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A GENERAL PERTURBATION FORMULA FOR ELECTROMAGNETIC FIELDS
IN PRESENCE OF LOW VOLUME SCATTERERS

Roland Griesmaier
1

Abstract. In several practically interesting applications of electromagnetic scattering theory like, e.g.,
scattering from small point-like objects such as buried artifacts or small inclusions in non-destructive
testing, scattering from thin curve-like objects such as wires or tubes, or scattering from thin sheet-like
objects such as cracks, the volume of the scatterers is small relative to the volume of the surrounding
medium and with respect to the wave length of the applied electromagnetic fields. This smallness
typically causes problems when solving direct scattering problems due to the need to discretize the
objects and also when solving inverse scattering problems because small objects have very little effect
on electromagnetic fields. In this paper we consider an asymptotic representation formula for scattered
electromagnetic waves caused by low volume objects contained in some otherwise homogeneous three-
dimensional bounded domain, assuming only that the scatterers are measurable and well-separated
from the boundary of the domain. The formula yields a very general asymptotic model for electro-
magnetic scattering due to low volume objects that can either be used to simulate the corresponding
electromagnetic fields or as the foundation of efficient reconstruction methods for inverse scattering
problems with low volume scatterers. Our analysis extends results originally obtained in [Y. Capde-
boscq and M.S. Vogelius, A general representation formula for boundary voltage perturbations caused
by internal conductivity inhomogeneities of low volume fraction. Math. Model. Numer. Anal. 37 (2003)
159–173] for steady state voltage potentials to time-harmonic Maxwell’s equations.
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1. Introduction

In this work we study time-harmonic electromagnetic waves in a smoothly bounded domain filled with a ho-
mogeneous medium, which we call the background domain and accordingly the background medium. Supposing
that this domain contains a penetrable object, the scatterer, that is a subdomain on which the electromagnetic
properties of the medium differ from that of the background medium, we want to describe the influence of this
object on electromagnetic fields under the additional assumption that its volume is small. Our main motivation
to do so stems from inverse scattering problems, where one aims to recover the position and the shape of the
scatterer from measurements of electromagnetic waves that are scattered by this object. If the volume of the
object is small, it is well known that it has very little effect on electromagnetic fields, i.e., on the measurement
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data given in the inverse scattering problem. Therefore it is advisable to include all available a priori informa-
tion on the structure of perturbations of electromagnetic fields due to low volume scatterers, when designing
methods to reconstruct such objects from scattering data.

The aim of this article is to provide such a priori information for a very general class of low volume scatterers.
For this purpose we consider the asymptotic behavior of scattered electromagnetic fields, i.e., the difference
between the fields with and without scatterer, as the volume of the scatterer tends to zero. Our only regularity
assumptions on the scatterer are that it is measurable and well separated from the boundary of the background
domain. Observing that away from the scatterer the scattered field decreases at the same rate as the volume
of the scatterer, we derive an analytic expression for the leading order term in the corresponding asymptotic
expansion. Due to the generality of this formula higher order terms or even their precise order in terms of the
volume of the scatterer are not obtained. For time-harmonic Maxwell’s equations such an expansion has so far
only been studied for the special case of diametrically small scatterers by Ammari, Vogelius, and Volkov [9]
(see also [28] for a corresponding result for perfectly conducting scatterers in an unbounded layered background
medium and Ammari and Kang [4] or Ammari and Khelifi [6] for higher order expansions in a two-dimensional
setting).

Our analysis extends the work of Capdeboscq and Vogelius [18], where a similar representation formula has
been established for perturbations in electrostatic potentials due to low volume conductivity inhomogeneities
(cf. [19–21] for further studies in this direction). This formula generalizes and unifies earlier results obtained
for the special case of diametrically small conductivity inhomogeneities (see, e.g., Friedman and Vogelius [26],
Cedio-Fengya, Moskow, and Vogelius [22], or Ammari and Kang [3]) as well as for conductivity inhomogeneities
of small thickness (see, e.g., Beretta et al. [15,16]). Similarly, the general formula for time-harmonic Maxwell’s
equations discussed in this article allows to recover the formula for diametrically small scatterers from [9] but
also yields new asymptotic formulas for practically important cases like thin tubes or thin penetrable cracks
mentioned before. Furthermore, our results can be extended to unbounded domains straightforwardly as done
for diametrically small scatterers by Ammari and Volkov in [11].

The asymptotic formulas for diametrically small conductivity inhomogeneities and scatterers known so far
form the foundation of several efficient reconstruction methods for inverse conductivity problems (see, e.g.,
Ammari, Moskow, and Vogelius [7], Ammari and Seo [8] or Brühl, Hanke, and Vogelius [17]) and inverse
scattering problems for Maxwell’s equations (see, e.g., Ammari et al. [2], Iakovleva et al. [33], Volkov [42],
or [28,29,31,32]). In addition the general formula for electrostatic potentials from [18] has recently been used
to investigate inverse conductivity problems for wires and tubes (see Beretta et al. [13] or [30]). Similarly, the
general formula for electromagnetic fields considered here gives a new approach to develop efficient reconstruction
methods for practically interesting inverse scattering problems, such as, e.g., inverse scattering for penetrable
cracks (cf., e.g., Beretta and Francini [14] and Park and Lesselier [39] for an earlier study in this direction in a
two-dimensional setting) or inverse scattering for thin tubular scatterers.

The arguments we use to establish the asymptotic representation formula rest on those applied in [18],
suitably modified for the non-coercive Maxwell’s equations and vector-valued functions. Among others the
proof involves a representation formula for the scattered electromagnetic field in terms of Green’s functions,
energy estimates for electromagnetic fields obtained by duality arguments, so-called corrector potentials and
polarization tensors, and an integration by parts technique that goes back to Murat and Tartar [38]. Applying
two types of Helmholtz decompositions to the electromagnetic fields the gradient parts can be treated similarly
to [18], while the main contribution of this work is the analysis of the divergence free parts that requires different
techniques and is slightly more involved. In case of homogeneous background media, the polarization tensors
turn out to be equivalent to the polarization tensor appearing in the electrostatic case, and thus earlier results
on the properties of these tensors (see, e.g., [5,18,19,21]) immediately carry over to our setting. For historical
remarks on polarization tensors and alternative approaches to establish asymptotic expansions of similar type
as considered here we refer to the monographs by Ammari and Kang [5] and Il’in [34].

For several particular geometries of the scatterer explicit characterizations of the polarization tensor are
known. Then the asymptotic representation formula yields a fast way to approximate the scattered field due
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to such low volume objects without meshing the scatterer itself. This is, e.g., the case for small ellipsoidal
scatterers (see [5]), thin cylindrical scatterers (see [13]), or thin sheet-like scatterers (see [15,16]).

This article is organized as follows. In the next section we specify our mathematical setting and state the
main result of this work, the asymptotic perturbation formula for the electromagnetic field. In Section 3,
we collect some estimates for the scattered magnetic field, estimates for corresponding asymptotic corrector
potentials, and the definitions of the electric and magnetic polarization tensors that will be used in the proof of
the asymptotic formula. This proof is carried out in Section 4. In Section 5 we discuss three particular examples
and comment on how the corresponding formulas can be used to solve inverse scattering problems. Finally, in
Section 6 we outline possible generalizations of our findings.

2. The mathematical setting

Suppose Ω ⊂ R
3 is a bounded domain with smooth boundary ∂Ω and unit outward normal ν. We consider

a homogeneous background medium with constant electric conductivity σ0 ≥ 0, constant electric permittivity
ε0 > 0, and constant magnetic permeability μ0 > 0. A time-harmonic magnetic background field in this medium
at a frequency ω/2π > 0 corresponding to boundary data

g ∈ H
−1/2
div (∂Ω) := {f ∈ H−1/2(∂Ω, C3) | div∂Ωf ∈ H−1/2(∂Ω, C)}

is governed by the boundary value problem

curl
( 1

ε̃0
curlH0

)
− ω2μ0H0 = 0 in Ω, (2.1a)

1
ε̃0

(curlH0) × ν = g on ∂Ω. (2.1b)

Here and in the following we write ε̃0 := ε0 + iσ0/ω. Accordingly the electric background field is given by
E0 = (i/ωε̃0)curlH0.

Next, let Ω0 ⊂⊂ Ω be well separated from ∂Ω, i.e., dist(Ω0, ∂Ω) ≥ d0 for some constant d0 > 0, and denote by
(Dρn)n∈N a family of measurable subsets of Ω satisfying limn→∞ |Dρn | = 0, where |Dρn | denotes the Lebesgue
measure of Dρn . Each Dρn is considered as a scatterer contained in Ω causing a discontinuous permeability and
(complex-valued) permittivity

μρn(x) :=

{
μ1(x), x ∈ Dρn ,

μ0, x ∈ Ω \ Dρn ,
ε̃ρn(x) :=

{
ε̃1(x), x ∈ Dρn ,

ε̃0, x ∈ Ω \ Dρn ,

where μ1 ∈ C∞(Ω, R) satisfies 0 < cμ1 ≤ μ1 ≤ Cμ1 < ∞ and ε̃1 := ε1 + i(σ1/ω) with ε1 ∈ C∞(Ω, R) and
σ1 ∈ C∞(Ω, R) such that 0 < cε1 ≤ ε1 ≤ Cε1 < ∞ and 0 ≤ σ1 ≤ Cσ1 < ∞ for some constants cμ1 , Cμ1 , cε1 , Cε1 ,
and Cσ1 . The magnetic field in presence of these scatterers corresponding to the same boundary data as above
satisfies

curl
( 1

ε̃ρn

curlHρn

)
− ω2μρnHρn = 0 in Ω, (2.2a)

1
ε̃ρn

(curlHρn) × ν = g on ∂Ω. (2.2b)

Introducing the sesquilinear forms a0 and aρn , n ∈ N, on H(curl, Ω) × H(curl, Ω), where

H(curl, Ω) := {u ∈ L2(Ω, C3) | curlu ∈ L2(Ω, C3)},
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by

a0(u, v) :=
∫

Ω

1
ε̃0

curlu · curlv dx − ω2

∫
Ω

μ0u · v dx,

aρn(u, v) :=
∫

Ω

1
ε̃ρn

curlu · curlv dx − ω2

∫
Ω

μρnu · v dx,

the weak formulations of the boundary value problems (2.1) and (2.2) ask to find H0, Hρn ∈ H(curl, Ω) such
that

a0(H0, v) =
∫

∂Ω

g · v ds, for all v ∈ H(curl, Ω), (2.3)

aρn(Hρn , v) =
∫

∂Ω

g · v ds, for all v ∈ H(curl, Ω), (2.4)

respectively. Throughout we assume that (2.3) has a unique solution. In this case

‖H0‖H(curl,Ω) ≤ C‖g‖
H

−1/2
div (∂Ω)

and regularity results for Maxwell’s equations (cf., e.g., Weber [43]) guarantee that H0 is smooth in Ω0. It
has been shown in [9] for the special case of diametrically small scatterers that uniqueness of solutions to (2.3)
implies existence and uniqueness of solutions to (2.4) provided that |Dρn | is small enough, i.e., n is large enough.
The proof of this result in [9] carries over to our setting straightforwardly.

