
Regularized Jacobi-type ADMM-Methods
for a Class of Separable Convex Optimization

Problems
in Hilbert Spaces

Eike Börgens∗ Christian Kanzow∗

October 2, 2017

Abstract

We consider a regularized version of a Jacobi-type alternating direction method of
multipliers (ADMM) for the solution of a class of separable convex optimization
problems in a Hilbert space. The analysis shows that this method is equivalent to
the standard proximal-point method applied in a Hilbert space with a transformed
scalar product. The method therefore inherits the known convergence results from
the proximal-point method and allows suitable modifications to get a strongly
convergent variant. Some additional properties are also shown by exploiting the
particular structure of the ADMM-type solution method. Applications and numer-
ical results are provided to the sparse optimization problem in finite dimensions
and to the domain decomposition method in a Hilbert space setting.

1 Introduction

We consider the separable problem

min
N∑
i=1

fi(xi) s.t.
N∑
i=1

Aixi = b, xi ∈ Xi (i = 1, . . . , N), (1)

where Hi and K are Hilbert spaces, fi : Hi → R are lower semi-continuous, convex
functions, Xi ⊂ Hi are closed convex sets, and Ai ∈ L(Hi,K), b ∈ K. We assume that
the optimization problem (1) has a nonempty feasible set. Note that all functions fi
are supposed to be convex only, none of them has to be strictly or uniformly convex.
Furthermore, no differentiability of fi is required. Since we have explicit constraints Xi for

∗University of Würzburg, Institute of Mathematics, Campus Hubland Nord, Emil-Fischer-Str. 30,
97074 Würzburg, Germany; {eike.boergens,kanzow}@mathematik.uni-wuerzburg.de.

1

each mapping fi, there is no loss of generality to have fi real-valued for all i = 1, . . . , N .
Moreover, we do not assume the operators Ai to be injective or surjective, a condition
that is often used in finite dimensions where the matrices Ai are assumed to have full
rank.

For the sake of notational simplicity, we use the abbreviations

H := H1 × · · · × HN , X := X1 × . . .×XN ⊆ H

x :=
(
x1, . . . , xN) ∈ H, f(x) :=

N∑
i=1

fi(xi), Ax :=
N∑
i=1

Aixi.

Canonically H becomes a Hilbert space with the scalar product 〈x | y〉 := 〈x1 | y1〉+ · · ·+
〈xN | yN〉, the scalar product in the space H × K is defined analogously. The symbol
‖ · ‖ always denotes the norm induced by the corresponding scalar product (in Hi,H,K,
or H×K); the meaning should be clear from the context.

Using this notation, we can rewrite (1) as

min
x

f(x) s.t. Ax = b, x ∈ X . (2)

Let

L(x, µ) := f(x) + 〈µ | Ax− b〉,

LA(x, µ) := f(x) + 〈µ | Ax− b〉+
β

2
‖Ax− b‖2

denote the Lagrangian and the augmented Lagrangian of (2), respectively, where β > 0 is
the penalty parameter. Then a standard optimization technique for solving optimization
problems of this kind is the augmented Lagrangian or multiplier-penalty method, in the
following abbreviated by ALM. The basic iteration of ALM applied to (2) is given by

xk+1 := arg min
x∈X

LA(x, µk), µk+1 := µk + β(Axk+1 − b),

provided that a minimum of the augmented Lagrangian exists and can be computed
(hopefully) easily, cf. [3, 21, 26].

Unfortunately, when applied to the separable problem (1), the quadratic term in
the augmented Lagrangian destroys the separable structure and, therefore, ALM cannot
take advantage of the separability in the computation of the new iterate xk+1. This
observation is the main motivation for the alternating direction method of multipliers,
ADMM for short. This method computes the block components xk+1

i essentially again
by minimizing LA(x, µk), but with the full-dimensional vector x being replaced either
by
(
xk1, . . . , x

k
i−1, xi, x

k
i+1, . . . , x

k
N

)
or by

(
xk+1

1 , . . . , xk+1
i−1 , xi, x

k
i+1, . . . , x

k
N

)
, so that the

subproblems are minimization problems in xi alone. More precisely, discarding some
constant terms, the former approach leads to a Jacobi-type ADMM method with xk+1

i

being computed by

xk+1
i := arg min

x∈Xi

{
fi(xi) + 〈µk | Aixi〉+

β

2

∥∥Aixi +
∑
l 6=i

Alx
k
l − b

∥∥2
}

(3)

2

for all i = 1, . . . , N , whereas the latter approach yields the Gauss-Seidel-type ADMM
method

xk+1
i := arg min

x∈Xi

{
fi(xi) + 〈µk | Aixi〉+

β

2

∥∥∑
l<i

Alx
k+1
l + Aixi +

∑
l>i

Alx
k
l − b

∥∥2
}
. (4)

Both methods coincide for the case N = 1 and reduce to the standard ALM approach,
whereas the classical ADMM method corresponds to the Gauss-Seidel-type iteration (4)
with N = 2 blocks.

Note that the two schemes (3) and (4) have different properties. The former is
implementable completely in parallel, whereas the latter is not, but uses the newer
information and is therefore often faster convergent in terms of the number of outer
iterations. In any case, both methods have the major advantage that they can fully
exploit the separable structure of (1) and often yield small-dimensional subproblems
that are easy to solve (sometimes even analytically). Unfortunately, however, without
any further assumptions, these subproblems might not have solutions, and even if they
have, none of the two schemes necessarily converges. In fact, while there is a satisfactory
global convergence theory for the Gauss-Seidel-type ADMM-scheme for the special case
N = 2, see [4, 12], the recent paper [6] shows that convergence cannot be expected, in
general, for N > 2. For the Jacobi-type scheme the situation is even worse since [17]
provides a counterexample for the case of N = 2 blocks.

It therefore comes with no surprise that there exist a couple of modifications of the
two basic iterations (3) and (4) in the literature. We refer the interested reader to [18, 19]
and references therein for some suitable modifications of the Gauss-Seidel-type scheme,
and to [7, 15, 17, 20, 29, 30] for the Jacobi-type method. Since our aim is to present a
modification of the Jacobi-type iteration, we concentrate our discussion on this class of
methods, some more details will be given in Section 3 after an explicit statement of our
algorithm.

To the best of our knowledge, the existing literature (see citations above) that
investigates the convergence properties of suitable modifications of the Jacobi-type
scheme (3) is exclusively written in the finite-dimensional setting. All methods that
do not regularize the xi-subproblems require the suboperators Ai to be injective (full
rank assumption) in order to be well-defined and to get convergence of the iterates {xk},
whereas this assumption is not necessarily needed in an approach that regularizes the
subproblems, cf. [1, 7].

The method we present here is not completely new. In fact, during the finalization of
this paper we became aware of the very recent publication [7] that considers a parallel
multi-block ADMM scheme which is essentially the same as the algorithm considered
here. Nevertheless, there are some differences which we think are remarkable. First, we
present our method and the corresponding theory in a Hilbert space setting, whereas
[7] considers finite-dimensional problems. Second, we reduce our convergence theory to
a standard proximal-point approach, as opposed to [7] where the authors provide an
independent (self-contained) convergence theory. Third, the lower bounds for certain
parameters used here and in [7] seem to be better (smaller) in our theory, which in turn

3

leads to a superior numerical behavior. Finally, we address certain questions (like weak
and strong convergence and an application in Hilbert spaces) which do not occur in the
finite-dimensional theory.

The paper is organized as follows: Some basic definitions and preliminary results
are stated in Section 2. Our regularized Jacobi-type ADMM-method is presented in
Section 3 together with a more detailed discussion regarding some of the above-cited
related algorithms. The corresponding global convergence analysis is given in Section 4.
The main idea is to show that, after a linear transformation, it is equivalent to a sequence
generated by a proximal-point method in a suitable Hilbert space. This transformation is
possible for the Jacobi-type iteration and is not directly applicable to the corresponding
Gauss-Seidel-version of our approach. Motivated by the proximal-point interpretation
of our algorithm, which only gives weak convergence of the iterates unless additional
assumptions hold, we present a strongly convergent Halpern-type modification of the
Jacobi-type ADMM method in Section 5. Section 6 describes the domain decomposition
technique for a partial differential equation as (an infinite-dimensional) application of
our method. Some numerical results are presented in Section 7, both for the previously
considered domain decomposition technique and for the (finite-dimensional) sparse
optimization problem. We conclude with some final remarks in Section 8.

2 Definitions and Preliminaries

We first recall some notions and definitions from set-valued and variational analysis. For
more details, we refer the reader to the excellent monograph [2].

The distance function in a Hilbert space H of a point w ∈ H to a nonempty, closed,
and convex set C ⊂ H is given by dist(C,w) := infv∈C ‖w − v‖H. Given a set-valued
operator T : H → 2H, the domain of T is defined by domT := {x ∈ H | T (x) 6= ∅}, the
graph of T is given by graph(T) :=

{
(x, u) ∈ H×H | u ∈ T (x)

}
, and the inverse of T is

defined through its graph graph(T−1) :=
{

(u, x) ∈ H×H | u ∈ T (x)
}

, so that u ∈ T (x)
if and only if x ∈ T−1(u). The set-valued operator T is called monotone if

〈u− v | x− y〉 ≥ 0 ∀(x, u), (y, v) ∈ graphT,

and maximally monotone if it is monotone and its graph is not properly contained in
the graph of a monotone operator. A set-valued operator T is called strongly monotone
when there is a constant c > 0 such that

〈u− v | x− y〉 ≥ c‖x− y‖2 ∀(x, u), (y, v) ∈ graphT.

