Deutsch Intern
  • none
Institute of Mathematics

Oberseminar "Mathematik des Maschinellen Lernens und Angewandte Analysis" - M.Sc. Yara Elshiaty

Multilevel Bregman Proximal Gradient Descent
Date: 04/23/2025, 2:15 PM - 3:15 PM
Category: Veranstaltung
Location: Hubland Nord, Geb. 40, 01.003
Organizer: Institut für Mathematik
Speaker: M.Sc. Yara Elshiaty - Universität Heidelberg

We present the Multilevel Bregman Proximal Gradient Descent (ML BPGD) method, a novel multilevel optimization framework tailored to constrained convex problems with relative Lipschitz smoothness. Our approach extends the classical multilevel optimization framework (MGOPT) to handle Bregman-based geometries and constrained domains. We provide a rigorous analysis of ML BPGD for multiple coarse levels and establish a global linear convergence rate. We demonstrate the effectiveness of ML BPGD in the context of image reconstruction, providing theoretical guarantees for the well-posedness of the multilevel framework and validating its performance through numerical experiments.

Back