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Mathematische Logik

Teil 3: Wo Beweise und Algorithmen an ihre Grenzen sto3en

Prof. Dr. Anton Freund

Eine zugehdrige Einfihrungsvorlesung (Teil 1) und ein Ubungsblatt (Teil 2) sind verfligbar auf



Ada Lovelace, frihes Computerprogramm, 1843

Alan Turing, Halteproblem, 1938..

Julia Robinson, zentrale Beitrage zur
Berechenbarkeitstheorie, 1940er bis 80er

Bildquellen: siehe letzte Folie




Unser erstes Ziel:

Satz: Es gibt Funktionen von D\/ nach N/ , die nicht durch ein Computer-
programm berechnet werden kénnen.

Schritt 1: Man kann eine Aufzahlung (vmo\vh), (WuMq)\"' finden, in der jedes
Paar von natirlichen Zahlen genau einmal vorkommt (Cantorsche Paarfunktion).

w5 (00), (4,0), (0,1, (2,0), (4, (0,20,
(2.0),(2,9,(42), (0.2),
(D), (2,1, (2.2, (42), (09, ...
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Schritt 2: Fir jedes k=4 kann man eine Aufzahlung

(wol/lt e
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finden, in der jedes k-Tupel /u,l,...)wﬂ genau einmal vorkommt.
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Schritt 3: Es gibt eine Aufzéhlung

(Vlom\ ) Mw&flﬂ), [‘/‘0'4)"') ‘/14,&(4»; )
in der jede endliche Folge beliebiger Lange genau einmal vorkommt.
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Schritt 4: Es gibt eine Liste ?6, Pq ,-- , in der jedes Computerprogramm
genau einmal vorkommt.

Beweis: Computerprogramme sind endliche Folgen von Buchstaben aus
einem endlichen Alphabet. Indem wir jedem Buchstaben eine Zahl
zuordnen, kdnnen wir sie als endliche Folgen in I\ auffassen. Aus
Schritt 3 haben wir eine Auflistung aller solcher Folgen. Wir lassen nun
einfach die Folgen weg, die kein Programm reprasentieren. )

Computerprogramme kdnnen in unendliche Schleifen geraten. Wir
schreiben (), , wenn das i-te Programm mit Eingabe n nach endlich
vielen Schritten anhalt und eine natirliche Zahl als Ergebnis ausgibt.
Diese Zahl bezeichnen wir dann mit ¥ () .



Satz: Es gibt eine Funktion é}: IN—-IN, die nicht durch ein Computer-
programm berechnet werden kann.

Beweis: Wir listen alle Computerprogramme Po) Pq)--- auf, die Funktionen
von N nach N berechnen, fiir die also P-4, fiir alle el gilt. Betrachte

EN=N g 1@(\/\%2@%4.

Flr einen Widerspruchsbeweis nehmen wir an, dass f durch ein Computer-
programm berechnet werden kann. Dann gibt es also ein / mit ﬁ[m)ﬁ{-[u\)
fur alle we N . Wir erhalten

(PL\ [ﬁ)'z(P[“'): ?z[i)w“/{)

was der gewunschte Widerspruch ist. D



Fakt: Die Funktion (i) [v@ ist selbst berechenbar durch ein
Computerprogramm, welches fir die Eingabe (;,n) genau dann in endlicher
Zeit anhalt, wenn ¥\, gilt (~ code as data).

Einwand: Es ist dann auch die Funktion f mit 7N"‘>=Pm (vx\ +/| berechenbar
und also gleich lr)L fur ein /. Ergibt sich wegen

r]%-[c):p[i)z P: (0)+/

nicht ein Widerspruch?

Auflésung: Es muss so sein, dass das Programm Pﬁ auf der Eingabe /
in eine unendliche Schleife gerét, sodass 'PC(L) und ﬁ/C) in der obigen
Gleichungskette nicht definiert sind.

Moral: Dass Computerprogramme in unendliche Schleifen geraten kénnen,
ist kein Defekt, den man beheben kdénnte, sondern ein essenzieller Teil des
Begriffs von Berechenbarkeit.



Satz (Turingsches Halteproblem, 1937)' Die Funktion J/v:/?\fzﬂ/ld mit

) = %4 wer Pl

O\MO\UQMOPQ\MS)

ist nicht berechenbar, d.h. man kann nicht algorithmisch entscheiden, ob
ein gegebenes Computerprogramm anhalten wird.

