Generalizations of Theorems of Lyapunov and Stein

Harald K. Wimmer
Technische Hochschule Graz
Graz, Austria

Recommended by H. Schneider

ABSTRACT

The matrix equation $f_H(A) = \sum c_{ij} A_i^{*} H A_j = W$, $H > 0$, $W > 0$, is studied. In the case $A^* H + H A = W$ [$H - A^* H A = W$], the controllability matrix of (A^*, W) is used to determine the number of eigenvalues of A on the imaginary axis [on the unit circle]. As an application a result of Pták on the critical exponent of the spectral norm is obtained. Estimates for the eigenvalues of A satisfying $f_H(A) = M$ are given.

1. INTRODUCTION

In this note we deal with the matrix equation

$$\sum_{i,j=0}^{n-1} c_{ij} A_i^{*} H A_j = W, \quad c_{ij} = c_{ji}^{*},$$

where A is a complex $n \times n$ matrix, H and W are hermitian, $H > 0$ (positive definite) and $W > 0$ (positive semidefinite). We focus (excepting the last section) on a semidefinite W. The case $W > 0$ has been studied by Hill [5] in the more general setting of the inequality

$$\sum_{i,j=1}^{s} c_{ij} A_i^{*} H A_j > 0$$

with quasi-commutative A_1, \ldots, A_s.

Special cases of (1) are the Lyapunov equation

$$A^* H + H A = W$$

and the Stein equation [13]
\[H - A^*HA = W. \] \hspace{1cm} (3)

Our results on (3) will be applied to determine the critical exponent of the spectral norm. In the last section we establish inequalities for the eigenvalues of a matrix A satisfying (1) or (2).

2. GENERAL THEOREMS

We define
\[f_H(A) = \sum_{i,f=0}^{n-1} c_{ij}A^*iHA^i \]
and
\[f(\lambda) = \sum_{i,f=0}^{n-1} c_{ij}\overline{\lambda}^i\lambda^j. \] \hspace{1cm} (4)

As we assume \(c_{ij} = \overline{c_{ji}} \), \(f_H(A) \) is hermitian and \(f(\lambda) \) is real.

Theorem 1. [5,7]. If A satisfies (1) with \(H > 0 \), then
\(\begin{align*} \text{(a) } & W > 0, \quad (a') \ W \geq 0, \quad (a'') \ W = 0 \\
\text{(b) } & f(\lambda) > 0, \quad (b') \ f(\lambda) \geq 0, \quad (b'') \ f(\lambda) = 0 \end{align*} \)

implies
\(\begin{align*} \text{(b) } & f(\lambda) > 0, \quad (b') \ f(\lambda) \geq 0, \quad (b'') \ f(\lambda) = 0 \end{align*} \)

for each eigenvalue \(\lambda \) of A.

In order to determine the number of eigenvalues of A with \(f(\lambda) = 0 \) we introduce the following concepts.

Definition [11]. The pair \((A,B) \), where A is \(n \times n \) and B is \(n \times m \), is called controllable if
\[\text{rank}(B,AB,A^2B,\ldots,A^{n-1}B) = n. \]

The \(n \times nm \) matrix \(S(A|B) \), the controllability matrix of \((A,B) \), is defined by
\[S(A|B) = (B,AB,A^2B,\ldots,A^{n-1}B). \]
THEOREMS OF LYAPUNOV AND STEIN

Lemma 1. [4, 11]. \((A, B)\) is controllable if and only if

\[
\text{rank}(A - \lambda I, B) = n
\]

for each eigenvalue \(\lambda\) of \(A\).

Lemma 2. [12]. If \(V\) is hermitian and \(W = V^2\), then

\[
\text{rank} S(A|W) = \text{rank} S(A|V).
\]

Theorem 2. Let \(A\) satisfy (1) with \(H > 0\) and \(W > 0\). The following statements are equivalent:

(a) \(f(\lambda > 0\) for each eigenvalue \(\lambda\) of \(A\).

(b) The pair \((A^*, W)\) is controllable.

Proof. \(\gamma (b) \Rightarrow \gamma (a)\). Suppose \((A^*, W)\) or—in Lemma 2—\((A^*, V)\) is not controllable; then by Lemma 1 there is a \(u \neq 0\) and a \(\kappa\) such that \(u^*(A^* - \kappa I) = 0\) and \(u^* V = 0\). Then \(V f_H(A)u = f(\kappa) u^* Hu = u^* W u = 0\), and from \(H > 0\) we get \(f(\kappa) = 0\). By similar arguments we can show \(\gamma (a) \Rightarrow \gamma (b)\).

Given an additional condition on \(A\) Theorem 2 can be refined.