Proposition 2.1. Assume that (2.3) has a unique solution. Then, there exists an upper bound R > 0 such
that for any g ∈ H

−1/2
div (∂Ω) and any n ∈ N with |Dρn | ≤ R the variational problem (2.4) has a unique solution

Hρn ∈ H(curl, Ω) satisfying
‖Hρn‖H(curl,Ω) ≤ C‖g‖

H
−1/2
div (∂Ω)

,

where the constant C is independent of n.

We are interested in the asymptotic behavior of ν × (Hρn − H0)
∣∣
∂Ω

as |Dρn | → 0. Following [18] we start
by observing that for all n ∈ N the positive regular Borel measure

μn(E) :=
∫

E

|Dρn |−1χρn dx, E ⊂ Ω Borel measurable, (2.5)

satisfies |μn| ≤ 1, where |μn| denotes the total variation of μn and χρn is the characteristic function of Dρn . This
means that the sequence (μn)n∈N is bounded in the space M(Ω, C) of complex regular Borel measures on Ω. By
Riesz’s representation theorem M(Ω, C) is isomorphic to the dual space of C0(Ω, C) of continuous functions on
Ω that vanish on ∂Ω (cf., e.g., Rudin [40], Thm. 6.19). Thus the Banach-Alaoglu Theorem (cf., e.g., Rudin [41],
Thm. 3.15) guarantees the existence of a subsequence, also denoted by (Dρn)n∈N, and a complex regular Borel
measure μ such that for every φ ∈ C0(Ω, C),

lim
n→∞

∫
Ω

φdμn =
∫

Ω

φdμ. (2.6)

Another ingredient of the asymptotic perturbation formula established in Theorem 2.2 below, is the dyadic
Green’s function for time-harmonic Maxwell’s equations corresponding to the homogeneous background medium,

G(x, y) := Φk(x − y)I3 +
1
k2

∇xdivx(Φk(x − y)I3), x, y ∈ R
3, x 
= y,
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where Φk(x − y) := eik|x−y|/4π|x − y| is the fundamental solution of the Helmholtz equation with wave
number k :=

√
ω2ε̃0μ0 (if ε̃0 /∈ R, then k is taken to have positive imaginary part) and I3 denotes the 3 × 3-

identity matrix. Here and throughout this work we let scalar operators operate on vectors component-wise and
vector operators on matrices column by column. Note that for any y ∈ R3 the dyadic Green’s function is the
distributional solution of

curlxcurlxG(x, y) − k2
G(x, y) = δy(x), x ∈ R

3.

In the following theorem L2(Ω, K3×3; μ), K = R or K = C, denotes the space of real or complex matrix-valued
functions on Ω that are square integrable with respect to the regular Borel measure μ, respectively.

Theorem 2.2. Suppose (Dρn)n∈N is a sequence of measurable subsets of Ω0 ⊂⊂ Ω as introduced above and
assume that |Dρn | ≤ R for all n ∈ N, where R is the upper bound from Proposition 2.1. Given g ∈ H

−1/2
div (∂Ω)

let H0 and Hρn , n ∈ N, denote the corresponding solutions of (2.3) and (2.4), respectively. Then, there
exists a subsequence, also denoted by (Dρn)n∈N, a positive regular Borel measure μ and matrix-valued functions
Mε̃ ∈ L2(Ω, C3×3; μ) and Mμ ∈ L2(Ω, R3×3; μ), called electric and magnetic polarization tensors, respectively,
such that for y ∈ ∂Ω,

ν(y) × (Hρn − H0)(y) − 2
∫

∂Ω

(
ν(y) × curlxG( · , y)

)(
ν × (Hρn − H0)

)
ds

= |Dρn |2ε̃0

(
−

∫
Ω

ε̃1

ε̃0

( 1
ε̃0

− 1
ε̃1

)(
ν(y) × curlxG( · , y)

)
M

ε̃curlH0 dμ

+ ω2

∫
Ω

(μ0 − μ1)
(
ν(y) × G( · , y)

)
M

μH0 dμ

)
+ o(|Dρn |). (2.7)

The subsequence (Dρn)n∈N and the functions M
ε̃ and M

μ are independent of g. The last term on the right hand
side of (2.7) satisfies

lim
n→∞ ‖o(|Dρn |)‖L∞(∂Ω,C3)/|Dρn | = 0

for any g ∈ H
−1/2
div (∂Ω), uniformly on bounded subsets of H

−1/2
div (∂Ω).

Although in this work we consider the magnetic field only, we note that an asymptotic perturbation formula
similar to (2.7) can be established for the electric field as well.

Remark 2.3 (Polarization Tensors). Before we give a precise definition of the electric and magnetic polarization
tensor in Section 3.3 below, we recall in the following two important properties of these matrix valued functions.
It has been shown in [18], Section 4, that the magnetic polarization tensor Mμ (and similarly the electric
polarization tensor Mε̃, provided that ε̃0, ε̃1 ∈ R, i.e., σ0 = σ1 = 0) is symmetric and positive definite in the
sense that for μ-a.e. x ∈ Ω,

M
μ�(x) = M

μ(x), (2.8a)

min
{

1,
μ1(x)
μ0(x)

}
|ξ|2 ≤ ξ�

M
μ(x)ξ ≤ max

{
1,

μ1(x)
μ0(x)

}
|ξ|2 (2.8b)

for all ξ ∈ R3. For dissipative media, following the proof for real-valued coefficients in [18], Section 4, we obtain
that for μ-a.e. x ∈ Ω the electric polarization tensor Mε̃(x) satisfies

M
ε̃�(x) = M

ε̃(x),
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i.e., it is symmetric but not Hermitian, and(
Re(ε̃1 − ε̃0) −

∣∣∣∣ (ε̃1 − ε̃0)2

ε̃1

∣∣∣∣
)
|ξ|2 ≤ ξ�Re

(
(ε̃1 − ε̃0)Mε̃(x)

)
ξ ≤ Re(ε̃1 − ε̃0)|ξ|2,(

Im(ε̃1 − ε̃0) −
∣∣∣∣ (ε̃1 − ε̃0)2

ε̃1

∣∣∣∣
)
|ξ|2 ≤ ξ�Im

(
(ε̃1 − ε̃0)Mε̃(x)

)
ξ ≤ Im(ε̃1 − ε̃0)|ξ|2

for all ξ ∈ R3, i.e., it is uniformly bounded.

3. Preliminary convergence estimates

In this section we derive energy estimates for the difference Hρn − H0, n ∈ N, of the magnetic fields with
and without scatterers and for the difference of corresponding asymptotic corrector potentials introduced below.
Moreover, we define the electric and magnetic polarization tensors used in this work and discuss their relation
to the polarization tensor appearing in the asymptotic representation formula for electrostatic potentials from
[18,19,21]. Throughout we assume that (Dρn)n∈N is a sequence of measurable subsets of Ω0 ⊂⊂ Ω as in Section 2
such that |Dρn | ≤ R, where R is the upper bound from Proposition 2.1, and that (2.6) is satisfied.

3.1. Two decompositions of H(curl,Ω)

The energy estimates will be formulated in terms of two types of Helmholtz decompositions of H(curl, Ω)
related to the variational formulations (2.3) and (2.4), respectively. Following [9], we define the spaces Y :=
∇H1(Ω, C),

Y ⊥
0 := {u ∈ H(curl, Ω) | div(μ0u) = 0 in Ω, ν · u = 0 on ∂Ω},

and for all n ∈ N,

Y ⊥
ρn

:= {u ∈ H(curl, Ω) | div(μρnu) = 0 in Ω, ν · u = 0 on ∂Ω}.

It is well known that the subspace Y is closed in H(curl, Ω). Furthermore, Y ⊥
0 and Y ⊥

ρn
are the orthogonal

complements of Y in H(curl, Ω) with respect to the inner products

〈u, v〉0 :=
∫

Ω

μ0u · v dx and 〈u, v〉ρn :=
∫

Ω

μρnu · v dx,

u, v ∈ H(curl, Ω), respectively. This yields decompositions

H(curl, Ω) = Y ⊕ Y ⊥
0 = Y ⊕ Y ⊥

ρn
, n ∈ N,

and corresponding orthogonal projections

P0 : H(curl, Ω) → Y ⊥
0 and Pρn : H(curl, Ω) → Y ⊥

ρn
, (3.1)

given by P0u := u −∇p0 and Pρnu = u −∇pρn , where p0, pρn ∈ H1
� (Ω, C) := {φ ∈ H1(Ω, C) | ∫

∂Ω
φds = 0}

satisfy ∫
Ω

μ0∇p0 · ∇φ dx =
∫

Ω

μ0u · ∇φ dx for all φ ∈ H1(Ω, C), (3.2a)∫
Ω

μρn∇pρn · ∇φ dx =
∫

Ω

μρnu · ∇φ dx for all φ ∈ H1(Ω, C), (3.2b)
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respectively. For v ∈ Y ⊥
0 the Friedrichs inequality

‖u‖L2(Ω,C3) ≤ C‖curlu‖L2(Ω,C3) (3.3)

follows directly from [37], Corollary 3.51 in the book of Monk and using the compactness result [9], Proposition 3
it can be shown that (3.3) holds for u ∈ Y ⊥

ρn
as well.

Accordingly we can decompose

H0 =: h0 + ∇q0 and Hρn =: hρn + ∇qρn , n ∈ N, (3.4)

such that h0 ∈ Y ⊥
0 , hρn ∈ Y ⊥

ρn
, and q0, qρn ∈ H1

� (Ω, C). Combining the weak formulations (2.3), (2.4), and
(3.2) it follows immediately that q0 and qρn are weak solutions of

div(μ0∇q0) = 0 in Ω, (3.5a)

μ0
∂q0

∂ν
=

1
ω2

div∂Ωg on ∂Ω, (3.5b)

and

div(μρn∇qρn) = 0 in Ω, (3.6a)

μρn

∂qρn

∂ν
=

1
ω2

div∂Ωg on ∂Ω, (3.6b)

respectively. Thus, regularity results for elliptic equations show that the solution q0 is smooth in Ω0 (cf.
McLean [36], Thm. 4.18).

