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Uniformly normal families

Definition 1

(Hayman 1955)
Suppose that B ≥ 0. We define N (B) to be the family of analytic
functions f in the unit disk D = {z ∈ C : |z | < 1} such that
whenever z1, z2 ∈ D,
|f (z1)| ≤ 1 and |f (z2)| ≥ eB ,
we have ∣∣∣∣ z1 − z2

1− z2z1

∣∣∣∣ ≥ 1

2
.

A subfamily of some N (B) is said to be uniformly normal.

Remark. If B = 0, this means that each f satisfies either |f | < 1
throughout D, or |f | > 1 throughout D.
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Uniformly normal families

Observations.
The family F = N (B) has the following properties:
(i) if f ∈ F and |f (0)| ≤ 1, then for all z with |z | < 1/2, we have

|f (z)| < eB .

(ii) if f ∈ F and |a| < 1 = |c |, then the function

f

(
c

z − a

1− az

)
is also in F . That is, F is linearly invariant.
Every normal family F satisfies (i) for some B ≥ 0.
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A property of normal families.

Theorem 2

Let F be a family of meromorphic functions on a domain D ⊂ C. Suppose
that 0 < a < b. Then F is a normal family if, and only if, each z0 ∈ D has
a neighbourhood U such that each f ∈ F satisfies |f (z)| > a for all z ∈ U,
or |f (z)| < b for all z ∈ U.
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A property of normal families.

Theorem 3

Let F be a normal family of analytic functions in D. Then there exists a
number B ≥ 0 such that whenever f ∈ F and |f (0)| ≤ 1, we have

|f (z)| < eB

for all z with |z | < 1/2.
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A property of normal families. Proof.

To get a contradiction, suppose that F is a normal family of analytic
functions in D and that there is a sequence fn ∈ F and a sequence of
points zn such that for all n, we have |fn(0)| ≤ 1, |zn| < 1/2, and
|fn(zn)| > n.

We may assume, without changing notation, that fn → f locally uniformly
in D, where f is analytic in D, or f ≡ ∞.

We cannot have f ≡ ∞ since |fn(0)| ≤ 1 for all n. Hence |f (0)| ≤ 1.

We may assume that zn → w , where |w | ≤ 1/2.
pause

By uniform convergence in B(0, 1/2), we have fn(zn)→ f (w). Now f is
analytic, so f (w) 6=∞. But since |fn(zn)| > n, we have f (w) =∞. This
contradiction proves the theorem.
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Uniformly normal families

Every normal linearly invariant family is uniformly normal.
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Uniformly normal families

Theorem 4

The family N (B) is normal and hence every uniformly normal family is
normal.

Due to linear invariance, it suffices to show that N (B) is normal at the
origin.
Let F1 be the set of those functions f in N (B) that satisfy |f | ≥ 1 in a
given small disk B(0, r).
If f is in N (B) but not in F1 then there is a point z ∈ B(0, r) with
|f (z)| < 1. Now (moving z first to 0) we see that there is a radius t close
to 1/2 such that in B(0, t), we have |f | < eB .
By Theorem 2, N (B) is normal.
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Examples of uniformly normal families

Examples of uniformly normal families.
Let D1,D2,D3 be (Jordan) domains in C with disjoint closures.

1. Let F1(D1,D2,D3) be the family of all analytic functions f in D such
that f maps no subdomain of D conformally onto any Dj .
2. Let F2(D1,D2) be the family of all analytic functions f in D such that
f maps no subdomain of D conformally onto D1 or D2, or two-to-one onto
D1.

Clearly each of F1(D1,D2,D3) and F2(D1,D2) is linearly invariant. Each is
normal, as was proved by Ahlfors (1933) (also a consequence of the Ahlfors
theory of covering surfaces (1935)). Thus they are uniformly normal.
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Examples of uniformly normal families

3. Let F be a family of analytic functions in D such that for certain
distinct finite values a, b, and for certain positive integers h, k with

1

h
+

1

k
< 1,

each f ∈ F takes the value a only with multiplicity at least h, and each
f ∈ F takes the value b only with multiplicity at least k. Then F is a
uniformly normal family.
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Uniformly normal families. Example.

Example of a family that is normal but not uniformly normal.
Let F consist of all f analytic in D such that f 6= 0 and f ′ 6= 1 in D.
Then F is normal by Milloux (1940).
Clearly F is not linearly invariant, due to the condition f ′ 6= 1.
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Uniformly normal families

One motivation for the concept of a uniformly normal family.
To develop a framework for obtaining growth estimates for functions in
many different families that happen to be uniformly normal.
For example, for the families F1(D1,D2,D3) and F2(D1,D2) this leads to
upper bounds for the maximum modulus (Hayman 1955) that improve
earlier results (Ahlfors 1933).
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Marty’s criterion.

Recall Marty’s criterion for general normal families of meromorphic
functions.

Theorem 5

Let F be a family of meromorphic functions in D. Then F is a normal
family if, and only if, for each compact subset K of D, there is a constant
M > 0 such that for all f ∈ F and all z ∈ K , we have

f #(z) =
|f ′(z)|

1 + |f (z)|2
≤ M.
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Marty’s criterion for uniformly normal families.

We obtain the following result for families of meromorphic functions.
Applying the result to families of analytic functions, we get a criterion for
a family to be uniformly normal.

