) @
@x

exp( (x))

This is a mathematical identity if �0(x), T (x) are continuous and it does not depend on the
existence of hydrostatic equilibrium. Note that  (x) is a continuous function even if �0(x) and
T (x) are discontinuous. Thus the regularity of the right hand side in (3.1) is no worse than that
of the left hand side since � is only continuous in general. We use this transformation to write
the gravity source terms in the Euler equations as follows

(3.2)
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Let us divide the domain into N finite volumes each of size �x. The i’th cell is given by the
interval (xi� 1

2
, xi+ 1

2
). Consider the semi-discrete finite volume scheme for the i’th cell

(3.3)
dqi
dt

+
f̂i+ 1

2
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where  i,  i+ 1
2
etc. are consistent approximations to the function  (x) and the consistent nu-

merical flux f̂i+ 1
2
= f̂(qL

i+ 1
2
, qR

i+ 1
2
) is assumed to satisfy the following property.

Contact Property The numerical flux f̂ is said to satisfy contact property if for any two states
qL = [⇢L, 0, p/(� � 1)] and qR = [⇢R, 0, p/(� � 1)] we have

f̂(qL, qR) = [0, p, 0]>

The states qL, qR in the above definition correspond to a stationary contact discontinuity. The
above property is equivalent to the ability of a numerical flux to exactly support a stationary
contact discontinuity. Some examples of numerical fluxes which satisfy this property are the Roe
flux [11] and the HLLC flux [13].

To obtain the states qL
i+ 1

2
, qR

i+ 1
2
at the cell boundary which are required to calculate the flux

f̂i+ 1
2
, we will reconstruct the following set of variables

w =
⇥
⇢e� , u, pe� 

⇤>

Once wL
i+ 1

2
etc. are computed, the primitive variables are obtained as

⇢Li+ 1
2
= e

 
i+1

2 (w
1

)Li+ 1
2
, uL

i+ 1
2
= (w

2

)Li+ 1
2
, pLi+ 1

2
= e

 
i+1

2 (w
3

)Li+ 1
2
, etc.

More details on the reconstruction step are given in section (3.3).
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3.1. Well-balanced property. We now state the basic result on the well-balanced prop-
erty. The case of isothermal and polytropic stationary solutions are identified after the source
term discretization is explained since this requires a specific form of discretization.

Theorem 3.1. The finite volume scheme (3.3) together with a numerical flux which satisfies
contact property and reconstruction of w variables is well-balanced in the sense that the initial
condition given by

(3.4) ui = 0, pi exp(� i) = const, 8 i

is preserved by the numerical scheme.
Proof: Let us start the computations with an initial condition that satisfies (3.4). Since we

reconstruct the variables w, at any interface i+ 1

2

we have

uL
i+ 1

2
= uR

i+ 1
2
= 0, pLi+ 1

2
= pRi+ 1

2
= pi exp( i+ 1

2
�  i) =: pi+ 1

2

and at i� 1

2

uL
i� 1

2
= uR

i� 1
2
= 0, pLi� 1

2
= pRi� 1

2
= pi exp( i� 1

2
�  i) =: pi� 1

2

Since the numerical flux satisfies contact property, we have

f̂i� 1
2
= [0, pi� 1

2
, 0]>, f̂i+ 1

2
= [0, pi+ 1

2
, 0]>

The flux in mass and energy equations are zero and the gravitational source term in the energy
equation is also zero. Hence the mass and energy equations are already well balanced, i.e.,

dq(1)

i

dt
= 0,

dq(3)

i

dt
= 0

It remains to check the momentum equation. On the left we have

f̂ (2)

i+ 1
2
� f̂ (2)

i� 1
2

�x
=

pi+ 1
2
� pi� 1

2

�x

while on the right

pie
� i

e
 

i+1
2 � e

 
i� 1

2

�x
=

pie
 

i+1
2
� i � pie

 
i� 1

2
� i

�x
=

pi+ 1
2
� pi� 1

2

�x

and hence

dq(2)

i

dt
= 0

This proves that the initial condition is preserved under any time integration scheme.
Remark 2. It is possible to reconstruct density and still retain the result of the previous the-

orem. In the isothermal case, the quantity ⇢e� is constant and we can expect the reconstruction
of density to be more accurate if we scale the density as in the w variables.