Sometimes we will also use the slightly different decompositions

H0 =: h
(ρn)
0 + ∇q

(ρn)
0 and Hρn =: h(0)

ρn
+ ∇q(0)

ρn
, n ∈ N, (3.7)

with h
(ρn)
0 ∈ Y ⊥

ρn
, h(0)

ρn
∈ Y ⊥

0 , and q
(ρn)
0 , q

(0)
ρn ∈ H1� (Ω, C). Note that q

(ρn)
0 and q

(0)
ρn are weak solutions of

div
(
μρn∇q

(ρn)
0

)
= div(μρnH0) in Ω, (3.8a)

μρn

∂q
(ρn)
0

∂ν
=

1
ω2

div∂Ωg on ∂Ω, (3.8b)

and

div
(
μ0∇q(0)

ρn

)
= div(μ0Hρn) in Ω, (3.9a)

μ0
∂q

(0)
ρn

∂ν
=

1
ω2

div∂Ωg on ∂Ω, (3.9b)

respectively.

3.2. Estimates for the magnetic field

To estimate the difference Hρn − H0, n ∈ N, we consider its gradient part and its divergence free part
according to the decompositions (3.4) and (3.7) separately. As already mentioned in the introduction, the
analysis for the gradient part in this and the following sections follows closely the corresponding analysis for
the electrostatic case from [18], while the divergence free parts require different arguments and techniques.
Throughout we use generic constants C and Cη, η ∈ [1/5, 1/2], the values of which might change from line to
line.
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Lemma 3.1. Let q0 and qρn be as in (3.4). Then, there exists a constant C such that for any n ∈ N,

‖qρn − q0‖H1(Ω,C) ≤ C|Dρn |1/2‖g‖
H

−1/2
div (∂Ω)

, (3.10)

and for any η ∈ [1/5, 1/2] there exists a constant Cη such that

‖qρn − q0‖L2(Ω,C) ≤ Cη|Dρn |1−η‖g‖
H

−1/2
div (∂Ω)

. (3.11)

Proof. Since q0 and qρn satisfy (3.5) and (3.6), respectively, this lemma is a special case of [18], Lemma 1. �

Lemma 3.2. Let h0, h
(ρn)
0 , hρn , and h(0)

ρn
be as in (3.4) and (3.7), respectively. Then, there exists a constant

C such that for any n ∈ N,

‖hρn − h
(ρn)
0 ‖H(curl,Ω) ≤ C|Dρn |1/2‖g‖

H
−1/2
div (∂Ω)

, (3.12a)

‖h0 − h
(ρn)
0 ‖H(curl,Ω) ≤ C|Dρn |1/2‖g‖

H
−1/2
div (∂Ω)

, (3.12b)

‖hρn − h(0)
ρn

‖H(curl,Ω) ≤ C|Dρn |1/2‖g‖
H−1/2

div (∂Ω)
. (3.12c)

Furthermore, for any η ∈ [1/5, 1/2] there exists a constant Cη such that

‖h(0)
ρn

− h0‖L2(Ω,C3) ≤ Cη|Dρn |1−η‖g‖
H

−1/2
div (∂Ω)

. (3.13)

Proof. Step 1 (proof of (3.12a)). From the weak formulations (2.3) and (2.4) we find that H0 = h
(ρn)
0 +∇q

(ρn)
0

and Hρn = hρn + ∇qρn satisfy

∫
Ω

1
ε̃ρn

curl(Hρn − H0) · curlu dx − ω2

∫
Ω

μρn(Hρn − H0) · udx

=
∫

Ω

( 1
ε̃0

− 1
ε̃ρn

)
curlH0 · curlu dx − ω2

∫
Ω

(μ0 − μρn)H0 · u dx

for all u ∈ H(curl, Ω). The regularity results for weak solutions of Maxwell’s equations mentioned before show
that ‖H0‖W 1,∞(Ω0,C3) ≤ C‖g‖

H
−1/2
div (∂Ω)

, and we may estimate

∣∣∣∫
Ω

( 1
ε̃0

− 1
ε̃ρn

)
curlH0·curludx − ω2

∫
Ω

(μ0 − μρn)H0 · u dx
∣∣∣

≤ C|Dρn |1/2
(‖curlH0‖L∞(Ω0,C3)‖curlu‖L2(Ω,C3) + ‖H0‖L∞(Ω0,C3)‖u‖L2(Ω,C3)

)
≤ C|Dρn |1/2‖g‖

H
−1/2
div (∂Ω)

‖u‖H(curl,Ω).

So, using orthogonality we obtain that hρn − h
(ρn)
0 satisfies

aρn(hρn − h
(ρn)
0 , v) = lρn(v) for all v ∈ Y ⊥

ρn
, (3.14)

where lρn is a bounded conjugate linear form on Y ⊥
ρn

such that

sup
‖v‖H(curl,Ω)=1

|lρn(v)| ≤ C|Dρn |1/2‖g‖
H

−1/2
div (∂Ω)

.
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Hence, (3.12a) is a consequence of the well-posedness of (3.14), which follows directly from the proof of [9],
Lemma 1 recalling that we assumed |Dρn | ≤ R.

Step 2 (proof of (3.12b)). Since div(μ0h0) = 0 in Ω and μ0ν ·h0 = 0 on ∂Ω there exists a vector potential z0 ∈
H0(curl, Ω) satisfying div(μ0z0) = 0 in Ω such that μ0h0 = curlz0 (cf. [37], Thm. 3.41). Moreover (see [37],
Thm. 3.38), z0 = curl(A) for some A ∈ H(curl, Ω), which means z0 ∈ curl(H(curl, Ω)). Analogously, we
can find z

(ρn)
0 ∈ curl(H(curl, Ω)) such that μρnh

(ρn)
0 = curlz(ρn)

0 . Now, following an idea used in [37], p. 173,
where it was attributed to Arnold et al. [12], we introduce sesquilinear forms α on H(curl, Ω) × H(curl, Ω)
and β on curl(H(curl, Ω)) × H(curl, Ω) by

α(u, v) :=
∫

Ω

μρnu · v dx and β(w, v) := −
∫

Ω

w · curlv dx,

respectively, and observe that (h0 − h
(ρn)
0 , z0 − z

(ρn)
0 ) solves the mixed variational problem

α(h0 − h
(ρn)
0 , v) + β(z0 − z

(ρn)
0 , v) =

∫
Ω

(μρn − μ0)h0 · v dx, (3.15a)

β(w, h0 − h
(ρn)
0 ) = 0 (3.15b)

for all v ∈ H(curl, Ω) and w ∈ curl(H(curl, Ω)). Note that α and β are bounded, α is coercive, and β satisfies
the Babuška-Brezzi condition

sup
v∈H(curl,Ω)

|β(w, v)|
‖v‖H(curl,Ω)

= sup
v∈H(curl,Ω)

| ∫
Ω

w · curlv dx|
‖v‖H(curl,Ω)

≥
‖w‖2

L2(Ω,C3)

‖u‖H(curl,Ω)
≥ C‖w‖L2(Ω,C3)

for all w ∈ curl(H(curl, Ω)), where u ∈ Y ⊥
0 ⊂ H(curl, Ω) has been chosen such that w = curlu, and we used

(3.3) to estimate ‖u‖L2(Ω,C3) ≤ C‖w‖L2(Ω,C3). Therefore (cf. [37], Thm. 2.25), solutions to (3.15) are unique

and (h0 − h
(ρn)
0 , z0 − z

(ρn)
0 ) satisfies

‖h0 − h
(ρn)
0 ‖H(curl,Ω) + ‖z0 − z

(ρn)
0 ‖L2(Ω,C3) ≤ sup

u∈H(curl,Ω)

∣∣∫
Ω(μρn − μ0)h0 · u dx

∣∣
‖u‖H(curl,Ω)

≤ C|Dρn |1/2‖h0‖L∞(Ω0,C3) ≤ C|Dρn |1/2‖g‖
H

−1/2
div (∂Ω)

.

The last inequality follows from the definition of h0 = H0 − ∇q0 and the interior regularity of q0 and H0

mentioned before.
Step 3 (proof of (3.13)). Similar to Step 1 we find by subtracting the weak formulations (2.3) and (2.4) that

for all u ∈ H(curl, Ω),

∫
Ω

1
ε̃0

curl(Hρn − H0) · curludx − ω2

∫
Ω

μ0(Hρn − H0) · udx

=
∫

Ω

( 1
ε̃0

− 1
ε̃ρn

)
curlHρn · curludx − ω2

∫
Ω

(μ0 − μρn)Hρn · u dx. (3.16)

Using a duality argument inspired by the proof of [18], Lemma 1 we denote by z ∈ Y ⊥
0 the solution of the

adjoint problem ∫
Ω

1
ε̃0

curlz · curludx − ω2

∫
Ω

μ0z · u dx =
∫

Ω

μ0(h(0)
ρn

− h0) · u dx (3.17)

for all u ∈ Y ⊥
0 . Uniqueness of solutions to (2.3) implies existence and uniqueness of a solution to (3.17) with

‖z‖H(curl,Ω) ≤ C‖h(0)
ρn

− h0‖L2(Ω,C3).
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Recalling that in Y ⊥
0 the norm ‖ · ‖H1(Ω,C3) is equivalent to ‖ · ‖H(curl,Ω) (cf. Dautray and Lions [25], Thm. 3,

p. 209), this shows that ‖z‖H1(Ω,C3) ≤ C‖h(0)
ρn

−h0‖L2(Ω,C3). Similarly, since curlz satisfies curl
(
(1/ε̃0)curlz

)
=

μ0

(
ω2z +hρn −h

(ρn)
0

)
, i.e., curlz ∈ H(curl, Ω), div(curl(z)) = 0 in Ω, and ν × curlz = 0 on ∂Ω, we find that

curlz ∈ H1(Ω, C3) and ‖curlz‖H1(Ω,C3) ≤ C‖h(0)
ρn

− h0‖L2(Ω,C3) as well. Substituting this z into (3.16), using
orthogonality, (3.17), and Hölder’s inequality we obtain that

∫
Ω

|h(0)
ρn

− h0|2 dx =
∣∣∣∫

Ω

1
ε̃0

curl(h(0)
ρn

− h0) · curlz dx − ω2

∫
Ω

μ0(h(0)
ρn

− h0) · z dx
∣∣∣

=
∣∣∣∫

Ω

( 1
ε̃0

− 1
ερn

)
curlHρn · curlz dx − ω2

∫
Ω

(μ0 − μρn)Hρn · z dx
∣∣∣

≤ C
(‖curlHρn‖Lq(Dρn ,C3)‖curlz‖Lp(Dρn ,C3) + ‖Hρn‖Lq(Dρn ,C3)‖z‖Lp(Dρn ,C3)

)
,

where 1 ≤ p, q ≤ ∞ are such that 1/p + 1/q = 1. Assuming that 2 ≤ p ≤ 6, i.e., 6/5 ≤ q ≤ 2, the boundedness
of the embedding of H1(Ω, C3) into Lp(Ω, C3) (cf. Adams [1], Thm. 5.4) implies that

‖curlz‖Lp(Dρn ,C3) ≤ C‖curlz‖H1(Ω,C3) and ‖z‖Lp(Dρn ,C3) ≤ C‖z‖H1(Ω,C3).

