
A Bundle-type Method for Nonsmooth DC
Programs

Christian Kanzow∗ Tanja Neder∗

February 11, 2022

A bundle method for minimizing the difference of convex (DC) and possible nonsmooth

functions is developed. The method may be viewed as an inexact version of the DC

algorithm, where each subproblem is solved only approximately by a bundle method.

We always terminate the inner bundle method after the first serious step. This yields a

descent direction for the original objective function, and it is shown that at least a full

step is accepted in this way. Using a line search, even larger stepsizes are possible. The

overall method is shown to be globally convergent to critical points of DC programs. The

new algorithm is tested and compared to some other solution methods on several examples

and realistic applications.

Keywords— DC optimization, Bundle method, Global convergence, Critical points

1 Introduction

The problem under consideration, called a DC program, is the minimization problem

min f(x) := g(x)− h(x), x ∈ Rn, (1)

where the objective function f : Rn → R is the difference of two convex and possibly nonsmooth
functions g, h : Rn → R. Therefore, f is referred to as a DC function, g and h are the
corresponding DC components of f (these DC components are, of course, not unique).

These DC programs occur frequently in a variety of applications, among them are the
detection of edges in digital images [14], techniques utilized in data mining [4] like the Minimum
Sum-of-Squares Clustering [22] or the Multidimensional Scaling problem [16], and the modeling
of biochemical reaction networks [3], to name only a few.

The cornerstones for numerically tackling DC programs have already been placed some
time ago, see [17] for an extensive treatment of the history of DC programs. The classical
approach for solving (1) is the DC Algorithm (DCA), see, e.g., [2], which can be applied to DC
programs with both DC components being nonsmooth. Provided that the first DC component

∗University of Würzburg, Institute of Mathematics, Emil-Fischer-Straße 30, 97074 Würzburg, Ger-
many; email: kanzow@mathematik.uni-wuerzburg.de, tanja.neder@mathematik.uni-wuerzburg.de

1

g is continuously differentiable, the convergence of DCA can often be accelerated by applying
a boosted version of the classical DC Algorithm, the so called Boosted DCA (BDCA). The
crucial point thereby is that the iterates computed by DCA can be used to derive descent
directions for the objective function which allows to add a line search to the algorithm, see [4].

The idea of using bundle methods to solve DC programs is also not new. In [13], gathering
the subgradient information for each of the DC components in two separate bundles, leads
to a non-convex cutting plane model of the objective function which incorporates both the
convex and the concave behavior of the DC function. The resulting proximal bundle method
(PBDCA) keeps in the bundles only information related to points close to the current iterate.
Another algorithm presented in [8] is also based on a cutting plane approach, but this time just
the bundle with respect to the first DC component is restricted to local information, whereas
the one with respect to the second DC component keeps information related to distant points.
Once again, a non-convex DC piecewise-affine model is derived, which gives rise to the name DC
Piecewise-Concave algorithm (DCPCA) of the resulting method. Moreover, bundle methods
for the minimization of DC functions subject to some constraints have also been developed
during the last few years, although these algorithms usually are restricted to a certain structure
of the constraints, see, e.g., [1, 21].

In contrast to these bundle methods, our approach utilizes the standard subproblem from
the classical DC algorithm. This results in a convex subproblem which is then solved inexactly
by a simple bundle method. We terminate this inner bundle method after its first serious step,
i.e., we do not require to solve these subproblems exactly or almost exactly, not even close to
a solution. Nevertheless, the resulting inexact solution is shown to yield a descent direction,
hence a line search can be applied to globalize the overall method. This line search is shown
to accept at least the full step, and it even allows to take larger stepsizes, though it is known
from the boosted DCA that, for both DC components being nonsmooth, it may not share the
improved descent property of the boosted DCA. On the other hand, the new bundle-type DC
method is shown to have nice global convergence properties for both functions g and h being
nondifferentiable, whereas the boosted DCA requires g to be smooth.

The paper is organized as follows. We first recall some basic concepts and definitions as well
as our basic bundle method in Section 2. We then present the new bundle-type DC algorithm
in Section 3, together with a convergence theory and an additional discussion of some descent
properties. The results of an extensive numerical testing are provided in Section 4. We close
with some final remarks in Section 5.

2 Preliminaries

This section first recalls some basic definitions and results from nonsmooth and convex analysis,
cf. [11, 23]. We then provide some details concerning a basic bundle method from, e.g., [9, 15,
18].

2.1 Tools from Nonsmooth and Convex Analysis

A function f : Rn → R is said to be convex if

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) ∀x, y ∈ Rn, ∀λ ∈ (0, 1).

2

It is called uniformly convex with modulus µ > 0 if f− µ
2‖ ·‖

2 is convex, where ‖ ·‖ denotes the
Euclidean norm on Rn. Recall that uniformly convex functions always attain a unique global
minimum. The (one-sided) directional derivative of a function f : Rn → R at a point x ∈ Rn
in the direction d ∈ Rn is defined as

f ′(x, d) := lim
t↓0

f(x+ td)− f(x)

t

provided that the limit on the right-hand side exists. The latter holds, in particular, for convex
functions f .

Given a convex function f : Rn → R and a parameter ε ≥ 0, the ε-subdifferential at a point
x ∈ Rn is the set

∂εf(x) :=
{
s ∈ Rn | f(y) ≥ f(x) + sT (y − x)− ε ∀y ∈ Rn

}
,

the special case ∂f(x) := ∂0f(x) is known as the (convex) subdifferential of f at x. Each ele-
ment of the latter set is called a subgradient of f at x. For arbitrary ε ≥ 0, the ε-subdifferential
∂εf(x) is a non-empty, convex and compact set for every x ∈ Rn. The directional derivative
of a convex function f can be calculated using its subdifferential via the formula

f ′(x, d) = max
s∈∂f(x)

sTd. (2)

For a locally Lipschitz continuous function f : Rn → R (recall that every convex function
is locally Lipschitz), we denote the Clarke subdifferential of f in x by ∂Cf (x). For a precise
definition and some basic properties of the Clarke subdifferential, we refer to [6]. Note that both
subdifferentials coincide for convex functions f and that 0 ∈ ∂Cf(x∗) is a necessary optimality
condition for some point x∗ to be a local minimum of f . Application of this optimality condition
to the DC-function f := g−h and using some calculus rules of the Clarke subdifferential leads
to the stationarity condition

∂g (x∗) ∩ ∂h (x∗) 6= ∅. (3)

Each point x∗ ∈ Rn satisfying (3) is called a critical point of the DC-function f , see also [10]
for characterizations of a minimizer of DC functions. For a convex function f : Rn → R, the
optimality condition 0 ∈ ∂f (x∗) becomes even sufficient for having a (global) minimum in
x∗ ∈ Rn.

Given a directionally differentiable function f : Rn → R, we say that some vector d ∈ Rn
is a descent direction of f at x if there exists some t∗ > 0 such that f(x + td) < f(x) for all
t ∈ (0, t∗]. Note that the descent property f ′(x, d) < 0 is a sufficient criterion for d being a
descent direction.

Finally, we define the (Euclidean) distance between two sets A, B ⊆ Rn by

dist(A,B) := inf {‖a− b‖ | a ∈ A, b ∈ B} .

In particular, the projection of a point y ∈ Rn onto a non-empty, closed, and convex set X ⊆ Rn
is determined as the (unique) point having the least distance towards y, and we write

PX(y) := argmin
x∈X

‖y − x‖

3

for this projection.

2.2 A Bundle Method for Convex Optimization

This section gives a short introduction to a (simple) bundle method for minimizing a convex
function, mainly following the references [9, 15, 18]. Note that there exist more involved
bundle schemes, but the aim is to keep the presentation as simple as possible within this
section. The bundle method and its convergence theory will later be used to solve the (convex,
but nonsmooth) subproblems resulting in our algorithm for solving DC programs.

Therefore, consider the minimization problem

min
x∈Rn

f(x) (4)

for a convex function f : Rn → R. Similar to the classical steepest descent method, a first idea
is to compute a descent direction by solving the subproblem

min f ′(xk, d) s.t. ‖d‖ ≤ 1.

Using the relation (2), it is not difficult to see that

dk = − gk

‖gk‖
with gk := P∂f(xk)(0)

is the unique solution of this subproblem. This suggests to choose dk = −gk as a search
direction. Although dk can indeed be verified to be a descent direction of f at xk, simple
examples show that the resulting method may not converge to a minimum, and that a successful
version should include information of some neighboring subgradients. This idea leads to the
search direction

dk = −gk with gk = P∂εf(xk)(0).

