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Application of quantum control
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1. Quantum control: state transitions, laser induced chemistry,
magnetic and optical trapping.

2. Quantum computing: qubits, data operations.
3. Quantum transport, BEC, superfluids of atoms, vortices.
4. NMR andmagnetic resonance imaging.
5. Quantum optics.
6. Semiconductor nanostructures.



Quantummechanical frameworks
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There are nine formulations of nonrelativistic quantummechanics (QM):
the wavefunction, matrix, path integral, phase space, density matrix,
second quantization, variational, pilot wave, and Hamilton–Jacobi
formulations.

A covariant formulation leads to a relativistic quantummechanics (RQM).

Most of quantum optimal control problems have been formulated in the
context of nonrelativistic quantummechanics in the wavefunction and
density matrix formulations.

The research field of quantum optimal control problems is wide open.



Wavefunctionmodels
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One-particle Schrödinger equation, ψ = ψ(x, t) or ψ = ψ(t)

i ∂t ψ = (H0 + Vcontrol)ψ

BEC Condensate, Gross-Pitaevskii equation, ψ = ψ(x, t)

i ∂t ψ =

(
−1

2
∆ + V0 + Vcontrol + g |ψ|2

)
ψ

Multi-particle (n) Schrödinger equation,
ψ = ψ(x1, x2, . . . , xn, t)

i ∂t ψ =

−1

2

n∑
i=1

∆2 +

n∑
i=1

Vi +
n∑

i,j=1

Uij + Vcontrol

ψ



Other QMmodels
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Time-dependent Kohn-Sham equation, ψi = ψi(x, t)

i ∂t ψi =

(
−1

2
∆ + Vext + VHartree(ρ) + Vexc(ρ) + Vcontrol

)
ψi

where ψi, i = 1, . . . ,N are the K-S orbitals; ρ =
∑N

i=1 |ψi|2 is
the one-electron density.
The Wigner equation, f = f (x, p, t)

∂t f + p · ∇x f = ΘV0+Vcontrol [f ]

The Liouville-von Neumann equation, ρ = ρij(t)

∂t ρ = − 1

ih̄
[ρ,H0 + Vcontrol].

The stochastic Schrödinger equation, etc.



Controlmechanisms
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Many finite-dimensional controlled quantum systems can be written in a
real representation as follows

Ẋ =

[
A+

NC∑
n=1

Bn un

]
X

where X represents a quantum state, A and Bn are skew-symmetric
matrices, and un : [0, T] → R are control functions. This structure appears
frequently in, e.g., optimal control of spins.

In the case of infinite-dimensional controlled quantum systems, the
original formulation in complex Hilbert spaces is preferred.

i ∂t Ψ =

{[
1

2
|p|2 + ~A(x, t) · p+ V(x, t)

]
⊗ I2 + ~B(t) ·~I

}
Ψ.

In this Pauli equation for the spinorΨ, the magnetic field ~B(t) and/or a
potential V(t, x) = V0(x) + x ◦ u(t)may play the role of control functions.



Control’s physical objectives
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Dynamically stable systems exist with confining potentials V0.{
−1

2
∇2 + V0(x)− Ej

}
φj(x) = 0, j = 1, 2, . . . ,

where the φj represent the eigenstates and the Ej represent the energy.

Control may be required to quickly steer state transitions: φi −→ φj.

Control may be required to break bound states: dissociation of molecules.

Control may be required to maximize/minimize observable expected
values (ψ,Oψ), where O represents a physical observable.

If the Hermitian operator O represents a transformation (regardless of
initial and final states) like a quantum gate, control may be required to
obtain best performance of O.



Model purpose and cost of control

7/45

The purpose of the control is formulated by means of a cost functional to
be optimised. This functional usually has a composite structure:

J(X, u) = J1(X) + J2(u).

The first term could represent a quantum expected value of an
observable; e.g., 〈ψ,Oψ〉, to be maximized along the time evolution (thus
involving a time integration) or at final time. On the other hand, it may
correspond to a requirement on the state configuration.

The second term represents the cost of the control to be minimized in the
given control space denoted with U .