Theorem 6

Let F be a linearly invariant family of meromorphic functions in D. Then
F is a normal family if, and only if, there is a constant M > 0 such that
for all f ∈ F we have

f #(0) =
|f ′(0)|

1 + |f (0)|2
≤ M. (1)
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Marty’s criterion for uniformly normal families. Proof.

If F is normal, then Marty’s criterion implies (1).

Suppose then that F is linearly invariant and that (5) holds. Let K ⊂ D be
compact with |z | ≤ r < 1 for all z ∈ K . Pick a ∈ K . Then g ∈ F , where

g(z) = f

(
z − a

1− az

)
.

We have
(1− |a|2)|f ′(a)|

1 + |f (a)|2
= g#(0) ≤ M

so that

f #(a) ≤ M

1− |a|2
≤ M

1− r2
.

Hence F is normal.
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Examples of uniformly normal families

The following example is somewhat special, but was mentioned by Montel
(1934) as an example of a normal family. We write

A(r , f ) =
1

π

∫ r

0

∫ 2π

0

|f ′(te iθ)|2

(1 + |f (te iθ)|2)2
t dt dθ

for the average covering number in the disk B(0, r) under the
meromorphic function f . Note that A(r , f ) is an increasing function of r .

4. For 0 < K < 1, let FK be the family of meromorphic functions in D
such that A(r , f ) ≤ K for all r ∈ (0, 1). Then FK is a linearly invariant
normal family. Invariance is clear.
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Examples of uniformly normal families

Thus the corresponding family AK of functions f analytic in D such that
A(r , f ) ≤ K < 1 for all r ∈ (0, 1), is a uniformly normal family.

This follows from a theorem of Dufresnoy (1941), which states that

f #(0)2 ≤ 1

r2
A(r , f )

1− A(r , f )

for all r ∈ (0, 1) (if all these A(r , f ) are < 1). So if f ∈ AK , we obtain, as
r → 1, that

f #(0) ≤
√

K

1− K
.

The family f ∈ A1 is not normal since it contains the non-normal sequence

{fn(z) = nz : n ≥ 1}.
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Examples of uniformly normal families

The following example is connected to the Ahlfors theory of covering
surfaces (1935).
We write

L(r , f ) =

∫ 2π

0

|f ′(re iθ)|
1 + |f (re iθ)|2

r dθ

for the spherical length of the image under f of the circle
S(0, r) = {z : |z | = r}.

Let B be any disk, not necessarily centred at the origin. We define the
quantities A(B, f ) and L(B, f ) analogously to A(r , f ) and L(r , f ), using
the disk B instead of the disk B(0, r).

5. For real h > 0, let Gh be the family of functions f analytic in D such
that for all disks B whose closure is a subset of D, we have

A(B, f ) ≤ hL(B, f ).

Then Gh is a uniformly normal family.
We omit the proof of this claim.
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A property of uniformly normal families

Definition 7

The Ahlfors–Shimizu characteristic of a function f meromorphic in D is
given by

T0(r , f ) =

∫ r

0

A(t)

t
dt

for 0 < r < 1.

Theorem 8

If G is a uniformly normal family in D then there is a constant C > 0 such
that whenever f ∈ G and 0 < r < 1, we have

T0(r , f ) ≤ C log
1

1− r2
.

We omit the proof. The same result is valid for linearly invariant normal
families of meromorphic functions in D.
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Uniformly normal families. Estimates on the derivative.

Due to linear invariance, estimates at the origin can be used to obtain
estimates at any point of D.
Basic result:

Theorem 9

Suppose that f ∈ N (B),

f (z) = a0 + a1z +
∞∑
n=2

anzn

for |z | < 1. Then, with

µ = max{1, |a0|} ≥ 1,

we have
|a1| ≤ 2µ(logµ+ B1),

where B1 depends on B only (we may take B1 = 4e2B).
Aimo Hinkkanen (University of Illinois) Uniformly normal families May 27–28, 2015 20 / 80



Uniformly normal families. Estimates on the derivative.

Application, along the lines of Hayman’s (1947) results on Schottky’s
theorem:

Theorem 10

Suppose that f ∈ N (B) and |z0| = r < 1. Then, with
µ0 = max{1, |f (z0)|}, we have

|f ′(z0)| ≤ 2

1− r2
µ0(logµ0 + B1)

and with µ = max{1, |a0|},

M(r , f ) = max{|f (z)| : |z | = r} ≤ µ
1+r
1−r e

2B1r
1−r . (2)

Here B1 = 4e2B as in Theorem 9.
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Uniformly normal families. Estimates on the derivative.

Proof of Theorem 10, assuming Theorem 9.
Define

g(z) = f

(
z + z0

1 + z0z

)
so that g ∈ N (B), and

a0(g) = f (z0), µ(g) = µ0(f ),

a1(g) = g ′(0) = f ′(z0)(1− r2).

Apply Theorem 9 to g to get

|f ′(z0)|(1− r2) ≤ 2µ0(f )(logµ0(f ) + B1).
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Uniformly normal families. Estimates on the derivative.

Pick r ∈ (0, 1).
If M(r , f ) ≤ 1, then (2) is trivial.

If M(r , f ) > 1, choose z0 with |z0| = r and |f (z0)| = M(r , f ).
We have

d

dt
log log(eB1 |f (tz0/r)|)

=
1

log |f (tz0/r)|+ B1
Re

(
z0
r

f ′

f
(tz0/r)

)
so that when |f (tz0/r)| ≥ 1, we have∣∣∣∣ d

dt
log log(eB1 |f (tz0/r)|)

∣∣∣∣ ≤ |(f ′/f )(tz0/r)|
log |f (tz0/r)|+ B1

≤ 2

1− t2
.
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log |f (tz0/r)|+ B1

≤ 2

1− t2
.
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Uniformly normal families. Estimates on the derivative.