Thus,

‖h(0)
ρn

− h0‖L2(Ω,C3) ≤ C
(‖curlHρn‖Lq(Dρn ,C3) + ‖Hρn‖Lq(Dρn ,C3)

)
. (3.18)

Since 6/5 ≤ q ≤ 2, we can use the triangle inequality and embed L2(Dρn , C3) and L∞(Dρn , C3) into Lq(Dρn , C3)
applying Hölder’s inequality (cf. Gilbarg and Trudinger [27], Eq. (7.8), p. 146) to see that

‖Hρn‖Lq(Dρn ,C3) + ‖curlHρn‖Lq(Dρn ,C3) ≤ |Dρn |1/q−1/2‖Hρn − H0‖H(curl,Ω) + |Dρn |1/q‖H0‖W 1,∞(Ω0,C3).
(3.19)

Recalling that ‖H0‖W 1,∞(Ω0,C3) ≤ C‖g‖
H

−1/2
div (∂Ω)

, we use (3.4) to obtain

‖Hρn − H0‖H(curl,Ω) ≤ ‖hρn − h0‖H(curl,Ω) + ‖qρn − q0‖H1(Ω,C),

which together with (3.10), (3.12a), and (3.12b) gives

‖Hρn − H0‖H(curl,Ω) ≤ C|Dρn |1/2‖g‖
H

−1/2
div (∂Ω)

.

Therefore, combining (3.19) and (3.18) we find that

‖h(0)
ρn

− h0‖L2(Ω,C3) ≤ C|Dρn |1/q‖g‖
H

−1/2
div (∂Ω)

and writing η := 1 − 1/q yields (3.13).
Step 4 (proof of (3.12c)). As in Step 2 we can find zρn , z

(0)
ρn ∈ curl(H(curl, Ω)) such that μρnhρn = curlzρn

and μ0h
(0)
ρn

= curlz(0)
ρn . Then (hρn − h(0)

ρn
, zρn − z

(0)
ρn ) satisfies

α(hρn − h(0)
ρn

, v) + β(zρn − z(0)
ρn

, v) =
∫

Ω

(μ0 − μρn)h(0)
ρn

· v dx,

β(w, hρn − h(0)
ρn

) = 0
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for all v ∈ H(curl, Ω) and w ∈ curl(H(curl, Ω)), where α and β are the sesquilinear forms introduced in the
second step. Therefore, using (3.13) we obtain that

‖hρn − h(0)
ρn

‖H(curl,Ω) + ‖zρn − z(0)
ρn

‖L2(Ω,C3) ≤ ‖(μ0 − μρn)h(0)
ρn

‖L2(Ω,C3)

≤ ‖(μ0 − μρn)h0‖L2(Ω,C3) + ‖(μ0 − μρn)(h0 − h(0)
ρn

)‖L2(Ω,C3)

≤ C|Dρn |1/2‖h0‖L∞(Ω0,C3) + Cη|Dρn |1−η‖g‖
H−1/2

div (∂Ω)

≤ C|Dρn |1/2‖g‖
H

−1/2
div (∂Ω)

. �

Lemma 3.3. Let q0, q
(ρn)
0 , qρn , and q

(0)
ρn be as in (3.4) and (3.7), respectively. Then, there exists a constant C

such that for any n ∈ N,

‖q0 − q
(ρn)
0 ‖H1(Ω,C) ≤ C|Dρn |1/2‖g‖

H
−1/2
div (∂Ω)

, (3.20a)

‖qρn − q(0)
ρn

‖H1(Ω,C) ≤ C|Dρn |1/2‖g‖
H

−1/2
div (∂Ω)

. (3.20b)

Furthermore, for any η ∈ [1/5, 1/2] there exists a constant Cη such that

‖q0 − q
(ρn)
0 ‖L2(Ω,C) ≤ Cη|Dρn |1−η‖g‖

H−1/2
div (∂Ω)

, (3.21a)

‖qρn − q(0)
ρn

‖L2(Ω,C) ≤ Cη|Dρn |1−η‖g‖
H

−1/2
div (∂Ω)

. (3.21b)

Proof. These estimates are no direct consequences of [18], Lemma 1 because the source terms in (3.8) and (3.9)
are discontinuous and do not agree with the source terms in (3.5) and (3.6), respectively. However, the lemma
can be shown following the same strategy as used in the proof of [18], Lemma 1. Therefore, we comment on
differences to this proof only, without including all details.

Step 1 (proof of (3.20a)). From the weak formulations of (3.5) and (3.8) we find that∫
Ω

μ0∇q0 · ∇φ dx =
∫

Ω

μ0H0 · ∇φdx for all φ ∈ H1(Ω, C), (3.22a)∫
Ω

μρn∇q
(ρn)
0 · ∇φ dx =

∫
Ω

μρnH0 · ∇φdx for all φ ∈ H1(Ω, C), (3.22b)

and therefore ∫
Ω

μρn∇(q0 − q
(ρn)
0 ) · ∇φ dx =

∫
Ω

(μ0 − μρn)h0 · ∇φ dx

for all φ ∈ H1(Ω, C). Using the smoothness of h0 in Ω0, which follows from the smoothness of H0 and q0, we
can proceed as in the proof of [18], Lemma 1 to obtain (3.20a).

Step 2 (proof of (3.20b)). Similar to the first step we find from (3.6) and (3.9) that∫
Ω

μρn∇qρn · ∇φdx =
∫

Ω

μρnHρn · ∇φ dx for all φ ∈ H1(Ω, C), (3.23a)∫
Ω

μ0∇q(0)
ρn

· ∇φdx =
∫

Ω

μ0Hρn · ∇φ dx for all φ ∈ H1(Ω, C), (3.23b)

and thus ∫
Ω

μρn∇(qρn − q(0)
ρn

) · ∇φ dx =
∫

Ω

(μρn − μ0)h(0)
ρn

· ∇φ dx

=
∫

Ω

(μρn − μ0)(h(0)
ρn

− h0) · ∇φdx +
∫

Ω

(μρn − μ0)h0 · ∇φdx
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for all φ ∈ H1(Ω, C). Using (3.13) and the smoothness of h0 in Ω0 mentioned before we estimate

∣∣∣∫
Ω

(μρn − μ0)(h(0)
ρn

− h0) · ∇φdx+
∫

Ω

(μρn − μ0)h0 · ∇φ dx
∣∣∣

≤ C‖h(0)
ρn

− h0‖L2(Ω,C3)‖φ‖H1(Ω,C) + C|Dρn |1/2‖h0‖L∞(Ω0,C3)‖φ‖H1(Ω,C)

≤ C|Dρn |1/2‖g‖
H

−1/2
div (∂Ω)

‖φ‖H1(Ω,C).

Therefore, qρn − q
(0)
ρn ∈ H1

� (Ω, C) satisfies

div
(
μρn∇(qρn − q(0)

ρn
)
)

= Gρn in Ω, μρn

∂(qρn − q
(0)
ρn )

∂ν
= 0 on ∂Ω,

for some Gρn ∈ H−1(Ω, C) with ‖Gρn‖H−1(Ω,C) ≤ C|Dρn |1/2‖g‖
H

−1/2
div (∂Ω)

. This implies (3.20b).
Step 3 (proof of (3.21a)). From (3.22) we obtain that∫

Ω

μ0∇(q0 − q
(ρn)
0 ) · ∇φdx =

∫
Ω

(μ0 − μρn)h(ρn)
0 · ∇φdx.

Therewith (3.21a) follows using a duality argument as in the second part of the proof of [18], Lemma 1.
Step 4 (proof of (3.21b)). Using (3.23) we find that∫

Ω

μ0∇(qρn − q(0)
ρn

) · ∇φdx =
∫

Ω

(μρn − μ0)hρn · ∇φdx.

Therewith (3.21b) can be shown using a duality argument as in the second part of the proof of [18],
Lemma 1. �

3.3. Asymptotic correctors and polarization tensors

In this section we introduce scalar-valued functions v
(j)
μ0 , v

(j)
μρn

, 1 ≤ j ≤ 3, vector-valued functions w
(j)
ε̃0

, w
(j)
ε̃ρn

,
1 ≤ j ≤ 3, and the so-called electric and magnetic polarization tensors that will be used to derive the asymptotic
perturbation formula in Section 4.