Unfortunately, the ε-subdifferential is difficult to compute and projections onto this set might
not be easy to calculate. The idea is then to replace the ε-subdifferential by an inner approx-
imation Gkε which has a simpler structure (like being polyhedral) and which therefore allows
the calculation of the projection

gk := PGkε (0) (5)

with a significantly reduced effort. A suitable approximation Gkε can be obtained by using
previously computed subgradients sj ∈ ∂f(xj), j ∈ {0, 1, ..., k}. More precisely, denoting the
respective (nonnegative) linearization errors of f by

αkj := f(xk)− f(xj)− (sj)T (xk − xj) ∀j = 0, 1, ..., k, (6)

the set Gkε is defined by

Gkε :=

{ k∑
j=0

λjs
j

∣∣∣∣ k∑
j=0

λjα
k
j ≤ ε,

k∑
j=0

λj = 1, λj ≥ 0 ∀j = 0, 1, ..., k

}
.

One can verify that this set has indeed the property that Gkε ⊆ ∂εf(xk) holds, which justifies

4

to call it an inner approximation. Since Gkε is a non-empty, convex, and compact set, the
projections (5) do exist. Numerically, these projections require the solution of the quadratic
program

min
1

2

∥∥∥ k∑
j=0

λjs
j
∥∥∥2 s.t.

k∑
j=0

λjα
k
j ≤ ε,

k∑
j=0

λj = 1, λj ≥ 0 ∀j = 0, 1, .., k. (7)

If λk := (λk0, λ
k
1, ..., λ

k
k) denotes a solution of this quadratic program, then the projection

gk := PGkε (0) is given by

gk =
k∑
j=0

λkj s
j .

In practice, the coefficients gathered in λk are often computed by considering the closely related
quadratic program

min
1

2

∥∥∥ k∑
j=0

λjs
j
∥∥∥2 +

k∑
j=0

λjα
k
j s.t.

k∑
j=0

λj = 1, λj ≥ 0 ∀j = 0, 1, .., k. (8)

Altogether, this (almost) motivates the following algorithm.

Algorithm 2.1. (Bundle method)

(S.0). Choose x1 ∈ Rn, s1 ∈ ∂f(x1), m ∈ (0, 1), set k := 1, y1 := x1, α1
1 := 0, J1 := {1}.

(S.1). Compute λkj , j ∈ Jk, as a solution of the quadratic program

min
1

2

∥∥∥ ∑
j∈Jk

λjs
j
∥∥∥2 +

∑
j∈Jk

λjα
k
j s.t.

∑
j∈Jk

λj = 1, λj ≥ 0 ∀j ∈ Jk.

(S.2). Set

gk :=
∑
j∈Jk

λkj s
j , εk :=

∑
j∈Jk

λkjα
k
j , dk := −gk, ζk := −‖gk‖2 − εk.

(S.3). If ζk = 0: STOP.

(S.4). Set yk+1 = xk + dk, choose sk+1 ∈ ∂f(yk+1).
If

f(xk + dk) ≤ f(xk) +mζk,

set (“serious step”)
tk := 1, xk+1 := xk + dk,

otherwise set (“null step”)
tk := 0, xk+1 := xk.

(S.5). Set

Jpk := {j ∈ Jk | λkj > 0}, Jk+1 := Jpk ∪ {k + 1},
αk+1
j := f(xk+1)− f(yj)− (sj)T (xk+1 − yj) ∀j ∈ Jk+1.

5

(S.6). Set k ← k + 1, and go to (S.1).

In order to restrict the number of constraints in (8) and to limit the amount of subgradients
and linearization errors to be stored, the index set in the algorithm is reduced to a suitable
subset Jk ⊆ {1, ..., k}. Moreover, the linearization errors in (S.5) are slightly modified in
comparison to (6), since the intermediate points yj , j ∈ Jk, are also taken into account. The
underlying principle is very simple: If the search direction dk provides a sufficient decrease in
the function value, one proceeds in this direction (with stepsize tk = 1), otherwise one sticks
with the current iterate, but adds some further information to the bundle in order to get a
better search direction during the next iteration. Furthermore, the termination criterion in
(S.3) gets motivated by the subsequent observation.

Lemma 2.2. If ζk = 0 holds for some k ∈ N, then the corresponding iterate xk is already a
minimizer of the objective function f .

This last assertion comes from the elementary observation that

gk ∈ ∂εkf(xk) ∀k ≥ 1. (9)

In case a solution of the convex optimization problem (4) exists, one gets the following global
convergence result for Algorithm 2.1.

Theorem 2.3. Assume that the solution set S := {x∗ ∈ Rn | f(x∗) = infx∈Rn f(x)} is non-
empty. Then every sequence {xk} generated by Algorithm 2.1 converges towards a minimizer
x∗ ∈ S of the objective function f .

3 A Bundle Method for DC Optimization

This section introduces the new algorithm for DC optimization using the approach of the
classical DC algorithm in combination with the previously presented bundle method. The
precise statement together with a convergence theory are given in Section 3.1, whereas some
additional descent properties are discussed in Section 3.2.

3.1 Algorithm and Convergence Properties

The aim of our approach is to develop an algorithm which, similar to the Boosted DCA
(BDCA), computes descent directions of the objective function using the approximations aris-
ing in the classical DC Algorithm (DCA), see [2, 4]. This allows a line search to determine the
subsequent iterate. In contrast to BDCA, however, the new algorithm should be applicable
to DC functions with both components being nonsmooth. To gain a suitable descent direc-
tion from the convex subproblems, we allow an inexact solution of these subproblems by the
previous bundle technique.

Having a DC function f as defined in (1) to be minimized, the classical DCA approach
replaces, in each step l ∈ N0, the second DC component h by some linear minorization

hl(x) := h(xl) + (sl)T (x− xl)

6

with a certain subgradient sl ∈ ∂h(xl) to obtain a convex majorization of the objective function
f . Minimizing this model function is then equivalent to minimizing

φl(x) := g(x)− (sl)Tx. (10)

To guarantee the existence of a minimizer one usually assumes g to be uniformly convex, which
can be done without loss of generality by adding a uniformly convex term, e.g. ρ

2‖ · ‖
2 with

ρ > 0, to each convex component function, if necessary. In contrast to the BDCA, the new
algorithm does not require the exact minimization of the convex function φl in order to obtain
a descent direction of the objective function. Instead, the bundle method from Section 2.2 is
applied until a serious step is carried out. It turns out that the search direction of this step is
a descent direction of f at the current iterate xl, cf. Proposition 3.8. A subsequent line search
is then used to compute the next iteration. The convergence theory shows that this line search
always accepts the full step, even larger stepsizes are possible.

Algorithm 3.1. (DCBA – DC Bundle Algorithm)

(S.0). Choose x0 ∈ Rn, β ∈ (0, 1), m ∈ (0, 1), γ ∈ (0,m], set l := 0.

(S.1). Choose sl ∈ ∂h(xl), and define φl as in (10).

(S.2). Apply the bundle method from Algorithm 2.1 to minimize φl(x) until a serious step is
carried out or until it terminates. Retain (dl, εl, ζl) from the corresponding quantities of
the serious step or the termination step, respectively.
In case of termination of the bundle method: STOP.

(S.3). Choose τ̄l ≥ 1, compute τl = max
({
τ̄lβ

j
∣∣ j ∈ N0

}
∪ {1}

)
such that

f(xl + τld
l) ≤ f(xl) + γτ2l ζl.

(S.4). Set xl+1 := xl + τld
l, l← l + 1, and go to (S.1).

To guarantee that (S.2) always terminates, we have to make sure that the function φl attains
a minimum, cf. Theorem 2.3. Recall that this automatically holds if g is uniformly convex,
hence we state this assumption explicitly in the following, which is implicitly supposed to hold
throughout our convergence analysis. We stress once more, however, that this assumption is
not at all restrictive since we can always add and subtract a uniformly continuous function to
the DC decomposition of f .

Assumption 3.2. The DC component g is a uniformly convex function.

Some comments are in order regarding Algorithm 3.1. First note that l denotes the iteration
counter for the (outer) DC-type method, whereas we will use the letter k to denote the iterations
of the inner (bundle) method. Hence, Jk,l denotes the index set that occurs in iteration k of
the bundle method, called in iteration l of Algorithm 3.1. The notation dk,l is defined similarly.

Note that the inner bundle method executes null steps only except possibly in the last
iteration. This, in particular, allows a simplified calculation of the linearization errors. Since
the iterate xl does not change in such a situation, only the computation of the linearization
error corresponding to the new intermediate point is required, but not the computation for each

7

index j ∈ Jk,l. Hence, in the kth sub-iteration with search direction dk,l and corresponding
subgradient vk+1,l ∈ ∂φl(xl + dk,l), the required linearization error can be obtained by

αk+1,l := φl(x
l)− φl(xl + dk,l) + (vk+1,l)Tdk,l, (11)

where d0,l := 0 for all l ∈ N0. Furthermore, a subgradient vk+1,l ∈ ∂φl(x
l + dk,l) can be

computed by selecting some element tk+1,l ∈ ∂g(xl + dk,l) and setting vk+1,l := tk+1,l − sl.
The line search is an Armijo-type one with the slight modification of looking for a decrease

in the function value of at least γτ2l (−ζl). At a first glance, one might expect ‖dl‖2 instead of
the enlarged value −ζl = ‖dl‖2 + εl. This adjustment is motivated by Lemma 3.4 below. In
addition, the initial stepsize τ̄l can be determined as a self-adaptive trial stepsize like the one
suggested in [4]. One only needs to ensure τ̄l ≥ 1.