Choose t0 ∈ [0, 1) so that |f (tz0/r)| > 1 for t0 < t ≤ r and either t0 = 0
or |f (t0z0/r)| = 1. In either case, |f (t0z0/r)| ≤ µ = max{1, |f (0)|}. Then

| log log(eB1 |f (z0)|)− log log(eB1 |f (t0z0/r)|)|

≤
∫ r

t0

2

1− t2
dt ≤

∫ r

0

2

1− t2
dt = log

(
1 + r

1− r

)
,

hence

log(eB1 |f (z0)|) ≤ 1 + r

1− r
log(eB1 |f (t0z0/r)|)

≤ 1 + r

1− r
log(eB1µ),

so

M(r , f ) = |f (z0)| ≤ e−B1µ
1+r
1−r eB1

1+r
1−r

= µ
1+r
1−r e

2B1r
1−r .

This proves Theorem 10.
Aimo Hinkkanen (University of Illinois) Uniformly normal families May 27–28, 2015 24 / 80



Uniformly normal families. Growth estimates.

Theorem 10 implies that if f ∈ N (B), then, as r → 1, we have

log M(r , f ) = O

(
1

1− r

)
.

An earlier estimate of Ahlfors (1933) for the families F1(D1,D2,D3) and
F2(D1,D2) had been

log M(r , f ) =
O(1)

1− r
log

(
1

1− r

)
.
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Harnack’s inequality

For the proof of Theorem 9, we need a lemma. It is partly essentially a
form of Schwarz’s lemma (or the Borel–Carathéodory inequality) and
partly a consequence of Harnack’s inequality for positive harmonic
functions u in the unit disk:

1− |z |
1 + |z |

u(0) ≤ u(z) ≤ 1 + |z |
1− |z |

u(0)

whenever |z | < 1.
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Uniformly normal families

Lemma 11

Suppose that φ is analytic and satisfies |φ| > 1 in D, with

φ(z) = b0 + b1z +
∞∑
n=2

bnzn.

Then
|b1| ≤ 2|b0| log |b0|,

and for z1, z2 ∈ D, we have

|φ(z1)| ≥ |φ(z2)|
1−t
1+t ,

where

t =

∣∣∣∣ z1 − z2
1− z2z1

∣∣∣∣ .
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Uniformly normal families

Proof of Lemma 11. We may assume that z1 = 0, b0 real, positive (so
> 1). Write

g(z) = log φ(z) = g0 + g1z +
∞∑
n=2

gnzn, g0 > 0.

Then Re g > 0 and

ψ(z) =
g(z)− g0
g(z) + g0

satisfies the assumptions of Schwarz’s lemma. Hence

1 ≥ |ψ′(0)| =
|g ′(0)|

2g0
=

|b1|
2|b0| log |b0|

.
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Uniformly normal families
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Uniformly normal families

Also
|ψ(z2)| ≤ |z2| = t,

g(z2)

g0
=

1 + ψ(z2)

1− ψ(z2)
, |g(z2)| ≤ g0

1 + t

1− t
,

|φ(z2)| = eRe g(z2) ≤ |b0|
1+t
1−t = |φ(z1)|

1+t
1−t .�
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Uniformly normal families
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Uniformly normal families
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Uniformly normal families

Proof of Theorem 9. Recall
f (z) = a0 + a1z + . . . , µ = max{1, |a0|}, want to prove
|a1| ≤ 2µ(logµ+ B1).

Case 1. |a0| ≤ eB .
Then |f | > 1 in B(0, 1/8), or |f | < eB in B(0, 1/8). Otherwise there are
z1, z2 ∈ B(0, 1/8)
with |f (z1)| ≤ 1, |f (z2)| ≥ eB , and∣∣∣∣ z1 − z2

1− z2z1

∣∣∣∣ ≤ 1/8 + 1/8

1− 1/64
<

1

2
,

a contradiction.
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Uniformly normal families

If |f | < eB in B(0, 1/8), then |a1| = |f ′(0)| ≤ 8eB by Cauchy’s estimates.

If |f | > 1, so |1/f | < 1 in B(0, 1/8), then by Cauchy’s estimates
|f ′(0)|/|f (0)|2 ≤ 8, so |a1| ≤ 8|a0|2 ≤ 8e2B .
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Uniformly normal families

f (z) = a0 + a1z + . . . , µ = max{1, |a0|}, want to prove
|a1| ≤ 2µ(logµ+ B1).
Case 2. |a0| > eB .
Let ρ ∈ (0, 1] be maximal such that |f | > 1 in B(0, ρ). If ρ = 1, the
Lemma gives |a1| ≤ 2µ logµ (B1 = 0). Suppose ρ < 1. Let r ∈ (0, ρ) be
maximal such that |f | > eB in B(0, r).
Choose θ with |f (re iθ)| = eB , set φ(z) = f (ρz). Apply Lemma11 to φ,
z2 = 0, z1 = (r/ρ)e iθ, get

eB = |φ(z1)| ≥ |a0|
ρ−r
ρ+r ,

ρ− r

ρ+ r
log |a0| ≤ B.