For 1 ≤ j ≤ 3, denote by v
(j)
μ0 , v

(j)
μρn

∈ H1
� (Ω, C) the weak solutions of

div
(
μ0∇v(j)

μ0

)
= div(μ0ej) in Ω, (3.24a)

μ0
∂v

(j)
μ0

∂ν
= μ0νj on ∂Ω, (3.24b)

and

div
(
μρn∇v(j)

μρn

)
= div(μ0ej) in Ω, (3.25a)

μρn

∂v
(j)
μρn

∂ν
= μ0νj on ∂Ω, (3.25b)

in H1
� (Ω, C), respectively, where (e1, e2, e3) is the standard basis of R3 and νj := ν ·ej denotes the jth component

of the unit outward normal vector on ∂Ω. Observe that v
(j)
μ0 is given by the explicit formula

v(j)
μ0

= xj − 1
|∂Ω|

∫
Ω

xj ds(x). (3.26)
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Lemma 3.4. Let v
(j)
μ0 and v

(j)
μρn

, 1 ≤ j ≤ 3, be the solutions of (3.24) and (3.25), respectively. Then, there
exists a constant C such that for all n ∈ N,

‖v(j)
μρn

− v(j)
μ0

‖H1(Ω,C) ≤ C|Dρn |1/2, (3.27a)

and for any η ∈ [1/5, 1/2] there exists a constant Cη such that

‖v(j)
μρn

− v(j)
μ0

‖L2(Ω,C) ≤ Cη|Dρn |1−η. (3.27b)

Proof. This lemma is a direct consequence of [18], Lemma 1. �

Lemma 3.5. For 1 ≤ j ≤ 3 denote by v
(j)
μρn

, n ∈ N, the solution to (3.25). Then, there exists a subsequence,
also denoted by (Dρn)n∈N, and a matrix-valued function Mμ := (Mμ

ij)1≤i,j≤3 ∈ L2(Ω, R3×3; μ), called magnetic
polarization tensor, such that for 1 ≤ i, j ≤ 3 and all φ ∈ C0(Ω, C),

∫
Ω

φ
∂v

(j)
μρn

∂xi
|Dρn |−1χDρn

dx →
∫

Ω

φMμ
ij dμ as n → ∞. (3.28)

Proof. This lemma has been shown in [18], pp. 165–166. �

Remark 3.6. The definition of the magnetic polarization tensor Mμ in (3.28) is equivalent to the definition
of the polarization tensor appearing in the general perturbation formula for steady state voltage potentials
established in [18]. This means that all results for polarization tensors obtained in [18,19,21] remain valid for
the magnetic polarization tensor Mμ; in particular (2.8a) and (2.8b) hold.

Next, for 1 ≤ j ≤ 3 denote by w
(j)
ε̃0

∈ Y ⊥
0 and w

(j)
ε̃ρn

∈ Y ⊥
ρn

the weak solutions of

curl
(

1
ε̃0

curlw(j)
ε̃0

)
= curl

(
1
ε̃0

ej

)
in Ω, (3.29a)

1
ε̃0

curlw(j)
ε̃0

× ν =
1
ε̃0

ej × ν on ∂Ω, (3.29b)

and

curl
(

1
ε̃ρn

curlw(j)
ε̃ρn

)
= curl

(
1
ε̃0

ej

)
in Ω, (3.30a)

1
ε̃ρn

curlw(j)
ε̃ρn

× ν =
1
ε̃0

ej × ν on ∂Ω, (3.30b)

respectively. Introducing the sesquilinear forms

astat
0 (u, v) :=

∫
Ω

1
ε̃0

curlu · curlv dx, u, v ∈ H(curl, Ω),

astat
ρn

(u, v) :=
∫

Ω

1
ε̃ρn

curlu · curlv dx, u, v ∈ H(curl, Ω),

and the conjugate linear form

lw(v) :=
∫

∂Ω

1
ε̃0

(ej × ν) · v ds, v ∈ H(curl, Ω),
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the weak formulations of (3.29) and (3.30) ask to find w
(j)
ε̃0

∈ Y ⊥
0 and w

(j)
ε̃ρn

∈ Y ⊥
ρn

such that

astat
0 (w(j)

ε̃0
, v) = lw(v) for all v ∈ Y ⊥

0 , (3.32a)

astat
ρn

(w(j)
ε̃ρn

, v) = lw(v) for all v ∈ Y ⊥
ρn

. (3.32b)

Note that both equations are trivially fulfilled for any v ∈ Y . The sesquilinear forms astat
0 and astat

ρn
are bounded

and recalling (3.3) we find that they are also coercive on Y ⊥
0 as well as on Y ⊥

ρn
. Thus we obtain existence and

uniqueness of solutions w
(j)
0 ∈ Y ⊥

0 and w
(j)
ρn ∈ Y ⊥

ρn
from the Lax-Milgram Lemma and these solutions satisfy

‖w(j)
ε̃0

‖H(curl,Ω) ≤ C and ‖w(j)
ε̃ρn

‖H(curl,Ω) ≤ C,

where C is independent of ρn. In addition we define

w
(j,ρn)
ε̃0

:= Pρnw
(j)
ε̃0

∈ Y ⊥
ρn

and w
(j,0)
ε̃ρn

:= P0w
(j)
ε̃ρn

∈ Y ⊥
0 ,

where Pρn and P0 are the projection operators from (3.1). Observe that these function solve

astat
0 (w(j,ρn)

ε̃0
, v) = lw(v) for all v ∈ Y ⊥

ρn
, (3.33a)

astat
ρn

(w(j,0)
ε̃ρn

, v) = lw(v) for all v ∈ Y ⊥
0 , (3.33b)

respectively, and therefore,

‖w(j,ρn)
ε̃0

‖H(curl,Ω) ≤ C and ‖w(j,0)
ε̃ρn

‖H(curl,Ω) ≤ C,

where C is again independent of ρn.

Lemma 3.7. Let w
(j)
ε̃0

, w
(j,ρn)
ε̃0

, w
(j)
ε̃ρn

, and w
(j,0)
ε̃ρn

denote the solutions of (3.32) and (3.33), respectively. Then,
there exists a constant C such that for any n ∈ N,

‖w(j)
ε̃ρn

− w
(j,ρn)
ε̃0

‖H(curl,Ω) ≤ C|Dρn |1/2, (3.34a)

‖w(j)
ε̃0

− w
(j,ρn)
ε̃0

‖H(curl,Ω) ≤ C|Dρn |1/2, (3.34b)

‖w(j)
ε̃ρn

− w
(j,0)
ε̃ρn

‖H(curl,Ω) ≤ C|Dρn |1/2. (3.34c)

Furthermore, for any η ∈ [1/5, 1/2] there exists a constant Cη such that

‖w(j,0)
ε̃ρn

− w
(j)
ε̃0

‖L2(Ω,C3) ≤ Cη|Dρn |1−η. (3.35)

Proof. This lemma can be shown using similar arguments as in the proof of Lemma 3.2. �

To construct an explicit expression for curlw(j)
ε̃0

similar to (3.26) we observe that divej = 0 in Ω and thus
there exists a function z(j) ∈ H(curl, Ω) such that curlz(j) = ej (cf. [37], Thm. 3.38). The projection P0z

(j)

of this function onto Y ⊥
0 satisfies (3.29), which means that w

(j)
ε̃0

= P0z
(j) and consequently

curlw(j)
ε̃0

= ej . (3.36)
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Lemma 3.8. For 1 ≤ j ≤ 3 denote by w
(j)
ε̃ρn

, n ∈ N, the solution to (3.30). Then, there exists a subsequence,
also denoted by (Dρn)n∈N and a matrix-valued function Mε̃ := (M ε̃

ij)1≤i,j≤3 ∈ L2(Ω, C3×3; μ), called electric
polarization tensor, such that for 1 ≤ i, j ≤ 3 and all φ ∈ C0(Ω, C),∫

Ω

φ
ε̃0

ε̃1
curlw(j)

ε̃ρn
· ei|Dρn |−1χDρn

dx →
∫

Ω

φM ε̃
ij dμ as n → ∞. (3.37)

Proof. Proceeding as in [18], pp. 165–166, we use (3.34) and (3.36) to obtain

∥∥|Dρn |−1χDρn

ε̃0

ε̃1
curlw(j)

ε̃ρn

∥∥
L1(Ω,C3)

≤ C|Dρn |−1
(∥∥curlw(j)

ε̃ρn
− curlw(j)

ε̃0

∥∥
L1(Dρn ,C3)

+
∥∥curlw(j)

ε̃0

∥∥
L1(Dρn ,C3)

)
≤ C|Dρn |−1

(
‖1‖L2(Dρn ,C)

∥∥curlw(j)
ε̃ρn

− curlw(j)
ε̃0

∥∥
L2(Ω,C3)

+ |Dρn |
)
≤ C.

Therefore the Banach-Alaoglu Theorem yields a complex regular Borel measure Mε̃
ij and a subsequence, again

denoted by (Dρn)n∈N, such that for all φ ∈ C0(Ω, C),

lim
n→∞

∫
Ω

φ
ε̃0

ε̃1
curlw(j)

ε̃ρn
· ei|Dρn |−1χDρn

dx =
∫

Ω

φdMε̃
ij .

Applying (3.34) and (3.36) once more we estimate

∣∣∣∫
Ω

φdMε̃
ij

∣∣∣ ≤ C

(
lim inf
n→∞

∫
Ω

|φ|∣∣(curlw(j)
ε̃ρn

− curlw(j)
ε̃0

) · ei

∣∣|Dρn |−1χDρn
dx

+ lim
n→∞

∫
Ω

|φ|∣∣curlw(j)
ε̃0

· ei

∣∣|Dρn |−1χDρn
dx

)

≤ C

(
lim inf
n→∞

(
|Dρn |−1/2

∥∥(
curlw(j)

ε̃ρn
− curlw(j)

ε̃0

) · ei

∥∥
L2(Ω,C)

(∫
Ω

|φ|2|Dρn |−1χDρn
dx

)1/2)

+
∫

Ω

∣∣curlw(j)
ε̃0

· ei

∣∣|φ| dμ

)
≤ C‖φ‖L2(Ω,C;μ),

where L2(Ω, C; μ) denotes the space of complex-valued square integrable functions on Ω with respect to the
measure μ. Therefore, φ �→ ∫

Ω φdMε̃
ij can be extended to a bounded linear functional on L2(Ω, C; μ) and from

the Riesz Representation Theorem (cf., e.g., [36], Thm. 2.30) we obtain a unique M ε̃
ij ∈ L2(Ω, C; μ) such that

for all φ ∈ C0(Ω, C), ∫
Ω

φdMε̃
ij =

∫
Ω

φM ε̃
ij dμ. �

Remark 3.9. For constant background permittivities ε̃0 as considered in this work the definition of the electric
polarization tensor Mε̃ from (3.37) is equivalent to the definition of the magnetic polarization tensor Mμ from
(3.28) with μρn replaced by ε̃ρn in the following sense: From (3.30) we find that

F :=
1

ε̃ρn

curlw(j)
ε̃ρn

− 1
ε̃0

ej ∈ H(curl, Ω)

satisfies curlF = 0 and ν ×F |∂Ω = 0. Therefore, F = ∇p for some p ∈ H1
0 (Ω, C) := {f ∈ H1(Ω, C) | f |∂Ω = 0}

(cf. [37], Thm. 3.41), and accordingly

ṽ
(j)
ε̃ρn

:= ε̃0

(
p +

1
ε̃0

xj

)
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satisfies

div
(
ε̃ρn∇ṽ

(j)
ε̃ρn

)
= 0 in Ω, ṽ

(j)
ε̃ρn

= xj on ∂Ω,

which is of the same structure as (3.25) except for the boundary condition. Therewith,

ε̃0

ε̃ρn

curlw(j)
ε̃ρn

= ∇ṽ
(j)
ε̃ρn

and for any φ ∈ C0(Ω, C) (3.37) reduces to

∫
Ω

φ
∂ṽ

(j)
ε̃ρn

∂xi
|Dρn |−1χDρn

dx →
∫

Ω

φM ε̃
ij dμ as n → ∞. (3.38)

It has been shown in [21], Lemma 1, that (3.38) (and therefore also (3.37)) yields the same polarization tensor
as (3.28) with v

(j)
μρn

replaced by v
(j)
ε̃ρn

, where v
(j)
ε̃ρn

denotes the solution to (3.25) with μρn replaced by ε̃ρn .