Before proving a global convergence result for Algorithm 3.1, we begin with some preliminary
observations. To this end, we first justify the termination criterion in (S.2).

Lemma 3.3. Suppose ζl = 0 holds for some l. Then the current iterate xl is a critical point
of the objective function f .

Proof. As the iterate does not change during the bundle process, having ζl = 0 for some l,
Lemma 2.2 implies that xl minimizes φl. Hence, we have 0 ∈ ∂φl(xl) = ∂g(xl) − sl. On the
other hand, sl ∈ ∂h(xl) by our choice, consequently ∂g(xl) ∩ ∂h(xl) 6= ∅ follows, showing that
xl is indeed a critical point of the DC function f .

Motivated by Lemma 3.3, we assume, from now on, that ζl < 0 holds for all l, i.e., Algorithm 3.1
does not stop after finitely many iterations. The following result then shows that the Armijo-
type line search is always well-defined (together with Assumption 3.2 this implies that the
entire Algorithm 3.1 is well-defined), and that the full step satisfies the line search criterion.

Lemma 3.4. At each iteration l, there exists a stepsize τl, τl = 1 or τl = τ̄lβ
j ≥ 1 with some

j ∈ N0, such that
f(xl + τld

l) ≤ f(xl) + γτ2l ζl (12)

holds.

Proof. Let l be arbitrarily chosen. Then

f(xl + dl)− f(xl) = g(xl + dl)− g(xl)− h(xl + dl) + h(xl)

≤ g(xl + dl)− g(xl)− (sl)Tdl

= φl(x
l + dl)− φl(xl)

≤ mζl ≤ γζl,

where the first inequality exploits the fact that sl ∈ ∂h(xl), the penultimate inequality comes
from the serious step termination of the inner bundle method, and the last estimate uses
γ ∈ (0,m] as well as ζl < 0 (see the previous discussion). This shows that at least τl = 1 has
the desired property. Taking into account the construction of the stepsize yields the desired
claim.

Finally, we need the following auxiliary result for proving global convergence of Algorithm 3.1.

8

Lemma 3.5. Assume that Algorithm 3.1 generates an infinite sequence {xl}. Then the se-
quence {f(xl)} is monotonically decreasing. If, in addition, there exists a lower bound f∗ ∈ R
such that f(xl) ≥ f∗ holds for all l, then the estimate

∞∑
l=1

(
‖dl‖2 + εl

)
≤ f(x0)− f∗

γ

holds. In particular, we then have dl → 0 and εl → 0 for l→∞.

Proof. The monotonicity of the function values follows directly from ζl being negative and the
line search in (S.3).

To establish the second assertion, note that (S.3) can be written as −γτ2l ζl ≤ f(xl)−f(xl+1)
for all l. Taking the sum over l = 0, ..., j − 1, we get

γ

j−1∑
l=0

τ2l (−ζl) ≤ f(x0)− f(xj) ≤ f(x0)− f∗ ∀j ∈ N

by the boundedness assumption. Letting j →∞ therefore gives

∞∑
l=0

τ2l (−ζl) ≤
f(x0)− f∗

γ
.

Using τl ≥ 1 and inserting the definition of ζl gives the desired inequality.

The following is the main global convergence result for Algorithm 3.1.

Theorem 3.6. Every accumulation point of a sequence {xl} generated by Algorithm 3.1 is a
critical point of the objective function f .

Proof. Let x∗ be an accumulation point of the sequence {xl} and {xl}L be a corresponding
subsequence converging to x∗. Since sl ∈ ∂h(xl) for all l, the convergence of {xl}L implies the
boundedness of the sequence {sl}L. Hence, without loss of generality, we may assume that
{sl}L converges to some limit s∗. Due to the closedness property of the convex subdifferential,
it follows that s∗ ∈ ∂h(x∗).

By the continuity of f , we have f(xl) →L f(x∗). Hence, the monotonicity of the entire
sequence {f(xl)} yields convergence of the entire sequence {f(xl)} to f(x∗). The monotonicity
also implies f(xl) ≥ f(x∗) for all l. Thus, the previous lemma can be applied to obtain dl → 0
and εl → 0 for l→∞.

Furthermore, since we have −dl ∈ ∂εlφl(xl) in view of (9), we get

φl(x) ≥ φl(xl)− (dl)T (x− xl)− εl ∀x ∈ Rn ∀l ∈ N.

Using the definition of φl, this can be rewritten as

g(x)− (sl)Tx ≥ g(xl)− (sl)Txl − (dl)T (x− xl)− εl ∀x ∈ Rn ∀l ∈ N.

Taking l→L ∞ and exploiting the continuity of g therefore yields

g(x)− (s∗)Tx ≥ g(x∗)− (s∗)Tx∗ ∀x ∈ Rn

9

or, equivalently,
g(x) ≥ g(x∗) + (s∗)T (x− x∗) ∀x ∈ Rn.

Consequently, we have s∗ ∈ ∂g(x∗). Together with s∗ ∈ ∂h(x∗), this shows that ∂g(x∗)∩∂h(x∗)
6= ∅, hence x∗ is a critical point of the DC function f .

Recall that we terminate our method(s), for our theoretical considerations, only if ζl = 0.
Numerically, one should replace this condition in (S.3) of the bundle method 2.1 by a more
practical condition like

|ζk| < δ or, equivalently, ζk > −δ (13)

with some given tolerance δ > 0. The following result then shows that Algorithm 3.1 terminates
after finitely many iterations in a point which approximately satisfies the condition of being a
critical point of the DC function f .

Theorem 3.7. Assume that f is bounded from below. Then Algorithm 3.1, with the modified
termination criterion (13), terminates after finitely many iterations in a point xL satisfying

dist
(
∂εLg(xL), ∂h(xL)

)
<
√
δ with εL < δ. (14)

Proof. First recall that, in each outer iteration l, due to Assumption 3.2, the bundle step (S.2)
terminates after a finite number of inner iterations either meeting the termination criterion or
detecting a descent direction dl. This is based on the fact that carrying out only null steps
within the bundle iteration leads to {ζk} tending to zero, see, e.g., [9], hence the condition (13)
eventually holds.

We next show that Algorithm 3.1 terminates after finitely many iterations. Assume, by
contradiction, that an infinite sequence {xl} is generated. Then each call of the bundle method
ends with a serious step and hence the computation of a descent direction dl. The subsequent
line search then yields

f(xl+1) ≤ f(xl) + γτ2l ζl ≤ f(xl) + γζl ∀l ∈ N,

where the final inequality results from τl ≥ 1 and ζl being negative. Summation over l =
0, ..., j − 1 gives

f(xj)− f(x0) ≤ γ
j−1∑
l=0

ζl ≤ −γδj ∀j ∈ N,

since ζl ≤ −δ for all l by assumption (the inexact termination criterion never holds). Letting
j →∞, the right-hand side tends to −∞, whereas the left-hand side is bounded from below by
assumption. This contradiction shows that Algorithm 3.1 terminates within a finite number
of iterations.

Let xL denote the point of termination. It remains to show that xL satisfies the properties
from (14). To this end, we first note that a simple calculation shows that ∂εφl(x) = ∂εg(x)− sl
holds for all l ∈ N, ε ≥ 0, and x ∈ Rn. Since −dl ∈ ∂εlφl(x

l) by (9), we therefore obtain
the existence of an element t̃l ∈ ∂εlg(xl) such that −dl = t̃l − sl. Together with the fact that
sl ∈ ∂h(xl), we get

dist
(
∂εlg(xl), ∂h(xl)

)
= inf

{
‖t−s‖

∣∣ t ∈ ∂εlg(xl), s ∈ ∂h(xl)
}
≤
∥∥t̃l−sl∥∥ = ‖dl‖ ≤

√
|ζl|, (15)

10

where the last inequality just exploits the definition of ζl. This definition also implies εl ≤ |ζl|.
Since, upon termination, we have |ζL| < δ, the two estimates (14) follow.

Note that (14) can be seen as an approximation of

dist (∂g(x∗), ∂h(x∗)) = 0. (16)

Due to the closedness of the subdifferential, (16) is equivalent to ∂g(x∗) ∩ ∂h(x∗) 6= ∅, which
means that x∗ is a critical point of the DC function f . We may therefore view the point of
termination as an approximate critical point of the objective function.