The convex subdifferential ∂f of a convex function f : H → (−∞,+∞] is defined by

∂f(x̄) :=
{
s ∈ H | f(x)− f(x̄) ≥ 〈s | x− x̄〉 ∀x ∈ H

}
,

and is known to be maximally monotone.
An operator T : H → H is said bo be firmly non-expansive if

‖Tx− Ty‖2 ≤ 〈Tx− Ty | x− y〉 ∀x, y ∈ H,

4

and non-expansive if it is Lipschitz continuous with constant 1, i.e. ‖Tx−Ty‖ ≤ ‖x− y‖
for all x, y ∈ H. The Cauchy-Schwarz inequality shows that every firmly non-expansive
operator is also non-expansive.

We call a function f : H → (−∞,+∞] lower semi-continuous (lsc) in x ∈ H if for
every net xa → x it holds that lim inf f(xa) ≥ f(x), and weakly sequentially lsc in x ∈ H
if for every weakly convergent sequence xk ⇀ x we have lim infk→∞ f(xk) ≥ f(x). The
function f is called (weakly sequentially) lsc (in H) if it is (weakly sequentially) lsc in all
points x ∈ H. Recall that a convex function f is weakly sequentially lsc if and only if it
is lsc, cf. [2, Thm. 9.1]. The normal cone of a vector x ∈ X is defined by

NX (x) :=

{{
s ∈ H | 〈s | y − x〉 ≤ 0 ∀y ∈ X

}
if x ∈ X

∅ if x 6∈ X
.

This notation allows us to define the standard notion of a KKT point.

Definition 2.1. A pair (x∗, µ∗) ∈ X ×K is called a KKT point of (1) if it satisfies the
following KKT conditions: 0 ∈ ∂f(x)+A∗µ+NX (x) and 0 = b−Ax, where A∗ : K → H
denotes the Hilbert space adjoint of A.

Note that a KKT point has to be feasible with respect to the abstract constraints X ,
whereas they exploit the existence of a multiplier for the equality constraints. This setting
is useful for our ADMM-type method where only the linear constraints are penalized,
whereas the abstract constraints remain unchanged.

Our aim is to compute a KKT point of the optimization problem (1). In many
cases, this is equivalent to finding a solution of the minimization problem itself. More
precisely, the KKT conditions are always sufficient optimality conditions, whereas the
necessary part usually requires some constraint qualifications; for example, b ∈ sriA(X),
see [2, Prop. 27.14], where sri denotes the strong relative interior, see [2, Def. 6.9]. In
the finite-dimensional case the condition Z ∩ intX 6= ∅ would be enough for the KKT
conditions to be necessary optimality conditions, where Z := {x | Ax = b}, cf. [27, Cor.
28.2.2] for a more detailed discussion. This constraint qualification holds, in particular,
when Xi = Hi for all i = 1, . . . , N .

In order to rewrite the KKT conditions in a more compact form, let us further
introduce the notation

W := X1 × . . .×XN ×K, w :=
(
x1, . . . , xN , µ

)
, f(w) := f(x),

where the last expression simply means that, depending on the argument, we either
view f as a mapping depending on x only, or depending on the full vector w = (x, µ).
Therefore, for the corresponding subdifferentials (with respect to w and x, respectively),
depending on the corresponding arguments, we have

∂f(w) =

(
∂f(x)
{0}

)
,

5

since f is independent of µ. Finally, let us define G : H×K → H×K,

G(w) :=


A∗1µ
A∗2µ

...
A∗Nµ

b−
∑N

i=1Aixi

 . (5)

The particular structure of G immediately yields the following result.

Lemma 2.2. The mapping G as defined in (5) satisfies
〈
G(w)−G(w̄) | w− w̄

〉
= 0 for

all w, w̄ ∈ W; in particular, G is a continuous monotone operator.

The above notation yields the following compact representation of the KKT conditions.

Lemma 2.3. The vector pair w∗ = (x∗, µ∗) ∈ X ×K is a KKT point of (1) if and only
if w∗ ∈ W∗, where W∗ :=

{
w ∈ W | 0 ∈ ∂f(w) +G(w) +NW(w)

}
.

Proof. The proof follows immediately from the previous definitions, taking into account
that, due to the Cartesian structure of W , we have

NW(w) = NX1(x1)× . . .×NXN
(xN)×NK(µ)

and NK(µ) = {0} since K is the entire space.

Let us define the multifunction

T (w) := ∂f(w) +G(w) +NW(w), (6)

whose domain is obviously given by the nonempty set W. Then the set W∗ from
Lemma 2.3 can be expressed as W∗ = {w ∈ W | 0 ∈ T (w)}. This indicates that the
set-valued-mapping T plays a central role in our analysis. Its most important property is
formulated in the following result.

Proposition 2.4. The set-valued function T defined in (6) is maximal monotone.

Proof. Since G is a continuous monotone function in view of Lemma 2.2 and domG =
H × K, it follows that B := G + NW is a maximal monotone operator, see, e.g., [2,
Cor. 25.5]. Furthermore, since f is a real-valued convex function, it is also known that
A := ∂f(w) is maximal monotone. Since dom(A) = dom(∂f) = H×K, see [2, Cor. 8.39
combined with Prop. 16.17] and dom(B) 6= ∅, it follows again from [2, Cor. 25.5] that
T = ∂f +G+NW = A+B is also maximal monotone.

Another way to verify the maximal monotonicity of T is through the maximal monotonicity
of the convex-concave subdifferential, cf. [1].

6

3 Regularized Jacobi-type ADMM-Method

The method we consider in this paper is the following regularized Jacobi-type method
to a separable version of the augmented Lagrangian approach for the solution of the
optimization problem (1).

Algorithm 3.1. (Regularized Jacobi-type ADMM Method)

(S.0) Choose a starting point (x0, µ0) ∈ X ×K, parameters β, γ > 0, and set k := 0.

(S.1) If a suitable termination criterion is satisfied: STOP.

(S.2) For i = 1, . . . , N , compute

xk+1
i := arg min

xi∈Xi

{
fi(xi)+〈µk | Aixi〉+

β

2

(
‖Aixi+

∑
l 6=i

Alx
k
l−b‖2+γ‖xi−xki ‖2

)}
. (7)

(S.3) Define

µk+1 := µk + β
(N∑
l=1

Alx
k+1
l − b

)
. (8)

(S.4) Set k ← k + 1, and go to (S.1).

Throughout our convergence analysis, we assume implicitly that Algorithm 3.1 generates
an infinite number of iterates. We further note that all subproblems (7) are strongly
convex for all i and all iterations k. Hence xk+1 :=

(
xk+1

1 , . . . , xk+1
N

)
is uniquely defined.

Note that this is due to the quadratic regularization term which does not occur in standard
ADMM-methods for two or more components. These standard ADMM-methods are
also Gaussian-type methods since they use the newer information xk+1

1 , . . . , xk+1
i−1 in the

computation of xk+1
i in (7). For reasons that will become clear during our convergence

analysis, we use the above Jacobi-type ADMM-method with its known advantages and
disadvantages.

The main computational overhead in Algorithm 3.1 comes from the solution of the
optimization subproblems in (S.2). However, in contrast to the ALM method, these
subproblems are small-dimensional. Moreover, there are several applications where these
subproblems can be solved analytically, in which case each iteration of the algorithm is
extremely cheap.

In order to compare our method with some existing ones and to present some suitable
modifications, let us denote the outcome of (S.2) also by x̂ki , i.e.

x̂ki := arg min
xi∈Xi

{
fi(xi) + 〈µk | Aixi〉+

β

2

(
‖Aixi +

∑
l 6=i

Alx
k
l − b‖2 + γ‖xi − xki ‖2

)}
. (9)

Furthermore, when there is no partial regularization, we denote the corresponding result
by

x̃ki := arg min
xi∈Xi

{
fi(xi) + 〈µk | Aixi〉+

β

2

(
‖Aixi +

∑
l 6=i

Alx
k
l − b‖2

)}
. (10)

7

This allows us to state the following comments, where we mainly concentrate on some
modified updates of the iterates xk, but it should be clear that corresponding updates
are then also needed for the multiplier µk.

Remark 3.2. In the following we discuss some related algorithms from the existing
literature; recall that the convergence proofs of all these methods are done in the finite-
dimensional case only.

(a) The modified Jacobi-type ADMM-method suggested in [17] uses the iteration
xk+1 := xk + αk(x̃

k − xk) for some step size αk > 0. This step size can either be
computed by a formula or is constant and explicitly given, but typically very small. We
further note that the paper [17] needs all sub-matrices Ai to be of full column rank.

(b) Motivated by the previous comment, it might also be useful to rewrite Algorithm 3.1
as xk+1 := xk + αk(x̂

k − xk) for some step size 0 < cl ≤ αk ≤ cu < 2. Obviously,
Algorithm 3.1 corresponds to the case αk = 1, i.e. we can allow much larger step sizes
than [17]. This does not automatically guarantee faster convergence, especially since we
have the additional regularization term in our method, but indicates that there is some
hope for a superior numerical behavior. We will get back to this step size later.

(c) Recall that Algorithm 3.1 was already analyzed in [7] for the finite-dimensional case,
whereas we deal with the Hilbert space setting and state some further results (e.g., strong
convergence). Our results, based on a very simple technique of proof, therefore generalize
those from [7]. Furthermore, as noted in (b), our approach also allows under- and
overrelaxation of the iterates (xk, µk), whereas the technique in [7] allows to introduce a
step size τ ∈ (0, 2) only in the dual variable µk. The corresponding µk-update gets

µk+1 = µk + τβ
(N∑
i=1

Aix
k+1
i − b

)
.

A simplified condition on the proximal constant γi for the i-th subproblem given in [7,
Lem. 2.2] is

γiI �
(N

2− τ
− 1
)
ATi Ai,

where A � B means that A−B is positive definite. In our approach, it is also possible
to choose the proximal constant separately for every subproblem or even choosing a
different equivalent norm for the regularization as in [7], but the added value would
be minimal compared to the notational inconvenience. Moreover, taking into account
that, in the finite-dimensional case, the matrix N · diag(AT1A1, . . . , A

T
NAN) − ATA is

easily seen to be positive semi-definite, it follows that (N − 1) ·diag(AT1A1, . . . , A
T
NAN) �

ATA−diag(AT1A1, . . . , A
T
NAN), where B � C means that B−C is positive semi-definite.

