Finite Permutation Groups

Peter Müller

July 1, 2013

Contents

1 Multiply transitive groups 1
2 Jordan sets 2
3 Sharply multiply transitive groups 4
4 Transitive groups of prime degree 7
5 Primitive groups with regular cyclic subgroup 10

1 Multiply transitive groups

Theorem 1.1. Let Ω be a finite set and $G \leq \text{Sym}(\Omega)$ be 2–transitive. Let $N \unlhd G$ be a minimal normal subgroup. Then one of the following holds:

(a) N is regular and elementary abelian.

(b) N is primitive, simple and not abelian.

Proof. First we show that N is unique. Suppose that M is another minimal normal subgroup of G, so $N \cap M = \{e\}$ and therefore $[N, M] = \{e\}$. Since non–trivial normal subgroups of the primitive group G are transitive, we obtain that both M and N are transitive. Together with Lemma ??? and $M \leq C_G(N)$ and $N \leq C_G(M)$ we get that both M and N are regular. By Theorem ???, regular normal subgroups of finite 2–transitive groups are abelian. Hence $\langle M, N \rangle$ is abelian. But transitive abelian groups are regular, which forces $M = \langle M, N \rangle = N$.

If N is regular, then we are done by Theorem ???.
So from now on we assume that N is not regular. Pick $\omega \in \Omega$. As G_ω permutes transitively the N_ω–orbits on $\Omega \setminus \{\omega\}$, we see that these N_ω–orbits all have the same length. By Wielandt’s Lemma ???, we see that N is primitive or a Frobenius group.

We start to analyze the case that N is a Frobenius group. Let F^* be the set of fixed point free elements of N. By Lemma ???, $|F^*| = n - 1$, where $n = |\Omega|$. Set

$$M = \{(\alpha, \beta, f) \mid \alpha, \beta \in \Omega, f \in F^*, \beta = \alpha f\}.$$

Note that for given f, there are n choices for α, and β then is unique. So $|M| = n(n-1)$. There is a natural action of G on M, for if $\beta = \alpha f$ and $g \in G$, then $\beta^g = \alpha^f g = \alpha^{gg^{-1}f}g = (\alpha^g)^f g$, so $(\alpha, \beta, f) \in M$ implies $(\alpha^g, \beta^g, f^g) \in M$. By the 2–transitivity of G, we see that for any $\alpha \neq \beta$ there is at least one $f \in F^*$ with $(\alpha, \beta, f) \in M$. As there are $n(n-1) = |M|$ such pairs, we see that f is uniquely given by the pair α, β, and that the elements of F^* are conjugate. Let p be a prime divisor of Ω, and $f \in N$ be a element of order p. As f has either 0 or at least $p > 1$ fixed points, we conclude that $f \in F^*$. So all elements of F^* have order p, hence Ω is a power of p. By Lemma ???, the Frobenius kernel $F = F^* \cup \{e\}$ then is a subgroup of N. Let $g \in G$. Then $F^g \leq N$, and each element $\neq e$ in F^g is fixed point free, hence $F^g \subseteq F$ and therefore $F^g = F$. So F is a normal subgroup of G, and F is regular, because $|F| = |\Omega|$. But we assumed that G has no regular normal subgroup.

So we are left with the case that N is primitive and not regular. We need to show that N is simple. Suppose that this is not the case. Then N has a minimal normal subgroups $S < N$. As N is a minimal normal subgroup of G, there is an element $g \in G$ with $S \neq S^g$. So S and S^g are minimal normal subgroups of N, hence $S \cap S^g = \{e\}$ and therefore $[S, S^g] = \{e\}$. Again, the primitivity of N implies that S and S^g are transitive, and as these groups centralize each other, they both are regular. We claim that $N = SS^g$. If that were not the case, then there were $h \in G$ with $S^h \not\leq SS^g$. Similarly as above, $[S^h, SS^g] = \{e\}$, so SS^g we regular too, which is absurd. Thus $N = SS^g \cong S \times S$, so $|N| = |\Omega|^2$. Let m be the common length of the N_ω–orbits on $\Omega \setminus \{\omega\}$. So m divides $|\Omega| - 1$. But m also divides $|N_\omega|$, which divides $|\Omega| = |\Omega|^2$. However $|\Omega| - 1$ and $|\Omega|^2$ are relatively prime. This final contradiction proves the theorem.