3.2 Descent Properties of Search Directions

The subject of this section is to discuss some additional properties of the search direction dl.
We will see that dl is indeed a descent direction of the objective function f at the current
iterate xl, but, in general, not in the point xl + dl. Note that this latter property holds for
the boosted DCA method from [4] if g is smooth. We also discuss a modified version for
determining a suitable stepsize in (S.3).

Note that the convergence theory in Section 3.1 is completely independent of any descent
properties of dl. In particular, the line search in (S.3) makes no explicit use of this feature (see
also Lemma 3.4). Nevertheless, it is interesting to see that dl is indeed a descent direction of
f in xl.

Proposition 3.8. The directional derivative of the objective function satisfies

f ′(xl, dl) ≤ φ′l(xl, dl) < 0 ∀l ∈ N.

Hence, dl is a descent direction of f in xl.

Proof. Let l be fixed. We then obtain

f ′(xl, dl) = g′(xl, dl)− h′(xl, dl) = g′(xl, dl)− max
s∈∂h(xl)

sTdl ≤ g′(xl, dl)− (sl)Tdl = φ′l(x
l, dl),

where the relation (2) together with sl ∈ ∂h(xl) was exploited. By construction, dl results
from a serious step of the bundle method, hence φl(x

l + dl) < φl(x
l) holds. A standard

characterization of the directional derivative therefore yields

φ′l(x
l, dl) = inf

t>0

φl(x
l + tdl)− φl(xl)

t
≤ φl(x

l + dl)− φl(xl)
1

< 0.

Putting both estimates together completes the proof.

Recall that Lemma 3.4 shows that a full step in the direction dl is always accepted by the
line search criterion (S.3). Using a minor modification in the bundle procedure ensures that
DCBA even allows to take a stepsize τl strictly larger than one. The details are given in the
subsequent proposition.

Proposition 3.9. Assume that we replace the inequality in (S.4) of the Bundle Algorithm 2.1
by a strict one. Then there exists a stepsize τl > 1 such that (12) holds.

11

Proof. For arbitrary l, one can follow the proof of Lemma 3.4 to see that the sharp estimate

f(xl + dl) < f(xl) + γζl

holds. Consequently, (12) is satisfied for τl = 1, but with a strict inequality. Since the mapping
τ 7→ f(xl + τdl)− f(xl)− γτ2ζl is continuous, (12) holds on an interval [1, τ∗) for some τ∗ > 1
(depending on l). This completes the proof.

The previous result motivates to search for a suitable stepsize by using a strategy like

τl = max
{

1 + τ̄lβ
j
∣∣ j ∈ N0

}
such that f(xl + τld

l) ≤ f(xl) + γτ2l ζl

for some β ∈ (0, 1), where τ̄l can be determined by the self-adaptive trial stepsize strategy
introduced in [4]. In this way, our approach shares some properties of the boosted version of
DCA, but for general nonsmooth functions g and h.

At a first glance, this modified stepsize seems to be rather promising, and is more likely to
yield a stepsize larger than one than the original stepsize rule from (S.3). However, numerical
tests indicate that the overall results are often better for the original stepsize rule, at least
for most applications considered in this work. The computation of stepsizes larger than one
by the modified rule sometimes leads to the situation where the method crosses a valley with
a one-dimensional minimizer, ending up in a region of ascent again. Therefore, the progress
in the function value of the objective is often less than accepting a stepsize of one. As this
behavior accumulates, one keeps jumping from one side of the valley to the other, sometimes
even on a straight line. We illustrate this behavior in Figure 1 where Example 3.10 (see
below) is used, with the standard choice of parameters given in Section 4.1 and initial point
(x0, y0)T := (2.5, 1)T . It is remarkable that the vector provided by the bundle method often
seems to be a pretty good choice for updating the iterate without any scaling.

Recall that Lemma 3.4 and Proposition 3.9 show that the full step in the direction dl is
always accepted by our line search rule(s). Similar to [4], one may therefore ask whether dl is
also a direction of descent at the point xl + dl. Note, however, that this cannot be expected
for nonsmooth functions g since it was already shown in [4] that this property dos not hold,
in general, even if the DC subproblems are solved exactly. It is therefore not surprising to see
that this descent property is also violated for our inexact solution dl of the DC subproblem.
This is shown by the following counterexample taken from [4].

Example 3.10. (Failure of a boosted version of DCBA)
Consider the function

f : R2 → R, f(x, y) := −5

2
x+

1

2
(x2 + y2) + |x|+ |y|

with uniformly convex DC-component functions g, h : R2 → R chosen as

g(x, y) := −5

2
x+ x2 + y2 + |x|+ |y|, h(x, y) :=

1

2
(x2 + y2).

Taking (x0, y0)T := (0.5, 0.1)T as a starting point, the bundle method applied to minx∈R2 φ0(x, y)
with m = 0.1 stops after k = 2 iterations with the detection of the descent direction

d0 ≈ (0.61091,−0.28290)T .

12

0.5 1 1.5 2 2.5 3
-1

-0.5

0

0.5

1

1.5

original step size
adapted step size

Figure 1: Variants of stepsize strategies

Let us note, for the sake of completeness, that selecting m in a different way would not open
the door for gaining a descent direction in the first iteration, as the first search direction
(d1,01 , d1,02)T satisfies φ0(x

0 + d1,01 , y0 + d1,02)− φ0(x0, y0) = 2 > 0.
Before verifying analytically that d0 is indeed not a descent direction of f at (x0, y0)T + d0,

let us have a look at Figure 2, which contains a contour plot of the function f , revealing the
basic situation. Starting at (x0, y0)T = (0.5, 0.1)T heading in direction d0, one initially achieves
a decrease in the function value, as it was expected because of d0 being a descent direction of
f at (x0, y0)T . But proceeding further (below the line y = 0 to be more precise), one leaves
the region of descent, entering a region of ascent. Accepting a full step τ0 = 1, one touches the
region of ascent. Therefore, moving further in direction d0 from (x0, y0)T + d0 would result in
a continuing increase of the function value, demonstrating that d0 is not a descent direction of
f at the point (x0, y0)T + d0. Analytically this claim is confirmed by the corresponding scalar
product

∇f(x0 + d01, y
0 + d02)

Td0 ≈ 0.09695

being positive (note that one can indeed consider the gradient of the objective, as the considered
point is located in a region where f is differentiable). In addition, this instance shows that the
search direction d0 is not running tangential towards the contour line through (x0+d10, y

0+d02)
T ,

which is marked pink in Figure 2, although it might seem to be the case at first glance.

Recall that [4] shows, for continuously differentiable functions g, that the exact solution dl of
the convex DC subproblem yields a descent property of f at the new point xl + dl, leading
itself to the boosted version BDCA of the DCA method. This property does not necessarily
hold for our approach where dl is only computed as an inexact solution of the DC subproblem.

13

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Figure 2: Change of the function value in direction d0 starting at (0.5, 0.1)T

This is illustrated in the following example which results from the previous one by replacing
the absolute value function using a scaled and shifted version of Huber’s loss, see [12].

Example 3.11. (Failure of a boosted version of DCBA in case of smooth DC components)
Consider the modified function

f̃ : R2 → R, f̃(x, y) := −5

2
x+

1

2
(x2 + y2) + ψε(x) + ψε(y)

with

ψε : R→ R, ψε(x) :=

{
|x| if |x| ≥ ε,
1
2εx

2 + ε
2 if |x| < ε

being the described smooth adaption of the absolute value function for sufficiently small ε > 0,
e.g., ε = 10−3. Similarly to the previous example the uniformly convex DC-component func-
tions g̃, h̃ : R2 → R are chosen as

g̃(x, y) := −5

2
x+ x2 + y2 + ψε(x) + ψε(y), h̃(x, y) :=

1

2
(x2 + y2).

Note that the smooth modification f̃ coincides with the function f from the previous example
outside the interval Iε := (−ε, ε). Therefore, taking ε > 0 sufficiently small, and starting again
in (x0, y0)T = (0.5, 0.1)T , the approximation function φ̃0 matches the corresponding one from
Example 3.10 at least on the relevant part of the domain of definition, namely outside the
interval Iε. Thus, all calculations from Example 3.10 remain valid, as we stay outside the
critical interval Iε during the whole computation. Consequently, also in this case the accepted
search direction turns out not to be a descent direction of the objective f̃ at the intermediate
point (x0 + d01, y

0 + d02)
T .

14

The previous example, of course, shows that our approach has a drawback compared to the
boosted DCA. Recall, however, that our primary aim was to develop a method for the solution
of DC programs where both component functions g and h are nonsmooth, and in this situation,
the descent property of dl cannot be expected at the point xl + dl even for the exact solution
of the DC subproblem.