With β s.t. |f (ρe iβ)| = 1, |f (re iβ)| ≥ eB .
Since f ∈ N (B), ρ−r

1−ρr ≥
1
2 .

Also ρ ≥ 1/2 since |a0| = |f (0)| > eB .
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Uniformly normal families

Case 2. |a0| > eB , continued.
We know that

ρ− r

ρ+ r
log |a0| ≤ B,

ρ− r

1− ρr
≥ 1

2
,

so

B ≥ ρ− r

ρ+ r
log |a0| ≥

1

4
(1− ρr) log |a0|,

1− ρ ≤ 1− ρr ≤ 4B

log |a0|
.

Then Lemma 11 applied to φ(z) = f (ρz) gives

ρ|a1| = ρ|f ′(0)| = |φ′(0)| ≤ 2|a0| log |a0|.
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Uniformly normal families

Recall
ρ|a1| = ρ|f ′(0)| = |φ′(0)| ≤ 2|a0| log |a0|.

Hence (recall ρ ≥ 1/2)

|a1| ≤
2

ρ
|a0| log |a0|

= 2|a0| log |a0|+
2(1− ρ)

ρ
|a0| log |a0|

≤ 2|a0| log |a0|+ 16B|a0|.

Also B1 = 4e2B ≥ 8B works in all cases.
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Uniformly normal families. Other estimates.

Some other results of Hayman (1955) without proofs, for f ∈ N (B):

Theorem 12

For λ ≥ 1, 0 ≤ r < 1,

Tλ(r) :=
1

2π

∫ 2π

0

{
log
√

1 + |f (re iθ)|2
}λ

dθ

≤ Tλ(0) + B2 log
1

1− r
, λ = 1,

Tλ(r) ≤ B(a0, λ)

(1− r)λ−1
, λ > 1.

Here B2 depends on B only, and B(a0, λ) depends on B, a0, and λ.
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Uniformly normal families. Other estimates.

Theorem 13

Suppose that eg ∈ N (B),

g(z) = u + iv = α + iβ +
∞∑
n=1

gnzn, |z | < 1.

Then (0 ≤ r < 1)
|g1| ≤ 2(|α|+ B3),

|gn| ≤ B4(|α|+ log n), n ≥ 2,

M(r , g) ≤ |g(0)|1 + r

1− r
+

2B3r

1− r
,
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Uniformly normal families. Other estimates.

Iλ(r , g) :=
1

2π

∫ 2π

0
|g(re iθ)|λ dθ

≤ B(g(0), λ)(1− r)1−λ, λ > 1,

I1(r , g) ≤ |g(0)|+ |α| log
1 + r

1− r

+rB5

[
1 +

(
log

1

1− r

)2
]
,

I1(r , u) ≤ |α|+ B6

(
1 + log

1

1− r

)
.
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Uniformly normal families and Riemann surfaces

The condition that eg ∈ N (B), makes an appearance in the following
geometric characterisation of N (B):

Theorem 14

Let R be a family of Riemann surfaces spread over the w−plane, and let
F be the family of functions eg , where w = g(z) maps D conformally
onto a surface in R. Then F is uniformly normal if, and only if, the radii
of schlicht disks in the surfaces in R with centres on the imaginary
w−axis are uniformly bounded.

We note that clearly F is linearly invariant.
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Uniformly normal families and Riemann surfaces

Proof of Theorem 14.
Suppose that all radii in question are < A and let H consist of all analytic
functions in D of the form

h(z) =
g(z)− iv

A
, v ∈ R,

arising in this way from elements of R. Set D1 = D, D2 = B(3i , 1),
D3 = B(−3i , 1). Then the closures of the Dj are disjoint, and no h ∈ H
maps any subdomain of D conformally onto any Dj . By Ahlfors, H is a
normal family. Hence there is A1 > 0 such that h(0) = 0 implies
Re h(z) < A1 whenever |z | ≤ 1/2. Since v is arbitrary, we have

Re g(0) = 0⇒ Re g(z) < AA1, |z | < 1/2.

For f = eg , this means that

|f (0)| = 1⇒ |f (z)| < exp(AA1), |z | < 1/2.

Hence F ⊂ N (AA1), so F is uniformly normal.
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Uniformly normal families and Riemann surfaces

Proof of Theorem 14, continued.
Suppose that F is uniformly normal. To get a contradiction, suppose that
the radii are not bounded above and for some surface in R there is a
schlicht disk B(iv , d). Let g be a conformal mapping of D onto this
surface with g(0) = iv . Let h be a branch of g−1 mapping B(iv , d) onto a
subdomain of D, h(iv) = 0, z1 = h(iv + d/2). By Schwarz’s lemma,
|z1| ≤ 1/2. If f = eg , this means that

f (0) = e iv , |f (0)| = 1, |f (z1)| = ed/2.

If d can be arbitrarily large, then F is not uniformly normal. Hence the
radii d are bounded.
This proves Theorem 14.
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Uniformly normal families
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Generalisations of uniformly normal families

We discuss generalisations of uniformly normal families, as given in the
paper
W.K. Hayman and A. Hinkkanen, Generalisations of uniformly normal
families, Transcendental dynamics and complex analysis, pp. 179–186,
London Math. Soc. Lecture Note Ser., 348, Cambridge Univ. Press,
Cambridge, 2008.

