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Abstract. Mathematical programs with equilibrium constraints are optimization prob-
lems which violate most of the standard constraint qualifications. Hence the usual Karush-
Kuhn-Tucker conditions cannot be viewed as first order optimality conditions unless rela-
tively strong assumptions are satisfied. This observation has lead to a number of weaker
first order conditions, with M-stationarity being the strongest among these weaker con-
ditions. Here we show that M-stationarity is a first order optimality condition under a
very weak Abadie-type constraint qualification. This result has recently been established
by Jane Ye. Improving on her approach, we present a different, much more direct and
shorter, approach.

Key Words. Mathematical programs with equilibrium constraints, M-stationarity, Abadie
constraint qualification.



1 Introduction

We consider the following program, known across the literature as a mathematical program
with complementarity—or often also equilibrium—constraints, MPEC for short:

min f(z)
s.t. g(z) ≤ 0, h(z) = 0,

G(z) ≥ 0, H(z) ≥ 0, G(z)T H(z) = 0,
(1)

where f : Rn → R, g : Rn → Rm, h : Rn → Rp, G : Rn → Rl, and H : Rn → Rl are
continuously differentiable.

It is easily verified that the standard Mangasarian-Fromovitz constraint qualification
is violated at every feasible point of the program (1), see, e.g. [2]. The weaker Abadie
constraint qualification can be shown to only hold in restrictive circumstances, see [14, 3].
A still weaker CQ, the Guignard CQ, has a chance of holding, see [3]. Any of the classic
CQs imply that a Karush-Kuhn-Tucker point (called a strongly stationary point by the
MPEC community) is a necessary first order condition.

However, because only the weakest constraint qualifications have a chance of holding,
new constraint qualifications tailored to MPECs, and with it new stationarity concepts,
have arisen, see, e.g., [10, 17, 14, 12, 13, 6, 21].

One of the stronger stationarity concepts introduced is M-stationarity [12] (see (5)). It is
second only to strong stationarity. Weaker stationarity concepts like A- and C-stationarity
have also been introduced [4, 17], but it is commonly held that these are too weak since
such points allow for trivial descent directions to exist.

M-stationary points also play an important role for some classes of algorithms for the
solution of MPECs. For example, Scholtes [18] has introduced an algorithm which, under
certain assumptions to the MPEC (1), converges to an M-stationary point, but not in
general to a strongly stationary point. Later, Hu and Ralph [8] proved a generalization of
this result by showing that a limit point of a whole class of algorithms is an M-stationary
point of the MPEC (1).

Hence it is of some importance to know when an M-stationary point is in fact a first
order condition. This paper is dedicated to answering that question. We will show M-
stationarity to be a necessary first order condition under MPEC-ACQ, an MPEC variant
of the classic Abadie CQ, see [6]. This result has previously been established by Ye [21].

However, there has been some controversy about the correctness of her proof. It relies
on [20, Theorem 3.2], the proof of which is erroneous, as the author agrees [22]. It is
possible to fix this gap in her proof by using, for example, a result by Treiman [19]. We do
not take this route in this paper. The interested reader is referred to [5] for an exhaustive
discussion of this approach. Instead, we present here a very direct and short proof.

The organization of this paper is as follows: In Section 2 we introduce some concepts
and results necessary for proving our main result. This is done in Section 3, referring to
Section 2 and introducing additional concepts as needed.

A word on notation. Given two vectors x and y, we use (x, y) := (xT , yT )T for ease of
notation. Comparisons such as ≤ and ≥ are understood componentwise. Given a vector
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a ∈ Rn, ai denotes the i-th component of that vector. Given a set ν ⊆ {1, . . . , n} we
denote by xν ∈ R|ν| that vector which consists of those components of x ∈ Rn which
correspond to the indices in ν. Furthermore, we denote the set of all partitions of ν by
P(ν) := {(ν1, ν2) | ν1 ∪ ν2 = ν, ν1 ∩ ν2 = ∅}. By Rl

+ := {x ∈ Rl | x ≥ 0} we mean
the nonnegative orthant of Rl. Finally, the graph of a multifunction (set-valued function)
Φ : Rm ⇒ Rn is defined as gph Φ := {(v, w) ∈ Rm+n | w ∈ Φ(v)}.