2 Jordan sets

Definition 2.1. Let G act transitively on Ω. A subset $\Delta \subseteq \Omega$ with $|\Delta| \geq 2$ is called a *Jordan set*, if the pointwise stabilizer of $\Omega \setminus \Delta$ in G acts transitively
Remark 2.2. If G is k-fold transitive Ω, then any subset Δ with $|\Delta| \geq 2$ and $|\Omega \setminus \Delta| \leq k - 1$ is a Jordan set.

In the following we denote by $G(\Delta)$ the pointwise stabilizer of $\Omega \setminus \Delta$ in Δ.

Lemma 2.3. Let G act transitively on Ω, and let Δ and Σ be Jordan sets of Ω. Then the following holds:

(a) If $\Delta \cap \Sigma \neq \emptyset$, then $\Delta \cup \Sigma$ is a Jordan set.

(b) Let $\Delta \subsetneq \Omega$ be a maximal Jordan set with respect to inclusion. Then $\Delta \cap \Sigma = \emptyset$ or $\Sigma \subset \Delta$ or $\Delta \cup \Sigma = \Omega$.

(c) Let G be imprimitive, and B be a nontrivial block which intersects Δ non-trivially. Then $\Delta \subseteq B$ or $B \subseteq \Delta$.

Proof. (a) Clearly $<G(\Delta), G(\Sigma)>$ fixes $\Omega \setminus (\Delta \cup \Sigma)$ pointwise. As $G(\Delta)$ and $G(\Sigma)$ are transitive on Δ and Σ, and $\Delta \cap \Sigma$ is not empty, we get that $<G(\Delta), G(\Sigma)>$ is transitive on $\Delta \cup \Sigma$.

(b) Clear by (a).

(c) Suppose that the assertion is false. Then there is

\[
\begin{align*}
\alpha & \in B \cap \Delta \\
\beta & \in B \setminus \Delta \\
\delta & \in \Delta \setminus B.
\end{align*}
\]

Pick $g \in G(\Delta)$ with $\alpha^g = \beta$. Note that $\delta \notin B$, but $\delta = \alpha^g \in B^g$, so $B \neq B^g$ and hence $B \cap B^g = \emptyset$. However, $\beta \notin \Delta$, so $\beta = \beta^g$ since $g \in G(\Delta)$. Therefore $\beta \in B \cap B^g$, a contradiction.

Lemma 2.4 (Rudio). Let G act primitively on the finite set Ω, and let Δ be a nonempty proper subset of Ω. Then for any distinct $\alpha, \beta \in \Omega$ there is $g \in G$ with $\alpha \notin \Delta^g$, but $\beta \in \Delta^g$.

Proof. Without loss of generality we may and do assume that G acts faithfully. In particular, G is finite.

Set $U := \{g \in G \mid \beta \in \Delta^g\}$ and $B = \bigcap_{g \in U} \Delta^g$. We are done once we know that B is a block, since then $B = \{\beta\}$ by primitivity of G, so there is $g \in U$ with $\alpha \notin \Delta^g$.

3
We need to show that B is a block. Let $x \in G$ be arbitrary, and assume that B and B^x have a nontrivial intersection. Pick $b \in B \cap B^x$. We need to show that $B = B^x$. We distinguish two cases:

(a) If $\beta \in B^x$, then $\beta \in \cap_{g \in U} \Delta^{gx}$, so $Ux \subset U$. But U is a finite set, hence $Ux = U$. We obtain

$$B^x = \cap_{g \in U} \Delta^{gx} = \cap_{h \in U} \Delta^h = \cap_{h \in U} \Delta^h = B.$$

(b) Now suppose that $\beta \notin B^x$. Pick $y \in G$ with $b^y = \beta$. From $b \in B \cap B^x$ we get $\beta = b^y \in B^y \cap B^{xy}$, so $\beta \in B \cap B^y \cap B^{xy}$. Now $B = B^y$ and $B = B^{xy}$ by case (a), hence $B^y = B^{xy}$, and finally $B = B^x$.

\[
\square
\]

Theorem 2.5 (Jordan). Let $G \leq \text{Sym} (\Omega)$ act primitively on the finite set Ω. Suppose that there is a proper Jordan set in Ω. Then the action is 2–transitive.