4. The perturbation formula

In this section we give the proof of Theorem 2.2. Throughout we assume that (Dρn)n∈N is a sequence of
measurable subsets of Ω0 ⊂⊂ Ω as in Section 2 such that |Dρn | ≤ R, where R is the upper bound from
Proposition 2.1, and (2.6), (3.28), and (3.37) are satisfied. We start by proving an integral representation for
the trace of Hρn − H0 on ∂Ω.

Lemma 4.1. Let H0 and Hρn , n ∈ N, be the solutions of (2.3) and (2.4), respectively. Then, for any y ∈ ∂Ω,

ν(y) × (Hρn − H0)(y) − 2
∫

∂Ω

(
ν(y) × curlxG( · , y)

)(
ν × (Hρn − H0)

)
ds

= 2ε̃0

(
−

∫
Ω

( 1
ε̃0

− 1
ε̃ρn

)(
ν(y) × curlxG( · , y)

)
curlHρn dx + ω2

∫
Ω

(μ0 − μρn)
(
ν(y) × G( · , y)

)
Hρn dx

)
.

(4.1)

Proof. First let y ∈ Ω \ Ω0 be a point close to the boundary ∂Ω and choose r > 0 small enough such that
Br(y) ⊂ Ω \ Ω0. Using integration by parts we find that

0 =
∫

Ω\Br(y)

(
curl

( 1
ε̃0

curlH0

)
− ω2μ0H0

)
· G( · , y) dx

=
∫

Ω\Br(y)

( 1
ε̃0

curlH0 · curlxG( · , y) − ω2μ0H0 · G( · , y)
)

dx

−
∫

∂Ω

g · G( · , y) ds +
∫

∂Br(y)

( 1
ε̃0

curlH0 × ν
)
· G( · , y) ds

and similarly

0 =
∫

Ω\Br(y)

( 1
ε̃ρn

curlHρn · curlxG( · , y) − ω2μρnHρn · G( · , y)
)

dx

−
∫

∂Ω

g · G( · , y) ds +
∫

∂Br(y)

( 1
ε̃ρn

curlHρn × ν
)
· G( · , y) ds.
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Subtracting these formulas we obtain

∫
Ω\Br(y)

( 1
ε̃0

curl(Hρn − H0) · curlxG( · , y) − ω2μ0(Hρn − H0) · G( · , y)
)

dx

=
∫

Ω\Br(y)

(( 1
ε̃0

− 1
ε̃ρn

)
curlHρn · curlxG( · , y) − ω2(μ0 − μρn)Hρn · G( · , y)

)
dx

+
∫

∂Br(y)

1
ε̃0

(
curlH0 × ν

) · G( · , y) ds −
∫

∂Br(y)

1
ε̃ρn

(
curlHρn × ν

) · G( · , y) ds. (4.2)

Integrating by parts once more the left hand side of (4.2) can be rewritten as

∫
Ω\Br(y)

( 1
ε̃0

curl(Hρn − H0) · curlxG( · , y) − ω2μ0(Hρn − H0) · G( · , y)
)

dx

= −
∫

∂Ω

1
ε̃0

(
(Hρn − H0) × ν

) · curlxG( · , y) ds +
∫

∂Br(y)

1
ε̃0

(
(Hρn − H0) × ν

) · curlxG( · , y) ds. (4.3)

Combining (4.2) and (4.3), observing that ε̃0 and ε̃ρn as well as μ0 and μρn coincide on Br(y), and applying
the Stratton-Chu Formula (see, e.g., [37], Thm. 9.2) we find that

∫
Ω

(( 1
ε̃0

− 1
ε̃ρn

)
curlHρn · curlxG( · , y) − ω2(μ0 − μρn)Hρn · G( · , y)

)
dx

=
1
ε̃0

∫
∂Br(y)

((
curl(Hρn − H0)

) × ν
) · G( · , y) +

(
(Hρn − H0) × ν

) · curlxG( · , y)
)

ds

− 1
ε̃0

∫
∂Ω

(
(Hρn − H0) × ν

) · curlxG( · , y) ds

=
1
ε̃0

(Hρn − H0)�(y) − 1
ε̃0

∫
∂Ω

(
(Hρn − H0) × ν

) · curlxG( · , y) ds.

Now letting y → ∂Ω, using the trace formula for curls of vector potentials (see Colton and Kress [24], Thm. 2.26),
and recalling that G( · , y) is symmetric while curlxG( · , y) is skew symmetric yields (4.1). �

Next, inspired by the proof of [18], Lemma 2, we use an integration by parts technique to decompose the
influence of the boundary data and of the geometry of the scatterer on the magnetic field Hρn as n → ∞.

Lemma 4.2. Let H0 and Hρn be the solutions of (2.3) and (2.4), respectively. Then, for 1 ≤ j ≤ 3 and all
φ ∈ C0(Ω, C),

lim
n→∞

(∫
Ω

φ
( 1

ε̃0
− 1

ε̃1

)
curlHρn · ej |Dρn |−1χDρn

dx − ω2

∫
Ω

φ(μ0 − μ1)Hρn · ej |Dρn |−1χDρn
dx

)

=
∫

Ω

φ
ε̃1

ε̃0

( 1
ε̃0

− 1
ε̃1

)
curlH0 · Mε̃

−j dμ − ω2

∫
Ω

φ(μ0 − μ1)H0 · M
μ
−j dμ, (4.4)

where Mε̃
−j and M

μ
−j denote the jth column of the electric and magnetic polarization tensor, respectively.
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Proof. Subtracting the weak formulations (2.3) and (2.4) with test function v = w
(j)
ε̃0

φ and applying (3.4) and
(3.7) gives

∫
Ω

( 1
ε̃0

− 1
ε̃ρn

)
curlHρn · curl(w(j)

ε̃0
φ) dx − ω2

∫
Ω

(μ0 − μρn)Hρn · w(j)
ε̃0

φdx

=
∫

Ω

1
ε̃0

curl(Hρn − H0) · curl(w(j)
ε̃0

φ) dx − ω2

∫
Ω

μ0(Hρn − H0) · w(j)
ε̃0

φdx

=
∫

Ω

1
ε̃0

curl(h(0)
ρn

− h0) · curl(w(j)
ε̃0

φ) dx − ω2

∫
Ω

μ0(Hρn − H0) · w(j)
ε̃0

φdx (4.5)

and similarly for v = w
(j,0)
ε̃ρn

φ,

∫
Ω

( 1
ε̃0

− 1
ε̃ρn

)
curlH0 · curl(w(j,0)

ε̃ρn
φ) dx − ω2

∫
Ω

(μ0 − μρn)H0 · w(j,0)
ε̃ρn

φdx

=
∫

Ω

1
ε̃ρn

curl(Hρn − H0) · curl(w(j,0)
ε̃ρn

φ) dx − ω2

∫
Ω

μρn(Hρn − H0) · w(j,0)
ε̃ρn

φdx

=
∫

Ω

1
ε̃ρn

curl(h(0)
ρn

− h0) · curl(w(j,0)
ε̃ρn

φ) dx − ω2

∫
Ω

μρn(Hρn − H0) · w(j,0)
ε̃ρn

φdx. (4.6)

On the other hand, using the test function v = ∇(v(j)
μ0 φ) we obtain that

∫
Ω

(μ0 − μρn)Hρn · ∇(v(j)
μ0

φ) dx =
∫

Ω

μ0(Hρn − H0) · ∇(v(j)
μ0

φ) dx

=
∫

Ω

μ0∇(q(0)
ρn

− q0) · ∇(v(j)
μ0

φ) dx (4.7)

and similarly, applying (3.4) and (3.7) we find for v = ∇(v(j)
μρn

φ) that

∫
Ω

(μ0 − μρn)H0 · ∇(v(j)
μρn

φ) dx =
∫

Ω

μρn(Hρn − H0) · ∇(v(j)
μρn

φ) dx

=
∫

Ω

μρn∇(q(0)
ρn

− q0) · ∇(v(j)
μρn

φ) dx +
∫

Ω

(μρn − μ0)(h(0)
ρn

− h0) · ∇(v(j)
μ0

φ) dx

+
∫

Ω

μρn(h(0)
ρn

− h0) · ∇
(
(v(j)

μρn
− v(j)

μ0
)φ

)
dx

=
∫

Ω

μρn∇(q(0)
ρn

− q0) · ∇(v(j)
μρn

φ) dx + o(|Dρn |).
(4.8)

Here we used orthogonality, (3.13), (3.27a), and the smoothness of v
(j)
μ0 in Ω0.
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Recalling (3.12) and (3.35) we can calculate

∫
Ω

1
ε̃ρn

curl(h(0)
ρn

− h0)·curl(w(j,0)
ε̃ρn

φ) dx =
∫

Ω

1
ε̃ρn

curl(h(0)
ρn

− h0) · curl(w(j)
ε̃ρn

)φdx

+
∫

Ω

1
ε̃ρn

curl(h(0)
ρn

− h0) · (∇φ × w
(j)
ε̃0

) dx + o(|Dρn |)

=
∫

Ω

1
ε̃ρn

curl(h(0)
ρn

− h0) · curl(w(j)
ε̃ρn

)φdx +
∫

Ω

1
ε̃0

curl(h(0)
ρn

− h0) · (∇φ × w
(j)
ε̃0

) dx

+
∫

Ω

(
1

ε̃ρn

− 1
ε̃0

)
curl(h(0)

ρn
− h0) · (∇φ × w

(j)
ε̃0

) dx + o(|Dρn |).