Moreover, we can pose additional restrictions for the admissible controls
and require:

u ∈ Uad ⊆ U



A quantum control problem
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A class quantum optimal control problem

min J(X, u) := J1(X) + J2(u)
∂tX =

[
A+ uB

]
X

X(·, 0) = X0, T X = 0

u ∈ Uad

Analytical issues: Well-posedness (existence of solutions), Fréchet
differentiability of the optimal control components, optimality conditions.

Assuming a unique solution of the governingmodel for a given control, we
have the control-to-state map: u 7→ X(u). Thus the optimal control can be
equivalently written as follows

min
u∈Uad

Ĵ(u) := J(X(u), u),

where Ĵ is the reduced cost functional.



The optimality system

9/45

In order to derive the first-order necessary optimality conditions, one can
use the Lagrange multipliers method based on the Lagrange function:

L(ψ, u, λ) = J(ψ, u) + Re 〈∂tX −
[
A+ uB

]
X, Z〉,

where Z is the Lagrange multiplier and 〈·, ·〉 a complex scalar product.
Let u be an optimal control, and X = X(u). The Lagrangemultiplier Z is the
function satisfying the optimality system

DXL(X, u, Z)(δX) = 0

DZL(X, u, Z)(δZ) = 0

DuL(X, u, Z)(δu) ≥ 0, u+ δu ∈ Uad.

This system is equivalent to the optimality condition:(
∇Ĵ(u), v − u

)
≥ 0 v ∈ Uad.



A finite-level quantum system
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Quantum systems with a finite number of states maymodel artificial
atoms (semiconductor quantum dots) and quantum devices (quantum
gates).
Consider aΛ-type three-level systemwith two stable states ψ1 and ψ2

(conservative), and one unstable state ψ3 (dissipative):

ψ1

ψ2

ψ3

u

δ��

FN

�� ��

QY

rr
rr
rr



Model of theΛ system
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A Schrödinger-type equation for a n-component wave function
ψ : [0, T] → Cn has the form

i ψ̇(t) = H(u(t))ψ(t), ψ(0) = ψ0,

for t ∈ [0, T] and T > 0 is a given terminal time.

The function u : [0, T] → C represents the external control field. We write
u = ur + i ui.

The Hamiltonian H(u) = H0 + V(u), consists of

a free Hamiltonian H0 ∈ Cn×n describing the uncontrolled system;

a control potential V(u) ∈ Cn×n modelling the coupling of the quantum
state with the control field u.



Control’s objective and costs
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The purpose is to reach a target state at t = T , while limiting population of
dissipative states during the control process, and using minimal laser
resources.
These requirements can bemodelled as follows

J(ψ, u) =
1

2
|ψ(T)− ψT |2Cn +

1

2

∑
j∈J

αj ‖ψj‖2L2(0,T;C)

+
β

2
‖u‖2L2(0,T;C) +

γ

2
‖u̇‖2L2(0,T;C)

where ψT is the desired terminal state; γ > 0 and µ, αi ≥ 0 are weighting
factors; ψj denotes the j-th (dissipative) component of ψ.

We have a quantum optimal control problem:

min J(ψ, u), s.t. i ψ̇(t) = H(u(t))ψ(t), ψ(0) = ψ0, u ∈ U

U = H1(0, T;C), where H1 costs promote slow varying controls.



Optimality system
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i ψ̇ = H(u)ψ, ψ(0) = ψ0,

i ṗ = H(u)∗ p− αj (ψ)j, i p(T) = ψ(T)− ψT

−γ ü+ β u = Re(p · (∂urV(u)ψ)∗) + iRe(p · (∂uiV(u)ψ)∗)
u(T) = 0, u(0) = 0.

With free hamiltonian and control potential given by

H0 =
1

2


−δ 0 0

0 δ 0

0 0 −iΓo

 , V(u) = −1

2


0 0 µ1 u

0 0 µ2 u

µ1 u∗ µ2 u∗ 0


where the term−i Γo accounts for environment losses, e.g., spontaneous
photon emissions, scattering of gamma rays from crystals.
The µ1 and µ2 describe the coupling strengths of states ψ1 and ψ2 to the
inter-connecting state ψ3 (e.g., optical dipole matrix elements).
Initial and target states: ψ0 = (1, 0, 0) and ψT = (0, 1, 0).