Proof. Let $\Delta \subsetneq \Omega$ be a maximal nontrivial Jordan set. Set $|\Delta| = k$ and $|\Omega| = n$. Fix $\alpha \in \Omega$. By Rudio’s Lemma, for any $\beta \in \Omega \setminus \{\alpha\}$ there is $g \in G$ with $\alpha \notin \Delta^g$, but $\beta \in \Delta^g$. Clearly, Δ^g is a proper Jordan set too. Let D be the set of these sets Δ^g. Note that any two members of D intersect trivially by Lemma ???. So $\Omega \setminus \{\alpha\}$ is a disjoint union of the sets in D. In particular, k divides $n - 1$. Set

$$M = \{ (\alpha, \Delta^x) | \alpha \in \Omega, x \in G, \alpha \notin \Delta^x \}.$$

Counting via α shows $|M| = n \cdot \frac{n-1}{k}$. Set $u := |\{\Delta^x | x \in G\}|$. Clearly $|M| = u \cdot (n - k)$, so

$$uk(n-k) = n(n-1).$$

From $k \mid n-1$ we get that the numbers $k, n-k$ and n are pairwise relatively prime, so $k(n-k)$ divides $n - 1$. In particular, $k(n-k) \leq n - 1$. Together with $2 \leq k \leq n - 1$ this implies $k = n - 1$, so $\Omega = \Delta \cup \{\alpha\}$ for some α. We get that G_α is transitive on Δ, and the claim follows. \[
\square
\]

3 Sharply multiply transitive groups

Let G act on the set Ω. Set $\Omega^{(k)}$ be the set of k–tuples $(\omega_1, \omega_2 \ldots, \omega_k)$ with pairwise distinct entries. We say that G is sharply k–fold transitive on Ω if G acts regularly on $\Omega^{(k)}$.

Some easy consequences of this definition are:
If G is transitive on Ω, then G is sharply k–fold transitive on G if and only G_ω is sharply $(k - 1)$–fold transitive on $\Omega \setminus \{\omega\}$ for some (or any) $\omega \in \Omega$.

If G is sharply k–fold transitive on the finite set Ω of size n, then $|G| = n(n - 1)(n - 2) \ldots (n - k + 1)$.

Clearly, a sharply 1–fold transitive group is just a group in its regular action. We list some examples of sharply k–fold transitive groups for $k \geq 2$:

- Let K be a skewfield. Then $G = AGL(1, K)$ acts sharply 2–transitively on K.

- Let K be field. Then $PGL(2, K)$ acts sharply 3–transitively on the set of 1–dimensional subspaces of K^2.

- If $|\Omega| = n < \infty$, then $\text{Sym}(\Omega)$ acts sharply n–transitively on Ω. This action is also sharply $(n - 1)$–transitive. Furthermore, $\text{Alt}(\Omega)$ acts sharply $(n - 2)$–transitively on Ω.

A Theorem of Tits shows that except for specific groups of degrees 11 and 12, there are no other cases of sharp k–transitivity for $k \geq 4$.

In the following M_{11} denotes a hypothetical group which acts sharply 4–transitively on 11 points. Such a group indeed exists and is unique, which will not be shown here. (Remarks about Mathieu groups ???)

In the following we do not assume that Ω is finite. Before discussing the case $k \geq 4$, we look at the case $k = 4$ which serves as basis for an induction proof of the general case.

Proposition 3.1 (Tits). Let G act sharply 4–transitively on the set Ω. Then G is one of the following groups: S_4, S_5, A_6, M_{11}.

Proof. We will frequently show that an element from G is the identity by showing that it has at least four fixed points.

Let 1, 2, 3, 4 be distinct elements from Ω. Pick $t \in G$ with

$$1^t = 2, \quad 2^t = 1, \quad 3^t = 3, \quad 4^t = 4.$$

So t^2 has at least four fixed points, hence $t^2 = e$.

So t is an involution. Set $H = G_1 \cap C_G(t)$. Clearly, H acts on the fixed points of t. This action is faithful, because $h \in H$ fixes 1, and also 2 in view of $2^h = 1^h = 1^t = 1^t = 2$. So if h fixes 3 and 4 too, then h has four fixed points, hence $h = e$.

5
On the other hand, t has at most 3 fixed points, and if $|\Omega|$ is even, then t has exactly 2 fixed points. From that we see that $|H| \leq 6$, and $|H| \leq 2$ if $|\Omega|$ is even.

Let $P = \{ (\omega, \omega') \mid \omega \in \Omega, \omega \neq 1, 2, \omega \neq \omega' \}$ be the ordered orbits of $\langle t \rangle$ of length 2 distinct from $(1, 2)$ and $(2, 1)$.

We claim that H acts transitively on P: Pick (ω, ω') and $(\bar{\omega}, \bar{\omega}')$ in P, and choose $g \in G$ with $1^g = 1, 2^g = 2, \omega^g = \bar{\omega}, (\omega')^g = \bar{\omega}'$.

