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Unser erstes Ziel:

Satz: Es gibt Funktionen von       nach      , die nicht durch ein Computer-
programm berechnet werden können.

Schritt 1: Man kann eine Aufzählung                                   finden, in der jedes 
Paar von natürlichen Zahlen genau einmal vorkommt (Cantorsche Paarfunktion).
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Schritt 2: Für jedes             kann man eine Aufzählung

finden, in der jedes k-Tupel                     genau einmal vorkommt.
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Schritt 3: Es gibt eine Aufzählung

in der jede endliche Folge beliebiger Länge genau einmal vorkommt.
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Schritt 4: Es gibt eine Liste                  , in der jedes Computerprogramm 
genau einmal vorkommt.

Beweis: Computerprogramme sind endliche Folgen von Buchstaben aus 
einem endlichen Alphabet. Indem wir jedem Buchstaben eine Zahl 
zuordnen, können wir sie als endliche Folgen in       auffassen. Aus 
Schritt 3 haben wir eine Auflistung aller solcher Folgen. Wir lassen nun 
einfach die Folgen weg, die kein Programm repräsentieren.

Computerprogramme können in unendliche Schleifen geraten. Wir 
schreiben            , wenn das i-te Programm mit Eingabe n nach endlich 
vielen Schritten anhält und eine natürliche Zahl als Ergebnis ausgibt. 
Diese Zahl bezeichnen wir dann mit          .
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Satz: Es gibt eine Funktion                  , die nicht durch ein Computer-
programm berechnet werden kann.

Beweis: Wir listen alle Computerprogramme                auf, die Funktionen 
von      nach      berechnen, für die also          für alle          gilt. Betrachte

Für einen Widerspruchsbeweis nehmen wir an, dass f durch ein Computer-
programm berechnet werden kann. Dann gibt es also ein i mit 
für alle           . Wir erhalten

was der gewünschte Widerspruch ist.
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Fakt: Die Funktion                         ist selbst berechenbar durch ein 
Computerprogramm, welches für die Eingabe (i,n) genau dann in endlicher 
Zeit anhält, wenn             gilt (~ code as data).

Einwand: Es ist dann auch die Funktion f mit                            berechenbar 
und also gleich       für ein i. Ergibt sich wegen

nicht ein Widerspruch?

Auflösung: Es muss so sein, dass das Programm       auf der Eingabe i
in eine unendliche Schleife gerät, sodass          und        in der obigen 
Gleichungskette nicht definiert sind.

Moral: Dass Computerprogramme in unendliche Schleifen geraten können, 
ist kein Defekt, den man beheben könnte, sondern ein essenzieller Teil des 
Begriffs von Berechenbarkeit.
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Satz (Turingsches Halteproblem, 1937): Die Funktion                  mit

ist nicht berechenbar, d.h. man kann nicht algorithmisch entscheiden, ob 
ein gegebenes Computerprogramm anhalten wird.

Beweis: Wäre h berechenbar, so wäre es auch die Funktion                 mit

Es wäre also f gleich       für ein i. Da f(i) definiert ist, gilt             und
somit                . Man erhält

was der gewünschte Widerspruch ist.
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Satz (Erster Gödelscher Unvollständigkeitssatz, 1931): Es sei ein beliebiges
Arsenal an Axiomen und Beweismethoden gegeben (mit gewissen Bedingungen).
Dann gibt es eine wahre Aussage, die nicht bewiesen werden kann.

Beweis: Erstelle eine Liste aller Beweise                 , sodass       eine Aussage
der Form   für alle            gilt                   beweist. Unter milden Bedingungen an 
unsere Axiome und Beweismethoden gilt:
     (i) Die Funktion                   ist berechenbar.
     (ii) Es gilt                 für alle i und m.

Betrachte nun die Funktion                 mit                            . Wegen (i) ist f 
berechenbar und also gleich      für ein j. Wegen (ii) haben wir:
     (+) Für alle             gilt             .

Angenommen, die wahre Aussage (+) ist beweisbar. Dann taucht ihr Beweis 
in unserer Liste auf. Es gilt also              für ein n. Nun folgt

was ein Widerspruch ist.
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Die Aussage (+) aus dem Beweis des Gödelschen Satzes wurde speziell für 
diesen erdacht, ohne dass sie sonst in der Mathematik eine Rolle spielte.

Frage: Kann man in der   normalen   mathematischen Praxis Beispiele für 
Unbeweisbarkeit finden? Gibt es   natürliche   mathematische Ergebnisse, die 
nicht ohne die Verwendung von ungewöhnlich starken Axiomen beweisbar sind?

Antwort: Ja! Unverzichtbar sind sehr starke Axiome beispielsweise für den 
Minorensatz von Neil Robertson und Paul Seymour, wie diese zusammen mit 
Harvey Friedman bewiesen haben.    Der Minorensatz ist ein ganz zentrales 
Ergebnis der Graphentheorie und hat wichtige Anwendungen in der Informatik.

Im folgenden betrachten wir die Goodstein-Folgen aus der Einführungsvorlesung 
als weniger bedeutendes aber instruktives Beispiel.

   H. Friedman, N. Robertson and P. Seymour, The metamathematics of the graph minor theorem, S. 229-261 in: S. Simpson (Hg.),
Logic and Combinatorics, Contemporary Mathematics 65, American Mathematical Society, 1987.

   verfügbar über https://www.mathematik.uni-wuerzburg.de/mathematicallogic/lehre/material/
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Wir rufen in Erinnerung, dass die Goodstein-Folge                        mit Startwert n 
gegeben ist durch

Betrachte nun die Funktionen                     , die für            gegeben sind durch

 
Satz: Für jedes              gibt es ein              sodass für alle             gilt:
Das kleinste           mit                 ist größer als           . Es dauert also mehr
als              Schritte, bis die Goodstein-Folge terminiert.
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Fakt: Die Funktionen         wachsen enorm schnell. Es gilt etwa
und                           mit                .

Fakt: Es gibt ein Axiomensystem               mit den folgenden Eigenschaften:

(i) In              können wichtige Teile der elementaren Analysis entwickelt werden.
(ii) Ist       eine berechenbare Funktion, sodass die Aussage

in            beweisbar ist, so gibt es ein            mit                        für alle           .

Korollar: Die Aussage, dass jede Goodstein-Folge terminiert, dass es also für 
jedes            ein           gibt mit                , ist nicht in             beweisbar.        
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Stellen Sie sehr gern Ihre Fragen!

Jetzt oder später per Email an anton.freund@uni-wuerzburg.de.