Integrating by parts and using (3.30), (3.13), and (3.34) yields

∫
Ω

1
ε̃ρn

curl(h(0)
ρn

− h0) · curl(w(j,0)
ε̃ρn

φ) dx

=
∫

Ω

(h(0)
ρn

− h0) · curl
(

1
ε̃ρn

curl(w(j)
ε̃ρn

)φ
)

dx +
∫

∂Ω

(h(0)
ρn

− h0) ·
(

1
ε̃ρn

(
curlw(j)

ε̃ρn

)
× νφ

)
ds

+
∫

Ω

1
ε̃0

curl(h(0)
ρn

− h0) ·
(∇φ × w

(j)
ε̃0

)
dx +

∫
Ω

(
1

ε̃ρn

− 1
ε̃0

)
curl(h(0)

ρn
− h0) ·

(∇φ × w
(j)
ε̃0

)
dx + o(|Dρn |)

=
∫

Ω

1
ε̃ρn

(h(0)
ρn

− h0) ·
(
∇φ × curlw(j)

ε̃ρn

)
dx +

∫
∂Ω

(h(0)
ρn

− h0) ·
(

1
ε̃0

ej × ν

)
φds

+
∫

Ω

1
ε̃0

curl(h(0)
ρn

− h0) ·
(
∇φ × w

(j)
ε̃0

)
dx +

∫
Ω

(
1

ε̃ρn

− 1
ε̃0

)
curl(h(0)

ρn
− h0) ·

(
∇φ × w

(j)
ε̃0

)
dx + o(|Dρn |)

=
∫

Ω

1
ε̃ρn

(h(0)
ρn

− h0) ·
(
∇φ × curlw(j)

ε̃0

)
dx +

∫
∂Ω

(h(0)
ρn

− h0) ·
(

1
ε̃0

ej × ν

)
φds

+
∫

Ω

1
ε̃0

curl(h(0)
ρn

− h0) ·
(
∇φ × w

(j)
ε̃0

)
dx +

∫
Ω

(
1

ε̃ρn

− 1
ε̃0

)
curl(h(0)

ρn
− h0) ·

(
∇φ × w

(j)
ε̃0

)
dx + o(|Dρn |).

Analogously,

∫
Ω

1
ε̃0

curl(h(0)
ρn

− h0) · curl(w(j)
ε̃0

φ) dx =
∫

Ω

1
ε̃0

(h(0)
ρn

− h0) ·
(
∇φ × curlw(j)

ε̃0

)
dx

+
∫

∂Ω

(h(0)
ρn

− h0) ·
(

1
ε̃0

ej × ν

)
φds +

∫
Ω

1
ε̃0

curl(h(0)
ρn

− h0) ·
(
∇φ × w

(j)
ε̃0

)
dx.

Combining these two equations we find that

∫
Ω

1
ε̃ρn

curl(h(0)
ρn

− h0) · curl(w(j,0)
ε̃ρn

φ) dx =
∫

Ω

1
ε̃0

curl(h(0)
ρn

− h0) · curl(w(j)
ε̃0

φ) dx

+
∫

Ω

(
1

ε̃ρn

− 1
ε̃0

)
curl(h(0)

ρn
− h0) ·

(∇φ × w
(j)
ε̃0

)
dx + o(|Dρn |). (4.9)



1212 R. GRIESMAIER

Similar arguments give

∫
Ω

μρn∇(q(0)
ρn

− q0) · ∇(v(j)
μρn

φ) dx =
∫

Ω

μ0∇(q(0)
ρn

− q0) · ∇(v(j)
μ0

φ) dx

+
∫

Ω

(μρn − μ0)∇(q(0)
ρn

− q0) · (∇φ)v(j)
μ0

dx + o(|Dρn |), (4.10)

(see the proof of [18], Lem. 2 for details).
Now substituting (4.9) into (4.6) and applying (4.5) we find that

∫
Ω

(
1
ε̃0

− 1
ε̃ρn

)
curlH0 · curl(w(j,0)

ε̃ρn
φ) dx − ω2

∫
Ω

(μ0 − μρn)H0 · w(j,0)
ε̃ρn

φdx

+ ω2

∫
Ω

μρn(Hρn − H0) · w(j,0)
ε̃ρn

φdx

=
∫

Ω

1
ε̃0

curl(h(0)
ρn

− h0) · curl(w(j)
ε̃0

φ) dx +
∫

Ω

(
1

ε̃ρn

− 1
ε̃0

)
curl(h(0)

ρn
− h0) ·

(
∇φ × w

(j)
ε̃0

)
dx + o(|Dρn |)

=
∫

Ω

(
1
ε̃0

− 1
ε̃ρn

)
curlHρn · curl(w(j)

ε̃0
φ) dx − ω2

∫
Ω

(μ0 − μρn)Hρn · w(j)
ε̃0

φdx

+ ω2

∫
Ω

μ0(Hρn − H0) · w(j)
ε̃0

φdx −
∫

Ω

(
1
ε̃0

− 1
ε̃ρn

)
curlHρn ·

(
∇φ × w

(j)
ε̃0

)
dx

+
∫

Ω

(
1
ε̃0

− 1
ε̃ρn

)
curlH0 ·

(
∇φ × w

(j,0)
ε̃ρn

)
dx + o(|Dρn |).

(4.11)

In the last step we used (3.35) to obtain

∣∣∣∫
Ω

(
1
ε̃0

− 1
ε̃ρn

)
curlH0 ·

(
∇φ × (w(j,0)

ε̃ρn
− w

(j)
ε̃0

)
)

dx
∣∣∣ ≤ Cη|Dρn |3/2−η.

Using (3.10), (3.12), and (3.35) we can estimate

∣∣∣−ω2

∫
Ω

(μ0 − μρn)H0·w(j,0)
ε̃ρn

φdx + ω2

∫
Ω

μρn(Hρn − H0) · w(j,0)
ε̃ρn

φdx

+ ω2

∫
Ω

(μ0 − μρn)Hρn · w(j)
ε̃0

φdx − ω2

∫
Ω

μ0(Hρn − H0) · w(j)
ε̃0

φdx
∣∣∣

=
∣∣∣−ω2

∫
Ω

(μ0 − μρn)H0 · (w(j,0)
ε̃ρn

− w
(j)
ε̃0

)φdx − ω2

∫
Ω

(μ0 − μρn)H0 · w(j)
ε̃0

φdx

+ ω2

∫
Ω

μρn(Hρn − H0) · (w(j,0)
ε̃ρn

− w
(j)
ε̃0

)φdx + ω2

∫
Ω

μρn(Hρn − H0) · w(j)
ε̃0

φdx

=
∣∣∣ω2

∫
Ω

(μ0 − μρn)Hρn · w(j)
ε̃0

φdx − ω2

∫
Ω

μ0(Hρn − H0) · w(j)
ε̃0

φdx
∣∣∣

= o(|Dρn |).
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Thus, after rearrangement and rescaling (4.11) reduces to

∫
Ω

(
1
ε̃0

− 1
ε̃1

)
curlH0 · curl(w(j)

ε̃ρn
)φ|Dρn |−1χDρn

dx

=
∫

Ω

(
1
ε̃0

− 1
ε̃1

)
curlHρn · curl(w(j)

ε̃0
)φ|Dρn |−1χDρn

dx + o(1). (4.12)

Similarly, substituting (4.10) into (4.8) and applying (4.7) yields∫
Ω

(μ0 − μρn)H0 · ∇(v(j)
μρn

φ) dx

=
∫

Ω

μ0∇(q(0)
ρn

− q0) · ∇(v(j)
μ0

φ) dx +
∫

Ω

(μρn − μ0)∇(q(0)
ρn

− q0) · (∇φ)v(j)
μ0

dx + o(|Dρn |)

=
∫

Ω

(μ0 − μρn)Hρn · ∇(v(j)
μ0

φ) dx −
∫

Ω

(μ0 − μρn)∇(q(0)
ρn

− q0) · (∇φ)v(j)
μ0

dx + o(|Dρn |).

From (3.13) we observe that ∫
Ω

(μ0 − μρn)(h(0)
ρn

− h0) · (∇φ)v(j)
μ0

dx = o(|Dρn |)

and use (3.27b) to obtain∫
Ω

(μ0 − μρn)H0 · ∇(v(j)
μρn

φ) dx =
∫

Ω

(μ0 − μρn)Hρn · ∇(v(j)
μ0

φ) dx −
∫

Ω

(μ0 − μρn)Hρn · (∇φ)v(j)
μ0

dx

+
∫

Ω

(μ0 − μρn)H0 · (∇φ)v(j)
μρn

dx + o(|Dρn |).

Therefore, rearrangement and rescaling gives

− ω2

∫
Ω

(μ0 − μ1)H0 · (∇v(j)
μρn

)φχDρn
|Dρn |−1 dx

= −ω2

∫
Ω

(μ0 − μ1)Hρn · (∇v(j)
μ0

)φχDρn
|Dρn |−1 dx + o(1). (4.13)

Letting n → ∞ in (4.12)–(4.4) follows by applying (3.28), (3.37) and the formulas (3.26) and (3.36). �
Proof of Theorem 2.2. Let (Dρn)n∈N be a sequence as in Theorem 2.2. Then we can extract a subsequence,
also denoted by (Dρn)n∈N, for which (2.6), (3.28), and (3.37) hold. Rescaling (4.1) we find that for y ∈ ∂Ω and
any n ∈ N,

ν(y) × (Hρn − H0)(y) − 2
∫

∂Ω

(ν(y) × curlxG( · , y)) (ν × (Hρn − H0)) ds

= |Dρn |2ε̃0

(
−

∫
Ω

(
1
ε̃0

− 1
ε̃1

)
(ν(y) × curlxG( · , y)) curlHρn |Dρn |−1χDρn

dx

+ ω2

∫
Ω

(μ0 − μ1) (ν(y) × G( · , y))Hρn |Dρn |−1χDρn
dx

)
.



1214 R. GRIESMAIER

Since ν(y)×G( · , y) and ν(y)× curlG( · , y) are smooth in Ω0 for any y ∈ ∂Ω and their restrictions to Ω0 can
be extended to continuous functions in C0(Ω), we can apply (4.4) to obtain (2.7). �

5. Examples and applications

Given an arbitrary sequence (Dρn)n∈N of low volume scatterers as introduced in Section 2, Theorem 2.2
guarantees the existence of a limiting measure μ and of polarization tensors Mε̃ and Mμ corresponding to an
appropriate subsequence such that the representation formula (2.7) holds, but neither the limiting measure nor
the polarization tensors are independent of the particular subsequence in general. However, as we discussed
in Remarks 3.6 and 3.9, μ as well as M

μ and M
ε̃ are equivalent to the corresponding limiting measure and

polarization tensor appearing in the representation formula for voltage perturbations caused by low volume
conductivity inhomogeneities from [18]. These have been very well studied in the past twenty years and explicit
characterizations of the limiting measure and of the polarization tensor are known for several practically inter-
esting examples. In the following we consider three of them, show how these earlier results apply to our setting,
and discuss how the corresponding asymptotic representation formulas have been used or can be used to solve
inverse scattering problems. Throughout let (ρn)n∈N be a sequence of sufficiently small positive real numbers
converging to zero.