Theorem 3. Let \(r > 0\) be the number of (not necessarily distinct) eigenvalues \(\lambda\) of \(A\) with \(f(\lambda) = 0\), and suppose that the elementary divisors corresponding to these eigenvalues are all linear. If \(A\) satisfies (1) with \(H > 0\) and \(W > 0\), then

\[
r = n - \text{rank} S(A^*|W).
\]

Proof. Put \(\hat{A} = H^{1/2} A H^{-1/2}\) and \(\hat{W} = H^{-1/2} W H^{-1/2}\); then (1) is equivalent to \(f_1(\hat{A}) = \hat{W}\), and \(\text{rank} S(A^*|W) = \text{rank} S(\hat{A}^*|\hat{W})\). Thus without loss of generality we can assume \(H = I\) in (1).

Let \(\lambda_1, \ldots, \lambda_r\) be the \(r\) eigenvalues of \(A\) with \(f(\lambda) = 0\), and let \(u_1, \ldots, u_r\) be the corresponding eigenvectors, which exist by assumption. Then

\[
u_p^* f_1(A) u_p = u_p^* u_p f(\lambda_p) = u_p^* W u_p = 0
\]

and

\[
W u_p = 0, \quad (A - \lambda_p I) u_p = 0.
\]

The \(u_p\)'s are eigenvectors of the hermitian matrix \(W\); hence they can be
chosen orthogonal. There exists a unitary U which transforms A and W into

$$U^*AU = \text{diag}(\lambda_1, \ldots, \lambda_r) \oplus A_1$$

and

$$U^*WU = \begin{pmatrix} 0 & 0 \\ 0 & W_1 \end{pmatrix}.$$

A_1 has no eigenvalue μ with $f(\mu) = 0$. So by Theorem 2, $f_1(A_1) = W_1$ implies

$$\text{rank}(A^*_1|W_1) = n - r.$$

As $S(A^*_1|W)$ and $S(A^{*_1}|W_1)$ are of equal rank, (5) follows.

The assumption on the elementary divisors of A can not be dropped in general. Take $A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ and $f(\lambda) = \bar{\lambda}\lambda$ as an example,

$$f_1(A) = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = W.$$

(5) is not satisfied, for there are two eigenvalues λ of A with $f(\lambda) = 0$, and

$$\text{rank}(A^*_1|W) = 1.$$

3. SPECIAL CASES

There are two important special cases of Theorem 2 and 3.

Theorem 4. Let A satisfy

(a) $A^*H + HA = W$

(b) $H - A^*HA = W$

where $H > 0$ and $W \geq 0$. Then

$$\text{Re}\lambda \geq 0, \quad |\lambda| < 1$$

for all eigenvalues λ of A. If A has $r > 0$ eigenvalues with

$$\text{Re}\lambda = 0, \quad |\lambda| = 1,$$

then the corresponding elementary divisors are linear and

$$n - r = \text{rank}(A^*_1|W).$$

Part (a) of Theorem 4 is also contained in [12, Corollary 4.1] or in [15]. It is known (see, e.g., [9] or [14]) that in (a) all eigenvalues of A on the imaginary axis have linear elementary divisors. Using a lemma of Givens on
the field of values of \(A \), we can give a different proof of the linearity of those elementary divisors.

Lemma 3. (Givens [2]). *Let the field of values \(F(A) \) of \(A \) be defined as* \[F(A) = \{ z | z = x^*Ax, x^*x = 1 \} \] *If \(\lambda \) is an eigenvalue of \(A \) lying on the boundary of \(F(A) \), then the elementary divisors corresponding to \(\lambda \) are linear.*

Proof of Theorem 4. Again there is no loss of generality if we work with
\[A^* + A = W \succ 0, \]
\[I - A^*A = W \succ 0. \]
If \(z = x^*Ax \), then (6) implies \(\text{Re} z = \frac{1}{2}(z + \overline{z}) = \frac{1}{2} x^*(A^* + A)x \succ 0 \). So an eigenvalue \(\lambda \) of \(A \) with \(\text{Re} \lambda = 0 \) is on the boundary of \(F(A) \) and Lemma 3 can be applied. Suppose now (7) holds. If \(z \in F(A) \), then \(|z|^2 = (x^*A^*x)(x^*Ax) \leq x^*A^*Ax \) for some \(x \) with \(x^*x = 1 \). By (7), \(x^*A^*Ax \leq 1 \), and any eigenvalue \(\lambda = e^{i\phi} \) of \(A \) is on the boundary of \(F(A) \).