Consequently, for γ large enough we have

0 � γI − (N − 1) · diag(AT1A1, . . . , A
T
NAN) � γI − (ATA− diag(AT1A1, . . . , A

T
NAN)),

8

hence the condition from [7, Lem. 2.2] implies our condition on γ that we will introduce
later in Section 4. Taking A as the identity matrix, we see that our criterion regarding
the choice of γ can indeed be significantly weaker.

(d) Another modification of the Jacobi-type iteration (3) is due to [15, 30] and replaces
the update from (10) by

x̃ki := arg min
xi∈Xi

{
fi(xi)+ 〈µk | Aixi〉+

β

2

(
‖Aixi+

∑
l 6=i

Alx
k
l −b‖2 +(N−1)‖Ai(xi−xki)‖2

)}
which can also be re-interpreted as a partial regularization method involving the matrix
Ai in the regularization term, cf. [15, Alg. 8.1] or, as an application of the two function
ADMM on a modified problem, see [30]. Theorem 4.1 from [20] shows that these two
different approaches yield the same algorithm. Consequently, this modification also
requires a full rank assumption on each Ai to be well-defined and to get convergence of
the iterates xk.

(e) An algorithm that is also basically parallel was introduced in [29] and uses the scheme

x̂k1 := arg min
x1∈X1

{
f1(x1) + 〈µk | A1x1〉+

β

2

(
‖A1x1 +

∑
l 6=1

Alx
k
l − b‖2

)}
,

µ̂k := µk + β(A1x̂
k
1 +

N∑
l=2

Alx
k
l),

x̂ki := arg min
xi∈Xi

{
fi(xi) + 〈µk | Aixi〉+

β

2

(
‖Aixi + A1x̂

k
1 +

N∑
l=2
l 6=i

Alx
k
l ‖2 + ‖xi − xki ‖2

Mi

)}
for all i = 2, . . . , N , where Mi are some positive definite matrices that satisfy some
condition. The analysis carried out in [29], however, is completely different from ours and
requires, similar to [7], a choice of certain parameters related to the matrices Mi which
seem to be less favorable from a numerical point of view, cf. the results in Section 7.

4 Convergence Analysis

The main idea of our convergence analysis is to interpret Algorithm 3.1, after a simple
linear transformation, as a proximal-point method applied to a suitable inclusion problem
in an appropriate Hilbert space.

To this end, let us introduce the linear operator M ∈ L(H) := L(H,H) by

Mx :=
(N∑
l=1
l 6=i

A∗iAlxl

)N
i=1

=



∑N
l=2A

∗
1Alxl

...∑N
l=1
l 6=i

A∗iAlxl

...∑N−1
l=1 A∗NAlxl


. (11)

9

In finite dimensions, the representation matrix of M is given by

M := ATA− diag(AT1A1, . . . , A
T
NAN).

Further define Q ∈ L(H×K) by

Q

(
x
µ

)
:=

(
β2(γx−Mx)

µ

)
, (12)

where β, γ denote the constants from Algorithm 3.1. In finite dimensions, the matrix
representation of Q is

Q :=

(
β2(γI −M) 0

0 I

)
.

The following simple remark plays a crucial role in our subsequent convergence analysis.

Remark 4.1. By definition, the operator M from (11) is self-adjoint. Hence Q from
(12) is also self-adjoint. Moreover, for all γ > 0 sufficiently large (say γ > ‖M‖), Q is
also strongly monotone, i.e. there is a constant c > 0 such that 〈Qx | x〉 ≥ c‖x‖2. This
implies that Q is both injective and coercive, hence also surjective. Hence the inverse of
Q ∈ L(H×K) exists and is also a linear, continuous and self-adjoint operator.

Our first result gives a suitable reformulation for the optimality conditions of the
subproblems from (7) and (8).

Lemma 4.2. The vector wk+1 =
(
xk+1, µk+1

)
computed in (7) and (8) is characterized

by the inclusion

0 ∈ β∂f(wk+1) + βG(wk+1) +Q(wk+1 − wk) +NW(wk+1). (13)

Proof. Using the optimality conditions for the programs (7), it follows that xk+1
i solves

these programs if and only if xi = xk+1
i satisfies the optimality conditions

0 ∈ ∂xi
(
fi(xi) + 〈µk | Aixi〉+

β

2

(
‖Aixi +

∑
l 6=i

Alx
k
l − b‖2 + γ‖xi − xki ‖2

))
+NXi

(xi)

for all i = 1, . . . , N . This is equivalent to saying that there exist elements gi ∈ ∂fi(xk+1
i)

such that

−
(
gi + A∗iµ

k + βA∗i (Aix
k+1
i +

∑
l 6=i

Alx
k
l − b) + βγ(xk+1

i − xki)
)
∈ NXi

(xk+1
i)

for all i = 1, . . . , N . By definition of the normal cone, this can be rewritten as〈
gi + A∗iµ

k + βA∗i
(
Aix

k+1
i +

∑
l 6=i

Alx
k
l − b

)
+ βγ(xk+1

i − xki) | xi − xk+1
i

〉
≥ 0 (14)

10

for all xi ∈ Xi and all i = 1, . . . , N . Using µk+1 = µk + β
(∑N

l=1Alx
k+1
l − b

)
, the last

inequality is equivalent to〈
gi + A∗iµ

k+1 + βA∗i
(∑
l 6=i

Al(x
k
l − xk+1

l)
)

+ βγ(xk+1
i − xki) | xi − xk+1

i

〉
≥ 0

for all xi ∈ Xi and all i = 1, . . . , N . Exploiting the definition of M in (11), the Cartesian
product structure of the set X , and setting g̃ = (g1, . . . , gN), this can be rewritten more
compactly as〈

g̃ + A∗µk+1 + βM(xk − xk+1) + βγ(xk+1 − xk) | x− xk+1
〉
≥ 0

for all x ∈ X . Since〈 1

β
(µk+1 − µk) +

(
b−

N∑
i=1

Aix
k+1
i

)
| µ− µk

〉
= 0 ∀µ ∈ K

in view of (8), the previous two formulas can be rewritten as〈
g +G(wk+1) +

(
β(γI −M) 0

0 1
β
I

)
(wk+1 − wk) | w − wk+1

〉
≥ 0 ∀w ∈ W ,

where g :=
(
g1, . . . , gN , 0

)
. Multiplication with β and taking into account the definition

of Q from (12) yields〈
βg + βG(wk+1) +Q(wk+1 − wk) | w − wk+1

〉
≥ 0 ∀w ∈ W .

Using the definition of the normal cone NW , we can express this as

0 ∈ βg + βG(wk+1) +Q(wk+1 − wk) +NW(wk+1).

Since g ∈ ∂f(wk+1) we see that this is equivalent to

0 ∈ β∂f(wk+1) + βG(wk+1) +Q(wk+1 − wk) +NW(wk+1).

This completes the proof.

In the following, we will use the previous characterization of the stationary points to get
an equivalent procedure for the computation of the iterates wk+1 :=

(
xk+1, µk+1

)
from

Algorithm 3.1. To this end, we assume throughout that Q is strongly monotone, which
is always possible for sufficiently large (and computable) γ, cf. Remark 4.1.

Lemma 4.3. If Q is invertible and T maximal monotone we have that(
I + βQ−1T

)−1
= (Q+ βT)−1Q

11

Proof. The definition of the pre-image immediately yields

v ∈
(
I + βQ−1T

)−1
w ⇐⇒ w ∈

(
I + βQ−1T

)
v

⇐⇒ Qw ∈
(
Q+ βT

)
v

⇐⇒ v ∈
(
Q+ βT

)−1
Qw

for all w ∈ H ×K.

Based on the previous results, we obtain the following alternative procedure for the
computation of wk+1 from Algorithm 3.1.

Proposition 4.4. Assume that Q is self adjoint and strongly monotone. Given an iterate
wk =

(
xk, µk

)
, the next iterate wk+1 :=

(
xk+1, µk+1

)
generated by Algorithm 3.1 can

equivalently be represented by the (single-valued) formula

wk+1 :=
(
I + βQ−1T

)−1
wk, (15)

where Q−1T and
(
I+βQ−1T

)−1
are maximal monotone and

(
I+βQ−1T

)−1
is firmly non-

expansive in the Hilbert space H×K endowed with the scalar product 〈x | y〉Q := 〈Qx | y〉.

Proof. First recall that the iterate wk+1 computed by Algorithm 3.1 is uniquely defined.
Furthermore, due to convexity, they are fully characterized by the optimality conditions
(13) from Lemma 4.2. In order to rewrite these optimality conditions, recall that
NW(wk+1) is a cone, so we have βNW(wk+1) = NW(wk+1). The definition of the operator
T from (6) therefore allows us to rewrite the inclusion from (13) as

0 ∈ βT (wk+1) +Q(wk+1 − wk) =
(
Q+ βT

)
(wk+1)−Qwk

⇐⇒ Qwk ∈
(
Q+ βT

)
(wk+1)

⇐⇒ wk+1 ∈
(
I + βQ−1T

)−1
wk,

where the last equivalence exploits Lemma 4.3. We claim that the last inclusion is
actually an equation, from which we then obtain the assertion. To this end, recall that
T is a maximal monotone operator in view of Proposition 2.4. Hence βT is also maximal
monotone. It is obvious that Q−1 is self-adjoint and strongly monotone, thus by [2, Prop.
20.24] it follows that βQ−1T is maximal monotone in the Hilbert space H×K endowed
with the scalar product 〈· | ·〉Q, hence its resolvent is single-valued. Finally, notice that
the resolvent of a maximal monotone operator is always maximally monotone and firmly
non-expansive, cf. [2, Cor. 23.11].