Choice of optimizationweights
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Smaller values of β and γ result in smaller |ψ(T)− ψd|C3 .
As γ increases: additional smoothness of the control function (slightly)
reduces the capability of targeting, but problem better conditioned.
By takingα = α3 > 0: dissipation is reduced andwe have better targeting.

β γ α |ψ(T) − ψT |C3 J CPU

10−7 10−7 0.05 8.6 · 10−4 2.37 · 10−3 19.6

10−7 10−9 0.05 3.7 · 10−4 5.46 · 10−4 55.6

10−7 0 0.05 6.9 · 10−5 1.41 · 10−4 424.8

10−7 0 0 1.2 · 10−3 2.33 · 10−6 763.1

10−4 10−4 0.05 3.3 · 10−2 6.52 · 10−2 47.3

10−4 10−6 0.05 4.4 · 10−3 9.03 · 10−3 42.3

10−4 0 0.05 2.7 · 10−3 5.68 · 10−3 17.2

10−4 0 0 8.3 · 10−3 3.34 · 10−4 5.5



Optimal solutions
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With δ = 10, Γ0 = 0.01, µ1 = µ2 = 1, and β = 10−4, α3 = 0.01. We have
γ = 0 (top) and γ = 10−6 (bottom).
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The choice of L1 control costs
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Consider a spin optimal control problemwhere the governing model is
derived from the Pauli equation:

min J(X, u) :=
1

2
‖X(T)− XT‖22 +

ν

2

NC∑
n=1

‖un‖2L2 + β

NC∑
n=1

‖un‖L1

s.t. Ẋ =

[
A+

NC∑
n=1

Bnun

]
X , X(0) = X0.

The L1 cost promotes sparsity and pulsed-shaped controls are obtained:

easy implementation in laboratory pulse shapers;
explanation of NMR pulses;
mathematical challenging.



Control of 2 uncoupled spin-12
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X0 = ↑ ↑ XT =→→



An open quantum spin system

18/45

The Liouville - von Neumannmaster equation is augmented with an
additional ‘dissipator’ term D(ρ) as follows

i h̄
∂ρ

∂t
= [H, ρ] + ih̄ D(ρ)

where the dissipation is given in the following Lindblad form

D(ρ) = CρC† − 1

2
{C†C, ρ}

where {A,B} = AB+ BA, and C represents a quantum observable that is
also a ’dissipation’ channel.

To model continuous quantummeasurements (diffusive case) of an open
quantum system a stochastic term is added:

dρ =

(
−i 1

h̄
[H, ρ] + D(ρ)

)
dt +

(
ρC† + Cρ− Tr(ρ(C + C†)) ρ

)
dWt



A stochastic Blochmodel
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This stochastic master equation (Belavkin equation) corresponds to the
following stochastic Schrödinger equation

dψ = −
(
i H +

1

2
[C†C − 2qtC + q2t I]

)
ψ dt + (C − qt I) ψ dW

where qt = 1
2 〈ψ, (C + C†)ψ〉.

In particular, we consider the stochastic Schrödinger equation
corresponding to the damped Blochmodel of a two-level spin quantum
system (qubit):

dψ = −
(
i H +

g
2
σ†σ − g〈σ†〉σ

)
ψdt +

√
gσ ψ dW



A stochastic Blochmodel
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The stochastic Bloch model with polar coordinates on the Bloch sphere: dϕ(t) = Bϕ(ϕ, θ) dt + σ11(ϕ, θ)dW1 + σ12(ϕ, θ)dW2

dθ(t) = Bθ(ϕ, θ) dt + σ21(ϕ, θ)dW1 + σ22(ϕ, θ)dW2,

Bϕ(ϕ, θ) = Aϕ(ϕ(t), θ(t))

σ11(ϕ, θ) = −
√

g
2

1 + cos(θ(t))

sin(θ(t))
sin(ϕ(t))

σ12(ϕ, θ) =
√

g
2

1 + cos(θ(t))

sin(θ(t))
cos(ϕ(t))

Bθ(ϕ, θ) = Aθ(ϕ(t), θ(t)) + g
1 + cos(θ(t))

sin(θ(t))
(1 − (1 + cos(θ(t)) cos(θ(t))/4)

σ21(ϕ, θ) =
√

g
2
(1 + cos(θ(t))) cos(ϕ(t)), σ22(ϕ, θ) =

√
g
2
(1 + cos(θ(t))) sin(ϕ(t)),



The Fokker-Planck equation
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The evolution of the probability density function (PDF) associated to the
stochastic Bloch system is modelled by a FP equation on the sphere.