2 Preliminaries

We will now introduce some notation and concepts in the context of MPECs which we will
need for the remainder of this paper.

From the complementarity term in (1) it is clear that for a feasible point z∗, either
Gi(z

∗), or Hi(z
∗), or both must be zero. To differentiate between these cases, we divide

the indices of G and H into three sets:

α := α(z∗) := {i | Gi(z
∗) = 0, Hi(z

∗) > 0}, (2a)

β := β(z∗) := {i | Gi(z
∗) = 0, Hi(z

∗) = 0}, (2b)

γ := γ(z∗) := {i | Gi(z
∗) > 0, Hi(z

∗) = 0}. (2c)

The set β is called the degenerate set.
The classic Abadie CQ is defined using the tangent cone of the feasible set of a math-

ematical program. The MPEC variant of the Abadie CQ (see Definition 2.1) also makes
use of this tangent cone. If we denote the feasible set of (1) by Z, the tangent cone of (1)
in a feasible point z∗ is defined by

T (z∗) :=
{
d ∈ Rn

∣∣ ∃{zk} ⊂ Z,∃tk ↘ 0 : zk → z∗ and
zk − z∗

tk
→ d

}
. (3)

Note that the tangent cone is closed, but in general not convex.
For the classic Abadie CQ, the constraints of the mathematical program are linearized.

This makes less sense in the context of MPECs because information we keep for G and H,
we throw away for the complementarity term (see also [3]). Instead, the authors proposed
the MPEC-linearized tangent cone in [6],

T lin
MPEC(z∗) := {d ∈ Rn |∇gi(z

∗)T d ≤ 0, ∀i ∈ Ig,

∇hi(z
∗)T d = 0, ∀i = 1, . . . , p,

∇Gi(z
∗)T d = 0, ∀i ∈ α,

∇Hi(z
∗)T d = 0, ∀i ∈ γ,

∇Gi(z
∗)T d ≥ 0, ∀i ∈ β,

∇Hi(z
∗)T d ≥ 0, ∀i ∈ β,

(∇Gi(z
∗)T d) · (∇Hi(z

∗)T d) = 0, ∀i ∈ β },

(4)
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where Ig := {i | gi(z
∗) = 0} is the set of active inequality constraints at z∗. Note that here,

the component functions of the complementarity term have been linearized separately, so
that we end up with a quadratic term in (4).

Similar to the classic case, it holds that

T (z∗) ⊆ T lin
MPEC(z∗)

(see [6]). This inspires the following variant of the Abadie CQ for MPECs.

Definition 2.1 The MPEC (1) is said to satisfy MPEC-Abadie CQ (or MPEC-ACQ for
short) in a feasible vector z∗ if

T (z∗) = T lin
MPEC(z∗)

holds.

We refer the reader to [6] for a rigorous discussion of MPEC-ACQ.
As mentioned in the introduction, various stationarity concepts have arisen for MPECs.

Though we only need M-stationarity, we also state A-, C- and strong stationarity for
completeness’ sake, see [17, 14, 4] for more detail.

Let z∗ ∈ Z be feasible for the MPEC (1). We call z∗ M-stationary if there exists λg,
λh, λG, and λH such that

0 = ∇f(z∗) +
m∑

i=1

λg
i∇gi(z

∗) +

p∑
i=1

λh
i∇hi(z

∗)−
l∑

i=1

[
λG

i ∇Gi(z
∗) + λH

i ∇Hi(z
∗)

]
,

λG
α free,

λH
γ free,

(λG
i > 0 ∧ λH

i > 0) ∨ λG
i λH

i = 0 ∀i ∈ β
λG

γ = 0,

λH
α = 0,

g(z∗) ≤ 0, λg ≥ 0, g(z∗)T λg = 0.