Note that Proposition 4.4 uses two different scalar products (and therefore two different
induced norms) for our Hilbert space H×K. In order to apply the known convergence
results of the proximal-point method, it is highly important in our setting that both
strong and weak convergence are identical concepts in both settings. Formally, this is
stated in the following result.

12

Lemma 4.5. Consider the Hilbert space H×K with the usual scalar product 〈· | ·〉, and
let 〈· | ·〉Q be defined as in Proposition 4.4 for Q self-adjoint and strongly monotone.
Then the following statements hold:

(a) The corresponding induced norms ‖ · ‖ and ‖ · ‖Q are equivalent.

(b) Weak convergence with respect to 〈· | ·〉 is equivalent to weak convergence with
respect to 〈· | ·〉Q.

Proof. (a) Since Q is linear, bounded, and strongly monotone, there exist constants
0 < c ≤ C such that c‖x‖2 ≤ 〈Qx | x〉 ≤ C‖x‖2. This immediately yields statement (a).

(b) This statement follows from

〈x, y〉Q → 〈x∞, y〉Q ∀y ⇐⇒ 〈Qx, y〉 → 〈Qx∞, y〉 ∀y
⇐⇒ 〈x,Qy〉 → 〈x∞, Qy〉 ∀y
⇐⇒ 〈x, z〉 → 〈x∞, z〉 ∀z,

where the last two equivalences exploit that Q is self-adjoint and invertible, cf. Remark 4.1.

The previous results allow us to re-interpret Algorithm 3.1 as a generalized proximal-point
method and to inherit the convergence properties from the known convergence properties
of proximal-point methods.

Theorem 4.6. Suppose that Q is self-adjoint, strongly monotone, and that there is at
least one KKT point for the optimization problem (1). Then the following statements
hold:

(a) The sequence {wk} = {(xk, µk)} generated by Algorithm 3.1 converges weakly to a
KKT point w∞ = (x∞, µ∞) of (1), i.e. 0 ∈ T (w∞), where x∞ is a solution of the
optimization problem (1).

(b) It holds that ‖wk − wk+1‖2 = O(1/k), in particular, ‖wk − wk+1‖ → 0 for k →∞.

(c) It holds that Axk − b→ 0 for k →∞ and Ax∞ = b (primal feasibility).

(d) We have dist2(T (wk), 0) = o(1/k) for k → ∞ (rate of convergence to KKT-
optimality).

(e) It holds that f(xk)→ f ∗, where f ∗ is the optimal function value of (1).

(f) We have fi(x
k
i) → fi(x

∞
i), where x∞i is the weak limit point of xki , for all i =

1, . . . , N .

(g) If fi is strongly convex, then xki converges strongly to x∞i .

13

Proof. (a) By Proposition 4.4, we know that Q−1T is maximal monotone in the Hilbert
space H×K endowed with the scalar product 〈· | ·〉Q. Thus the proximal point method
converges weakly in this Hilbert space to a zero of Q−1T , see [2, Thm. 23.41]. But the
zeros of Q−1T are the same as the zeros of the operator T and therefore correspond
to a KKT point of the underlying optimization problem, cf. Lemma 2.3. Furthermore,
Lemma 4.5 implies that we also have weak convergence with respect to the orignal scalar
product 〈· | ·〉. Hence statement (a) follows.

(b) This assertion is a consequence of the equivalence of our norms together with the
convergence results stated in [9, Thm. 3.1].

(c) By definition of µk+1, we have Axk+1 − b = (µk+1 − µk)/β. The first part of the
assertion therefore follows from part (b). The second part follows from the fact that
w∞ = (x∞, µ∞) is a KKT point, see (a).

(d) The fourth assertion follows from [10] which is a recent improvement of a classical
result stated in [5, Prop. 8].

(e), (f) Statement (e) is a standard result, however, for the sake of completeness and
since it will be used to verify assertion (f), we include its proof here.

In view of (a), we may assume that wk ⇀ w∞ for some weak limit point w∞ =
(x∞, µ∞). Furthermore, using (b) and (c), we obtain

‖Aixk+1
i +

∑
l 6=i

Alx
k
l − b‖ ≤ ‖Ai(xk+1

i − xki)‖+ ‖
N∑
l=1

Alx
k
l − b‖

≤ ‖Ai‖‖xk+1
i − xki ‖+ ‖

N∑
l=1

Alx
k
l − b‖ → 0.

Since X is closed and convex, it is weakly sequentially closed, hence x∞ ∈ X . From
x∞, xk+1 ∈ X , (14), and the definition of the subdifferential, we obtain

fi(x
∞
i)− fi(xk+1

i) +
〈
A∗iµ

k + βA∗i
(
Aix

k+1
i +

∑
l 6=i

Alx
k
l − b

)
+ βγ(xk+1

i − xki) | x∞i − xk+1
i

〉
≥ 0.

Summation for i = 1, . . . , N yields, taking into account that xk+1 − xk → 0, Aix
k+1
i +∑

l 6=iAlx
k
l − b→ 0, and the boundedness of x∞ − xk+1,

f(x∞) ≥ f(xk+1) + 〈A∗µk | xk+1 − x∞〉+ εk

= f(xk+1) + 〈µk | Axk+1 − Ax∞〉+ εk

= f(xk+1) + 〈µk | Axk+1 − b〉+ εk

= f(xk+1) + ε̃k,

where εk, ε̃k are certain sequences converging to zero. Since f is lsc, it is also weakly
sequentially lsc, cf. [2, Thm. 9.1], i.e. lim infk→∞ f(xk) ≥ f(x∞), and we therefore obtain

lim sup
k→∞

f(xk+1) ≤ f(x∞) ≤ lim inf
k→∞

f(xk+1).

14

Consequently, we have f(xk) → f(x∞) = f ∗, the last equation holds because x∞ is a
minimizer of (1). This verifies statement (e). We next exploit that part to show assertion
(f). To this end, first note that (e) together with the lsc property of all fi implies

f(x∞) =
N∑
l=1

fl(x
∞
l) =

∑
l 6=i

fl(x
∞
l) + fi(x

∞
i)

≤
∑
l 6=i

fl(x
∞
l) + lim inf

k→∞
fi(x

k
i) ≤

N∑
l=1

lim inf
k→∞

fl(x
k
l)

≤ lim inf
k→∞

(N∑
l=1

fl(x
k
l)
)

= lim inf
k→∞

f(xk) = lim
k→∞

f(xk) = f(x∞),

so that equality holds everywhere. In particular, it follows that lim infk→∞ fi(x
k
i) =

fi(x
∞
i). Together with (e), this further implies

lim sup
k→∞

fi(x
k) ≤ lim sup

k→∞

(N∑
l=1

fl(x
k
l)
)

+ lim sup
k→∞

(
−
∑
l 6=i

fl(x
k
l)
)

= f(x∞)−
∑
l 6=i

lim inf
k→∞

(
fl(x

k
l)
)

= fi(x
∞
i) = lim inf

k→∞
fi(x

k
i).

This yields fi(x
k
i)→ fi(x

∞
i).

(g) By assertion (d) we have that dist(T (wk), 0)→ 0. Suppose that fi is strongly convex.
Then there exists a constant νi > 0 such that

fi(yi)− fi(xi) ≥ 〈gi(xi) | yi − xi〉+ νi‖xi − yi‖2,

fi(xi)− fi(yi) ≥ 〈gi(yi) | xi − yi〉+ νi‖xi − yi‖2

for all gi(xi) ∈ ∂fi(xi) and all gi(yi) ∈ ∂fi(yi). Adding these inequalities yields

〈gi(xi)− gi(yi) | xi − yi〉 ≥ 2νi‖xi − yi‖2. (16)

Now let us take an element vk ∈ T (wk) = T (xk, µk) such that ‖vk−0‖ ≤ dist(0, T (wk)) +
1/k for all k ∈ N which is always possible by definition of the distance function. Recalling
the definition of the operator T and using the separability of the function f , we see that
this vk has a representation of the form

vk =:



g1(xk1)
...

gi(x
k
i)

...
gN(xkN)

0


+



A∗1µ
k

...
A∗iµ

k

...
A∗Nµ

k

b− Axk


+



s1(xk1)
...

si(x
k
i)

...
sN(xkN)

0



15

for certain elements si(x
k
i) ∈ NXi

(xki) and gi(x
k
i) ∈ ∂fi(xki). In view of assertion (a), we

also have 0 ∈ T (w∞) = T (x∞, µ∞). Then we obtain from the monotonicity of the normal
cone operators together with (16) that〈

vk − 0 |
(
xk − x∞
µk − µ∞

)〉

=
N∑
l=1

〈gl(xkl)− gl(x∞l) | xkl − x∞l 〉+
N∑
l=1

〈A∗l µk − A∗l µ∞ | xkl − x∞l 〉

+
N∑
l=1

〈sl(xkl)− sl(x∞l) | xkl − x∞l 〉+ 〈(b− Axk)− (b− Ax∞) | µk − µ∞〉

≥ 〈gi(xki)− gi(x∞i) | xki − x∞i 〉+ 〈Ax∞ − Axk | µk − µ∞〉 − 〈x∞ − xk | A∗µk − A∗µ∞〉
≥ 2νi‖xki − x∞i ‖2.

Since {vk} converges strongly to zero in view of (d), and {wk} is weakly convergent, the
previous chain of inequalities shows that xki → x∞i (strongly).