4 Numerical Experiments and Applications

This section presents some numerical experiments of the new algorithm DCBA and gives a
comparison with some existing solvers for DC programs. In particular, our method is com-
pared with the solvers DCA [2, 4], BDCA [4], PBDCA [13], and DCPCA [8], which are briefly
reviewed in Section 4.1, together with some details of our implementation. The numerical
experiments are then carried out using an academic test problem [4] as well as some examples
arising from applications, namely Minimum Sum-of-Squares Clustering [4, 22], Multidimen-
sional Scaling [4, 16], and edge detection by means of a clustering technique [14].

4.1 Methods and Implementation

This section first provides some details of the DC solvers that are used in our numerical studies.
The standard method for solving DC problems is the DCA [2, 4], which can be accelerated to
a boosted version, namely the BDCA [4], in suitable cases. In addition, we use two bundle
methods, PBDCA [13] and DCPCA [8]. A brief overview of these algorithms is given in Table 1.

As already noted, DCA derives, in each iteration, a convex majorization of the objective
function by approximating the second DC component by some linear minorization. The mini-
mizer of this model function yields the next iteration, i.e., DCA solves the subproblems exactly
and uses no line search globalization, see [2, 4].

BDCA was introduced in [4] and is an accelerated version of DCA, which is based on the
observation that, in case of a smooth first DC component, the solution of the DC subproblem
gives rise to a descent direction at the point that is accepted by DCA as the next iterate. The
latter detection allows to add a line search for speeding up the convergence.

PBDCA is described in [13]. This bundle method constructs two separate cutting plane
models, one for each DC component. Combining both leads to a piecewise linear, non-convex
model of the objective function which incorporates the convex behavior of the DC function
as well as its concave one. The computation of the search direction uses a stabilizing term
which includes a proximity parameter, thus making a line search superfluous. The termination
criterion directly refers to the definition of a critical point of the DC function (see (3)) and
estimates the distance between the respective two subdifferentials.

DCPCA originates from [8]. Similar to PBDCA, it develops two separate cutting plane mod-
els, one for each component, initially leading to a non-convex piecewise linear approximation.
The two DC components, however, are not treated equally. The bundle related to the first
component is restricted to local information only, whereas the bundle concerning the second
component is not. The resulting model for the computation of a search direction, a pointwise
maximum of concave functions, is then approximated by a local quadratic program. In case
no satisfactory solution can be found, the method switches to an auxiliary (also quadratic)
program. Having found an appropriate search direction, a line search follows.

15

abbreviation denomination reference

DCA Difference of Convex Algorithm [2, 4]
BDCA Boosted DCA [4]
DCBA DC Bundle Algorithm Algorithm 3.1
PBDCA Proximal Bundle DCA [13]
DCPCA DC Piecewise-Concave Algorithm [8]

Table 1: Summary of the methods used in our numerical experiments

In order to achieve a better comparability of the numerical results, the termination criteria
of the different algorithms were adapted to some extent. While BDCA stops whenever the
computed descent direction dl is (close to) zero, for DCBA the sum of the squared norm of
the search direction plus the ε-tolerance of the current approximation of the subdifferential is
checked to be (close to) zero. This motivates to split the termination criterion for DCBA into
two parts, namely

‖dl‖ < ε1 and εl < ε2

with some given tolerances ε1, ε2 > 0. Note that suppressing the square of the norm in the
first condition is not essential. Accordingly, the termination criterion for BDCA is inherited as
‖dl‖ < ε1. As the stopping condition for DCA and BDCA coincide, it is clear how to choose
the respective one for DCA.

Comparing the convergence theorems for PBDCA, see Theorem 6 in [13], which ensures
that the approximate criticality condition dist (∂εf1(x

∗), ∂εf2(x
∗)) ≤ δ is satisfied in the point

of termination x∗, with the corresponding Theorem 3.7 for DCBA, which results in the final
estimate dist

(
∂εLg(xL), ∂h(xL)

)
< ε1 with εL < ε2, motivates to keep

‖ξ∗1 − ξ∗2‖ < ε1

with the termination tolerance δ = ε1 as a stopping test for PBDCA. Furthermore, this paral-
lelism suggests to take ε2 = ε as well.

Having in mind Remark 2 of [8], one gets a direct connection of the termination criterion
for DCPCA to the one for DCBA, which gives rise to adapt the stopping condition of DCPCA
in the same manner as the one for DCBA towards

‖d̄‖ < ε1 and − ‖d̄‖2 − v̄ =
∑
i∈I

λ̄iα
(1)
i < ε2

(the notation is taken from [8]). Note that both, α
(1)
i in terms of DCPCA and αk+1,l in terms

of DCBA, denote linearization errors corresponding to the first DC component. Indeed the
latter one was defined as a linearization error of the approximation φl in (11), but, as this
function differs from the first component g only by a linear function, αk+1,l in fact yields the
linearization error with respect to g. This last modification ensures that for DCPCA in the
point of termination x∗ the estimate dist (∂ε2f1(x

∗), f2(x
∗)) ≤ ε1 similar to the previous ones

for PBDCA and DCBA holds true.
Note that even though choosing ε1 � ε2 in the presented examples, in case of DCBA as

well as DCPCA, the second termination quantity related to the linearization errors undershot

16

even the lower critical tolerance ε1 in the point of termination, with the only exception of
reproducing the map of Bavaria by means of Multidimensional Scaling in Section 4.4. For this
special instance, both algorithms ended with a precision of 0.07, while having a comparatively
large ε1 = 10−2.

The codes were implemented in GNU Octave 5.1.0 and run on a Radeon Vega Mobile Gfx
2.00 GHz computer with AMD Ryzen 5 2500U CPU and 8.00 GB RAM under Windows 10
(64-bit). The only exception is the reproduction of the map of Bavaria by Multidimensional
Scaling, where the corresponding tests were implemented in Matlab version 2020b and executed
on a 8xIntel R©CoreTMi7-7700 CPU @ 3.60 GHz computer with 31.1 GiB RAM under an open
SUSE Leap 15.3 (64-bit) system.

In all numerical experiments, the initial stepsize of every line search procedure contained
in BDCA as well as DCBA gets computed by means of a self-adaptive trial stepsize strategy
introduced in [4]. Furthermore, the proximity parameter t ∈ [tmin, tmax] for PBDCA is chosen
as the arithmetic mean of the limits of the feasible domain. The quadratic programs occurring
in the bundle methods DCBA, PBDCA and DCPCA are solved using the quadprog command,
with the exception of the reproduction of the Bavaria map by means of Multidimensional
Scaling, where the spectral gradient method is used in the context of DCBA, cf. [5]. The
solution methods applied to the convex subproblems of DCA and BDCA differ depending on
the application. Hence, they will be given at the respective sections.

For most of the numerical tests, a similar parameter setting was used. Unless said otherwise,
the termination tolerances were set to ε1 = 10−3 and ε2 = 10−1, and referring once again to
the notation in the respective papers given at the beginning of this chapter, the remaining
parameters were chosen as α = 0.1, β = 0.5, γ = 4, and λ̄1 = 4 for BDCA. The last two
parameters concerning the self-adaptive trial stepsize strategy are also used for DCBA. In
addition, the remaining parameters for this algorithm were set to β = 0.5, m = 0.5 and γ = 0.1.
The missing parameters for PBDCA were chosen as m = 0.5, R = 107, L1 = L2 = 1000 as well
as the maximum size of the second bundle as 3 and r = 0.75 whenever the spacial dimension
n is less than 10, r = 0.99 in case of n ≥ 300, and r = b n

n+5 · 100c/100 else. This last bunch of
selections was taken from [13]. Moreover, for DCPCA, the still missing parameters were taken
as η = 0.7, m = 0.5, σ = 0.5 and ρ = 0.95, these choices are motivated by [8].

4.2 An Academic Test Problem

The essential aim of examining the subsequent academic test problem is to investigate how
often the algorithms under consideration converge to the known minimum of the objective
function and not just to a critical point. This test setting is inspired by Example 3.1 in [4].

For the objective function f : R2 → R with

f(x, y) := x2 + y2 + x+ y − |x| − |y| x, y ∈ R,

the DC-composition f := g − h to be examined is chosen as

g(x, y) :=
3

2
(x2 + y2) + x+ y, h(x, y) := |x|+ |y|+ 1

2
(x2 + y2) x, y ∈ R,

so that the component functions g, h are uniformly convex. The global minimum is at (−1,−1),
but there exist three additional critical and non-optimal points (−1, 0), (0,−1), and (0, 0). To
investigate the ability of the different solvers to find the optimal point, 10,000 test runs for

17

minimizing f were considered. Thereby, the initial points were chosen quasi-randomly from
the rectangle [−1.5, 1.5]2, and the sequences converging to each of the stationary points were
counted. For solving the convex subproblems arising in DCA and BDCA, a gradient method
was applied. The result is shown in Table 2. DCBA is the only method finding the minimizer
in every single instance. Also PBDCA and BDCA were successful in 99.9% of the test cases
and DCPCA in 97.7%. On the other hand, DCA converges to each of the four critical points
more or less the same number of times, leading to a success rate in determining the optimum
of 24.9%. Although, at this point, no detailed information regarding further test quantities is
provided, let us note that DCBA requires, on average, only two and at most three iterations
until termination, which is less than half the number needed by all other algorithms.