(5)

The other stationarity concepts differ from M-stationarity only in the restriction im-
posed upon λG

i and λH
i for i ∈ β, as detailed in the following list:

• strong stationarity [17, 14]: λG
i ≥ 0 ∧ λH

i ≥ 0 ∀i ∈ β;

• M-stationarity [12]: (λG
i > 0 ∧ λH

i > 0) ∨ λG
i λH

i = 0 ∀i ∈ β;

• C-stationarity [17]: λG
i λH

i ≥ 0 ∀i ∈ β;

• A-stationarity [4]: λG
i ≥ 0 ∨ λH

i ≥ 0 ∀i ∈ β.

Note that the intersection of A- and C-stationarity yields M-stationarity and that strong
stationarity implies M- and hence A- and C-stationarity. Also note that Pang and Fuku-
shima [14] call a strongly stationary point a primal-dual stationary point. The “C” and
“M” stand for Clarke and Mordukhovich, respectively, since they occur when applying the
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Clarke or Mordukhovich calculus to the MPEC (1). The “A” might stand for “alternative”
because that descibes the properties of the Lagrange multipliers, or “Abadie” because it
first occured when MPEC-ACQ was applied to the MPEC (1), see [6].

We will now introduce some normal cones, which will become important in our subse-
quent analysis. For more detail on the normal cones we use here, see [11, 9, 16].

Definition 2.2 Let Ω ⊆ Rl be nonempty and closed, and v ∈ Ω be given. We call

N̂(v, Ω) := {w ∈ Rl | lim sup
vk→v

{vk}⊂Ω\{v}

wT (vk − v)/
∥∥vk − v

∥∥ ≤ 0} (6)

the Fréchet normal cone or regular normal cone [16] to Ω at v,

Nπ(v, Ω) := {w ∈ Rl | ∃µ > 0 : wT (u− v) ≤ µ ‖u− v‖2 ∀u ∈ Ω} (7)

the proximal normal cone to Ω at v, and

N(v, Ω) := { lim
k→∞

wk | ∃{vk} ⊂ Ω : lim
k→∞

vk = v, wk ∈ Nπ(vk, Ω)} (8)

the limiting normal cone to Ω at v.
By convention, we set N̂(v, Ω) = Nπ(v, Ω) = N(v, Ω) := ∅ if v /∈ Ω. By N×

Ω : Rl ⇒ Rl

we denote the multifunction that maps v 7→ N×(v, Ω), where × is a placeholder for one of
the normal cones defined above.

Note that, in the definition of the limiting normal cone N(v, Ω), Nπ(vk, Ω) may be replaced
by N̂(vk, Ω), see [11, Proposition 2.2]. Since this is particularly important, we state this
in its own proposition.

Proposition 2.3 Let Ω ⊆ Rl be nonempty and closed. Then it holds that

N(v, Ω) = { lim
k→∞

wk | ∃{vk} ⊂ Ω : lim
k→∞

vk = v, wk ∈ Nπ(vk, Ω)}

= { lim
k→∞

wk | ∃{vk} ⊂ Ω : lim
k→∞

vk = v, wk ∈ N̂(vk, Ω)}.
(9)

In particular, it holds that N̂(v, Ω) ⊆ N(v, Ω).

Note also that if v is in the interior of Ω, any of the above normal cones reduces to {0}, as
is well known.

Since the limiting normal cone is the most important one in our subsequent analysis,
we did not furnish it with an index to simplify notation.

It will become useful to know the normal cones to some specific sets. We start off with
the normal cone to the nonnegative orthant.
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Proposition 2.4 Let Ω = Rl
+ be the nonnegative orthant in Rl. Then the normal cone to

Rl
+ in v ∈ Rl is given by

N(v, Rl
+) = N(v1, [0,∞))× · · · ×N(vl, [0,∞)) (10)

with

N(vi, [0,∞)) =


∅ : vi < 0,

(−∞, 0] : vi = 0,

{0} : vi > 0.