∂tf = −∂φ(Aφ[φ, θ] f )

− ∂θ

[(
Aθ[φ, θ] + g

1 + cos(θ)
sin(θ)

(
1− (1 + cos(θ)) cos(θ)

4

))
f
]

+
g
4
∂2φ

(
1 + cos(θ)
1− cos(θ)

f
)
+

g
4
∂2θ

(
(1 + cos(θ))2 f

)
with f (φ, θ, t) ≥ 0 (positivity) and

´ 2π
0

´ π
0
f (φ, θ, t)dφdθ = 1

(conservativeness). We also have f (φ, θ, t) = 0 for θ = 0. These conditions
are satisfied by the initial PDF f0 = f (φ, θ).

The formulation of control objectives with the PDF and the Fokker-Planck
equation provides a consistent framework for the optimal control of
stochastic models.



FP optimal control
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The control mechanism in the Bloch system is the action of magnetic
fields (u, v) as follows:

Aϕ(ϕ, θ, u, v) = ω + a cot(θ) (u sin(ϕ) + v cos(ϕ))
Aθ(ϕ, θ, u, v) = −a (u cos(ϕ)− v sin(ϕ))

We consider the following cost functional:

J(f , u, v) :=
1

2
‖f (·, T)− fd(·)‖2L2(Ω) +

ν

2
‖(u, v)‖2L2(0,T)

where fd represents the desired target PDF, e.g., a Gaussian.

A feedback control strategy can be constructed based on the model
predictive control strategy where optimal control problems are solved in a
sequence of time windows.



From the equator to the south pole
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The initial PDF is a narrow normalized 2D Gaussian placed at the equator
(θ, φ) = (π/2, π)with variance σ = π/20. The target PDF is a Gaussian on the
south pole with variance σ = π/8.
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Controlled stochastic trajectories
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We plot two stochastic trajectories on the sphere, corresponding to the an
optimal control that drives the spin orientation from the equator to the
south pole.
For this purpose, we plug the optimal controls in the stochastic model for the θ, ϕ
and compute the trajectories using the Euler-Maruyama scheme.
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Transitions in a quantumwell
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Transitions φj −→ φk

Ej =
j2π2

`2
, φj(x) = sin(jπx/`).



Electric dipole control
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Consider a control field modelling a laser pulse by dipole approximation:

V(x, t) = V0(x) + u(t) x

where u : (0, T) → R is the modulating control amplitude.
The governing model

i ∂tψ(x, t) =
{
− ∂

∂x2
+ V(x, t)

}
ψ(x, t), ψ(x, 0) = ψ0(x).

Objective of the control

J(ψ, u) :=
1

2

(
1−

∣∣〈ψd|ψ(T)〉
∣∣2)+

γ

2
‖u‖2U

whereU = H1
0(0, T;R) and ‖u‖2U = ‖u‖2 + α ‖u̇‖2. The target is one of

the eigenstates: ψd = φj.



Resultswith aNewtonmethod
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Optimal controls for transitions from the first state to the second, the
third, and the fifth states.

Optimal control for the transition from the 1-st to the 4-th eigenstate:



Resultswith differentmethods
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Iteration JSD − J∗ JNCG − J∗ JKN − J∗

1 2.4969× 10−1 2.4969× 10−1 2.4969× 10−1

2 1.3070× 10−2 1.3070× 10−2 1.5346× 10−2

3 6.4184× 10−3 6.4184× 10−3 5.1099× 10−3

4 5.5337× 10−3 5.3438× 10−3 2.2381× 10−4

5 4.8170× 10−3 3.1011× 10−3 1.8383× 10−4

6 4.2081× 10−3 2.3384× 10−3 1.6253× 10−5

7 3.6768× 10−3 1.2475× 10−3 2.7534× 10−6

8 3.2177× 10−3 9.1869× 10−5 3.3921× 10−7

9 2.8141× 10−3 5.9258× 10−5 4.7022× 10−9

Minimisation by the steepest descent scheme, the nonlinear CG scheme,
and the Krylov-Newton scheme.