Recall that for a number B ≥ 0, the family N (B) consists of all analytic
functions f in the unit disk D = {z ∈ C : |z | < 1} such that
whenever z1, z2 ∈ D,
|f (z1)| ≤ 1 and |f (z2)| ≥ eB ,
we have ∣∣∣∣ z1 − z2

1− z2z1

∣∣∣∣ ≥ 1

2
.
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Generalisations of uniformly normal families, definition.

We now replace the parameter B by two positive functions, δ(r) (replacing
the constant 1/2) and λ(r) (replacing, effectively, the constant B/2),
defined for 0 < r < 1, such that

0 < δ(r) < 1,

δ(r) is decreasing (that is, non-increasing), and λ(r) is increasing (that is,
non-decreasing). This leads us to consider f analytic in D such that
whenever |z1| ≤ r < 1 and |z2| ≤ r ,
the conditions
|f (z1)| ≤ e−λ(r) and |f (z2)| ≥ eλ(r)

imply that ∣∣∣∣ z1 − z2
1− z2z1

∣∣∣∣ ≥ δ(r).

Let us denote the family of all such f by

N (δ(r), λ(r)).
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Generalisations of uniformly normal families, definition.

Definition 15

Let δ(r) and λ(r) be positive functions defined for 0 < r < 1, such that
0 < δ(r) < 1, δ(r) is decreasing, and λ(r) is increasing. We define the
family N (δ(r), λ(r)) to consist of all functions f analytic in D such that
whenever |z1| ≤ r < 1 and |z2| ≤ r , the conditions
|f (z1)| ≤ e−λ(r) and |f (z2)| ≥ eλ(r)

imply that ∣∣∣∣ z1 − z2
1− z2z1

∣∣∣∣ ≥ δ(r).

The family N (δ(r), λ(r)) is not linearly invariant except in the special case
when the functions δ(r) and λ(r) are constant functions.
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Generalisations of uniformly normal families, definition.

The family N (δ(r), λ(r)) is not linearly invariant except in the special case
when the functions δ(r) and λ(r) are constant functions.

If δ(r) is bounded below by a positive number and λ(r) is bounded above,
then N (δ(r), λ(r)) is contained in a linearly invariant normal family.
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Generalisations of uniformly normal families, normality.

Theorem 16

The family N (δ(r), λ(r)) is a normal family.

Proof. Pick z0 ∈ D. It suffices to show that N (δ(r), λ(r)) is normal at z0.
Choose r ∈ (|z0|, 1). The numbers δ(r) and λ(r) play the role of fixed
positive numbers in the argument that follows.
Let U be a small disk neighbourhood of z0 with the following properties:
(i) U ⊂ B(0, r);
(ii) whenever z1, z2 ∈ U, we have∣∣∣∣ z1 − z2

1− z1z2

∣∣∣∣ < δ(r)

2
.
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Generalisations of uniformly normal families, normality.

Proof, continued. Let F1 consist of those elements f of N (δ(r), λ(r))
such that |f (z)| ≥ exp(−λ(r)) for all z ∈ U.
If f lies in N (δ(r), λ(r)) but not in F1, then there is a point z1 ∈ U such
that |f (z1)| < exp(−λ(r)). Therefore, if |z2| ≤ r and |f (z2)| ≥ exp(λ(r)),
we have ∣∣∣∣ z1 − z2

1− z1z2

∣∣∣∣ ≥ δ(r)

so that z2 /∈ U. Hence, for this f , we have |f (z)| < exp(λ(r)) for all
z ∈ U. Now it follows from Theorem 2 that N (δ(r), λ(r)) is normal at z0.
This completes the proof of Theorem 16.
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Generalisations of uniformly normal families, main result.

The main result.

Theorem 17

Suppose that f ∈ N (δ(r), λ(r)). Suppose that |z0| < r < 1 and

log |f (z0)| > 8λ(r)

δ(r)
.

Then

|f ′(z0)| < 2r |f (z0)|
r2 − |z0|2

{
log |f (z0)|+ 8λ(r)

δ(r)

}
.
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Generalisations of uniformly normal families, main result.

In most applications,

8λ(r)

δ(r)
= a + b log

1

1− r

for some constants a ≥ 0, b ≥ 0. In this case, define t by

r = 1− 1

2
(1− t)2

and define

λ∗(t) = a + b log 2 + 2b log
1

1− t
= a + b log

1

1− r
.
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Generalisations of uniformly normal families, main result.

λ∗(t) = a + b log 2 + 2b log
1

1− t
= a + b log

1

1− r

Corollary 18

Let f , δ(r), λ(r), t, and λ∗(t) be as above. If |z | = t then

log |f (z)| ≤ λ∗(t)

or
|f ′(z)|
|f (z)|

<

{
2

1− t2
+ 8

}
(log |f (z)|+ λ∗(t)).

Further, in all cases,

log |f (z)| ≤ e8
{

3a + 8b + log+ |f (0)|
} 1 + |z |

1− |z |
.
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Generalisations of uniformly normal families, remarks on
proof.

The proof of Theorem 17 is structured so that one first proves a lemma in
which δ(r) and λ(r) are constants. Then Theorem 17 is proved using the
lemma and a suitable change of variables. All of this is very technical, and
before getting to it, we consider some applications of these concepts.
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Generalisations of uniformly normal families, Examples and
applications.