Remark 3. For a general temperature profile, the quantities  i have to be approximated by
quadrature, so that the initial condition in (3.4) is only an approximation to the exact stationary
solution. However, by using a special quadrature rule which we explain in next section, we show
in Theorem (3) that isothermal and polytropic stationary solutions satisfy equation (3.4) and
hence are preserved by the finite volume scheme. A numerical example of a general stationary
solution is given in section (4.4).
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3.2. Approximation of source term. Up to this point we have not specified how to
approximate  (x). The well-balanced property of the scheme as stated in Theorem 1 is in-
dependent of the particular appoximation scheme used to compute  . In order to preserve
isothermal/polytropic solutions exactly, the quadrature rule has to be exact for these cases. To
compute the source term in the i’th cell, we define the function  (x) as follows

 (x) = �
Z x

xi

�0(s)

RT (s)
ds

where we chose the reference position as xi. The final scheme will be independent of the choice
of this reference position because all the formulae involve only di↵erences in the potential. To
approximate the integrals we define the piecewise constant temperature as follows

(3.5) T (x) = T̂i+ 1
2
, xi < x < xi+1

where T̂i+ 1
2
is the logarithmic average given by

T̂i+ 1
2
=

Ti+1

� Ti

log Ti+1

� log Ti

The integrals are evaluated using the approximation of the temperature given in (3.5) leading to
the following expressions for  ,

 i = 0

 i� 1
2
= � 1

RT̂i� 1
2

Z x
i� 1

2

xi

�0(s)ds =
�i � �i� 1

2

RT̂i� 1
2

 i+ 1
2
= � 1

RT̂i+ 1
2

Z x
i+1

2

xi

�0(s)ds =
�i � �i+ 1

2

RT̂i+ 1
2

The gravitational potential has to be approximated at the cell faces. Since � is obtained from
the solution of a Poisson equation it is atleast continuous. Hence we can interpolate the potential
from the cell centers to the cell face in a continuous manner. For example the choice

�i+ 1
2
=

1

2
(�i + �i+1

)

is su�cient to obtain second order accuracy as we show below. Then

(3.6)  i� 1
2
=
�i � �i�1

2RT̂i� 1
2

,  i = 0,  i+ 1
2
=
�i � �i+1

2RT̂i+ 1
2

Note that the above expressions are specific to the i’th cell. Similar expressions must be used
for the other cells.

Remark 4. The logarithmic average has been used in [5] which also gives a stable method
to compute it. We use this stable method to compute the logarithmic average in our numerical
implementation.

Theorem 3.2. The source term discretization given by (3.6) is second order accurate.
Proof: The source term in (3.3) has the factor

e� i
e
 

i+1
2 � e

 
i� 1

2

�x
=

exp

✓
�i��i+1

2R ˆT
i+1

2

◆
� exp

✓
�i��i�1

2R ˆT
i� 1

2

◆

�x
using (3.6)
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Using a Taylor expansion around xi we get

(3.7)
1

T̂i� 1
2

=
1

Ti
[1 +O(�x2)],

1

T̂i+ 1
2

=
1

Ti
[1 +O(�x2)]

Performing a Taylor expansion of the potential around xi we obtain

e

�i��i+1
2RT̂

i+1
2 � e

�i��i�1
2RT̂

i� 1
2

= e
1

2RTi
(��0

i�x��00
i �x2

+O(�x3
)) � e

1
2RTi

(+�0
i�x��00

i �x2
+O(�x3

))

=


1 +

1

2RTi
(��0i�x� �00i �x2) +

1

2(2RTi)2
(�0i�x)2 +O(�x3)

�

�

1 +

1

2RTi
(�0i�x� �00i �x2) +

1

2(2RTi)2
(�0i�x)2 +O(�x3)

�

= � 1

RTi
�0(xi)�x+O(�x3)

Hence the source term discretization is second order accurate.
Remark 5. The property (3.7) is surprising since we would have only expected first order

accuracy. We obtain extra degree of accuracy due to the logarithmic average. If the temperature
is discontinuous near some grid point i, then (3.7) is not valid and instead we obtain

e

�i��i+1
2RT̂

i+1
2 � e

�i��i�1
2RT̂

i� 1
2

=
�i � �i+1

2RT̂i+ 1
2

� �i � �i�1

2RT̂i� 1
2

+O(�x2)

= �
 

1

2RT̂i� 1
2

+
1

2RT̂i+ 1
2

!
�0i�x+O(�x2)

Hence the source term discretization has following consistency

�pi

 
1

2RT̂i� 1
2

+
1

2RT̂i+ 1
2

!
�0i +O(�x)

This is not strictly consistent with the exact source term �⇢i @�@x . In order to study the e↵ect of
this, we present 1-D test cases with discontinuous solutions in section (4.6) and (4.7) which are
compared with a standard scheme. These results do not show any anamoly in the solutions due
to this issue.