Of course $g \in G_1$. We are done once we know that $g \in C_G(t)$. Consider the commutator $c = g^{-1}t^{-1}gt$, and note that $t = t^{-1}$. We compute that c fixes the points $1, 2, \bar{\omega}, \bar{\omega}'$:

\begin{align*}
1g^{-1}t^{-1}gt &= 1t^{-1}gt = 2gt = 2t = 1 \\
2g^{-1}t^{-1}gt &= 2t^{-1}gt = 1gt = 1t = 2 \\
\bar{\omega}g^{-1}t^{-1}gt &= \omega t^{-1}gt = \omega^t = \bar{\omega}t \\
(\omega')^g t^{-1}gt &= (\omega')^t = \omega^t = \bar{\omega}t
\end{align*}

This yields $g^{-1}t^{-1}g = e$, so $g \in H$.

Note that $|\Omega| = 2 + f + |P|$, where $f \in \{2, 3\}$ is the number of fixed points of t. We obtain $|\Omega| \leq 2 + 3 + 6 = 11$, and $|\Omega| \leq 2 + 2 + 2 = 6$ if $|\Omega|$ is even.

In order to finish the proof, we need to show that $|\Omega| \neq 7, 9$.

First suppose that $|\Omega| = 9$. Then $|P| = 4$. However, H is isomorphic to a subgroup of S_3, and such a group cannot act transitively on a set of size 4.

So we are left to deal with $|\Omega| = 7$. In this case t is a double transposition. But G is 4–transitive on Ω, so G then contains all double transpositions from $\text{Sym}(\Omega)$. But $(1 2)(3 4) \cdot (1 2)(3 5) = (3 4 5)$, so G also contains all 3–cycles, hence $G \geq \text{Alt}(\Omega)$, a contradiction.

Lemma 3.2. Let $G \leq \text{Sym}(\Omega)$ be transitive, and $|\Omega| = p$ be a prime. Then $|G| = pd(1 + pe)$ with $e \in N_0$ and a divisor d of $p - 1$.

Proof. Let C be a Sylow p–subgroup of G. Then C has order p, is cyclic and regular on Ω. Set $N = N_G(C)$. Note that $C = C_G(C)$, so N/C is isomorphic to a subgroup of $\text{Aut}(C)$, a group of order $d \mid p - 1$. The number of Sylow p–subgroups of G has the form $1 + pe$, and equals $[G : N]$ since they are all conjugate to C. The claim then follows from $|G| = [G : N][N : C]|C|$. □

Lemma 3.3. Suppose that $|\Omega| = 13$. Then $\text{Sym}(\Omega)$ does not contain a sharply 6–transitive group.
Proof. Suppose that $G \leq \text{Sym}(\Omega)$ is sharply 6–transitive. So $|G| = 13 \cdot 12 \cdot 11 \cdot 10 \cdot 9 \cdot 8$. By the previous lemma, $|G| = 13d(1 + 13e)$ for a divisor d of 12. Writing $12 = dk$, we obtain $11 \cdot 10 \cdot 9 \cdot 8k = 1 + 13e$, hence $3k \equiv 1 \pmod{13}$. This yields $k \equiv 9 \pmod{13}$, contrary to k being a divisor of 12.

In the following M_{12} denotes a group which acts sharply 5–transitively on 12 points. We do not prove existence and uniqueness of such a group.

Theorem 3.4 (Tits). Suppose that G act sharply k–transitively on the set Ω for $k \geq 4$. Then Ω is finite, and G is one of the following groups: S_n ($k = n$ or $k = n - 1$), A_n ($k = n - 2$), M_{11} ($k = 4$), M_{12} ($k = 5$).

Proof. We know this result already for $k = 4$. Since a point stabilizer of a sharply k–transitive group is sharply $(k - 1)$–transitive on the remaining points, the result follows by induction and the fact from the previous lemma, that M_{12} is not a point stabilizer of a sharply 6–transitive group on 13 elements.

4 Transitive groups of prime degree

Theorem 4.1 (Burnside). Let p be a prime number, $|\Omega| = p$, and $G \leq \text{Sym}(\Omega)$ be transitive. Then G is either 2–transitive or a proper subgroup of $\text{AGL}_1(p)$ with respect to a suitable identification of Ω with \mathbb{F}_p.