Examples and applications.
For a positive integer k, let Mk and Ak be the families of meromorphic
functions f in D and analytic functions f in D, such that f (z) 6= 0 and
f (k)(z) 6= 1 for all z ∈ D.
Then Mk and Ak are normal families in D.
Hence there exist positive constants λk and δk depending only on k such
that:
if f ∈ Mk and |zj | ≤ δk , for j = 1, 2, then we cannot have |f (z1)| ≤ e−λk

and |f (z2)| ≥ eλk .
The conclusion must hold for every sufficiently small δk , with λk
depending on δk and k only.
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Generalisations of uniformly normal families, a property of
normal families.

Proof of the claim that δk > 0 and λk > 0 exist as stated above.

To get a contradiction, suppose that there is no pair (δk , λk) with the
required properties. Then there are sequences of functions fn ∈ Mk and
points zn → 0 and wn → 0 such that fn(zn)→ 0 and fn(wn)→∞.
Since Mk is normal, we may assume that fn → f uniformly in a
neighbourhood of 0, where f is meromorphic or f ≡ ∞. By uniform
convergence, we have f (0) = limn→∞ fn(zn) = 0 and
f (0) = limn→∞ fn(wn) =∞, which is a contradiction. This proves the
claim.
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Generalisations of uniformly normal families, a property of
normal families.

We apply the above conclusion with |z1| < 1 and

F (z) = (1− |z1|)−k f (z1 + (1− |z1|)z)

instead of f (z). Then F belongs to Mk or Ak if f does.
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Generalisations of uniformly normal families, f 6= 0,

f (k) 6= 1

Corollary 19

If k is a positive integer and f ∈ Mk , then 1/f satisfies the hypotheses and
hence the conclusion of Theorem 17 and Corollary 18 with δ(r) = 1

3δk for
0 < r < 1, and

8λ(r)

δ(r)
=

24

δk

{
λk + k log

1

1− r

}
,

λ∗(t) =
24

δk

{
λk + k log 2 + 2k log

1

1− t

}
,

where δk and λk are positive constants depending only on k. If f is also
analytic then f satisfies the same conclusions.
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Generalisations of uniformly normal families, f 6= 0,

f (k) 6= 1

Significance of Corollary 19.
Recall that a family F of analytic functions in D is called linearly invariant
if , whenever f ∈ F and |a| < 1 = |c |, the function

f

(
c

z − a

1− az

)
is also in F .
Every linearly invariant normal family is uniformly normal.
The family Ak is not linearly invariant, and hence not uniformly normal.
Therefore growth results for members of uniformly normal families do not
provide such results for functions in Ak .
Corollary 19 provides growth results for members of Ak , and also results
for 1/f , even for non-analytic meromorphic members f of Mk .
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Generalisations of uniformly normal families, f 6= 0,

f (k) 6= 1

On the function 1/f .
The hypotheses of Theorem 17 (apart from the requirement of analyticity)
are the same for f and 1/f . Hence if f satisfies them and 1/f is analytic,
then 1/f satisfies the conclusions of Theorem 17. In particular if f ∈ Mk ,
so that f 6= 0 in D, we can apply the conclusion of Theorem 17 to 1/f
instead of f , with λ(r) and λ∗(r) as in Corollary 19.
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Generalisations of uniformly normal families, another
example.

Another example.
We denote by Mk and Ak respectively the family of meromorphic
functions f and analytic functions f in D such that f ′(z)f (z)k 6= 1 in D.
The families Ak and Mk are normal. (These problems have a long and
illustrious history which we do not get into here.)

Corollary 20

If k is a positive integer and f ∈ Ak , then f satisfies the hypotheses and
hence the conclusion of Theorem 17 and Corollary 18 with δ(r) = ηk , and

λ(r) = µk +
1

k + 1
log

1

1− r
,

where ηk and µk are positive constants depending only on k.
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Generalisations of uniformly normal families, locally
bounded characteristic.

The functions f in (Mk and) Mk are of locally bounded characteristic,
which can be used to deduce upper bounds for their spherical derivatives

µ(r) = sup
|z|≤r

f ](z) = sup
|z|≤r

|f ′(z)|
1 + |f (z)|2

,

of the form

µ(r) = O

(
1

1− r

)
log

1

1− r
,

so that ∫ 1

0
(1− r)1/2µ(r) dr <∞,

which condition leads to further conclusions. We do not give further
details here.
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Generalisations of uniformly normal families, a lemma.

We now move to proofs. For the proof of Theorem 17, we need a lemma.

Lemma 21

Suppose that λ(r) = λ and δ(r) = δ, where λ and δ are positive
constants, that f ∈ N (δ, λ), and that

α = log |f (z0)| > 8λ

δ
.

Then

|f (z)| > eλ when

∣∣∣∣ z − z0
1− z0z

∣∣∣∣ < r1, where 1− r1 =
4λ

αδ
<

1

2
.

Also,

|f ′(z0)| < 2|f (z0)|
1− |z0|2

{
log |f (z0)|+ 8λ

δ

}
.
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Proof of Lemma.

Proof of Lemma 21. Since the hypotheses are conformally invariant, we
assume z0 = 0. Let r2 be maximal such that |f (z)| > e−λ if |z | < r2.
Suppose first r2 < 1. Let r1 be the largest number such that

|f (z)| > eλ for |z | < r1.

Then 0 < r1 < r2 < 1 and there exists z2 = r2e iθ such that

|f (z2)| = e−λ.

We set z1 = r1e iθ. Then∣∣∣∣ z2 − z1
1− z1z2

∣∣∣∣ =
r2 − r1

1− r1r2
≥ δ,

i.e.,

r2 ≥
r1 + δ

1 + δr1
.
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Proof of Lemma, continued.