Theorem 3.3. Any hydrostatic solution which is isothermal or polytropic is exactly preserved
by the finite volume scheme (3.3).

Proof: Assume that the initial condition is taken to be a hydrostatic solution. We have to
verify that the initial condition satisfies equation (3.4). If the initial condition is isothermal, then
T̂i+ 1

2
= Te = const, and using (2.3) we obtain

pi+1

e� i+1

pie� i
=

pi+1

pi
e i� i+1 =

pi+1

pi
exp

✓
�i+1

� �i
RTe

◆
=

pi+1

exp(�i+1

/RTe)

pi exp(�i/RTe)
= 1

If the initial condition is polytropic, then

pi+1

e� i+1

pie� i
=

pi+1

pi
e i� i+1 =

pi+1

pi
exp

 
�i+1

� �i

RT̂i+ 1
2

!
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But from (2.4), (2.5) we have

�i+1

� �i

RT̂i+ 1
2

= �
⌫R
⌫�1

(Ti+1

� Ti)

R Ti+1�Ti

log(Ti+1)�log(Ti)

= log

✓
Ti

Ti+1

◆ ⌫
⌫�1

and hence

pi+1

e� i+1

pie� i
=

pi+1

T
�⌫/(⌫�1)

i+1

piT
�⌫/(⌫�1)

i

= 1

Hence in both cases, the initial condition is preserved by the finite volume scheme.

3.3. Summary of the scheme. Using the approximations given by (3.6), the semi-discrete
finite volume scheme can be written as

dqi
dt

+
f̂i+ 1

2
� f̂i� 1

2

�x
=

e
ˆ�
i+1

2
(�i��i+1) � e

ˆ�
i� 1

2
(�i��i�1)

�x

2

4
0
pi
piui

3

5

where we have introduced the quantity

�̂i+ 1
2
=

1

2RT̂i+ 1
2

As an example of reconstruction, we discuss the minmod-type scheme for the interface i+ 1

2

.
The left and right reconstructed values of the w variables from cells i and i+ 1 respectively are
given by

wL
i+ 1

2
= wi +

1

2
M(✓(wi �wi�1

), (wi+1

�wi�1

)/2, ✓(wi+1

�wi))

wR
i+ 1

2
= wi+1

� 1

2
M(✓(wi+1

�wi), (wi+2

�wi+1

)/2, ✓(wi+2

�wi+1

))

where ✓ 2 [1, 2] and M(·, ·, ·) is the minmod limiter function which is defined as follows

M(a, b, c) =

(
smin(|a|, |b|, |c|) if s = sign(a) = sign(b) = sign(c)

0 otherwise

The variables w are defined using the potential relative to xi+ 1
2
. Thus the function  is defined

by

 (x) = �
Z x

x
i+1

2

�0(s)

RT (s)
ds

Using the temperature distribution (3.5) and evaluating  at the grid points yields

 i�1

=
�i � �i�1

RT̂i� 1
2

+
�i+ 1

2
� �i

RT̂i+ 1
2

= 2�̂i� 1
2
(�i � �i�1

) + �̂i+ 1
2
(�i+1

� �i)

 i =
�i+ 1

2
� �i

RT̂i+ 1
2

= �̂i+ 1
2
(�i+1

� �i)

 i+1

= �
�i+1

� �i+ 1
2

RT̂i+ 1
2

= ��̂i+ 1
2
(�i+1

� �i)

 i+2

= �
�i+1

� �i+ 1
2

RT̂i+ 1
2

� �i+2

� �i+1

RT̂i+ 3
2

= ��̂i+ 1
2
(�i+1

� �i)� 2�̂i+ 3
2
(�i+2

� �i+1

)
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Potential 1 Potential 2 Potential 3
�(x) x 1

2

x2 sin(2⇡x)
Table 1

Potential functions used for well-balanced tests

Potential Cells Density Velocity Pressure
x 100 8.21676e-15 4.98682e-16 9.19209e-15

1000 8.00369e-14 1.51719e-14 9.15152e-14
1

2

x2 100 1.01874e-14 2.49332e-16 1.06837e-14
1000 1.05202e-13 4.10434e-16 1.11861e-13

sin(2⇡x) 100 1.12466e-14 5.79978e-16 1.74966e-14
1000 1.16191e-13 2.93729e-15 1.76361e-13

Table 2
Error in density, velocity and pressure for isothermal examples of section (4.1) using potentials from Table (1)