(−1,−1) (−1, 0) (0,−1) (0, 0)

DCA 2,487 2,424 2,523 2,566
BDCA 9,989 5 6 0
DCBA 10,000 0 0 0

PBDCA 9,992 7 0 1
DCPCA 9,772 97 131 0

Table 2: Absolute frequency of sequences converging to the respective critical point by
the different DC algorithms

4.3 The Minimum Sum-of-Squares Clustering Problem

We first provide a short introduction of the Minimum Sum-of-Squares Clustering method and
then present two test settings that are examined afterwards, one related to randomly generated
data and another one referring to real data in the form of geographic coordinates of Bavarian
cities. The reformulation of the underlying optimization problem in DC form can be found in
[4, 22]. The first experiment gets evaluated with the help of performance profiles, see [7].

Clustering describes the separation of a data set into disjoint subsets, so called clusters, by
gathering points of similarity. The method is used in data mining for the analysis of huge
data sets to get a better (or condensed) overview of the information actually contained in the
given data. Thereby, the measure of similarity may differ depending on the application. In
the following, each cluster gets characterized by its centroid and the classification gets done
by considering the (minimal) squared Euclidean distance of each data point towards these
centroids. Hence, denoting with A := {a1, ..., an} the set of points ai ∈ Rm, i = 1, ..., n, to
be partitioned, and letting k be the desired number of clusters, the aim is to determine k
centroids xj ∈ Rm, j = 1, ..., k, such that the (averaged) sum over the squared distance of
each data point towards the corresponding centroid gets minimal. Thus, using the notation
X := (x1, ..., xk) ∈ Rm×k, the problem under consideration is

min
X∈Rm×k

f(X) :=
1

n

n∑
i=1

min
j=1,...,k

wwai − xjww2
.

In [22], a DC-composition of f is derived. Adding a quadratic term to each component function

18

g, h : Rm×k → R like suggested in [4], one obtains

g(X) :=
1

n

n∑
i=1

k∑
j=1

wwai − xjww2
+
ρ

2
‖X‖2 ,

h(X) :=
1

n

n∑
i=1

max
j=1,...,k

∑
t=1,...,k
t6=j

wwai − xtww2
+
ρ

2
‖X‖2 ,

where a modulus ρ > 0 ensures uniform convexity and ‖X‖ denotes the Frobenius norm of the
matrix X. The following tests were carried out using ρ = 0.1.

In a first numerical experiment for a varying combination of parameters, n quasi-randomly
generated vectors in Rm with normally distributed entries having a mean of zero and a standard
deviation of ten got to be clustered in k groups. Thereby, n ∈ {500, 750, 1000}, m ∈ {2, 5, 10},
and k ∈ {5, 7, 10} were considered. For each triple of parameters, ten test runs with all
algorithms listed at the beginning of this section were passed, starting with k vectors in Rm
as centroid candidates generated according to the same rules as the points to be clustered.
Once again, the gradient method was applied for solving the convex subproblems in DCA and
BDCA. In the process, methods got rated successful whenever reaching the smallest function
value in comparison. In addition, they were considered as failed in case the running time
exceeded two hours for one single test run. This last incidence only occurred three times while
applying DCA. Throughout this experiment, the number of iterations as well as the running
time was reported and evaluated by means of the performance profiles introduced in [7]. The
resulting diagrams are shown in Figure 3. Note that differences between the profiles regarding
time and iterations arise from the fact that the iterations of the respective methods are not
directly comparable in view of computational effort. Nevertheless, it is obvious that BDCA,
which was specifically designed for DC problems with smooth first component, outperforms all
other algorithms, both in terms of the quality of the function value and in terms of computation
time. Among the remaining four algorithms, the bundle methods DCBA and PBDCA perform
best, while DCPCA as well as DCA already require, on average, significantly more iterations
and computation time.

Figure 3: Performance profiles of the Minimum Sum-of-Squares Clustering problem with
random data

19

In a second illustrative example, we investigate how the administrative districts of Bavaria
would look like if their cities got grouped by the Minimum Sum-of-Squares Clustering method.
To this end, a data set of geographic coordinates of n = 2,073 Bavarian cities and towns was
considered1, which consequently got to be separated in k = 7 clusters. As initial guess, seven
vectors with quasi-random entries in the range [9.06, 13.80] × [47.41, 50.52] of the geographic
coordinates of the considered data set were selected. All five algorithms determine (approxi-
mately) the same seven centroids, but differ in convergence speed. In Figure 4, the resulting
clusters are shown with their centroids marked as pentagrams next to the first ten iterations
of each method beside the ones of DCBA. Moreover, in Figure 5 the evolution of the function
value with proceeding iterations for each algorithm is plotted. Essentially, the differences in
convergence speed are similar to the experiment with random data, with the exception that,
in this special instance, PBDCA is the most promising solution method. BDCA is still ahead
of DCBA which, in turn, beats DCPCA as well as DCA.

Figure 4: Division of Bavarian cities into administrative districts by means of Minimum
Sum-of-Squares Clustering

4.4 The Multidimensional Scaling Problem

Similar to the organization of the previous section, we first give a brief introduction of the
problem under consideration, see [4, 16], and then use two different test settings, one based

1source: http://www.fa-technik.adfc.de/code/opengeodb/?C=D;O=A, called on April 15, 2021; de-
termination of membership towards Bavaria by means of postal code

20

Figure 5: Evolution of the function value with proceeding iterations while applying Min-
imum Sum-of-Squares Clustering towards Bavarian cities

on random data and the other one with real data based on the geographic problem from the
previous section.

Multidimensional Scaling is also a method from data mining. This time, the preprocessing
of large data sets for further analysis happens by summarizing data through reduction. To
be more precise, having a data set consisting of n points, each of dimension q, the aim is to
replace them by the same number of points having now a dimension of p ≤ q. Of course, one
tries to keep the relevant information in the best possible way. To this end, the differences
within the data set are considered by means of the dissimilarity matrix δ ∈ Rn×n with entries

δij := dij(X̃) :=
wwx̃i − x̃jww i, j = 1, .., n,

where X̃ := (x̃1, x̃2, ..., x̃n) ∈ Rq×n contains the data points to be analyzed. Now, the goal is
to find a matrix in Rp×n whose dissimilarity matrix approximates the one of the original data
δ in an optimal way, and hence reflects the existing differences in the data. Therefore, the
underlying optimization problem is

min
X∈Rp×n

f̃(X) :=
∑
i<j

ωij (dij(X)− δij)2 ,

where ω = (ωij)i,j=1,...,n is a symmetric matrix consisting of non-negative weights with zeros
on its diagonal. In the following experiments, it was taken as

ωij =

{
1 für i 6= j,

0 für i = j.

Obviously, the case p = q does not yield a reduction in the data set, but leads towards
the question whether the original data set can be reproduced by its dissimilarity matrix.

21

Consequently, the optimal function value for this special instance is known to be zero.
Neglecting constant terms, the primary optimization problem can be rewritten as a DC prob-

lem with the adapted objective function f : Rp×n → R given by its components g, h : Rp×n → R,

g(X) :=
1

2

∑
i<j

ωijd
2
ij(X) +

ρ

2
‖X‖2 , h(X) :=

∑
i<j

ωijδijdij(X) +
ρ

2
‖X‖2 ,

where a modulus ρ > 0 ensures the uniform convexity of g and h and ‖X‖ denotes the Frobenius
norm of the matrix X. In the subsequent experiments, ρ = 1

np is chosen depending on the size
of the data set and the dimension of the destination space.