Remark 4.7. (a) As we have seen in Proposition 4.4, the operator (I + βQ−1T)−1 is
firmly non-expansive in a suitable Hilbert space. By the Krasnoselsky-Mann iteration
for firmly non-expansive operators, see [2, Cor. 5.17], we see that many statements of
Theorem 4.6 remain true if we consider the more general iterative procedure

xk+1 := (1− ρk)xk + ρkx̂k, µk+1 := (1− ρk)µk + ρkµ̂k,

where x̂k, µ̂k denotes the outcome of one iteration of Algorithm 3.1 and ρk ∈ [0, 2]
satisfies

∑∞
k=1 ρ

k(1− ρk) =∞. The choice ρk = 1 corresponds to our algorithm, whereas
ρk < 1 and ρk > 1 are often called under- and overrelaxation, respectively. In view
of our limited numerical experience, however, we do not benefit anything by taking ρk 6= 1.

(b) There exist several inexact versions of the proximal-point method in the literature, see
for example [11, 13, 22, 28]. The previous analysis clearly shows that it is also possible
to exploit these inexact proximal-point methods in order to obtain inexact counterparts
of Algorithm 3.1. The corresponding details are left to the reader.

It is not difficult to see that the convergence theory in this section remains true as long
as the bounded operator Q is self-adjoint and strongly monotone. Specifically, if Q from
(12) comes from another splitting-type scheme, we obtain the same interpretation as a
proximal-point method and therefore inherit its convergence properties. Unfortunately,
Q being self-adjoint plays a central role here, as will be seen below in Example 4.8. This
means that our convergence theory cannot be applied to the case where Algorithm 3.1 is
replaced by a corresponding regularized Gauss-Seidel-type ADMM method because the
resulting counterpart of the matrix M (hence also Q) from (11) would not be self-adjoint.
But Q not being self-adjoint destroys all desired convergence properties. This is illustrated
by the following counterexample in the finite-dimensional setting.

16

Example 4.8. In order to show that the proximal-point algorithm can only be applied
when the operator Q is self-adjoint, let us define

T :=

0 −1 −1
1 0 −1
1 1 0

 and Q :=

1 1 1
0 1 1
0 0 1

 .

First we notice that T is maximally monotone, cf. [2, Cor. 20.28]. Furthermore, an easy
calculation shows that

dTQd =
1

2
(d1 + d2)2 +

1

2
(d2 + d3)2 +

1

2
(d1 + d3)2 > 0

for all d 6= 0, hence Q is positive definite and therefore yields a strongly monotone
operator. However, the matrix Q is not symmetric, so we do not have a self-adjoint
operator here. The proximal-point method is given by

xk+1 =

0 −1 −1
1 0 −1
1 1 0

+

1 1 1
0 1 1
0 0 1

−11 1 1
0 1 1
0 0 1

xk =

 1 1 1
−1 0 0
0 −1 0

xk.

Further we see that  1 1 1
−1 0 0
0 −1 0

4

=

1 0 0
0 1 0
0 0 1

 ,

hence x4k = x0 for every x0 ∈ R3 and all k ∈ N. Thus the method does not converge.

5 A Strongly Convergent Algorithm

As shown in the previous section, the operator T from (6) is maximally monotone, hence
our Jacobi-type ADMM method from Algorithm 3.1 yields weak convergence of the
corresponding sequence {wk} since this method can be interpreted as a proximal-point
method in a suitable Hilbert space. We also proved that the sequence xki generated by
Algorithm 3.1 converges strongly whenever fi is strongly convex. But there are a lot of
interesting functions that are not strongly convex.

On the other hand, it is often appreciated to have a strongly convergent algorithm at
hand since the approximation of the numerical solution of the discretized problem to
the actual solution of the non-discretized problem can be expected to be better. To this
end, we note that there exist some modifications of the proximal-point method which
are known to give strongly convergent iterates. One of these modifications is Halpern’s
method, see [16] for the original reference or the discussion in [2]. In order to describe
the simple idea of Halpern’s method, consider first the usual fix-point iteration

wk+1 = Jwk (17)

17

that converges weakly if J is firmly non-expansive and has at least one fixed point, see [2,
Example 5.18]. If J is the resolvent of a maximally monotone operator, then it is firmly
non-expansive and we obtain the proximal-point algorithm. In oder to be able to obtain
weak convergence of only non-expansive operators J , Krasnoselsky and Mann blended a
bit of the identity into (17) by using the iteration

wk+1 = ρkwk + (1− ρk)Jwk, (18)

where ρk ∈ [0, 1] and
∑∞

i=1 ρ
k(1−ρk) = +∞, see [2, Thm. 5.15]. Now the idea of Halpern

was to replace the vector wk from the identity map by a fixed vector w. Thus Halpern’s
iteration is wk+1 = ρkw + (1− ρk)Jwk, where the sequence {ρk} satisfies the conditions

ρk → 0,
∞∑
k=1

ρk = +∞,
∞∑
k=1

|ρk+1 − ρk| <∞ (19)

which, in particular, hold for the choice ρk := 1/k. This method is known to be strongly
convergent to the particular solution ProjFix J w.

Having in mind the proximal-point interpretation of our regularized Jacobi-type
ADMM method from Algorithm 3.1 with J = (I + βQ−1T)−1, it is not surprising that
the following modified method can be seen as Halpern’s method.

Algorithm 5.1. (Halpern-Regularized Jacobi-type ADMM Method)

(S.0) Choose (x0, µ0), (x, µ) ∈ X × K, parameters β, γ > 0, set k := 0 and choose a
sequence (ρk)k∈N satisfying (19).

(S.1) If a suitable termination criterion is satisfied: STOP.

(S.2) For i = 1, . . . , N , compute

x̃ki := arg min
xi∈Xi

{
fi(xi)+〈µk | Aixi〉+

β

2

(
‖Aixi+

∑
l 6=i

Alx
k
l −b‖2+γ‖xi−xki ‖2

)}
(20)

(S.3) Define

µ̃k := µk + β
(N∑
l=1

Alx
k+1
l − b

)
. (21)

(S.4) Set
xk+1 := ρkx+ (1− ρk)x̃k, µk+1 := ρkµ+ (1− ρk)µ̃k.

(S.5) Set k ← k + 1, and go to (S.1).

The global and strong convergence properties of the previous method follows immediately
from known results about Halpern’s modification of the standard proximal-point method
and are summarized, for the sake of completeness, in the following result.

18

Theorem 5.2. Suppose that Q is self-adjoint, strongly monotone and that there is at least
one KKT point for the optimization problem (1). Then the sequence {wk} = {(xk, µk)}
generated by Algorithm 5.1 converges strongly to a KKT point w∞ = (x∞, µ∞) of (1).

Proof. The operator J = (Q + βT)−1Q
Lem. 4.3

= (I + βQ−1T)−1 is non-expansive by
Proposition 4.4, as a resolvent of a maximal monotone map in the Hilbert space H×K
endowed with the scalar product 〈· | ·〉Q. It was shown in Proposition 4.4 that the
iterates w̃k = (x̃k, µ̃k) generated by (20) and (21) are equal to the iterates generated by
w̃k := (I+βQ−1T)−1wk, where T is the maximal monotone operator defined in (6). Thus
the iterates wk+1 = (xk+1, µk+1) generated by Algorithm 5.1 are equal to the iterates
generated by

wk+1 = ρkw + (1− ρk)w̃k = ρkw + (1− ρk)(I + βQ−1T)−1wk,

where w is a fixed vector and ρk is given as in Algorithm 5.1. But this is the usual
Halpern-type iteration for the non-expansive operator (I +βQ−1T)−1. The assertion now
follows from the convergence properties of Halpern’s iteration, cf. [2, Thm. 30.1].

The strong convergence of the iterates wk to a KKT point of the optimization problem
(1) immediately implies that all the other statements (if not superfluous) known from
Theorem 4.6 automatically also hold for Algorithm 5.1.

6 Application to Domain Decomposition

Domain decomposition is a technique for the solution of boundary value problems which
splits the given domain into smaller ones. Prominent examples are the methods by
Schwarz which, for certain problems, were shown to be equivalent to an augmented
Lagrangian method applied to the corresponding optimization problem, see [14, 25]. Here
we follow a similar idea and show how our regularized Jacobi-type ADMM methods can
be used to obtain suitable domain decomposition methods. The central idea is described
in Section 6.1. An explicit realization of our methods applied to a particular instance is
discussed in Section 6.2, whereas we compute a suitable lower bound for the choice of
our parameter γ in Section 6.3.

6.1 Non-Overlapping Domain Decomposition

In this subsection we will follow [1] to decompose the domain of a partial differential
equation (PDE). For example, Figure 1 shows how the unit square can be decomposed in
four different squares. Although we will describe the idea of the domain decomposition
method in a general context, we will often refer to this particular example for its explicit
realization. This way, we are able to avoid some technical notation; moreover, the central
idea can be explained much better for this special setting.

19

Ω1 Ω2

Ω3Ω4

Γ1,2

Γ2,3

Γ3,4

Γ4,1 (0, 0)

Figure 1: The unit square Ω decomposed in four squares Ωi

Let us consider the problem of solving the Laplace equation

−∆y(x) = u(x) ∀x ∈ Ω, y(x) = 0 ∀x ∈ ∂Ω,

where Ω is a bounded convex Lipschitz domain in Rd and u ∈ L2(Ω). Then the associated
weak formulation is

〈∇y | ∇v〉L2(Ω) = 〈u | v〉L2(Ω) ∀v ∈ H1
0 (Ω). (22)

Existence of a weak solution follows from the Lax-Milgram Theorem. Moreover, it is well
known that solving (22) is equivalent to finding a solution of the optimization problem

min
y∈H1

0 (Ω)

{1

2
〈∇y | ∇y〉L2(Ω) − 〈u | y〉L2(Ω)

}
. (23)

Now let us decompose our domain Ω into disjoint convex Lipschitz subdomains Ωi such
that Ω = Ω1∪̇ . . . ∪̇ΩN . We equip H1

0 with the standard H1-Norm, in order to allow
subdomains that are in the interior of Ω, which is not possible in the methods from
[1, 25].