In terms of the above  i’s, the variables w are defined as follows

wj =
⇥
⇢je� j , uj , pje� j

⇤>
, j = i� 1, i, i+ 1, i+ 2

Once wL
i+ 1

2
, wR

i+ 1
2
are computed we obtain the primitive variables by doing an inverse transfor-

mation. Since  i+ 1
2
= 0 we have the following simple relationship

wL
i+ 1

2
=
h
⇢L
i+ 1

2
, uL

i+ 1
2
, pL

i+ 1
2

i>
and wR

i+ 1
2
=
h
⇢R
i+ 1

2
uR
i+ 1

2
, pR

i+ 1
2

i>

For the first and last cells, we extrapolate the potential from inside the domain to the faces
located on the domain boundary

� 1
2
=

3

2
�
1

� 1

2
�
2

, �N+

1
2
=

3

2
�N � 1

2
�N�1

4. 1-D numerical results. In all the examples in this section, the domain is the interval
[0, 1], the initial condition has zero velocity and the ratio of specific heats is � = 1.4. The
boundaries are treated as solid walls and time integration is performed using the 3-stage strong
stability preserving Runge-Kutta scheme [12]. All the errors reported are measured in L1 norm
and computations are performed in double precision.

4.1. Isothermal examples: well-balanced test. For isothermal equilibrium solutions,
we study the well-balanced property for three di↵erent potential functions as shown in table (1).
The density and pressure are given by

⇢e(x) = pe(x) = exp(��(x))

The initial condition is taken to be the above hydrostatic solution. The tests are performed
on grids with 100 and 1000 cells upto a final time of t = 2.0 and the error in density, velocity
and pressure are reported in tables (2). We see that the error in the solution is of the order of
machine precision. The solutions residuals are also of the order of machine precision.

4.2. Isentropic examples: well-balanced test. In this section we consider isentropic
hydrostatic solutions of the form

Te(x) = 1� � � 1

�
�(x), ⇢e = T

1
��1
e , pe = ⇢�e
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Potential Cells Density Velocity Pressure
x 100 6.86395e-15 2.65535e-16 7.88869e-15

1000 7.03820e-14 7.79350e-16 8.03623e-14
1

2

x2 100 1.06604e-14 2.27512e-16 1.04128e-14
1000 1.10726e-13 1.15415e-15 1.09185e-13

sin(2⇡x) 100 1.27570e-14 5.18212e-16 1.65185e-14
1000 1.29020e-13 1.12837e-15 1.66566e-13

Table 3
Error in density, velocity and pressure for isentropic examples of section (4.2) using potentials from Table (1)

Potential Cells Density Velocity Pressure
x 100 6.86395e-15 2.65535e-16 7.88869e-15

1000 7.03820e-14 7.79350e-16 8.03623e-14
1

2

x2 100 1.06604e-14 2.27512e-16 1.04128e-14
1000 1.10726e-13 1.15415e-15 1.09185e-13

sin(2⇡x) 100 1.27570e-14 5.18212e-16 1.65185e-14
1000 1.29020e-13 1.12837e-15 1.66566e-13

Table 4
Error in density, velocity and pressure for polytropic examples of section (4.2) using potentials from Table (1)

We take the initial condition to be the above hydrostatic solution and apply the scheme on a
grid with 100 and 1000 cells upto a final time of t = 2.0 and the error in density, velocity and
pressure are reported in tables (3). We see that the error in the solution is of the order of machine
precision. The solutions residuals are also of the order of machine precision.

4.3. Polytropic examples: well-balanced test. In this section we consider polytropic
hydrostatic solutions of the form

Te(x) = 1� ⌫ � 1

⌫
�(x), ⇢e = T

1
⌫�1
e , pe = ⇢⌫e

with ⌫ di↵erent from �; we take ⌫ = 1.2 in the tests. We take the initial condition to be the
above hydrostatic solution and apply the scheme on a grid with 100 and 1000 cells upto a final
time of t = 2.0 and the error in density, velocity and pressure are reported in tables (4). We see
that the error in the solution is of the order of machine precision. The solutions residuals are
also of the order of machine precision.