Theorem 4b provides a new proof of the following result of Pták. Let \(\rho(A) \) be the spectral radius and \(\| A \| \) be the spectral norm of \(A \),
\[\| A \| = \sqrt[\rho(A^*A)}. \]

Theorem 5 [10]. *If \(A \) is an \(n \times n \) matrix with \(\| A \| = 1 \), then* \[\| A^n \| = 1 \quad \Rightarrow \quad \rho(A) = 1. \]

Proof. From \(\| A \| = 1 \) one may deduce (7) and \(\rho(A) < 1 \). We have to show that there is an eigenvalue \(\lambda \) of \(A \) with \(|\lambda| = 1 \). Because of (7) and Lemma 2, the rank of \(S(A^* | V) \), \(V^2 = W \), will be studied.
\[
\text{rank} S(A^* | V) = \text{rank}(V, A^*V, \ldots, A^{n-1}V) \\
= \text{rank}(W + A^*WA + \ldots + A^{n-1}WA^{n-1}) \\
= \text{rank}[(I - A^*A) + (A^*A - A^{*2}A^2) + \ldots + (A^{n-1}A^{n-1} - A^{*n}A^n)] \\
= \text{rank}(I - A^{*n}A^n).
\]
\[\| A^n \| = 1 \] implies that 1 is an eigenvalue of \(A^{*n}A^n \) or \(\text{rank}(I - A^{*n}A^n) < n \). Thus \(\text{rank} S(A^* | W) < n \), and by Theorem 4b at least one eigenvalue of \(A \) has modulus 1.
REMARK. The exponent n in (8) is "critical", i.e., it cannot be replaced by a smaller one. Take the $n \times n$ matrix $B = (i,j+1)$ as an example [10]. We have $\|B\| = \|B^{n-1}\| = 1$ and $\rho(B) < 1$.

4. INEQUALITIES

In this section we give estimates for $f(\lambda)$, when λ is an eigenvalue of A.

Theorem 6. Let M be hermitian and $H > 0$, and let $d_1 \geq \cdots \geq d_n$ be the eigenvalues of $H^{-1}M$. Let f be defined as in (4), and λ be an arbitrary eigenvalue of A. If

$$
\sum_{i,j=0}^{n-1} c_{ij} A^i H A^j = M, \quad c_{ij} = c_{ji}
$$

holds, then

$$
d_n < f(\lambda) < d_1 \tag{9}
$$

Proof. Put

$$
\hat{A} = H^{1/2} A H^{-1/2} \quad \text{and} \quad \hat{M} = H^{-1/2} M H^{-1/2}, \tag{10}
$$

then

$$
\sum_{i,j=0}^{n-1} c_{ij} \hat{A}^i \hat{A}^j = \hat{M}.
$$

If x is an eigenvector of \hat{A} corresponding to λ, $\hat{A}x = \lambda x$, then

$$
x^* x \sum_{i,j=1}^{n-1} c_{ij} \hat{A}^i \lambda^j = x^* \hat{M} x
$$
or

$$
f(\lambda) = \frac{x^* \hat{M} x}{x^* x}. \tag{11}
$$

Since the eigenvalues of \hat{M} are those of $H^{-1/2} \hat{M} H^{1/2} = H^{-1} M$, (9) follows from (11).

For the special case of the Lyapunov equation

$$
A^* H + H A = M, \quad H > 0, \tag{12}
$$
Kalman and Bertram [6] obtained
\[d_n \leq 2 \text{Re} \lambda \leq d_1. \]
For (12) a set of sharper inequalities can easily be derived from a theorem of Fan [1].

Definition [3, p. 45]. Let \((x) = (x_1, \ldots, x_n) \) and \((y) = (y_1, \ldots, y_n) \) be two finite sequences of real numbers. We write
\[(x_1, \ldots, x_n) < (y_1, \ldots, y_n), \]
if \((x) \) and \((y) \) can be arranged so as to satisfy the following three conditions:
\[
\begin{align*}
x_1 &> \cdots > x_n, \quad y_1 > \cdots > y_n \\
x_1 + \cdots + x_k &\leq y_1 + \cdots + y_k, \quad k = 1, 2, \ldots, n-1 \\
x_1 + \cdots + x_n &= y_1 + \cdots + y_n.
\end{align*}
\]

Lemma 4 [1, 8]. If \(\lambda_1, \ldots, \lambda_n \) are the eigenvalues of \(A \) and \(\alpha_1, \ldots, \alpha_n \) are the eigenvalues of \(\frac{1}{2}(A^* + A) \), then
\[(\text{Re} \lambda_1, \ldots, \text{Re} \lambda_n) < (\alpha_1, \ldots, \alpha_n). \]
(12) is equivalent to \(\hat{A}^* + \hat{A} = \hat{M} \) with \(\hat{A} \) and \(\hat{M} \) as in (10). From Lemma 4 we get the immediately the following relations.

Theorem 7. If (12) holds, and \(\lambda_1, \ldots, \lambda_n \) are the eigenvalues of \(A \) and \(d_1, \ldots, d_n \) the eigenvalues of \(H^{-1}M \), then
\[
\begin{align*}
(2 \text{Re} \lambda_1, \ldots, 2 \text{Re} \lambda_n) &< (d_1, \ldots, d_n) \\
(-2 \text{Re} \lambda_1, \ldots, -2 \text{Re} \lambda_1) &< (-d_1, \ldots, -d_1).
\end{align*}
\]

References

Received 6 November 1973