The first numerical experiment uses quasi-randomly generated data X̃ ∈ Rq×n consisting
of normally distributed entries, having a mean of zero and a standard deviation of ten. Re-
producing the data as well as reducing each data point to half its size was tested. Thereby,
the parameters were taken as n ∈ {25, 50, 75, 100, 125, 150} and p ∈ {2, 3} (and, consequently,
q ∈ {p, 2p}). For each parameter combination, ten test runs with all algorithms from the
beginning of this section were executed. To construct a suitable initial guess X0 ∈ Rp×n,
following the suggestion in [4], we first create a matrix X̃0 of the same size with quasi-random
entries drawn from the same normal distribution as the data set itself. Afterwards,

X0 := X̃0
(
In×n −

1

n
1n×n

)
(17)

was set, with In×n denoting the identity matrix and 1n×n the matrix consisting of ones only.
This time, some parameters had been adopted, namely in case of BDCA α = 0.05, β = 0.1 as
well as the quantities related to the self-adaptive trial stepsize strategy, which also got used for
DCBA, γ = 10 and λ̄1 = 10. For the latter algorithm, also β = 0.1, m = 0.2, and γ = 0.05 were
changed. Comparably, m = 0.2 was also set for the bundle methods PBDCA and DCPCA,
together with σ = 0.1 for the latter method. The subproblems arising in DCA and BDCA were
solved by means of fminunc. During the overall process, in the case of p = q, a method gets
rated successful whenever approaching the (a priori known) optimal function value, whereas in
case of p < q yielding the in comparison smallest function value gets decisive. Additionally, an
algorithm got considered to be failed if the running time exceeded four hours or the maximum
number of 10,000 iterations was reached. A failure of PBDCA was often traced back towards
the last criterion. In particular, the number of inner iterations went beyond the critical bound.
Furthermore, DCA failed in five instances, and DCPCA in six ones. Reporting for each test run
the respective running time as well as the number of iterations led to the performance profiles
shown in extracts in Figure 6. Within a factor of more than 60, DCPCA finally approaches
the level of BDCA, so that, in the end, PBDCA is the only method with a significantly smaller
final success rate. But the discrepancies of DCPCA in evolution, in relation to most of the
other algorithms, diminish visibly when considering the performance profiles regarding running
time. However, this time a factor of far more than 2,000 is necessary until hardly any changes
in the overall profile occur. It is remarkable that purely taking the running time into account,
DCBA is the method outperforming all the other algorithms. But, altogether, next to DCBA,
especially the established BDCA seem to be the most promising method for this application.

The second example deals, once again, with the problem of geographic coordinates of Bavar-
ian cities. Taking the identical set of data as in Section 4.3, the task was to reproduce
the geographic coordinates on the basis of the dissimilarity matrix related to the raw data.

22

Figure 6: Performance profiles (extracts) of the Multidimensional Scaling problem with
random data

Thereby, the initial guess was constructed similarly as in the previous example. For this pur-
pose, the columns of the auxiliary matrix X̃0 ∈ R2×2,073 took quasi-random values ranging in
[0, 4.74]× [0, 3.12], motivated by the east-west as well as the north-south extension of Bavaria,
determined on the basis of the underlying data set. To the resulting X0 from (17), the geo-
graphic mean of Bavaria (11.43, 48.93)T (once again calculated with respect to the cities under
consideration) was added. We use the standard parameter settings from the beginning of this
section, with the only exception that ε1 = 10−2. Furthermore, the subproblems occurring in
DCA and BDCA were solved by means of a Limited-Memory BFGS method, see [19, 20]. All
algorithms managed to restore the map of Bavarian cities, but with differences in the speed of
convergence. This distinction gets already foreshadowed in Figure 7, in which next to the map
to be reproduced and the initial guess also, for each method, the current standing at iteration
25 as well as the final result is pictured (note that the slight rotation is due to the formula-
tion of the problem, estimating only the distances between cities). Further plots reveal that
the major progress happens during the first 60% of iterations, whereas the changes following
afterwards can hardly be seen in corresponding images. All methods yield satisfying results
although BDCA and PBDCA came out on top in terms of iterations.

4.5 Edge Detection by Means of a DC Optimization Based
Clustering Technique

Edge detection is a well known method in image segmentation for carving out certain objects in
an image. It is based on the idea of determining contours of objects marked by discontinuities
and erratic changes in the brightness values of the grey scale image. The technique presented
in the following, using a DC optimization based clustering approach, was developed in [14]. To
each pixel, a vector representing the differences in the grey scale values with respect to nearby
pixels gets assigned. Subsequently the norms of these vectors are split into two groups yielding
a differentiation into pixels belonging to an edge and the ones which does not.

Having a grey scale image consisting of (n + 2) × (m + 2) pixels with coordinates (x, y) ∈
[1, n + 2] × [1,m + 2] to each pixel of the interior of the image, i.e., with coordinates (x, y) ∈
[2, n + 1] × [2,m + 1], a vector vi ∈ R4, i = 1,, N with N = nm, containing the differences
in the brightness values of the pixel under consideration and the four vertical and horizontal

23

M
ap

of
B

av
ar

ia
to

b
e

re
p
ro

-
d
u
ce

d
In

it
ia

l
gu

es
s

D
C

A
:

it
er

at
io

n
25

D
C

A
:

it
er

at
io

n
79

B
D

C
A

:
it

er
at

io
n

25
B

D
C

A
:

it
er

at
io

n
39

D
C

B
A

:
it

er
at

io
n

25
D

C
B

A
:

it
er

at
io

n
65

P
B

D
C

A
:

it
er

at
io

n
25

P
B

D
C

A
:

it
er

at
io

n
38

D
C

P
C

A
:

it
er

at
io

n
25

D
C

P
C

A
:

it
er

at
io

n
21

4

F
ig

u
re

7:
R

ep
ro

d
u
ci

n
g

th
e

m
ap

of
B

av
ar

ia
b
y

m
ea

n
s

of
M

u
lt

id
im

en
si

on
al

S
ca

li
n
g

24

immediately adjacent pixels gets assigned. For obvious reasons, marginal pixels are neglected
and also will not get classified in the progress. Taking the norm ai := ‖vi‖ , i = 1, ..., N ,
of each such vector, one attains a measure of change in the grey scale values in relation to
the neighborhood of the central pixel. A high value indicates an affiliation towards an edge,
whereas a low value does not. This motivates to separate the set {ai}i=1,...,N into two groups.
To this end, the well known K-means clustering method gets applied with K = 2. Denoting
with z1, z2 ∈ R the variables for determining the centroids, the resulting optimization problem
is given by

min
z1,z2∈R

f(z1, z2) :=
N∑
i=1

min {|ai − z1|, |ai − z2|} .

Similar to the clustering method introduced in Section 4.3, the objective function f can be
written as a DC function with (uniformly) convex components g, h : R2 → R,

g(z1, z2) :=
N∑
i=1

(|ai − z1|+ |ai − z2|) +
ρ

2

ww(z1, z2)
T
ww2

,

h(z1, z2) :=
N∑
i=1

max {|ai − z1|, |ai − z2|}+
ρ

2

ww(z1, z2)
T
ww2

with modulus ρ ≥ 0. In the following, ρ was chosen to be 0.1. As initial value(
z01
z02

)
:= κ (amax − amin)

(
1
2

)
with amax = maxi=1,...,N ai and amin = mini=1,...,N ai was selected on the basis of [14]. However,
κ varies in our experiments with the image under consideration, as especially DCBA turned
out to be pretty sensitive regarding the initial choice. Moreover, in contrast to many other
applications, the clustering method has not to be carried out with a high precision in order to
yield a satisfactory classification of edges. Instead, for our subsequent test runs, a maximum of
five iterations proved to be sufficient. In addition, the termination tolerance ε1 was reduced to
0.1 for the numerical experiments with some classical test images for edge detection. Besides,
the parameter m for all three bundle methods was adapted to 0.2. Note that, this time,
BDCA can not be applied for solving the optimization problem as the corresponding first DC
component g is nonsmooth. For the solution of the subproblems arising in DCA, fminsearch
was used. Three classical test images for edge detection were considered. For the cameraman,
having a size of 256 × 256 pixels, κ = 1

3 was set as parameter for the initial point, for the
house, covering the same number of pixels, κ = 0.3, and for the moon, spanning 537 × 358
pixels, κ = 1

2 was chosen. The results are shown in Figure 8, in which also the input images
are displayed in the first column. PBDCA exceeded the maximum number of 10,000 inner
iterations in case of the cameraman and the house, which is why no output has been produced.
In the images, differences only get visible while considering the house. Here, DCBA recognizes
the top end of the chimney a bit better than the two remaining algorithms, and also stronger
indicates some less pronounced edges by dotted lines. Let us note that for this test image the
sensitivity of DCBA regarding the initial value got particularly clear, especially when adapting
the parameter m at the same time. Only slight modifications led from recognizing hardly any
edges over a result comparable to the ones from the other methods to detection of every brick

25

F
ig

u
re

8:
E

d
ge

d
et

ec
ti

on
b
y

m
ea

n
s

of
a

D
C

op
ti

m
iz

at
io

n
b
as

ed
cl

u
st

er
in

g
te

ch
n
iq

u
e

26

stone (see Figure 9 for which m = 0.5 and κ = 1
4 was chosen), whereas the output of the

remaining algorithms kept pretty stable. Although the number of iterations is not reported
here in detail, it is worth mentioning that DCA reaches the desired accuracy in all three cases
within only two iterations. Altogether, with the exception of PBDCA, all remaining methods
yield pretty similar results for this application, detecting sharp edges quite reliably.