4.4. Non-isothermal example. The stationary solution is given by the following

�(x) =
1

2
x2, ⇢e(x) = exp(�x), pe(x) = (1 + x) exp(�x)

which corresponds to a non-uniform temperature profile given by Te(x) = 1+x. This solution is
neither isothermal nor polytropic and the present scheme will not be able to preserve the exact
hydrostatic solution. Instead, we construct an approximation to the above hydrostatic solution
by numerically integrating the hydrostatic equations (2.2) as follows.

p
1

= pe(x1

), ⇢
1

=
p
1

RTe(x1

)

pi = pi�1

exp(�2�̂i� 1
2
(�i � �i�1

)), ⇢i =
pi

RTe(xi)
, i = 2, 3, . . . , N
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Cells ⇢ error ⇢ rate Velocity p error p rate
50 5.41510e-06 - 3.90665e-16 8.51248e-06
100 1.37964e-06 1.97 1.06754e-15 2.16486e-06 1.97
200 3.48173e-07 1.98 4.82755e-16 5.45846e-07 1.98
400 8.74530e-08 1.99 1.94554e-15 1.37043e-07 1.99
800 2.19146e-08 1.99 2.62298e-15 3.43336e-08 1.99
1600 5.48521e-09 1.99 6.56911e-15 8.59273e-09 1.99

Table 5
Convergence of error for hydrostatic solution of section (4.4).

The above solution satisfies equation (3.4) and hence is preserved by the numerical scheme. If we
apply the finite volume scheme to the above discrete solution, then the residuals are of the order
of machine precision and the initial condition is preserved. We compute the solution upto a time
of t = 2 and then measure the error in the numerical solution relative to the exact hydrostatic
solution on di↵erent grid sizes. The errors and convergence rates shown in table (5) indicate a
second order accuracy. The velocity is zero upto machine precision indicating that we have a
stationary solution.

4.5. Evolution of small perturbations. In this example we study the evolution of a
small perturbation added to the initial isothermal hydrostatic solution which is similar to the
test case in [9]. The initial condition is taken to be the following

� =
1

2
x2, u = 0, ⇢(x) = exp(��(x)), p(x) = exp(��(x)) + " exp(�100(x� 1/2)2)

where the amplitude " in the pressure perturbation will be varied. Figure (1) shows the results
using our well-balanced scheme and a non-well-balanced scheme in which the source term is
discretized with central di↵erences

@�

@x
(xi) ⇡

�i+1

� �i�1

2�x

and we reconstruct the primitive variables ⇢, u, p. For a large perturbation of " = 10�3, figure (1a)
shows that the non-well-balanced scheme also gives good solutions on 100 cells. But for a smaller
perturbation of " = 10�5, figure (1b) shows that the non-well-balanced scheme performs poorly
on 100 cells. With 500 cells, the non-well-balanced scheme also shows similar results as the well-
balanced scheme, see figure (1c). This clearly shows that improved accuracy is obtained with a
well-balanced scheme on coarser meshes which cannot be achieved with other non-well-balanced
schemes. In figure (1d) we compare the solutions from 100 and 500 cells of the well-balanced
schemes to shows that the solutions are very accurate even on the coarser mesh.

4.6. Shock tube under gravitational field. We consider the standard Sod test case
together with a gravitational field �(x) = x as in [15]. The domain is [0, 1] and the initial
conditions are given by

(⇢, u, p) =

(
(1, 0, 1) x < 1

2

(0.125, 0, 0.1) x > 1

2

together with solid wall boundary conditions. The solutions are obtained on 100 and 2000 cells
until a time of t = 0.2 and are shown in figures (2). We see that the density increases near x = 0
due to the gravitational force which is directed to the left. The coarse mesh of 100 cells is already
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Fig. 1. Evolution of pressure perturbations: (a) " = 10�3, 100 cells, (b) " = 10�5, 100 cells, (c) " = 10�5,
500 cells, (d) " = 10�5

able to resolve all the features in the solution and there are no spurious oscillations. This test
indicates that the modifications in reconstruction scheme and source term are not destroying the
non-oscillatory nature of the scheme.

4.7. Contact discontinuity under gravitational field. In this test case, we consider an
initial contact discontinuity under a gravitational field �(x) = x. The domain is [0, 1] and the
initial conditions are given by

(⇢, u, p) =

(
(1, 0, 1) x < 1

2

(10, 0, 1) x > 1

2

together with solid wall boundary conditions at both ends. We take � = 1.4 and the solution
is computed upto a time of t = 0.6. In figure (3), we show the results obtained with our well-
balanced scheme and a standard finite volume scheme in which the source terms are added
in their standard form (see equation (2.1)) with reconstruction of primitive variables. The
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Fig. 2. Sod test under gravitational field at time t = 0.2. (a) Density, (b) Velocity, (c) Pressure, (d) Energy

solutions are computed on meshes with 200 and 2000 cells and we observe that both schemes give
similar results. The large temperature jump does not cause any abnormalities in the solution
computed with the well-balanced scheme, even though the source term discretization is not
formally consistent in this case.