Unfortunately, in order to describe the main idea in a concise way, there is a technical
overhead; in particular, we need to define some appropriate index sets. To this end, let
J denote the set of all pairs (i, j) such that ∂Ωi∩∂Ωj does not have vanishing d−1 dimen-
sional measure, thus in Figure 1 we have J = {(1, 2), (2, 3), (3, 4), (4, 1), (2, 1), (3, 2), (4, 2), (1, 4)},
whereas, e.g., the pairs (1, 3) and (2, 4) do not belong to J . Further we want to
denote with Jo a subset of J that does not contain permutations, thus we choose
Jo = {(1, 2), (2, 3), (3, 4), (4, 1)}, the small index ”o” stands for ordered. Now let us
define Γi,j = ∂Ωi ∩ ∂Ωj for all (i, j) ∈ J and Γi = ∂Ω∩ ∂Ωi. We denote with H1

Γi
(Ωi) the

H1(Ωi) functions with trace equal to zero in Γi.
In the following, we distinguish between the trace operators traceΓi,j

and traceΓj,i
:

The former is defined on the sub-domain Ωi with assigned values on the boundary Γi,j,
whereas the latter denotes the trace operator defined on the sub-domain Ωj with assigned
values on the (same) boundary Γj,i = Γi,j.

20

Remark 6.1. By partial integration, it can be seen easily that

y ∈ H1
0 (Ω)⇐⇒

(
yi ∈ H1

Γi
(Ωi) ∀i = 1, . . . , N and traceΓi,j

(yi) = traceΓj,i
(yj) ∀(i, j) ∈ Jo

)
;

furthermore, it holds that u ∈ L2(Ω) if and only if ui ∈ L2(Ωi) for all i = 1, . . . , N , where
ui denotes the restriction of the given mapping u on Ωi.

Hence (23) can be written as

min
yi∈H1

Γi
(Ωi)

i=1,...,N

{ N∑
i=1

(1

2
〈∇yi | ∇yi〉L2(Ωi) − 〈ui | yi〉L2(Ωi)

)}
s.t. traceΓi,j

(yi) = traceΓj,i
(yj) ∀(i, j) ∈ Jo. (24)

Since the trace operator is linear and continuous, this optimization problem is exactly of
the form (1), so we can apply Algorithms 3.1 or 5.1 to (24). Using the notation from (1),
we have

• Xi = Hi = H1
Γi

(Ωi)

• K =
∏

(i,j)∈Jo L2(Γi,j)

• fi : Xi → R by fi(yi) := 1
2
〈∇yi | ∇yi〉L2(Ωi) − 〈ui | yi〉L2(Ωi)

• Ai : Xi → K correspond to the linear trace constraints from (24).

The latter is somewhat technical to describe in general, but for the particular domain
from Figure 1, it is easy to see that the corresponding Ai’s are given by

A1=


traceΓ1,2

0
0

− traceΓ1,4

, A2=


− traceΓ2,1

traceΓ2,3

0
0

, A3=


0

− traceΓ3,2

traceΓ3,4

0

, A4=


0
0

− traceΓ4,3

traceΓ4,1

 . (25)

We will later need these definitions to estimate the proximal constant γ. Further it is
easy to see that the subproblems in Algorithms 3.1 and 5.1 consist of solving a PDE
on the subdomains Ωi in every step, or, in a finite element context, we have to solve N
lower-dimensional linear system of equations. The corresponding details for the particular
domain from Figure 1 will be given in the next section.

Remark 6.2. If ∂Ωi∩∂Ω has (d−1)-dimensional measure larger than zero for all i, then
the Poincaré-inequality implies that all functions fi are strongly convex. Consequently, the
corresponding iterates generated by Algorithm 3.1 applied to the domain decomposition
context converge strongly in view of Theorem 4.6 (g).

21

6.2 Application of Algorithms

Now we want to apply Algorithm 3.1 to problem (24) for the domain displayed in Figure 1.
Similar considerations hold for the application of Algorithm 5.1, the corresponding details
are left to the reader.

The constraints in (24) are equivalent to traceΓi,j
yi − traceΓj,i

yj = 0. Following
standard notation in the field of applied analysis, we will omit the trace operator
and identify yi on the boundary with its trace, thus the corresponding constraint gets
yi − yj = 0 in Γi,j. Consequently, the subproblems resulting from the four domains read
as follows:

yk+1
1 = arg min

y1∈H1
Γ1

(Ω1)

{(
1

2
〈∇y1 | ∇y1〉L2(Ω1) − 〈u1 | y1〉L2(Ω1)

)
+ 〈µk1,2 | y1〉L2(Γ1,2) − 〈µk4,1 | y1〉L2(Γ4,1)

+
β

2

(
‖y1 − yk2‖2

L2(Γ1,2) + ‖y1 − yk4‖2
L2(Γ4,1)

)
+
βγ

2
‖y1 − yk1‖2

H1
Γ1

(Ω1)

}

yk+1
2 = arg min

y2∈H1
Γ2

(Ω2)

{(
1

2
〈∇y2 | ∇y2〉L2(Ω2) − 〈u2 | y2〉L2(Ω2)

)
+ 〈µk2,3 | y2〉L2(Γ2,3) − 〈µk1,2 | y2〉L2(Γ1,2)

+
β

2

(
‖y2 − yk1‖2

L2(Γ1,2) + ‖y2 − yk3‖2
L2(Γ2,3)

)
+
βγ

2
‖y3 − yk3‖2

H1
Γ2

(Ω2)

}

yk+1
3 = arg min

y3∈H1
Γ3

(Ω3)

{(
1

2
〈∇y3 | ∇y3〉L2(Ω3) − 〈u3 | y3〉L2(Ω3)

)
+ 〈µk3,4 | y3〉L2(Γ3,4) − 〈µk2,3 | y3〉L2(Γ2,3)

+
β

2

(
‖y3 − yk2‖2

L2(Γ2,3) + ‖y3 − yk4‖2
L2(Γ3,4)

)
+
βγ

2
‖y3 − yk3‖2

H1
Γ3

(Ω3)

}

yk+1
4 = arg min

y4∈H1
Γ4

(Ω4)

{(
1

2
〈∇y4 | ∇y4〉L2(Ω4) − 〈u4 | y4〉L2(Ω4)

)
+ 〈µk4,1 | y4〉L2(Γ4,1) − 〈µk3,4 | y4〉L2(Γ3,4)

+
β

2

(
‖y4 − yk3‖2

L2(Γ3,4) + ‖y4 − yk1‖2
L2(Γ4,1)

)
+
βγ

2
‖y3 − yk3‖2

H1
Γ4

(Ω4)

}
,

and the multiplier update is

µk+1
1,2 = µk1,2 + β(yk+1

1 − yk+1
2), µk+1

2,3 = µk2,3 + β(yk+1
2 − yk+1

3),

µk+1
3,4 = µk3,4 + β(yk+1

3 − yk+1
4), µk+1

4,1 = µk4,1 + β(yk+1
4 − yk+1

1),

where the equalities hold in the boundary spaces L2(Γi,j) for (i, j) ∈ Jo.

22

Using the sign vector defined by

αi,j =

{
+1 if (i, j) ∈ Jo = {(1, 2), (2, 3), (3, 4), (4, 1)}
−1 if (i, j) ∈ J \ Jo = {(2, 1), (3, 2), (4, 3), (1, 4)}

,

we can rewrite these subproblems more compactly as

yk+1
i = arg min

yi∈H1
Γi

(Ωi)

{(
1

2
〈∇yi | ∇yi〉L2(Ωi) − 〈ui | yi〉L2(Ωi)

)
+

∑
j:(i,j)∈J

αi,j〈µki,j | yi〉L2(Γi,j)

+
β

2

∑
j:(i,j)∈J

‖yi − ykj ‖2
L2(Γi,j) +

βγ

2
‖yi − yki ‖2

H1
Γi

(Ωi)

}
(26)

for all i = 1, . . . , 4. The multiplier update gets

µk+1
i,j = µki,j + β(αi,jy

k+1
i + αj,iy

k+1
i) ∀(i, j) ∈ Jo µk+1

i,j = µk+1
j,i (27)

in L2(Γi,j).
The optimality conditions of (26) are necessary and sufficient since the subproblems

are strongly convex. These optimality conditions are given by

〈∇yk+1
i ,∇vi〉L2(Ωi) +

∑
j:(i,j)∈J

αi,j〈µki,j | vi〉L2(Γi,j) + β
∑

j:(i,j)∈J

〈yk+1
i − ykj | vi〉L2(Γi,j)

+βγ〈yk+1
i − yki | vi〉L2(Ωi) + βγ〈∇yk+1

i −∇yki | ∇vi〉L2(Ωi) = 〈ui | vi〉L2(Ωi) (28)

for all vi ∈ H1
Γi

(Ωi), i = 1, . . . , 4. This is the weak formulation of the PDE

−(1 + βγ)4yi + βγyi = u+ βγyki − βγ 4 yki in Ωi

βyi + (1 + βγ)∂yi
ni

= βykj + βγ
∂yki
ni
− αi,jµki,j in Γi,j ∀j : (i, j) ∈ J

yi = 0 in ∂Ω ∩ ∂Ωi,

(29)

where ni denotes the outer normal of Ωi, i = 1, . . . , 4.
Thus Algorithms 3.1 and 5.1 basically consist of solving the (uniquely determined)

PDE (28) or (29), respectively, and thereafter doing the µ-update (27).

6.3 Estimating the Proximal Constant γ

Now we want to figure out how to choose the constant γ in the Algorithms 3.1 and
5.1 for the problem (24) on the domain from Figure 1. Thus we need to estimate the
operator norm of M , defined in (11). To this end, we first state a lemma that estimates
the operator norm of the trace operator to a boundary part.