Figure 9: Detecting brick stones with DCBA

5 Concluding Remarks

In this article, a bundle method for the solution of unconstrained DC optimization problems
(DCBA) was introduced. In contrast to various existing bundle methods designed for this
topic, the bundles are not directly constructed with respect to the DC components of the
objective function, instead a convex approximation of the function to be minimized, which is
already known from the classical DC Algorithm, gets constructed first. Applying the bundle
method towards the model function yields a descent direction for the objective function which
allows to add a line search afterwards. Contrary to BDCA, the bundle method is not carried
out until a minimizer of the approximation is found, but only until a serious step is executed.
An advantage of DCBA against BDCA is that the new method can be applied to DC problems
with both components being nonsmooth.

The algorithm was shown to be well-defined for functions being bounded from below, and
being globally convergent in the sense that every accumulation point is a critical point of the
objective function. Moreover, termination of the algorithm (with numerically implementable
termination criterion) occurs within a finite number of iterations in a point satisfying an
approximate criticality measure.

27

So far, this method is applicable to unconstrained DC programs only. Our future work will
concentrate on suitable extensions to constrained problems, first to DC programs with convex
constraints, and then also to DC programs with general DC-type constraints.

References

[1] Ackooij, W. van, Demassey, S., Javal, P., Morais, H., Oliveira, W. de, et al.
“A bundle method for nonsmooth DC programming with application to chance-
constrained problems”. In: Comput. Optim. Appl. 78.2 (2021), pages 451–490. url:
https://doi.org/10.1007/s10589-020-00241-8.

[2] An, L. T. H., Tao, P. D., and Muu, L. D. “Numerical solution for optimization over
the efficient set by d.c. optimization algorithms”. In: Oper. Res. Lett. 19.3 (1996),
pages 117–128. url: https://doi.org/10.1016/0167-6377(96)00022-3.

[3] Aragón Artacho, F. J., Fleming, R. M. T., and Vuong, P. T. “Accelerating the DC
algorithm for smooth functions”. In: Math. Program. 169.1 (2018), pages 95–118.
url: https://doi.org/10.1007/s10107-017-1180-1.

[4] Aragón Artacho, F. J. and Vuong, P. T. “The boosted difference of convex func-
tions algorithm for nonsmooth functions”. In: SIAM J. Optim. 30.1 (2020), pages 980–
1006. url: https://doi.org/10.1137/18M123339X.

[5] Birgin, E., Mart́ınez, J. M., and Raydan, M. “Nonmonotone spectral projected
gradient methods on convex sets”. In: SIAM J. Optim. 10 (2000), pages 1196–
1211. url: https://doi.org/10.1137/S1052623497330963.

[6] Clarke, F. H. Optimization and Nonsmooth Analysis. Canadian Mathematical So-
ciety series of monographs and advanced texts. Wiley New York, 1983.

[7] Dolan, E. D. and Moré, J. J. “Benchmarking optimization software with perfor-
mance profiles”. In: Math. Program. 91.2 (2002), pages 201–213. url: https:

//doi.org/10.1007/s101070100263.

[8] Gaudioso, M., Giallombardo, G., Miglionico, G., and Bagirov, A. M. “Minimizing
nonsmooth DC functions via successive DC piecewise-affine approximations”. In: J.
Glob. Optim. 71.1 (2018), pages 37–55. url: https://doi.org/10.1007/s10898-
017-0568-z.

[9] Geiger, C. and Kanzow, C. Theorie und Numerik restringierter Optimierungsauf-
gaben. Springer-Lehrbuch Masterclass. Springer Berlin Heidelberg, 2002.

[10] Hiriart-Urruty, J.-B. “Generalized differentiability / duality and optimization for
problems dealing with differences of convex functions”. In: Convexity and Dual-
ity in Optimization. Edited by J. Ponstein. Berlin, Heidelberg: Springer Berlin
Heidelberg, 1985, pages 37–70.

[11] Hiriart-Urruty, J.-B. and Lemaréchal, C. Fundamentals of Convex Analysis. Grund-
lehren Text Editions. Springer Berlin, 2001.

28

https://doi.org/10.1007/s10589-020-00241-8
https://doi.org/10.1016/0167-6377(96)00022-3
https://doi.org/10.1007/s10107-017-1180-1
https://doi.org/10.1137/18M123339X
https://doi.org/10.1137/S1052623497330963
https://doi.org/10.1007/s101070100263
https://doi.org/10.1007/s101070100263
https://doi.org/10.1007/s10898-017-0568-z
https://doi.org/10.1007/s10898-017-0568-z

[12] Huber, P. J. “Robust estimation of a location parameter”. In: Ann. Math. Stat.
35.1 (1964), pages 73 –101. url: https://doi.org/10.1214/aoms/1177703732.

[13] Joki, K., Bagirov, A. M., Karmitsa, N., and Mäkelä, M. M. “A proximal bundle
method for nonsmooth DC optimization utilizing nonconvex cutting planes”. In: J.
Glob. Optim. 68 (2017), pages 501–535. url: https://doi.org/10.1007/s10898-
016-0488-3.

[14] Khalaf, W., Astorino, A., D’Alessandro, P., and Gaudioso, M. “A DC optimization-
based clustering technique for edge detection”. In: Optim. Lett. 11.3 (2017), pages 627–
640. url: https://doi.org/10.1007/s11590-016-1031-7.

[15] Kiwiel, K. C. “An aggregate subgradient method for nonsmooth convex minimiza-
tion”. In: Math.Program. 27 (1983), pages 320 –341. url: https://doi.org/10.
1007/BF02591907.

[16] Le Thi, H. A. and Pham Dinh, T. “D.C. programming approach to the multi-
dimensional scaling problem”. In: From Local to Global Optimization. Edited by
A. Migdalas, P. M. Pardalos, and P. Värbrand. Boston, MA: Springer US, 2001,
pages 231–276. url: https://doi.org/10.1007/978-1-4757-5284-7_11.

[17] Le Thi, H. A. and Pham Dinh, T. “DC programming and DCA: thirty years of
developments”. In: Math. Program. 169.1 (2018), pages 5–68. url: https://doi.
org/10.1007/s10107-018-1235-y.

[18] Lemaréchal, C. and Mifflin, R. Nonsmooth Optimization: Proceedings of a IIASA
Workshop, March 28 - April 8, 1977. Elsevier Science, 2014.

[19] Liu, D. C. and Nocedal, J. “On the limited memory BFGS method for large scale
optimization”. In: Math. Program. 45 (1989), pages 503 –528. url: https://doi.
org/10.1007/BF01589116.

[20] Nocedal, J. and Wright, S. J. Numerical Optimization. 2nd edition. Springer Series
in Operations Research and Financial Engineering. Springer New York, 2006.

[21] Oliveira, W. de. “Proximal bundle methods for nonsmooth DC programming”. In:
J. Glob. Optim. 75.2 (2019), pages 523–563. url: https://doi.org/10.1007/
s10898-019-00755-4.

[22] Ordin, B. and Bagirov, A. M. “A heuristic algorithm for solving the minimum
sum-of-squares clustering problems”. In: J. Glob. Optim. 61 (2015), pages 341–
361. url: https://doi.org/10.1007/s10898-014-0171-5.

[23] Rockafellar, R. T. Convex Analysis. Volume 28. Princeton Mathematical Series.
Princeston University Press, 1970.

29

https://doi.org/10.1214/aoms/1177703732
https://doi.org/10.1007/s10898-016-0488-3
https://doi.org/10.1007/s10898-016-0488-3
https://doi.org/10.1007/s11590-016-1031-7
https://doi.org/10.1007/BF02591907
https://doi.org/10.1007/BF02591907
https://doi.org/10.1007/978-1-4757-5284-7_11
https://doi.org/10.1007/s10107-018-1235-y
https://doi.org/10.1007/s10107-018-1235-y
https://doi.org/10.1007/BF01589116
https://doi.org/10.1007/BF01589116
https://doi.org/10.1007/s10898-019-00755-4
https://doi.org/10.1007/s10898-019-00755-4
https://doi.org/10.1007/s10898-014-0171-5

	Introduction
	Preliminaries
	Tools from Nonsmooth and Convex Analysis
	A Bundle Method for Convex Optimization

	A Bundle Method for DC Optimization
	Algorithm and Convergence Properties
	Descent Properties of Search Directions

	Numerical Experiments and Applications
	Methods and Implementation
	An Academic Test Problem
	The Minimum Sum-of-Squares Clustering Problem
	The Multidimensional Scaling Problem
	Edge Detection by Means of a DC Optimization Based Clustering Technique

	Concluding Remarks
	References