5. 2-D Euler equations with gravity. The 2-D Euler equations in Cartesian coordinates
is a system of four conservation laws for mass, momentum and energy, which can be written as

@q

@t
+
@f

@x
+
@g

@y
= s

Here the conserved variables q, fluxes (f , g) and source terms s are given by

q =

2

664

⇢
⇢u
⇢v
E

3

775 , f =

2

664

⇢u
p+ ⇢u2

⇢uv
(E + p)u

3

775 , g =

2

664

⇢v
⇢uv

p+ ⇢v2

(E + p)v

3

775 , s =

2

6664

0
�⇢@�@x
�⇢@�@y

�⇢(u@�@x + v @�@y )

3

7775
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(a) (b) (c)

(d) (e) (f)

Fig. 3. 1-D contact test case at t = 0.6. First row shows solution with 200 cells and second row shows
solution with 2000 cells

In the above equations ⇢ is the density, (u, v) are the Cartesian components of the velocity, p
is the pressure, E is the total energy per unit volume and � is the gravitational potential. In
general we consider the potential � to be a function of both spatial coordinates.

5.1. Hydrostatic solution. The hydrostatic equilibrium is characterized by the following
set of equations

ue = ve = 0,
@pe
@x

= �⇢e
@�

@x
,

@pe
@y

= �⇢e
@�

@y

These equations can be integrated along y = const and x = const lines respectively to obtain

pe(x, y) = a(y) exp

✓
�
Z x

x0

�x(s, y)

RT (s, y)
ds

◆
, pe(x, y) = b(x) exp

✓
�
Z y

y0

�y(x, s)

RT (x, s)
ds

◆

As in the 1-D case, we will exploit the structure of these solutions to construct the well-balanced
scheme.

6. 2-d finite volume scheme on Cartesian meshes. Define

 (x, y) = �
Z x

x0

�x(s, y)

RT (s, y)
ds, �(x, y) = �

Z y

y0

�y(x, s)

RT (x, s)
ds

Then the gravitational force can be written as

(6.1) �⇢�x = pe� 
@

@x
e , �⇢�y = pe��

@

@y
e�

Consider a partition of the computational domain into rectangular cells defined by (xi� 1
2
, xi+ 1

2
)⇥

(yj� 1
2
, yj+ 1

2
) with xi+ 1

2
� xi� 1

2
= �x and yj+ 1

2
� yj� 1

2
= �y. The cells are indexed by the tuple
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(i, j). As in the 1-D case, we approximate the source terms in the form given by equation (6.1)
by using a finite di↵erence scheme leading to the following semi-discrete finite volume scheme
for the cell (i, j)

(6.2) ⌦i,j
d

dt
qi,j + f̂i+ 1

2 ,j
� f̂i� 1

2 ,j
+ ĝi,j+ 1

2
� ĝi,j� 1

2
= ŝi,j

The gravitational source term is discretized as

ŝ(1)i,j = 0

ŝ(2)i,j = pi,je
� i,j

h
e
 

i+1
2
,j � e

 
i� 1

2
,j

i

ŝ(3)i,j = pi,je
��i,j

h
e
�
i,j+1

2 � e
�
i,j� 1

2

i

ŝ(4)i,j = ui,j ŝ
(2)

i,j + vi,j ŝ
(3)

i,j

Following the steps in the 1-D case, we can write the source terms as

ŝ(2)i,j = pi,j


e
ˆ�
i+1

2
,j
(�i+1,j��i,j) � e

ˆ�
i� 1

2
,j
(�i�1,j��i,j)

�

ŝ(3)i,j = pi,j


e
ˆ�
i,j+1

2
(�i,j+1��i,j) � e

ˆ�
i,j� 1

2
(�i,j�1��i,j)

�

To obtain the values at the face qL
i+ 1

2 ,j
, qR

i+ 1
2 ,j

we reconstruct the following set of variables

w = [⇢e� , u, v, pe� ]>

and to obtain qL
i,j+ 1

2
, qR

i,j+ 1
2
, we reconstruct the following set of variables

w = [⇢e��, u, v, pe��]>

The detailed equations are similar to the 1-D equations given in section (3.3) but applied di-
mension by dimension. We next state without proof, the theorems related to well-balanced
property and preservation of isothermal and polytropic solutions. The proofs are similar to the
1-D case and hence we do not repeat them. The pressure forces along each coordinate direction
are balanced by the gravitational force in the same direction, just as in the 1-D case.