Apply Harnack’s inequality to log |φ| where

φ(z) = eλf (r2z),

choose z so that |z | = r1/r2 and |f (r2z)| = eλ. This is possible since r1 is
maximal subject to |f (z)| > eλ for |z | < r1. Then |φ(z)| > 1 for
|z | < 1, and so

(∗) log |φ(z)| ≥ 1− |z |
1 + |z |

log |φ(0)|,

i.e.,

(∗∗) 2λ ≥ r2 − r1
r2 + r1

(λ+ α).

If r2 = 1, then either r1 = 1, in which case the conclusions are trivial; or
we can choose z such that |z | = r1 and |f (z1)| = eλ. Now (*) still holds
and we obtain (**) as before with r2 = 1. Thus (**) is always true.
Also r2 ≥ r1+δ

1+δr1
is true if r2 = 1 and r1 < 1, since δ < 1. Thus this

inequality and (**) always hold.
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Proof of Lemma, continued.

We substitute r2 from r2 ≥ r1+δ
1+δr1

to (**) and obtain

2λ

λ+ α
≥

(
r1 + δ

1 + δr1
− r1

)/(
r1 + δ

1 + δr1
+ r1

)
=

δ(1− r21 )

δ(1 + r21 ) + 2r1

≥ δ(1− r21 )

(1 + r1)2
= δ

1− r1
1 + r1

≥ δ

2
(1− r1).

Thus

1− r1 ≤
4λ

δ(λ+ α)
≤ 4λ

δα
<

1

2
.

This proves the first claims of Lemma 21.
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Proof of Lemma, continued.

The function
Ψ(z) = e−λf (r1z)

satisfies |Ψ(z)| > 1 if |z | < 1. Thus, as we saw in the proof of Lemma 11,

|Ψ′(0)| ≤ 2|Ψ(0)| log |Ψ(0)|,

i.e.,

|f ′(0)|
|f (0)|

≤ 2

r1
(log |f (0)| − λ) =

2

r1
(α− λ)

≤ 2(α− λ)
1

1− 4λ
δα

= 2(α− λ) + 2(α− λ)
4λ

δα− 4λ

< 2α +
16αλ

δα
= 2

(
α +

8λ

δ

)
since δα− 4λ > δα/2.
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Proof of Lemma, continued.

This proves the last claim if z0 = 0.

If z0 6= 0, we apply the above result to F instead of f at the origin, where
F (z) = f ((z + z0)/(1 + z0z)).

This is legitimate now since δ(r) and λ(r) are constants.

This yields the last claim in general, hence completes the proof of
Lemma 21.
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Proof of the main result.

Proof of Theorem 17.
Fix r ∈ (0, 1), apply Lemma 21 with F (z) = f (rz) instead of f and with
λ = λ(r), δ = δ(r).
We first need to check exactly which conditions are satisfied by F .
Write z1 = rZ1, z2 = rZ2. By hypothesis on f , if |Z1| < 1, |Z2| < 1 and

|F (Z1)| ≤ e−λ, |F (Z2)| ≥ eλ,

we deduce that ∣∣∣∣ r(Z2 − Z1)

1− r2Z1Z2

∣∣∣∣ ≥ δ,
with δ = δ(r) and λ = λ(r).
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Proof of the main result, continued.

We next prove that

(∗) |Z2 − Z1|
|1− Z1Z2|

>
r |Z2 − Z1|
|1− r2Z1Z2|

.

To see this, note that Z1 6= Z2 and

|1− r2Z1Z2|2 − r2|1− Z1Z2|2

= (1− r2)(1− r2|Z1|2|Z2|2) > 0,

which yields (*). Thus
∣∣∣ r(Z2−Z1)

1−r2Z1Z2

∣∣∣ ≥ δ implies∣∣∣∣ Z2 − Z1

1− Z1Z2

∣∣∣∣ > δ.

So we apply Lemma 21 to F (z) = f (rz) instead of f (z), and with
Z0 = z0/r instead of z0. This yields the claim of Theorem 17.
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Proof of the main corollary.

Proof of Corollary 18.
We have

1

r2 − t2
− 1

1− t2
=

(1− r)(1 + r)

(r − t)(r + t)(1− t)(1 + t)

≤ (1− t)2

1
2(1− t)2 · 12

= 4,

since r = 1− 1
2(1− t)2 ≥ 1

2 and r − t ≥ 1
2(1− t).

Thus Theorem 17, with α = log |f (z0)|, gives

|f ′(z0)| < 2|f (z0)|
r2 − t2

{α + λ∗(t)}

< 2|f (z0)|
{

1

1− t2
+ 4

}
{α + λ∗(t)} .

This proves the first claim of Corollary 18.
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Proof of the main corollary, continued.

We move to the proof of the second claim of Corollary 18. Recall that
that claim was as follows:

log |f (z)| ≤ e8
{

3a + 8b + log+ |f (0)|
} 1 + |z |

1− |z |
.

Also,

λ∗(t) = a + b log 2 + 2b log
1

1− t
= a + b log

1

1− r
.
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GProof of the main corollary, continued.

Next, fix θ ∈ [0, 2π), write y(t) = log |f (te iθ)| for 0 ≤ t < 1. If
y(t) ≤ λ∗(t) or if t = 0, the second claim of Corollary 18 clearly holds for
z = te iθ. Suppose for some t ∈ (0, 1),

y(t) > λ∗(t).