The main tool is the following

Proposition 4.2. Let U be a non-empty, proper subset of $\mathbb{F}_p \setminus \{0\}$. Let π be a permutation of \mathbb{F}_p such that $i - j \in U$ for $i, j \in \mathbb{F}_p$ implies $\pi(i) - \pi(j) \in U$. Then there are $a, b \in \mathbb{F}_p$ such that $\pi(x) = ax + b$ for all $x \in \mathbb{F}_p$.

In [Sch08] Schur gives a proof of this proposition in two steps. First he uses a precursor of his S-ring technique to show that if $1 \in U$, then U is a subgroup of $\mathbb{F}_p \setminus \{0\}$. In the second step he shows that π is linear. In this note we show that a small modification of his second step makes the first step unnecessary. See the remarks at the end for further comments.

Proof of Burnside’s theorem. Let G be a transitive permutation group on p elements. As p divides the order of G, there is an element $\tau \in G$ of order p. We may assume that G acts on \mathbb{F}_p, with $\tau(x) = x + 1$ for all $x \in \mathbb{F}_p$. So G contains the group of translations $x \mapsto x + b$ for each $b \in \mathbb{F}_p$.

Suppose that G is not doubly transitive. Then the stabilizer G_0 of 0 has at least 2 orbits on $\mathbb{F}_p \setminus \{0\}$. Let U be one of these orbits. In order to show
that U meets the assumptions of the proposition, pick i, j with $i - j \in U$. Define $\sigma : x \mapsto \pi(x + j) - \pi(j)$, note that $\sigma \in G$, and $\sigma(0) = 0$, so actually $\sigma \in G_0$. Therefore $\pi(i) - \pi(j) = \sigma(i - j) \in U$.

So we may apply the proposition, which shows that G is a subgroup of the group of permutations $x \mapsto ax + b$ with $a \in \mathbb{F}_p \setminus \{0\}, b \in \mathbb{F}_p$.

Lemma 4.3. Let U be a subset of m nonzero elements in a field. Then there is an integer r with $1 \leq r \leq m$ with $\sum_{u \in U} u^r \neq 0$.

Proof. Write $U = \{u_1, u_2, \ldots, u_m\}$ and $\prod_{i=1}^m (X - u_i) = a_0 + a_1X + \cdots + a_{m-1}X^{m-1} + X^m$. Consider the matrix and the vectors

$$A = \begin{pmatrix} 1 & u_1 & \cdots & u_1^{m-1} \\ 1 & u_2 & \cdots & u_2^{m-1} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & u_m & \cdots & u_m^{m-1} \end{pmatrix}, \quad a = \begin{pmatrix} a_0 \\ a_1 \\ \vdots \\ a_{m-1} \end{pmatrix}, \quad v = -\begin{pmatrix} u_1^n \\ u_2^n \\ \vdots \\ u_m^n \end{pmatrix}.$$

Then a is the unique solution of the linear equation $Ax = v$. Therefore A is invertible. In particular

$$\left(\sum_{u \in U} u \sum_{u \in U} u^2 \cdots \sum_{u \in U} u^m\right) = (u_1 \ u_2 \ \cdots \ u_m) A \neq 0,$$

and the claim follows. \qed

Proof of the proposition. By an iterated application of π we see that $i - j \in U$ if and only if $\pi(i) - \pi(j) \in U$. In particular, replacing U by its complement in $\mathbb{F}_p \setminus \{0\}$ preserves the assumption. Therefore we may and do assume $|U| \leq \frac{p-1}{2}$.

Fix $i \in \mathbb{F}_p$. For $u \in U$ we have $(i + u) - i \in U$, hence $\pi(i + u) - \pi(i) \in U$. As π is a permutation, the elements $\pi(i + u) - \pi(i)$ are different for different u. Thus $\{\pi(i + u) - \pi(i) | u \in U\} = U$, hence $\{\pi(i + u) | u \in U\} = \{\pi(i) + u | u \in U\}$. In particular, for $w \in \mathbb{N}$ we obtain

$$\sum_{u \in U} \pi(i + u)^w = \sum_{u \in U} (\pi(i) + u)^w.$$

Let $f(X) \in \mathbb{F}_p[X]$ be the polynomial of degree $n \leq p - 1$ with $f(i) = \pi(i)$ for all $i \in \mathbb{F}_p$. Suppose $wn \leq p - 1$. Then $\sum_{u \in U} f(X + u)^w - \sum_{u \in U} (f(X) + u)^w$ is a polynomial of degree $< p$ which vanishes identically on \mathbb{F}_p, thus

$$\sum_{u \in U} f(X + u)^w - \sum_{u \in U} (f(X) + u)^w = 0.$$
Setting $S_k = \sum_{u \in U} u^k$, we obtain

$$\sum_{u \in U} (f(X + u)^w - f(X)^w) = \sum_{k=1}^w \binom{w}{k} S_k f(X)^{w-k}.$$

Let $r \geq 1$ be minimal with $S_r \neq 0$. Then the right hand side has degree $n(w - r)$ if $r \leq w$, or vanishes if $r > w$.

