Hans Zwart
Universiteit Twente, Niederlande

Stabilisation of port-Hamiltonian Systems

Mittwoch, 16. Mai 2018 • 16:15 Uhr
Raum SE 40, Mathematik Ost, Emil-Fischer-Str. 40, Campus Hubland-Nord

Inhaltsangabe:

The class of port-Hamiltoninan systems includes many of the well-known (linear) partial differential equations on a 1D spatial domain, such as the vibrating string and the transmission line. We discuss the stabilization of this class of systems using a nonlinear dynamic boundary control. These nonlinearities are usually associated to large deformations or the use of smart materials such as piezo actuators and memory shape alloys. Including them in the controller model results in passive dynamic controllers with non-quadratic potential energy function and/or nonlinear damping forces.

First it is shown that under very natural assumptions the solutions of the partial differential equation with the nonlinear dynamic boundary conditions exist globally. Secondly, when energy dissipation is present in the controller, then it globally asymptotically stabilizes the partial differential equation.