(11)

Proof. Observing that Rl
+ is closed and convex, this is given by [16, Theorem 6.9 &

Example 6.10]. �

A direct consequence of this proposition is the following lemma, which will play a
central role when we try to cope with the complementarity constraints in (1).

Lemma 2.5 Let a, b ∈ Rl be given. Then the following are equivalent:

(a) a ≥ 0, b ≥ 0, aT b = 0;

(b) 0 ∈ b + N(a, Rl
+);

(c) (a,−b) ∈ gph NRl
+
.

The following proposition, concerning the limiting normal cone to gph NRl
+
, is due to

Outrata [12, Lemma 2.2], see also [20, Proposition 3.7].

Proposition 2.6 For any (x, y) ∈ gph NRl
+
, define

Ix := {i | xi > 0, yi = 0}, Iy := {i | xi = 0, yi < 0}, I0 := {i | xi = 0, yi = 0}.

Then

N((x, y), gph NRl
+
) = {(a,−b) ∈ R2l | aIx = 0, bIy = 0, (ai < 0 ∧ bi < 0) ∨ aibi = 0 ∀i ∈ I0}.

Another important set is a polyhedral convex set, whose limiting normal cone at the
origin will be needed in our subsequent analysis and is therefore given in the following
lemma.

Lemma 2.7 Let the convex set

D := {d ∈ Rn | aT
i d ≤ 0, ∀i = 1, . . . , k,

bT
j d = 0, ∀j = 1, . . . , l}

(12)

be given. Then the limiting normal cone of D at 0 is given by

N(0,D) = {v ∈ Rn | v =
k∑

i=1

αiai +
l∑

j=1

βjbj

αi ≥ 0, ∀i = 1, . . . , k},

(13)
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Proof. Since D is convex, [16, Theorem 6.9] may be invoked and the statement of this
lemma is given by Theorem 3.2.2 and its proof in [1]. �

3 M-Stationarity

We start off this section by stating our main result. The remainder of the paper is dedicated
to proving this result.

Theorem 3.1 Let z∗ be a local minimizer of the MPEC (1) at which MPEC-ACQ holds.
Then there exists a Lagrange multiplier λ∗ such that (z∗, λ∗) satisfies the conditions for
M-stationarity (5).

The fundamental idea of the proof is due to Ye, see [21, Theorem 3.1]. It is based on
the fact that, under MPEC-ACQ, the tangent cone is described by some linear equations
and inequalities, and a linear complementarity problem. Using the tangent cone as the
feasible set of a mathematical program yields an MPEC. We are then able to glean the
conditions for M-stationarity for the original MPEC (1) from this “affine” MPEC. In the
following, we make this idea more precise.

Since z∗ is a local minimum of (1), B-stationarity holds, i.e.

∇f(z∗)T d ≥ 0 ∀d ∈ T (z∗),

and since MPEC-ACQ holds, this is equivalent to

∇f(z∗)T d ≥ 0 ∀d ∈ T lin
MPEC(z∗). (14)

This, in turn, is equivalent to d∗ = 0 being a minimizer of

min
d

∇f(z∗)T d

s.t. d ∈ T lin
MPEC(z∗).

(15)

This is a degenerated form of a mathematical program with affine equilibrium constraints,
or MPAEC. It easily verified that d∗ = 0 being a minimizer of (15) is equivalent to
(d∗, ξ∗, η∗) = (0, 0, 0) being a minimizer of

min
(d,ξ,η)

∇f(z∗)T d

s.t. (d, ξ, η) ∈ D := D1 ∩ D2

(16)

with

D1 := {(d, ξ, η) | ∇gi(z
∗)T d ≤ 0, ∀i ∈ Ig,

∇hi(z
∗)T d = 0, ∀i = 1, . . . , p,

∇Gi(z
∗)T d = 0, ∀i ∈ α,

∇Hi(z
∗)T d = 0, ∀i ∈ γ,

∇Gi(z
∗)T d− ξi = 0, ∀i ∈ β,

∇Hi(z
∗)T d + ηi = 0, ∀i ∈ β }

(17)
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and

D2 := {(d, ξ, η) | ξ ≥ 0, η ≤ 0, ξT η = 0}. (18)