Example 5.1 (Point Scatterers). In our first example we consider a collection of m diametrically small scatterers
Dρn :=

⋃m
l=1(zl+ρnBl) that are well separated from each other and from the boundary of Ω. Here B1, . . . , Bm ⊂

R3 are bounded smooth domains containing the origin that determine the relative shape of the scatterers. The
location of the scatterers is given by the points z1, . . . , zm ∈ Ω, and their diameter is specified by ρn.

As mentioned before, this particular example has already been studied for time-harmonic Maxwell’s equa-
tions in [9]. It follows straightforwardly from (2.6) that in this case the limiting measure μ is given by
μ = 1∑m

l=1 |Bl|
∑m

l=1 |Bl|δzl
, where δzl

denotes the Dirac measure with support in zl, and that it is not necessary
to consider a particular subsequence. The asymptotic representation formula (2.7) reduces for any y ∈ ∂Ω to

ν(y) × (Hρn − H0)(y) − 2
∫

∂Ω

(ν(y) × curlxG( · , y)) (ν × (Hρn − H0)) ds

= ρn
32ε̃0

m∑
l=1

|Bl|
(
−

(
ε̃1

ε̃0

(
1
ε̃0

− 1
ε̃1

))
(zl) (ν(y) × curlxG(zl, y)) M

ε̃
l curlH0(zl)

+ ω2(μ0 − μ1)(zl) (ν(y) × G(zl, y)) M
μ
l H0(zl)

)
+ o(ρn

3), (5.1)

where M
μ
l and Mε̃

l , 1 ≤ l ≤ m, are the polarization tensors associated with the sequence of single scatterers
(zl + ρnBl)n∈N defined similar to (3.28) and (3.37), respectively. The sequences (3.28) and (3.37) have been
shown to converge without extracting a particular subsequence for this example (see, e.g., [9,22]), i.e., the
asymptotic formula (5.1) holds without extracting a subsequence. Explicit formulas for M

μ
l and Mε̃

l , 1 ≤ l ≤ m,
are available if Bl is a ball or an ellipsoid (cf., e.g., [5]).

Extensions of this formula to unbounded domains have been considered in [11,28], and reconstruction methods
for the corresponding inverse scattering problem in unbounded domains have been studied in [2,28,29,31–33].
Assuming that the diameter of the scatterers described by ρn is small, these methods neglect the o(ρn

3) term
in (5.1) and describe the measured electromagnetic fields by the leading order term in this formula. Then,
observing that the unique continuation of the leading order term to the interior of Ω has singularities at the
locations z1, . . . , zm of the small scatterers, the inverse problem to reconstruct the positions of the scatterers
reduces to the inverse problem to recover the singularities of this unique continuation from its boundary data.
A popular method to do so is the so-called MUSIC algorithm (see, e.g., Cheney [23]).
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Example 5.2 (thin tubes). Let K1, . . . , Km be a collection of m simple smooth curves in Ω that are well sepa-
rated from each other and from the boundary of Ω. We consider a family of scatterers Dρn :=

⋃m
l=1 Dρn,l such

that Dρn,l := {x ∈ Ω | dist(x, Kl) < ρn/2} is a tubular neighborhood around Kl and ρn determines its diame-
ter. These thin tubular scatterers can be used to model the practically interesting problem of electromagnetic
scattering from thin wires or pipes.

The limit measure μ for this example has been derived in [13,30]. Convergence takes place without extracting
a particular subsequence and μ = 1∑

m
l=1 |Kl|

∑m
l=1 δKl

, where |Kl| denotes the length of the curve Kl and the
measure δKl

is defined by

∫
Ω

φ(x) dδKl
(x) =

∫
Kl

φ(x) dλ(x) for all φ ∈ C0(Ω, C).

Here the right hand side has to be understood in the sense of curve integrals. So, for any y ∈ ∂Ω, formula (2.7)
reduces to

ν(y) × (Hρn − H0)(y) − 2
∫

∂Ω

(
ν(y) × curlxG( · , y)

)(
ν × (Hρn − H0)

)
ds

= ρn
22ε̃0

m∑
l=1

∫
Kl

(
− ε̃1

ε̃0

( 1
ε̃0

− 1
ε̃1

)(
ν(y) × curlxG( · , y)

)
M

ε̃
l curlH0

+ ω2(μ0 − μ1)
(
ν(y) × G( · , y)

)
M

μ
l H0

)
dλ + o(ρn

2), (5.2)

where M
μ
l and Mε̃

l , 1 ≤ l ≤ m, are the polarization tensors associated with the sequence of single scatterers
(Dρn,l)n∈N defined similar to (3.28) and (3.37), respectively.

For the special case when K1, . . . , Km are straight line segments and the medium is non-conducting, the
polarization tensors M

μ
l and Mε̃

l have been characterized in [13]. For any x ∈ Kl, the matrix M
γ
l (x), γ ∈ {μ, ε̃},

is symmetric and positive definite with eigenvalue 1 of multiplicity one and eigenvalue
(
(2γ0)/(γ0 + γ1)

)
(x) of

multiplicity two. The eigenvector corresponding to the eigenvalue 1 is tangential to Kl in x. In this special
case the polarization tensors are independent of the particular subsequence, i.e., (5.2) holds without taking a
subsequence.

First reconstruction methods for the corresponding inverse problem have recently been studied for the elec-
trostatic case. In [13] a collection of appropriately chosen input data has been used to recover the position and
orientation of a single thin straight cylindrical conductivity inhomogeneity directly from the formula for the
leading order term in the asymptotic expansion of the perturbation of electrostatic potentials similar to (5.2).
On the other hand in [30] the position of multiple arbitrarily curved thin tubular conductivity inhomogeneities
has been detected by reconstructing the singularities of the unique continuation of leading order term of the
asymptotic formula to the interior of the domain. A variant of the factorization method (see, e.g., Kirsch and
Grinberg [35]) has been used to find these singularities. Based on (5.2) a similar method can be developed for
the corresponding fully three-dimensional inverse electromagnetic scattering problem.

Example 5.3 (thin sheets). Let S1, . . . , Sm be a collection of m simple hypersurfaces in Ω that are well
separated from each other and from the boundary of Ω. We consider a family of scatterers Dρn :=

⋃m
l=1 Dρn,l

such that Dρn,l := {x ∈ Ω | dist(x, Sl) < ρn/2} is a neighborhood of the hypersurface Sl and ρn determines its
thickness. These thin sheet-like scatterers can be used as a model for thin penetrable cracks in non-destructive
testing.
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The limiting measure μ for this example has been derived in [15,16,21], where a corresponding electrostatic
problem has been considered (see also [14]). The sequence of measures (2.5) converges without extracting a
subsequence to μ = 1∑ m

l=1 |Sl|
∑m

l=1 δSl
, where |Sl| denotes the area of the surface Sl and the measure δSl

is
defined by ∫

Ω

φ(x) dδSl
(x) =

∫
Sl

φ(x) ds(x) for all φ ∈ C0(Ω, C).

Here the right hand side has to be understood in the sense of surface integrals. So, formula (2.7) reduces for
any y ∈ ∂Ω to

ν(y) × (Hρn − H0)(y) − 2
∫

∂Ω

(ν(y) × curlxG( · , y)) (ν × (Hρn − H0)) ds

= ρn2ε̃0

m∑
l=1

∫
Sl

(
− ε̃1

ε̃0

(
1
ε̃0

− 1
ε̃1

)
(ν(y) × curlxG( · , y)) M

ε̃
l curlH0

+ ω2(μ0 − μ1) (ν(y) × G( · , y)) M
μ
l H0

)
ds + o(ρn), (5.3)

where M
μ
l and Mε̃

l , 1 ≤ l ≤ m, are the polarization tensors associated with the sequence of single scatterers
(Dρn,l)n∈N defined similar to (3.28) and (3.37), respectively.

For real-valued coefficients these tensors have been characterized in [15,16,21]. In this case, for any x ∈ Sl the
matrix M

γ
l (x), γ ∈ {μ, ε̃}, is symmetric and positive definite with a two-dimensional eigenspace corresponding

to the eigenvalue 1 that is tangential to Sl in x and a one-dimensional eigenspace corresponding to the eigenvalue
(γ0/γ1)(x). In particular, the sequences (3.28) and (3.37) have been shown to converge without extracting a
subsequence for this example and therefore the asymptotic formula (5.1) holds without extracting a subsequence.

Although no reconstruction methods for this inverse scattering problem have been considered so far, (5.3)
suggests a starting point to do so.

6. Concluding remarks

Throughout we restricted our attention to homogeneous background media with constant parameters ε0,
σ0, and μ0. To extend our analysis to inhomogeneous background media with smoothly varying parameters
ε0, σ0, μ0 ∈ C∞(Ω, R) that are uniformly bounded from above and below (i.e., 0 < cμ0 ≤ μ0 ≤ Cμ0 < ∞,
0 < cε0 ≤ ε0 ≤ Cε0 < ∞, and 0 ≤ σ0 ≤ Cσ0 < ∞ for some constants cμ0 , Cμ0 , cε0 , Cε0 , and Cσ0) only
Lemma 4.1 and its proof need to be modified. The estimates in Section 3 and their proofs remain true without
changes, and also the proof of Lemma 4.2 carries over straightforwardly. However, if ε̃0 is non-constant, the
arguments used in Remark 3.9 to relate the definition of the electric polarization tensor Mε̃ to the definition of
the magnetic polarization tensor M

μ and the polarization tensor appearing in the electrostatic case fail.
A closely related open problem is to prove an asymptotic formula for perturbations in the eigenfrequencies

of the Maxwell system (2.1) caused by general low volume scatterers as considered in this work. Corresponding
results for diametrically small scatterers as in Example 5.1 have been established by Ammari and Volkov [10].

Acknowledgements. The author is pleased to thank Prof. Peter Monk and Prof. Michael Vogelius for their support and
for interesting discussions in the course of this project.
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