Bose Einstein condensatesmodel
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Consider a bosonic gas (e.g. Rubidium) trapped in a magnetic field. By
lowering the confining potential, atoms with higher energy escape and
the remaining atoms condensate to a lower temperature.

The mean-field dynamics of the condensate is described by the
Gross-Pitaevskii equation (GPE):

i ∂tψ(x, t) =
(
−1

2
∇2 + V(x, t)) + g |ψ(x, t)|2

)
ψ(x, t)

Trapping and coherent manipulation of cold neutral atoms in microtraps
near surfaces of atomic chips is the focus of ongoing research towards
control of matter at small scales.



A controlmechanism for BEC
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In our case V(x, t) is a
control potential produced
by a magnetic microtrap.
Its purpose is to split and
transport a BEC.

Assume that a BEC is confined in a single well V(x, 0) at t = 0 and in a
double well V(x, T) at time t = T . We have

V(x, t) = −u(t)2 d2

8c
x2 +

1

c
x4

where c = 40 and d is the width of the double well potential, u is a
modulating function.



ABEC optimality system

31/45

J(ψ, u) =
1

2

(
1−

∣∣〈ψd|ψ(T)〉
∣∣2)+ γ

2

ˆ T

0

(u̇(t))2 dt

Optimal control problem: Minimize the cost function J(ψ, u) subject to the
condition that ψ fulfills the Gross-Pitaevskii equation.
The optimal solution is characterized by the optimality system

i ∂tψ =

(
−1

2
∇2 + Vu + g|ψ|2

)
ψ, ψ(0) = ψ0

i ∂tp =

(
−1

2
∇2 + Vu + 2g|ψ|2

)
p+ gψ2 p∗, i p(T) = −〈ψd|ψ(T)〉ψd

γü = −Re〈ψ|∂Vu
∂u

|p〉, u(0) = 0 , u(T) = 1

The initial state ψ0 and the target state ψd are the ground-states
wavefunctions of the GPE with single- (u = 0) and double-well (u = 1)
potential, respectively.



Optimal controls & potentials
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BECmanipulation
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The function |ψ(x, t)| on the space-time domain for the linear (left) and optimized (right) control.
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The TDDFT approach
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The Schrödinger equation of a multi-electron system results in prohibitive
computational power requirements. To bypass this high-dimensional
problem, a time-dependent density functional theory (TDDFT) has been
proposed.

The foundation of TDDFT on the Runge-Gross (RG) theorem:
there is a unique mapping between the time-dependent external
potential of a system and its time-dependent electronic density. This
implies that the wavefunction depending upon 3N space variables, is
equivalent to the density, which depends upon only 3 space variables, and
that many properties of a system can thus be determined from knowledge
of the density alone.



The TDDFTModel
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We have a nonlinear coupled system of N single particle SE where the
interaction is modelled with a Kohn-Sham potential vKS. A control
function u enters in an external potential vext = v0ext + v′ext(u).

i
∂

∂t
ψj(x, t) =

(
−1

2
∆ + vext(x, t; u) + vKS(x, ρ(x, t))

)
ψj(x, t) j = 1 . . . ,N,

ρ(x, t) =
N∑

i=1

|ψi(x, t)|2, vKS(x, ρ(x, t)) =
ˆ
Ω

ρ(y, t)
|x − y|

dy+vx(ρ(x, t))+vc(ρ(x, t)),

where ψj represents the wave function of the jth particle.

ψj ∈ W =

{
ψ ∈ L2(0, T;H1(Rn)),

ˆ
Rn

|ψ(x, t)|2dx = 1, ∀t ∈ [0, T]
}
.

We assume the adiabatic local density approximation, where the
potentials vx , vc at (x, t) only depend on ρ(x, t).