Once more, since (0, 0, 0) is a minimizer of (16), B-stationarity holds, which in this case
means that

(∇f(z∗), 0, 0)T w ≥ 0 ∀w ∈ T ((0, 0, 0),D),

where T ((0, 0, 0),D) denotes the tangent cone to the set D in the point (0, 0, 0). By virtue
of [16, Proposition 6.5], this is equivalent to

(−∇f(z∗), 0, 0) ∈ N̂((0, 0, 0),D) ⊆ N((0, 0, 0),D). (19)

Note, once again, that the limiting normal cone N(·, ·) is equal to the limit of the Fréchet
normal cone N̂(·, ·) (see Proposition 2.3).

In order to calculate N((0, 0, 0),D) in a fashion conducive to our goal, we need to
consider the normal cones D1 and D2 separately. To be able to do this, we need some
auxiliary results. We start off with the definition of a polyhedral multifunction (see [15]).

Definition 3.2 We say that a multifunction Φ : Rn ⇒ Rm is a polyhedral multifunction
if its graph is the union of finitely many polyhedral convex sets.

We now show that a certain multifunction, which is defined using D1 and D2, is a
polyhedral multifunction. We will need this to apply a result by Henrion, Jourani and
Outrata [7].

Lemma 3.3 Let the multifunction Φ : Rn+2|β| ⇒ Rn+2|β| be given by

Φ(v) := {w ∈ D1 | v + w ∈ D2}. (20)

Then Φ is a polyhedral multifunction.

Proof. Since the graph of Φ may be expressed as

gph Φ = {(dv, ξv, ηv, dw, ξw, ηw) ∈ R2(n+2|β|) |
∇gi(z

∗)T dw ≤ 0, ∀i ∈ Ig,

∇hi(z
∗)T dw = 0, ∀i = 1, . . . , p,

∇Gi(z
∗)T dw = 0, ∀i ∈ α,

∇Hi(z
∗)T dw = 0, ∀i ∈ γ,

∇Gi(z
∗)T dw − ξw

i = 0, ∀i ∈ β,

∇Hi(z
∗)T dw + ηw

i = 0, ∀i ∈ β,

ξv + ξw ≥ 0, ηv + ηw ≤ 0, (ξv + ξw)T (ηv + ηw) = 0 }
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=
⋃

{(dv, ξv, ηv, dw, ξw, ηw) ∈ R2(n+2|β|) |
(ν1,ν2)∈P({1,...,|β|})

∇gi(z
∗)T dw ≤ 0, ∀i ∈ Ig,

∇hi(z
∗)T dw = 0, ∀i = 1, . . . , p,

∇Gi(z
∗)T dw = 0, ∀i ∈ α,

∇Hi(z
∗)T dw = 0, ∀i ∈ γ,

∇Gi(z
∗)T dw − ξw

i = 0, ∀i ∈ β,

∇Hi(z
∗)T dw + ηw

i = 0, ∀i ∈ β,

ξv
ν1

+ ξw
ν1

= 0, ξv
ν2

+ ξw
ν2
≥ 0,

ηv
ν1

+ ηw
ν1
≤ 0, ηv

ν2
+ ηw

ν2
= 0 },

it is obviously the union of finitely many polyhedral convex sets. �

Since Φ defined in (20) is a polyhedral multifunction, [15, Proposition 1] may be invoked
to show that Φ is locally upper Lipschitz at every point v ∈ Rn+2|β|. It is therefore in
particular calm at every (v, w) ∈ gph Φ in the sense of [7]. By invoking [7, Corollary 4.2]
we see that (19) implies

(−∇f(z∗), 0, 0) ∈ N((0, 0, 0),D1) + N((0, 0, 0),D2). (21)

Now, the limiting normal cone of D1 is given by Lemma 2.7. This yields that there
exist λg, λh, λG and λH with λg

Ig
≥ 0 such that−∇f(z∗)

0
0

 ∈
∑
i∈Ig

λg
i

∇gi(z
∗)

0
0

 +

p∑
i=1

λh
i

∇hi(z
∗)

0
0


−

∑
i∈α

λG
i

∇Gi(z
∗)

0
0

−
∑
i∈γ

λH
i

∇Hi(z
∗)

0
0


−

∑
i∈β

[
λG

i

∇Gi(z
∗)

−ei

0

 + λH
i

∇Hi(z
∗)

0
ei

 ]
+ N((0, 0, 0),D2).