Lemma 6.3. Suppose Ωi ⊂ R2 is a rectangle with side length L1 and L2, i.e. only
through rotation and translation it can be taken to a form (0, L1)× (0, L2), suppose that
Γ is a side of Ωi with length L2, then ‖ traceΓ ‖2 ≤ 2 max{L1,

1
L1
}.

23

Proof. To prove this lemma, we will follow [24, Thm. A.4]. Now first suppose that
v ∈ C1([0, L]), hence v(x) = v(y) +

∫ x
y
v′(s)ds and therefore

|v(x)| ≤ |v(y)|+
∫ L

0

|v′(s)|ds ≤ |v(y)|+ L
1
2‖v′‖L2(0,L) ∀x, y ∈ [0, L].

Squaring both sides, integrating with respect to y, and using Young’s inequality, we
obtain

Lv(x)2 ≤ 2‖v‖2
L2(0,L) + 2L2‖v′‖2

L2(0,L)

or, equivalently,

v(x)2 ≤ 2

L
‖v‖2

L2(0,L) + 2L‖v′‖2
L2(0,L). (30)

Now suppose that y ∈ C1(Ωi) and w.l.o.g. let Γ = {0} × (0, L2) ⊂ ∂Ωi be one boundary
of Ωi. We obtain by (30) that

y(0, x2)2 ≤ 2

L1

∫ L1

0

y(x1, x2)2dx1 + 2L1

∫ L1

0

∂1y(x1, x2)2dx1.

Integrating this equation with respect to x2, we obtain

‖ traceΓ y‖2
L2(Γ) = ‖y‖2

L2(Γ) =

∫ L2

0

y(0, x2)2dx2

≤ 2

L1

‖y‖2
L2(Ωi)

+ 2L1‖∇y‖2
L2(Ωi)

≤ 2 max{L1,
1

L1

}‖y‖2
H1(Ωi)

.

The claim follows from the density of C1(Ωi) in H1(Ωi) and that rotation and translation
do not change the operator norm.

Lemma 6.4. For our example domain displayed in Figure 1 we obtain ‖M‖ < 5.7, where
M is defined as in (11).

Proof. We see from (25) and 〈A∗iAjxj | yi〉 = 〈Ajxj | Aiyi〉 that

A∗1A2 = − trace∗Γ1,2
traceΓ2,1 , A∗2A1 = − trace∗Γ2,1

traceΓ1,2

A∗1A4 = − trace∗Γ1,4
traceΓ4,1 , A∗4A1 = − trace∗Γ4,1

traceΓ1,4

A∗2A3 = − trace∗Γ2,3
traceΓ3,2 , A∗3A2 = − trace∗Γ3,2

traceΓ2,3 ,

A∗3A4 = − trace∗Γ3,4
traceΓ4,3 , A∗3A4 = − trace∗Γ3,4

traceΓ4,3 ,

A∗1A3 = 0, A∗3A1 = 0, A∗2A4 = 0, A∗4A2 = 0.

With this we further notice that

‖Mx‖2 =

∥∥∥∥∥
(4∑

l=1
l 6=i

A∗iAlxl

)4

i=1

∥∥∥∥∥
2

H

24

≤ ‖A∗2A1x1‖2 + ‖A∗4A1x1‖2 + ‖A∗1A2x2‖2 + ‖A∗3A2x2‖2

+ ‖A∗2A3x3‖2 + ‖A∗4A3x3‖2 + ‖A∗1A4x4‖2 + ‖A∗3A4x4‖2

≤ 8 · max
(i,j)∈Jo

{‖ traceΓi,j
‖2}‖x‖2,

hence with the last lemma and L = 0.5, we obtain ‖M‖ ≤
√

8 · 4 =
√

32 < 5.7.

The previous result gives us an estimate of the constant γ appearing in Algorithms 3.1
and 5.1, since it is required that γ > ‖M‖.

7 Numerical Results

In this section, we want to illustrate the numerical behavior of Algorithm 3.1. To do
so, we first discuss the behavior of the domain decomposition technique described in
Section 6. Afterwards we compare Algorithm 3.1 to some related ones from the literature
using the (sparse) l1-minimization problem.

7.1 Domain Decomposition

We implemented the domain decomposition algorithm described in Subsection 6.1 with
Python and the FEniCS program package, version 2017.1, see https://fenicsproject.

org/. We used the test example

−∆y = −6 in Ω, y(x) = 1 + x2
1 + 2x2

2 ∀x ∈ ∂Ω, (31)

whose exact solution is given by y(x) = 1 +x2
1 + 2x2

2, cf. [23]. The theory from Section 6.1
applies with standard arguments also to arbitrary Dirichlet conditions in H1/2(∂Ω), thus
(31) is covered by our theory. Motivated by the discussion in Section 6.3, we chose γ = 5.7
and β = 1 as the parameters in our explicit implementation of Algorithm 3.1. As a
termination criterion we used ‖yk+1

i − yki ‖2
L2(Ωi)

≤ ε and ‖yk+1
i − yk+1

j ‖L2(Γi,j) ≤ ε, where

the L2-norm is the approximate L2-norm provided by FEniCS. We are aware that in the
first criterion the H1-norm would be better but this norm is quite difficult to compute in
the finite element context.

25

https://fenicsproject.org/
https://fenicsproject.org/

Table 1: Some results of the regularized Jacobi-type ADMM method from Algorithm 3.1
with different choices of the termination parameter ε and different mesh sizes for each
fixed ε.

ε largest edge in mesh number of iterations =: k ‖yk − yexact‖L2(Ω)

0.01 0.042 28 2.5 · 10−3

0.01 0.025 28 2.3 · 10−3

0.01 0.013 28 2.3 · 10−3

0.01 0.0042 28 2.3 · 10−3

0.01 0.0013 28 2.3 · 10−3

0.001 0.042 63 4.2 · 10−4

0.001 0.025 62 1.8 · 10−4

0.001 0.013 63 1.1 · 10−4

0.001 0.0042 64 9.4 · 10−5

0.001 0.0013 64 9.3 · 10−5

0.0001 0.042 289 3.9 · 10−4

0.0001 0.025 250 1.2 · 10−4

0.0001 0.013 284 3.2 · 10−5

0.0001 0.0042 302 6.6 · 10−6

0.0001 0.0013 308 3.9 · 10−6

We made some experiments with different mesh sizes and different ε, the corresponding
results are summarized in Table 1. The results indicate that the number of iterations is
(almost) independent of the mesh size. Moreover, taking into account the dimension of
the discretized problem, the number of iterations is relatively small for all test problem
instances. Finally, the last column in Table 1 shows that the exact error (not used
as a termination criterion in our immplementation since usually the exact solution is
unknown) is surprisingly small for a method whose local rate of convergence is (in general)
sublinear.

To visualize the solution process, we also present some pictures with approximate
solutions generated by the regularized Jacobi-type ADMM method from Algorithm 3.1,
see Figures 2–4. These figures correspond to three different choices of ε and present the
computed solution for a mesh size whose biggest edge length was always the same and
around 0.013.

26

Figure 2: Plot of solution with ε = 0.1, number of iterations 5 , ‖y5−yexact‖L2(Ω) = 0.047,
there are strong edges between the solutions on the subdomains.

Figure 3: Plot of solution with ε = 0.01, number of iterations 28 , ‖y28 − yexact‖L2(Ω) =
0.0023, the edges between the solutions on the subdomains are still clearly visible.

27

Figure 4: Plot of solution with ε = 0.001, number of iterations 63 , ‖y63 − yexact‖L2(Ω) =
1.1 ·10−4. If we zoom in we can still see a small inaccuracy in the middle of the right edge.
This inaccuracy will be still there with a finer grid, but disappears when ε is choosen to
be smaller.

7.2 l1 Minimization

One of the most used test problems for separable convex algorithms is the class of l1

minimization problems. Among this class of problems, we chose the basis pursuit problem
to compare the different Jacobi-type ADMM methods outlined in Remark 3.2 to each
other. Hence we consider the optimization problem

min ‖x‖1 s.t. Ax = b,

where A ∈ Rm×n. Thus we are able to split our problem in n one-dimensional problems,
whose solutions can be computed analytically, see [17, Section 7.4.1.].

We use the technique of performance profiles for benchmarking optimization algorithms
as introduced in [8]. Let us explain this technique a bit: We have a set of test problems
P and apply different solvers from a set of solvers S to them. The number of iterations
that the solver s ∈ S needs for the problem p ∈ P will be denoted by tp,s, if the solver
s ∈ S does not solve the problem after a maximal iteration count, set tp,s =∞. Define
the performance ratio of solver s to the problem p by

rp,s =
tp,s

min{tp,s | s ∈ S}
.

The performance ratio of the solver s ∈ S is now

ρs(τ) =
1

|P |
size

{
p ∈ P | rp,s ≤ τ

}
.

That means ρs(τ) describes the number of test problems that the method s solves with a
maximum of τ ·min{tp,s | s ∈ S} iterations.

28

The test problem set that was used in our numerical test is the SPEAR collection
from http://wwwopt.mathematik.tu-darmstadt.de/spear/ that provides us also with
the exact solution xexact. We only used the test problems whose number of columns
was smaller than 3000. As a termination criterion we took ‖xk − xexact‖∞ ≤ 10−4 and
the problem was considered not solved if the algorithm required more than one million
iterations.

Our comparison includes the following algorithms:

1. The regularized Jacobi-type ADMM method from Algorithm 3.1 with parameters
β = 0.002 and γ = 1.1 · ‖ATA− diag(ATA)‖∞, where ‖A‖∞ denotes the maximum
absolute row sum of the current matrix A from the test problem set.

2. The ATi Ai-norm regularized Jacobi-type ADMM as described in Remark 3.2 (d)
using the parameter β = 003.

3. The Jacobi-type ADMM as described in Remark 3.2 (a), with step size α =

1.999 · (1−
√

N
N+1

) as suggested in [17], where N denotes the number of columns

of the matrix A. The penalty parameter β was chosen to be β = 0.2.