A TDDFT optimal control problem
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min
ψ∈WN, u∈L2(0,T)

J(ψ, u) s.t. ψ solves the TDDFT Model,

where the cost functional models different objectives:
J := Jβ + Jγ + Jη + Jν

J(ψ, u) =
β

2

ˆ T

0

ˆ
Ω

(ρ(x, t)− ρd(x, t))2dxdt

+
γ

2

ˆ
Ω

(ρ(x, T)− ρT(x))
2 dx

+
η

2

ˆ
Ω

χA ρ(x, T)dx +
ν

2

ˆ T

0

u(t)2dt,

with ν > 0, β, γ ≥ 0, and χA > 0 is a characteristic function with support
in A.



Numerical experiment I
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Consider a two-dimensional quantum dot modelled by a harmonic
potential, v0ext(x, t) = ω0 x2, and the control represents oscillator strength,
v′ext(x, t; u) = u(t) x2, (β, γ, η, ν) = (1, 0, 0, 1e− 8).
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In this experiment, the desired density evolution is obtained with
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Numerical experiment II
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Consider a two-dimensional quantum dot modeled by a harmonic
potential, v0ext(x, t) = ω0 x2, and a dipole control, v′ext(x, t; u) = u(t) x,
(β, γ, η, ν) = (0, 1, 0, 1e− 7).
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In this experiment, the target density ρT is a coerent state of the harmonic
oscillator.



Numerical experiment III
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Consider a two-dimensional quantum dot modelled by the following
4th-order asymmetric double-well,
v0ext(x, t) = x4/64 + x3/32− x2/4 + y2/2, and dipole control. We have
(β, γ, η, ν) = (0, 0, 1, 1e− 6).
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Ensemble optimal control problems

40/45

In a statistical framework, a phase-space density-based optimal control
formulation appears to be appropriate.

A Wigner ensemble optimal control problem:

min J(f , u) := Φ(f ) + Γ(f ) + κ(u),
s.t. ∂f + p · ∇x f −ΘV0+Vcontrol(u)[f ] = 0, f|t=0 = f0,

where

ΘU[f ](x, p, t) :=
1

(2π)n

ˆ
R2n

δU(x, η, t)f (x, p′, t)e−i
(
p−p′

)
·η dp′ dη

The ensemble cost functional:

J(f , u) =
ˆ T

0

ˆ
R2n

φ(x, p, t) f (x, p, t) dx dp dt −
ˆ
R2n

γ(x, p) f (x, p, T) dx dp

+
1

2

ˆ T

0

(
γ |u(t)|2 + ν |u̇(t)|2

)
dt



Open topics
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Some open topics in the field of quantum optimal control problems:

Other QM formulations
Control in a relativistic setting
Control in a quantum statistical framework
Open quantum systems and feedback control
Time-dependent quantum field theory
High-dimensional problems
Formulation of inverse problems/hamiltonian identification
Functional and numerical analysis issues
Laboratory implementation

Thank you for your attention!



The book and the software
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Software published in Computer Physics
Communications
https://www.sciencedirect.
com/journal/
computer-physics-communications
Codes available at the International
Computer Program Library on Mendeley
Data:
CNMS, QUCON, COKOSNUT, LONE,
MOCOKI, SKRYN, TBA

https://www.sciencedirect.com/journal/computer-physics-communications
https://www.sciencedirect.com/journal/computer-physics-communications
https://www.sciencedirect.com/journal/computer-physics-communications


Some references

43/45

M. Annunziato and A. Borzì, Fokker-Planck-based control of a two-level open quantum system, Mathematical
Models and Methods in Applied Sciences (M3AS), 23 (2013), 2039-2064.

A. Barchielli and M. Gregoratti, Quantum Trajectories and Measurements in Con- tinuous Time, Springer, Berlin,
2009.

A. Borzì, Quantum optimal control using the adjoint method, Nanoscale Systems: Mathematical Modeling, Theory
and Applications, 1 (2012), 93-111.

A. Borzì and U. Hohenester, Multigrid optimization schemes for solving Bose-Einstein condensates control
problems, SIAM J. Sci. Comp., 30 (2008), 441-462.

A. Borzì, G. Ciaramella and M. Sprengel, Formulation and Numerical Solution of Quantum Control Problems, SIAM,
Philadelphia, 2017.