$f(X)^w$ is a polynomial of degree $nw < p$. For $0 \leq \nu \leq nw$, the νth derivative $(f(X)^w)^{(\nu)}$ has degree $nw - \nu$. Thus there are $a_0, a_1, \ldots, a_{nw} \in \mathbb{F}_p$ such that

$$X^{nw} = \sum_{\nu=0}^{nw} a_{\nu} (f(X)^w)^{(\nu)},$$

where $a_0 \neq 0$. This yields

$$\sum_{u \in U} ((X + u)^{nw} - X^{nw}) = \sum_{\nu=0}^{nw} a_{\nu} \left(\sum_{k=1}^w \binom{w}{k} S_k f(X)^{w-k} \right)^{(\nu)}.$$

So

$$\sum_{u \in U} ((X + u)^{nw} - X^{nw})$$ is 0 or has degree $n(w - r)$. (1)

The previous lemma gives $r \leq |U| \leq \frac{p-1}{2}$.

Suppose we have chosen w maximal with $nw \leq p - 1$. Then $p - 1 < n(w + 1) \leq 2nw$, so $nw > \frac{p-1}{2} \geq r$. Thus $nw - r > 0$, and (1) has degree $nw - r$ as one sees from expanding $(X + u)^{nw}$. We obtain $nw - r = n(w - r)$, so $n = 1$, and we are done.

Remark. Our proof resembles the final step of Schur’s proof in [Sch08]. However, the main part of his proof consists in showing that if $1 \in U$, then U is a subgroup of $\mathbb{F}_p \setminus \{0\}$. Thus if $1 \leq k \leq w < |U|$, then $S_k = 0$, so $\sum_{u \in U} f(X + u)^w = |U| f(X)^w$, which produces a contradiction similarly as above. See also [DM96, 3.5] for a modern version of this proof.

In [DKM92] the authors give an S-ring argument to show that U is a group. From there they however proceed with geometric arguments, and use facts about lacunary polynomials to conclude that π is a linear function.

Burnside’s original proof uses complex character theory, see [Bur11].

Another proof is due to Wielandt, who studies the ring of G-invariant functions from \mathbb{F}_p to \mathbb{F}_p. See [Wie94, pages 273–296], [HB82, XII, §10]. Concise and streamlined version of Wielandt’s proof are contained in [LMT93, 6.7] and [FJ05, 21.7].
5 Primitive groups with regular cyclic subgroup

We study finite primitive permutation groups with a cyclic regular subgroup. In a long and difficult paper from 1933 I. Schur [Sch33] invented a new technique to prove that such a group has either prime degree, or is doubly transitive. Later Wielandt [Wie64] gave a different version of Schur’s technique and proved the slightly more general

Theorem 5.1 (Schur). Let \(G \) be a primitive permutation group of degree \(n \), and \(A \) be a regular abelian subgroup. Suppose that \(n \) is not prime, and that \(A \) contains a cyclic Sylow \(p \)-subgroup for some prime divisor \(p \) of \(|A|\). Then \(G \) is doubly transitive.

Because of its importance for the monodromy groups of polynomials and the beauty of its proof, we give a self-contained account in the following. Our presentation is influenced by [DM96]. For a variant confer [LMT93].

In the following we assume the hypotheses of the Theorem. Let \(\Omega \) be the set \(G \) acts on. Pick \(\omega \in \Omega \). The regular action of \(A \) allows us to identify \(\Omega \) with the elements of \(A \), where we identify \(a \) with \(\omega^a \). This way we obtain a regular action of \(G \) on \(A \), where the subgroup \(A \) acts in its regular action on itself. In order to avoid a confusion with the notation for conjugation, we write \(a \star g \) for the image of \(a \in A \) under \(g \in G \) instead of \(a^g \). If \(b \in A \), then obviously \(a \star b = ab \). Also,

\[
1 \star (ag) = (1 \star a) \star g = a \star g = 1 \star (a \star g) \quad \text{for all } a \in A, \ g \in G. \tag{2}
\]

Let \(p \) be a prime such that, according to the hypothesis, \(A \) has a cyclic \(p \)-Sylow subgroup. So \(A \) has a unique subgroup of order \(p \), call it \(P \).