Theorem 6.1. The finite volume scheme (6.2) together with a numerical flux which satisfies
contact property and reconstruction of w variables is well-balanced in the sense that the initial
condition given by

(6.3) ui,j = vi,j = 0, pi,j exp(� i,j) = aj , pi,j exp(��i,j) = bi, 8 i, j

is preserved by the numerical scheme.

Theorem 6.2. Any hydrostatic solution which is isothermal or polytropic is exactly preserved
by the finite volume scheme (6.2).

7. 2-D numerical results. In all the test cases, we consider an ideal gas with � = 1.4. The
time integration is performed by the 3-stage strong stability preserving Runge-Kutta scheme [12].
All computations are performed in double precision.
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Grid ⇢ u v p
50⇥ 50 0.19050E-14 0.14660E-15 0.14439E-15 0.20428E-14

200⇥ 200 0.75677E-14 0.12908E-14 0.12853E-14 0.83936E-14
Table 6

Error in density, velocity and pressure for isothermal hydrostatic example of section (7.1).

Grid ⇢ u v p
50⇥ 50 0.20449E-14 0.41148E-15 0.39802E-15 0.24637E-14

200⇥ 200 0.83747E-14 0.18037E-14 0.17986E-14 0.10107E-13
Table 7

Error in density, velocity and pressure for polytropic hydrostatic example of section (7.2).

7.1. Isothermal hydrostatic solution. Consider the isothermal hydrostatic solution in
the unit square corresponding to the potential �(x, y) = x+ y given by

⇢e(x, y) = ⇢
0

exp(�⇢
0

g(x+ y)/p
0

), pe(x, y) = p
0

exp(�⇢
0

g(x+ y)/p
0

)

Following [15], we take the parameters to be ⇢
0

= 1.21, p
0

= 1 and g = 1. We first perform a
test of well-balanced property by starting the computations with hydrostatic solution as initial
condition and solve upto a time of t = 1. The error in the solution with respect to the hydrostatic
solution is shown in table (6) for two di↵erent grid sizes. We note that these errors are of the
order of machine precision which shows the well-balanced property of the scheme.

To study the accuracy of the scheme, we add an initial perturbation to the pressure and take
the following initial condition

p(x, y, 0) = p
0

exp(�⇢
0

g(x+ y)/p
0

) + ⌘ exp(�100⇢
0

g((x� 0.3)2 + (y � 0.3)2)/p
0

)

with the other quantities being same as in the above hydrostatic case. This initial condition is
evolved upto a time of t = 0.15 with transmissive boundary conditions on a mesh of 50 ⇥ 50
cells using the present well-balanced scheme and a non-well-balanced scheme in which the source
terms are discretized with central di↵erences. In figure (4) we show the results for the case of
large perturbation with ⌘ = 0.1. The non-well-balanced scheme generates some distortion near
the origin which is not seen in the well-balanced results. In figure (5) we show the results for the
smaller perturbation of ⌘ = 0.001. The well-balanced scheme is still able to resolve the pressure
pulse while there are very large changes observed in the case of the non-well-balanced scheme and
the initial pressure pulse is completely destroyed. This test clearly demonstrates the improved
accuracy obtained with the well-balanced scheme in resolving small perturbations around the
hydrostatic solution.

7.2. Polytropic hydrostatic solution. Consider the polytropic hydrostatic solution in
the unit square corresponding to the potential �(x, y) = x+ y given by

� = x+ y, Te = 1� ⌫ � 1

⌫
(x+ y), pe = T

⌫
⌫�1
e , ⇢e = T

1
⌫�1
e

We perform well-balanced test for above solution taking ⌫ = 1.2 and grid sizes of 50 ⇥ 50 and
200 ⇥ 200. The error in solution at time t = 1 is reported in table (7) which shows that the
solution is preserved upto machine precision.