A. Borzì, G. Stadler, and U. Hohenester, Optimal quantum control in nanostructures: Theory and application to a
generic three-level system , Phys. Rev. A 66, 053811 (2002).

T. Breitenbach and A. Borzì, A sequential quadratic Hamiltonian scheme for solving non-smooth quantum control
problems with sparsity, Journal of Computational and Applied Mathematics, 369 (2020), 112583.

A. Castro, J. Werschnik, and E. K. U. Gross, Controlling the Dynamics of Many-Electron Systems from First Principles:
A Combination of Optimal Control and Time-Dependent Density-Functional Theory, Phys. Rev. Lett. 109 (2012),
153603.

G. Ciaramella and A. Borzì, Quantum Optimal Control Problems with a Sparsity Cost Functional, Numerical
Functional Analysis and Optimization, 37 (2016), 938-965.

G. Ciaramella, J. Salomon, A. Borzì, G. Ciaramellaa , J. Salomon, A. Borzì, A method for solving exact-controllability
problems governed by closed quantum spin systems, International Journal of Control (IJC), 88 (2015), 682-702.



44/45

G. Ciaramella, A. Borzì, G. Dirr, D. Wachsmuth, Newtonmethods for the optimal control of closed quantum spin
systems, SIAM Journal on Scientific Computing, 37 (2015), A319-A346.

G. Ciaramella and A. Borzì, A LONE code for the sparse control of quantum systems, Computer Physics
Communications, 200 (2016), 312-323.

G. Ciaramella and A. Borzì, SKRYN: A fast semismooth-Krylov-Newtonmethod for controlling Ising spin systems,
Computer Physics Communications, 190 (2015), 213-223.

G. Ciaramella, M. Sprengel, A. Borzì, A theoretical investigation of time-dependent Kohn–Sham equations: new
proofs, Applicable Analysis, 2019.

P. Ditz and A. Borzì, A cascadic monotonic time-discretized algorithm for finite-level quantum control computation,
Computer Physics Communications, 178 (2008), 393-399.

U. Hohenester, P.K. Rekdal, A. Borzì, J. Schmiedmayer, Optimal quantum control of Bose-Einstein condensates in
magnetic microtraps, Phys. Rev. A 75, 023602 (2007).

R. van Leeuwen,Mapping from Densities to Potentials in Time-Dependent Density-Functional Theory, Phys. Rev. Lett.
82 (1999), 3863–3866.

E. Runge and E. K. U. Gross, Density-Functional Theory for Time-Dependent Systems, Phys. Rev. Lett. 52 (12):
997–1000, 1984.

Sprengel1 M. Sprengel, G. Ciaramella and A. Borzì, Investigation of optimal control problems governed by a
time-dependent Kohn-Shammodel, Journal of Dynamical and Control Systems, 24 (2018), 657-679.

Sprengel2 M. Sprengel, G. Ciaramella and A. Borzì, A theoretical investigation of time-dependent Kohn-Sham
equations, SIAM Journal on Mathematical Analysis, 49 (2017), 1681-1704.



45/45

M. Sprengel, G. Ciaramella and A. Borzì, A COKOSNUT code for the control of the time-dependent Kohn-Sham
model, Computer Physics Communications, 214 (2017), 231-238.

G. Stadler, Elliptic optimal control problems with L1-control cost and applications for the placement of control devices,
Computational Optimization and Applications, 44(2) (2009), pp. 159-181;

G. Turinici, H. Rabitz, Quantumwavefunction controllability, Chemical Physics 267 (1), 1-9;

G. von Winckel, A. Borzì, S. Volkwein, A globalized Newtonmethod for the accurate solution of a dipole quantum
control problem, SIAM J. Sci. Comput., 31 (2009), pp. 4176-4203;

G. von Winckel and A. Borzì, QUCON: A fast Krylov-Newton code for dipole quantum control problems, Computer
Physics Communications, 181 (2010), 2158-2163.

H. M. Wiseman and G. J. Milburn, Interpretation of quantum jump and diffusion processes illustrated on the Bloch
sphere, Phys. Rev. A, 47 (1993), 1652-1666.