We will work with the group algebra \(R \) of \(A \) over \(\mathbb{F}_p \). As an \(\mathbb{F}_p \)-space, this is the space of mappings \(\lambda : A \rightarrow \mathbb{F}_p \). Addition and multiplication in \(R \) are defined as follows:

\[
(\lambda + \mu)(a) := \lambda(a) + \mu(a)
\]
\[
(\lambda \mu)(a) := \sum_{b,c \in A} \lambda(b) \mu(c) \quad \text{if } b \cdot c = a
\]

It is straightforward to verify that this makes \(R \) into a ring with unity. We use a more convenient notation, by writing \(\lambda_a \) instead of \(\lambda(a) \) and by identifying \(\lambda \in R \) with the formal linear combination \(\sum_{a \in A} \lambda_a a \).

We extend the action of \(G \) on \(A \) to \(R \) by linearity, and again write \(r \star g \) for \(g \in G \) applied to \(r \in R \).
For a subset $\Gamma \subseteq A$ we denote by $[\Gamma]$ the element $\sum_{\gamma \in \Gamma} \gamma \in R$. For $r \in R$, let $\text{supp}(r)$ be the support of $r = \sum \lambda_a a$, which is the set of those $a \in A$ with $\lambda_a \neq 0$. Let G_1 be the stabilizer of $1 \in A$, and denote by $C_R(G_1)$ the subset of elements of R which are fixed by G_1. Let $A_1 = \{1\}, A_2, \ldots, A_N$ be the orbits of G_1 on A. Of course, we aim to prove that $N = 2$.

Lemma 5.2. The following holds.

(a) $C_R(G_1)$ is an \mathbb{F}_p-subspace of R with basis $[A_1], [A_2], \ldots, [A_N]$.

(b) If $\Gamma \subseteq A$ is G_1-invariant, then $(\Gamma a) * g = \Gamma a * g$ for all $a \in A$, $g \in G_1$.

(c) If $\Gamma, \Delta \subseteq A$ are G_1-invariant, then so is $\Gamma \Delta$.

(d) $C_R(G_1)$ is a subring of R.

(e) If B is a G_1-invariant subgroup of A, then $B = \{1\}$ or $B = A$.

(f) $<\text{supp}(c)> = 1$ or A for each $c \in C_R(G_1)$.

(g) Let $\Gamma \subseteq A$ be G_1-invariant. Then $[\Gamma]^p = [\Gamma \cap P]^1$.

(h) For each $i = 1, 2, \ldots, N$ we have $|A_i \cap P| \geq 1$ and $A_i \setminus P$ is a union of cosets of P in A.

Proof. To (a). If $c = \sum_{a \in A} \lambda_a a \in C_R(G_1)$, then $c * g = c$ for all $g \in G_1$ implies $\lambda_a = \lambda_b$ if a, b lie in the same G_1-orbit. From this conclude the claim.

To (b). From $1 * (ag) = 1 * (a * g)$ (see (2)) we get $h \in G_1$ with $ag = h(a * g)$. So, for $\gamma \in \Gamma$ we obtain from a repeated application of (2) and noting that $\gamma a, \gamma * h, a * g \in A$ the following:

$$
(\gamma a) * g = 1 * (\gamma ag)
= 1 * (\gamma h(a * g))
= 1 * ((\gamma * h)(a * g))
= (\gamma * h)(a * g).
$$

If γ runs through Γ, then so does $\gamma * h$, and (b) follows.

To (c). Let a run through Δ and use (b).

To (d). In virtue of (a) we need to show that $[A_i][A_j] \in C_R(G_1)$ for all i, j. For $g \in G_1$ we get from (b) that if $b \in A_j$, then $(A_i b) * g = A_i (b * g)$, hence $([A_i]b) * g = [A_i](b * g)$. Now take the sum over $b \in A_j$, and note that $b * g$ runs through A_j. 11
To (e). If \(h \in G_1 \) then \(B \ast h = B \) by assumption. As \(G = G_1 A \), any \(g \in G \) has the form \(g = ha \) with \(h \in G_1 \) and \(a \in A \). So \(B \ast g = (B \ast h) \ast a = B \ast a = Ba \). So the coset \(Ba \) either equals \(B \), or is disjoint from \(B \). We see that \(B \) is a block with respect to the action of \(G \) on \(A \). However, this action is primitive, forcing \(|B| = 1 \) or \(B = A \).