Beweis: Ware h berechenbar, so ware es auch die Funktion ,P.[I\f — [\J) mit

- Pv\(vbe/\ Wweuln ‘/1(1/1\\4}:/1)
‘1}( \ 0 SOVlSJ‘,

Es ware also f gleich P. fureini. Da f(i) definiert ist, gilt OZ)L und
somit h(¢,d)= 1. Man erhalt

1% i§=$(f)= PL{L) +

was der gewunschte Widerspruch ist.
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Satz (Erster Godelscher Unvollstandigkeitssatz, 1931): Es sei ein beliebiges
Arsenal an Axiomen und Beweismethoden gegeben (mit gewissen Bedingungen).
Dann gibt es eine wahre Aussage, die nicht bewiesen werden kann.

Beweis: Erstelle eine Liste aller Bewelse I, )&43 , sodass [u eine Aussage
der Form ,flr alle wiel gilt PM(M beweist. Unter milden Bedingungen an
unsere Axiome und Beweismethoden gilt:

(i) Die Funktion 1+ () ist berechenbar.

(i) Es gilt ¥y (w), fr alle i und m.

Betrachte nun die Funktion rJUﬂ/U mit ﬁ[‘/\%PL‘(w) MJF/Z . Wegen (i) ist f
berechenbar und also gleich P@ fur ein j. Wegen (ii) haben wir:
(+) Fur alle men) gilt PA-[W\)\]/ .

Angenommen, die wahre Aussage (+) ist beweisbar. Dann taucht ihr Beweis KV,
in unserer Liste auf. Es gilt also 6: ((w) fiir ein n. Nun folgt

pé{(@: ,P[Vl)l %(m)r’*/[)

was ein Widerspruch ist. i



Die Aussage (+) aus dem Beweis des Godelschen Satzes wurde speziell fur
diesen erdacht, ohne dass sie sonst in der Mathematik eine Rolle spielte.

Frage: Kann man in der ,,normalen" mathematischen Praxis Beispiele flr
Unbeweisbarkeit finden? Gibt es  natirliche”" mathematische Ergebnisse, die
nicht ohne die Verwendung von ungewdéhnlich starken Axiomen beweisbar sind?

Antwort: Ja! Unverzichtbar sind sehr starke Axiome beispielsweise flr den
Minorensatz von Neil Robertson und Paul Seymour, wie diese zusammen mit
Harvey Friedman bewiesen haben.” Der Minorensatz ist ein ganz zentrales
Ergebnis der Graphentheorie und hat wichtige Anwendungen in der Informatik.

Im folgenden betrachten wir die Goodstein-Folgen aus der Einfilhrungsvorlesung®
als weniger bedeutendes aber instruktives Beispiel.

1 H. Friedman, N. Robertson and P. Seymour, The metamathematics of the graph minor theorem, S. 229-261 in: S. Simpson (Hg.),
Logic and Combinatorics, Contemporary Mathematics 65, American Mathematical Society, 1987.

2verﬂ]gbar Uber htips://www.mathematik.uni-wuerzburg.de/mathematicallogic/lehre/material/



Wir rufen in Erinnerung, dass die Goodstein-Folge &,(0),4.,(4),.. mit Startwert n
gegeben ist durch

(XY " Con s () - 1
GV\(O} -\, 6"\ (C*/ﬂ i J}QU_& 0<6. ()= (U‘D%C,ﬁ..ﬁ [C‘“l)ek‘&\

V"l\\ir €o>... >y u»/wl C¢4C+Z)

O bl 6.()-0.

Betrachte nun die Funktionen .\ — )\ , die fir ZL@/}\/ gegeben sind durch

N _ v .
+5 ((/O:VH/() T4+ (Vl\= ?Lc (Vl\ = 45 (?k ( Tl';{[v,) BB
Vi Awwwalu\q&ey\ Vo ?k
Satz: Fiir jedes K €/M) gibtes ein N e N sodass fiir alle v =\ gilt:

Das kleinste ceN mit &, ()=0 ist groBer als F (v). Es dauert also mehr
als ¥, («) Schritte, bis die Goodstein-Folge terminiert.



Fakt: Die Funktionen +, wachsen enorm schnell. Es gilt etwa F, (1)=2" v,
und F () > 40N mit A= A0

Fakt: Es gibt ein Axiomensystem WL(LO mit den folgenden Eigenschaften:

() In WKL, kénnen wichtige Teile der elementaren Analysis entwickelt werden.
(i) Ist ¥; eine berechenbare Funktion, sodass die Aussage

”QD;(A e Y %LJL P(V')\V

in WKL , beweisbar ist, so gibt es ein keld mit Pu)eFy () fir alle vie N,

Korollar: Die Aussage, dass jede Goodstein-Folge terminiert, dass es also fir
jedes nelJ ein cef) gibt mit Gali)=0, ist nichtin WKL, beweisbar.
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Stellen Sie sehr gern Ihre Fragen!
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