Choose t0 ∈ [0, t) maximal, s.t. y(t0) ≤ λ∗(t0). If y(τ) > λ∗(τ) for all
τ ∈ [0, t), set t0 = 0. Then

y(τ) > λ∗(τ) for t0 < τ < t.

Thus we can apply the first claim with τ instead of t in this range and
obtain

y ′(τ)−
{

2

1− τ2
+ 8

}
y(τ) <

{
2

1− τ2
+ 8

}
λ∗(τ),

for t0 < τ < t.
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Proof of the main corollary, continued.

We have

y ′(τ)−
{

2

1− τ2
+ 8

}
y(τ) <

{
2

1− τ2
+ 8

}
λ∗(τ),

for t0 < τ < t. Multiplying by

P(τ) = e−8τ
1− τ
1 + τ

and integrating w.r.t. τ from t0 to t get

y(t) ≤

1

P(t)

{
y(t0)P(t0) +

∫ t

t0

(
2

1− τ2
+ 8

)
P(τ)λ∗(τ) dτ

}
.

If t0 = 0, we get y(t0)P(t0) = y(t0) ≤ log+ |f (0)|.
If t0 > 0, we have y(t0)P(t0) = λ∗(t0)P(t0).
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Proof of the main corollary, continued.

We write

λ∗(t) = a∗ + b∗ log
1

1− t

with a∗ = a + b log 2 and b∗ = 2b. Then

λ∗(t)P(t) =

(
a∗ + b∗ log

1

1− t

)
1− t

1 + t
e−8t

≤ a∗ + b∗ sup
0≤t<1

(1− t) log
1

1− t

= a∗ +
b∗

e
.

We will apply this to the term y(t0)P(t0) = λ∗(t0)P(t0).
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Proof of the main corollary, continued.

Again ∫ 1

0

(
2

1− t2
+ 8

)
1− t

1 + t
e−8t dt <

∫ 1

0
10e−8t dt <

5

4

while ∫ 1

0

(
2

1− t2
+ 8

)(
1− t

1 + t
log

1

1− t

)
e−8t dt

< 2

∫ 1

0
log

1

1− t
dt +

8

e

∫ 1

0
e−8t dt < 2 +

1

e
.

Thus ∫ 1

0

(
2

1− t2
+ 8

)
P(t)λ∗(t) dt ≤ 5

4
a∗ +

(
2 +

1

e

)
b∗.
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Proof of the main corollary, continued.

Hence

y(t)

≤ 1

P(t)

{
a∗ +

b∗

e
+

5

4
a∗ +

(
2 +

1

e

)
b∗ + log+ |f (0)|

}
≤ 1

P(t)

{
3a + 8b + log+ |f (0)|

}
,

where a∗ = a + b log 2 and b∗ = 2b.
This implies the second claim of Corollary 18.
This proves Corollary 18.
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Proof of results when f 6= 0, f (k) 6= 1.

Proof of Corollary 19.
Suppose |z1| ≤ |z2| = r and f ∈ Mk . Consider

F (Z ) =
1

(1− |z1|)k
f (z1 + (1− |z1|)Z ).

Then F (Z ) 6= 0, F (k)(Z ) = f (k)(z1 + (1− |z1|)Z ) 6= 1 when Z ∈ D, so
F ∈ Mk . In particular if Z1 = 0 and Z2 = (z2 − z1)/(1− |z1|) and

|Z2| < δk

we cannot have

|F (Zj)| ≤ e−λk , |F (Zj ′)| ≥ eλk ,

where (j , j ′) is a permutation of (1, 2).
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Proof of results when f 6= 0, f (k) 6= 1.

Returning to f , we see that

|f (zj)| < e−λk (1− |z1|)k , |f (zj ′)| > eλk (1− |z1|)k

imply that
|zj ′ − zj | > δk(1− |z1|),

so
|z2 − z1|
1− |z1|

> δk .
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Proof of results when f 6= 0, f (k) 6= 1.

If η = |z2 − z1|/(1− |z1|) ≤ 1, then

|1− z1z2| = |1− z1z1 + z1z1 − z1z2|
≤ 1− |z1|2 + |z2 − z1|
= (1− |z1|)(1 + |z1|+ η)

< 3(1− |z1|).

Thus if |z2 − z1| ≤ 1− |z1|, we have

(∗)
∣∣∣∣ z2 − z1
1− z1z2

∣∣∣∣ > |z2 − z1|
3(1− |z1|)

>
δk
3

if |z2−z1|1−|z1| > δk .
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Proof of results when f 6= 0, f (k) 6= 1.

We have assumed that |z2 − z1| ≤ 1− |z1|. But if this is false, (*) is still
true by the maximum principle. Thus |zj ′ − zj | > δk(1− |z1|) always
implies (*), and so does

|f (zj)| < (1− r)ke−λk , |f (zj ′)| > (1− r)−keλk

since this implies |f (zj)| < e−λk (1− |z1|)k , |f (zj ′)| > eλk (1− |z1|)k and
hence |zj ′ − zj | > δk(1− |z1|), because r = max{|zj |, |zj ′ |}. This proves
Corollary 19.
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Generalisations of uniformly normal families

Proof of Corollary 20.
We write

F (z) = (1− |z1|)−1/(k+1)f (z1 + (1− |z1|)z)

and proceed as in the proof of Corollary 19.

Aimo Hinkkanen (University of Illinois) Uniformly normal families May 27–28, 2015 79 / 80



Generalisations of uniformly normal families
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