To (f). For \(c \in C_R(G_1) \) let \(S \) be the support of \(c \), and \(B \) the group generated by \(S \). Note that \(S \) is \(G_1 \)-invariant. Then \(B = \bigcup_{i=0}^{\infty} S^i \), and \(B \) is \(G_1 \)-invariant by (c). The assertion follows from (e).

To (g). Clearly \([\Gamma] \in C_R(G_1) \). As the support of \([\Gamma]^p\) consists of \(p \)-th powers of \(A \), and the set of \(p \)-th powers of \(A \) is a proper subgroup of \(A \), we see that the group generated by the support of \([\Gamma]^p\) is a proper subgroup of \(A \), hence is trivial by (f). So \([\Gamma]^p\) is a multiple of 1, and the coefficient of 1 is the number of \(\gamma \in \Gamma \) with \(\gamma^p = 1 \), and the claim follows.

To (h). Let \(\Gamma \) be one of the \(A_i \). Pick \(\gamma \in \Gamma \setminus P \). Then \(\gamma^p \neq 1 \), and the number of elements \(\delta \in \Gamma \) with \(\gamma^p = \delta^p \) must be divisible by \(p \) as a consequence of (g). So this number is at least \(p \). On the other hand, as \(A \) is abelian, \(\gamma^p = \delta^p \) implies \(\delta \in P\gamma \), so there are at most \(|P| = p \) such elements \(\delta \). It follows that the set of \(\delta \in \Gamma \) with \(\delta^p = \gamma^p \) is precisely \(P\gamma \). In particular, \(P\gamma \subseteq \Gamma \). We see that \(\Gamma \setminus P \) is a union of cosets of \(P \).

It remains to show that \(\Gamma \) contains an element from \(P \). Suppose wrong. Then, by what we saw, \(\Gamma \) is a union of cosets of \(P \), hence \(P \subseteq B := \{b \in A | \ \Gamma b = \Gamma \} \). Clearly \(B \) is a subgroup of \(A \) of order \(> 1 \). Furthermore, \(B \) is \(G_1 \) invariant by (b). So \(B = A \) by (f). But this implies the nonsense \(A = \Gamma A = \Gamma \not\subseteq A \). \(\square \)

Now we are ready to prove the theorem. Suppose that \(G \) is not doubly transitive. Then there exists a \(G_1 \)-orbit \(\Gamma \) different from \(A_1 = \{1\} \) such that \(\mu := |\Gamma \cap P| \leq (p-1)/2 \). Set \(S = \{a \in A | Pa \subseteq \Gamma \} \). By (h) we know that \(\Gamma \) is the disjoint union of \(\Gamma \cap P \) and the sets \(Pa, a \in S \). Taking sums, we get

\[[\Gamma] = [\Gamma \cap P] + [P]r, \]

with \(r = |S| \). For \(v \in P \) we have \(v[P] = [P] \), hence \([P]^2 = p[P] = 0 \) and \([\Gamma \cap P][P] = \mu[P] \). Now \(c := ([\Gamma] - \mu 1)^2 \in C_R(G_1) \) by (d). We compute

\[c = ([\Gamma \cap P] - \mu 1 + [P]r)^2 \]
\[= ([\Gamma \cap P] - \mu 1)^2 + 2([\Gamma \cap P][P] - \mu[P])r + [P]^2r^2 \]
\[= ([\Gamma \cap P] - \mu 1)^2, \]

so the support of \(c \) is contained in \(P \). Since \(P < A \), we get \(\text{supp}(c) \subseteq \{1\} \) by (f). So \(([\Gamma \cap P] - \mu 1)^2 = [\Gamma \cap P]^2 - 2\mu[\Gamma \cap P] + \mu^21 \) is a multiple of 1. By (h), there is \(\gamma \in \Gamma \cap P \), so \(\mu \geq 1 \) and \(\gamma \neq 1 \). Let \(\rho \) be the number of appearances
of γ in the expansion of $[\Gamma \cap P]^2$. Clearly $\rho \leq \mu$. But by the above, p divides $\rho - 2\mu$, a contradiction to $-p < -2\mu \leq \rho - 2\mu \leq \mu - 2\mu < 0$.

Remark. There are also versions of the theorem for certain non-abelian regular groups A, see the references given in [Wie64, §25].

References