(22)

where ei denotes that unit vector in R|β| which corresponds to the position of i in β. Note
that since the signs in the second and third lines of (22) are arbitrary, they were chosen to
facilitate the notation of the proof.

First, we take a look at the second and third components in (22). To this end, we
rewrite the normal cone to D2 in the following fashion:

N((0, 0, 0),D2) = N(0, Rn)×N((0, 0), {(ξ, η) | ξ ≥ 0, η ≤ 0, ξT η = 0})
= {0} ×N((0, 0), gph NRl

+
).

(23)
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Here the first equality is due to the product rule (see, e.g., [11] or [16, Proposition 6.41]).
The second equality uses that 0 is in the interior of Rn (and hence any normal cone reduces
to {0}) as well as Lemma 2.5.

Substituting (23) into (22) yields

(−λG
β , λH

β ) ∈ N((0, 0), gph NRl
+
).

By Proposition 2.6, we obtain that

(λG
i > 0 ∧ λH

i > 0) ∨ λG
i λH

i = 0

for all i ∈ β. Note that since we need to determine the limiting normal cone in the point
(0, 0), it holds that Ix = Iy = ∅ in Proposition 2.6.

Finally, we set λG
γ := 0, λH

α := 0, and λg
i := 0 for all i /∈ Ig and have thus acquired

the conditions for M-stationarity (5) with λ∗ := (λg, λh, λG, λH), completing the proof of
Theorem 3.1. Note that even though we derived our conditions using the MPAEC (15),
we have in fact acquired the conditions for M-stationarity of our original MPEC (1).

Remark. We wish to draw attention to two fundamental ideas used in the proof of The-
orem 3.1. The first is due to Ye and entails introducing an MPAEC (see (15) and the
discussion preceeding it).

The second idea is that we can separate the benign constraints from the complemen-
tarity constraints (divided here into D1 and D2) and consider the two types of constraints
separately. We are able to do this because

N((0, 0, 0),D) ⊆ N((0, 0, 0),D1) + N((0, 0, 0),D2)

(see (19) and (21)) holds due to a result by Henrion, Jourani and Outrata (see [7, Corollary
4.2]). Note that this does not hold in general, but is a direct consequence of our MPAEC
(15) having constraints characterized by affine functions.

Note that the MPEC-Abadie constraint qualification is satisfied under many other con-
ditions like the MPEC-MFCQ assumption or an MPEC-variant of a Slater-condition, see
[6], as well as a number of other constraint qualifications, see [21]. Hence all these stronger
constraint qualifications imply that M-stationarity is a necessary first order optimality con-
dition. In particular, a local minimizer is an M-stationary point under the MPEC-MFCQ
assumption used in [17]. However, the authors of [17] were only able to prove C-stationarity
to be a necessary first order condition under MPEC-MFCQ.

We also note that the MPEC-Abadie constraint qualification does not guarantee that
a local minimizer is a strongly stationary point. This follows from the observation that
even the stronger MPEC-MFCQ condition does not imply strong stationarity, see [17] for
a counterexample.
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4 Conclusion

We proved that a very weak assumption, the MPEC-Abadie constraint qualification, im-
plies that a local minimum satisfies the relatively strong first order optimality condition,
M-stationarity, in the framework of mathematical programs with equilibrium constraints.
This result was established before in a very recent paper by Ye [21]. However, the proof
given in [21] is somewhat incomplete. We therefore presented a complete and much shorter
proof of this result.
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