4. The twisted ADMM described mentioned in Remark 3.2 (e), with penalty parameter
β = 0.0001 and proximal constant γ = 1.1 · (max{diag(ATA)}−min{diag(ATA)}),
as suggested in [29].

5. The regularized Jacobi-type ADMM method from [7] that is equal to the one from
Algorithm 3.1 except for the choice of the proximal constant γ and a step size
τ in the dual variable, as already discussed in Remark 3.2 (c). We choose the
parameters β = 0.003, τ = 0.7 and γi = 1.1 · (N

2−τ − 1)ATi Ai.

6. The Jacobi-type ADMM as described in Remark 3.2 (a), but this time with the
step size strategy

α = 1 · ‖w
k − ŵk‖2

G + 2(µk − µ̂k)T (A(xk − x̂k))
‖wk − ŵk‖2

G

,

introduced in [17] and the penalty parameter β = 0.06.

The above choices of the parameters are either motivated by the corresponding theory or
based on some preliminary numerical experiments to get an optimal behavior for each of
the algorithms investigated here.

The amount of work per iteration for the first five methods is essentially the same.
Hence the performance profile presented in Figure 5 based on the iteration count gives a
good idea of the relative performance of each of these methods. The reason for using the
iteration count and not the computation time is that we implemented the algorithms in
MATLAB and CPU times provided by MATLAB seem to somewhat unreliable.

In Figure 5 the Algorithm 3.1 has by far the best performance among all Jacobi-type
ADMM methods considered here. The criteria for the choice of γ in the twisted ADMM

29

http://wwwopt.mathematik.tu-darmstadt.de/spear/

method from [29] and the regularized Jacobi ADMM from [7] seem to be more restrictive
and therefore lead to slower convergence of the corresponding algorithms. Furthermore,
since all test problems have a relatively high dimension with N ≥ 1024, it follows that
the regularization method involving the ATi Ai term yields a very high proximal constant
γ which leads to the poor behaviour of this method; this disadvantage may vanish for
problems with smaller dimensions. The Jacobi ADMM with constant step size has such
a poor numerical behavior, since it has only a very small step size when the number of
subproblems is high.

Figure 5: Performance profile for the first five Jacobi-type ADMM methods.

30

Figure 6: Performance profile for all six Jacobi-type ADMM methods, the sixth method
being (at least) twice as expensive per iteration as all other methods.

For the second performance profile in Figure 6, we also include the sixth method
mentioned above. The comparison is again based on the iteration count, however, in this
case one should take into account that each iteration of the sixth method, which needs
to compute a certain step size at each iteration, is (at least) twice as expensive as all
the other methods. Nevertheless, Figure 6 indicates that this step size rule makes this
method more efficient, even more than Algorithm 3.1. On the other hand, even though
Algorithm 3.1 works quite well, it was not our intention to create the fastest method,
but to show that certain regularized Jacobi-type ADMM methods can be interpreted as
a proximal-point method.

8 Final Remarks

We gave a proof of convergence for the regularized Jacobi-type ADMM method that is
based on the proximal-point method or its modification by Halpern. This proximal-point
interpretation allows some more freedom regarding the choice of certain parameters and
allows itself a number of modifications. Even though we gave an example that shows
that our proximal point interpretation may not converge for nonsymmetric matrices Q,
the convergence of the regularized Gauss-Seidel alternating direction method for N > 2
remains an open question. The current technique of proof is not applicable in this setting,
so that further investigations are necessary in this direction.

31

References

[1] H. Attouch and M. Soueycatt. Augmented Lagrangian and proximal alternating
direction methods of multipliers in Hilbert spaces. Applications to games, PDE’s
and control. Pacific Journal of Optimization, 5(1):17–37, 2008.

[2] H. H. Bauschke and P. L. Combettes. Convex Analysis and Monotone Operator
Theory in Hilbert Spaces. CMS Books in Mathematics/Ouvrages de Mathématiques
de la SMC. Springer, Cham, second edition, 2017.

[3] D. P. Bertsekas. Nonlinear Programming. Athena Scientific Optimization and
Computation Series. Athena Scientific, Belmont, MA, third edition, 2016.

[4] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed Optimiza-
tion and Statistical Learning via the Alternating Direction Method of Multipliers.
Foundations and Trends in Machine Learning, 3(1):1–122, 2011.

[5] H. Brezis and P. L. Lions. Produits infinis de resolvantes. Israel Journal of
Mathematics, 29(4), 1978.

[6] C. Chen, B. He, Y. Ye, and X. Yuan. The direct extension of ADMM for multi-
block convex minimization problems is not necessarily convergent. Mathematical
Programming, 155(1-2, Ser. A):57–79, 2016.

[7] W. Deng, M.-J. Lai, Z. Peng, and W. Yin. Parallel multi-block ADMM with o (1/k)
convergence. Journal of Scientific Computing, 71(2):712–736, 2017.

[8] E. D. Dolan and J. J. Moré. Benchmarking optimization software with performance
profiles. Mathematical Programming, 91(2):201–213, 2002.

[9] Y. Dong. The proximal point algorithm revisited. Journal of Optimization Theory
and Applications, 161(2):478–489, 2014.

[10] Y. Dong. Comments on “The proximal point algorithm revisited”. Journal of
Optimization Theory and Applications, 166(1):343–349, 2015.

[11] J. Eckstein. Approximate iterations in Bregman-function-based proximal algorithms.
Mathematical Programming, 83(1, Ser. A):113–123, 1998.

[12] J. Eckstein and W. Yao. Understanding the convergence of the alternating direction
method of multipliers: Theoretical and computational perspectives. Pacific Journal
on Optimization, 11(4):619– 644, 2015.

[13] F. Facchinei and J.-S. Pang. Finite-Dimensional Variational Inequalities and Com-
plementarity Problems. Springer Series in Operations Research. Springer, 2003.

32

[14] R. Glowinski and P. Le Tallec. Augmented Lagrangian interpretation of the nonover-
lapping Schwarz alternating method. In Third International Symposium on Domain
Decomposition Methods for Partial Differential Equations (Houston, TX, 1989),
number 43, pages 224 – 231. SIAM, Philadelphia, PA, 1990.

[15] G. Gu, B. He, and X. Yuan. Customized proximal point algorithms for linearly
constrained convex minimization and saddle-point problems: a unified approach.
Computational Optimization and Applications, 59(1-2):135, 2014.

[16] B. Halpern. Fixed points of nonexpanding maps. Bulletin of the American Mathe-
matical Society, 73:957–961, 1967.

[17] B. He, L. Hou, and X. Yuan. On full Jacobian decomposition of the augmented La-
grangian method for separable convex programming. SIAM Journal on Optimization,
25(4):2274–2312, 2015.

[18] B. He, M. Tao, and X. Yuan. Alternating direction method with Gaussian back
substitution for separable convex programming. SIAM Journal on Optimization,
22:313–340, 2012.

[19] B. He, M. Tao, and X. Yuan. Convergence rate analysis for the alternating di-
rection method of multipliers with a substitution procedure for separable convex
programming. Mathematics of Operations Research, 42:662–691, 2017.

[20] B. He, H.-K. Xu, and X. Yuan. On the proximal Jacobian decomposition of ALM
for multiple-block separable convex minimization problems and its relationship to
ADMM. Journal of Scientific Computing, 66(3):1204–1217, 2016.

[21] K. Ito and K. Kunisch. Lagrange Multiplier Approach to Variational Problems and
Applications, volume 15 of Advances in Design and Control. Society for Industrial
and Applied Mathematics (SIAM), Philadelphia, PA, 2008.

[22] A. Iusem and R. G. Otero. Erratum: “Inexact versions of proximal point and
augmented Lagrangian algorithms in Banach spaces” [Numer. Funct. Anal. Optim.
22 (2001), no. 5-6, 609–640; MR1849570 (2002e:90124)]. Numerical Functional
Analysis and Optimization. An International Journal, 23(1-2):227–228, 2002.

[23] H. P. Langtangen and A. Logg. Solving PDEs in Minutes–The FEniCS Tutorial
Volume I. Springer, 2017.

[24] S. Larsson and V. Thomée. Partial Differential Equations with Numerical Methods,
volume 45. Springer Science & Business Media, 2008.

[25] P.-L. Lions. On the Schwarz alternating method. III. A variant for nonoverlapping
subdomains. In Third International Symposium on Domain Decomposition Methods
for Partial Differential Equations (Houston, TX, 1989), pages 202–223. SIAM,
Philadelphia, PA, 1990.

33

[26] J. Nocedal and S. J. Wright. Numerical Optimization. Springer Series in Operations
Research. Springer-Verlag, New York, 1999.

[27] R. T. Rockafellar. Convex Analysis. Princeton University Press, 1970.

[28] R. T. Rockafellar. Monotone operators and the proximal point algorithm. SIAM
Journal on Control and Optimization, 14(5):877–898, 1976.

[29] J. J. Wang and W. Song. An algorithm twisted from generalized ADMM for multi-
block separable convex minimization models. Journal of Computational and Applied
Mathematics, 309:342–358, 2017.

[30] X. Wang, M. Hong, S. Ma, and Z.-Q. Luo. Solving multiple-block separable convex
minimization problems using two-block alternating direction method of multipliers.
arXiv preprint arXiv:1308.5294, 2013.

34

	1 Introduction
	2 Definitions and Preliminaries
	3 Regularized Jacobi-type ADMM-Method
	4 Convergence Analysis
	5 A Strongly Convergent Algorithm
	6 Application to Domain Decomposition
	6.1 Non-Overlapping Domain Decomposition
	6.2 Application of Algorithms
	6.3 Estimating the Proximal Constant

	7 Numerical Results
	7.1 Domain Decomposition
	7.2 l1 Minimization

	8 Final Remarks
	References