Next, we consider a perturbation of the initial pressure from the above polytropic solution
given by

p(x, y, 0) = pe(x, y) + ⌘ exp(�100⇢
0

g((x� 0.3)2 + (y � 0.3)2)/p
0

)
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(a) (b)

Fig. 4. Evolution of pressure perturbation in test case of section (7.1) with ⌘ = 0.1. 20 equally spaced
contours between -0.03 and +0.03 are shown. (a) Well-balanced scheme (b) non-well-balanced scheme

where the parameters in the perturbation are same as in the previous section. This initial
condition is evolved upto a time of t = 0.15 with transmissive boundary conditions on a mesh of
50 ⇥ 50 cells using the present well-balanced scheme and a non-well-balanced scheme in which
the source terms are discretized with central di↵erences. In figure (6) we show the results for
the case of large perturbation with ⌘ = 0.1. The non-well-balanced scheme generates some
distortion near the origin which is not seen in the well-balanced results. In figure (7) we show
the results for the smaller perturbation of ⌘ = 0.001. The well-balanced scheme is still able to
show the pressure pulse while there are very large changes observed in the case of the non-well-
balanced scheme and the initial pressure pulse is completely destroyed. This test again clearly
demonstrates the improved accuracy obtained with the well-balanced scheme in resolving small
perturbation around the hydrostatic solution.

7.3. Rayleigh-Taylor instability. In this example, we put a perturbation in density over
an isothermal radial solution with potential � = r. The initial pressure and density are given by

p =

(
e�r r  r

0

e�
r
↵+r0

(1�↵)
↵ r > r

0

, ⇢ =

(
e�r r  ri
1

↵e
� r

↵+r0
(1�↵)

↵ r > ri

where ri = r
0

(1 + ⌘ cos(k✓)) and ↵ = exp(�r
0

)/(exp(�r
0

) + �⇢). Hence the density jumps
by an amount �⇢ > 0 at the interface defined by r = ri whereas the pressure is continuous.
Following [9], we take �⇢ = 0.1, ⌘ = 0.02, k = 20 and use a mesh of 240 ⇥ 240 cells on the
domain [�1,+1]⇥ [�1,+1]. In the regions r < r

0

(1�⌘) and r > r
0

(1+⌘) the initial condition is
in stable equilibrium but due to the discontinuous density, a Rayleigh-Taylor instability develops
at the interface defined by r = ri. Plots of density at di↵erent times are shown in figure (8).
We see that the instability is concentrated only around the discontinuous interface which is a
consequence of the well-balanced property. If we use a non-well-balanced scheme, then large
disturbances develop away from the density interface leading to completely erroneous solution.
We do not obtain a radially symmetric solution because our initial condition is not symmetric due
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(a) (b)

Fig. 5. Evolution of pressure perturbation in test case of section (7.1) with ⌘ = 0.001. (a) Well-balanced
scheme, 20 equally spaced contours between -0.00026 and +0.00026 are shown. (b) non-well-balanced scheme,
20 equally spaced contours between -0.02 and +0.00026 are shown.

to the use of Cartesian meshes. This test case again shows the advantage of using a well-balanced
scheme for flows close to the stationary solution.

8. Summary and conclusions. We construct a novel well-balanced second order finite
volume scheme for Euler equations with gravity under the ideal gas assumption. We achieve
well-balanced property for isothermal and polytropic hydrostatic solutions with a single scheme.
The scheme requires the knowledge of the gravitational potential at the grid points only. The nu-
merical results in one and two dimensions demonstrate the well-balanced property of the scheme
and the resulting improved accuracy in resolving small perturbations around the hydrostatic
solution. The proposed scheme is a simple modification of the reconstruction step in finite vol-
ume schemes and source term discretization which can be easily implemented in existing codes
with minimal work. In practical applications like star simulation, it may be necessary to use
curvilinear meshes and the present well-balanced scheme has been extended to this case which
will be presented elsewhere. Moreover in many astrophysical applications, the Mach number can
be very low, necessitating the use of a low-Mach preconditioned scheme [4], e.g., based on the
classical Roe scheme. The well-balanced property of the proposed scheme is valid in such cases
also. Finally, it is possible to extend the current approach to the case of general equation of state
or even tabulated EOS.
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(a) (b)

Fig. 6. Evolution of pressure perturbation in test case of section (7.2) with ⌘ = 0.1. 20 equally spaced
contours between -0.03 and +0.03 are shown. (a) Well-balanced scheme, (b) non-well-balanced scheme
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20 Well-balanced scheme for Euler equations with gravity

(a) (b)

Fig. 7. Evolution of pressure perturbation in test case of section (7.2) with ⌘ = 0.001. (a) Well-balanced
scheme, 20 equally spaced contours between -0.00025 and +0.00025 are shown. (b) non-well-balanced scheme,
20 equally spaced contours between -0.015 and +0.0003 are shown.
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(a) (b)

(c) (d)

Fig. 8. Rayleigh-Taylor instability in radial gravitational field obtained with well-balanced scheme. Plots of
density at times (a) t = 0, (b) t = 2.9 (c) t = 3.8 (d) t = 5.0. Darker colour indicates larger values.


