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Abstract. The Generalized Nash Equilibrium Problem is an important model that has its
roots in the economic sciences but is being fruitfully used in many different fields. In this
survey paper we aim at discussing its main properties and solution algorithms, pointing
out what could be useful topics for future research in the field.



1 Introduction

This is a survey paper (an updated version of the previous review from [36]) on the Gener-
alized Nash Equilibrium Problem (GNEP for short). Although the GNEP is a model that
has been used actively in many fields in the past fifty years, it is only since the mid-nineties
that research on this topic gained momentum, especially in the operations research (OR)
community. This paper aims at presenting in a unified fashion the contributions that have
been given over the years by people working in many different fields. In fact, the GNEP lies
at the intersection of many different disciplines (e.g. economics, engineering, mathematics,
computer science, OR), and sometimes researchers in different fields worked independently
and unaware of existing results. We hope this paper will serve as a basis for future research
and will stimulate the interest in GNEPs in the OR community. While we try to cover
many topics of interest, we do not strive for maximum technical generality and complete-
ness, especially when this would obscure the overall picture without bringing any real new
insight on the problem.

As we already mentioned, many researchers from different fields worked on the GNEP,
and this explains why this problem has a number of different names in the literature includ-
ing pseudo-game, social equilibrium problem, equilibrium programming, coupled constraint
equilibrium problem, and abstract economy. We will stick to the term generalized Nash
equilibrium problem that seems the one favorite by OR researchers in recent years.

Formally, the GNEP consists of N players, each player ν controlling the variables
xν ∈ Rnν . We denote by x the vector formed by all these decision variables:

x :=

(
x1
...

xN

)
,

which has dimension n :=
∑N

ν=1 nν , and by x−ν the vector formed by all the players’
decision variables except those of player ν. To emphasize the ν-th player’s variables within
x, we sometimes write (xν , x−ν) instead of x. Note that this is still the vector x =
(x1, . . . , xν , . . . , xN) and that, in particular, the notation (xν , x−ν) does not mean that the
block components of x are reordered in such a way that xν becomes the first block.

Each player has an objective function θν : Rn → R that depends on both his own
variables xν as well as on the variables x−ν of all other players. This mapping θν is often
called the utility function of player ν, sometimes also the payoff function or loss function,
depending on the particular application in which the GNEP arises.

Furthermore, each player’s strategy must belong to a set Xν(x
−ν) ⊆ Rnν that depends

on the rival players’ strategies and that we call the feasible set or strategy space of player
ν. The aim of player ν, given the other players’ strategies x−ν , is to choose a strategy xν

that solves the minimization problem

minimizexν θν(x
ν , x−ν) subject to xν ∈ Xν(x

−ν). (1)

For any x−ν , the solution set of problem (1) is denoted by Sν(x
−ν). The GNEP is the
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problem of finding a vector x̄ such that

x̄ν ∈ Sν(x̄
−ν) for all ν = 1, . . . , N.

Such a point x̄ is called a (generalized Nash) equilibrium or, more simply, a solution of
the GNEP. A point x̄ is therefore an equilibrium if no player can decrease his objective
function by changing unilaterally x̄ν to any other feasible point. If we denote by S(x)
the set S(x) := ΠN

ν=1Sν(x
−ν), we see that we can say that x̄ is a solution if and only if

x̄ ∈ S(x̄), i.e. if and only if x̄ is a fixed point of the point-to-set mapping S. If the feasible
sets Xν(x

−ν) do not depend on the rival players’ strategies, so we have Xν(x
−ν) = Xν

for some set Xν ⊆ Rnν and all ν = 1, . . . , N , the GNEP reduces to the standard Nash
equilibrium problem (NEP for short), cf. Section 2.

We find it useful to illustrate the above definitions with a simple example.

Example 1.1 Consider a game with two players, i.e. N = 2, with n1 = 1 and n2 = 1, so
that each player controls one variable (for simplicity we therefore set x1

1 = x1 and x2
1 = x2).

Assume that the players’ problems are

minx1 (x1 − 1)2

s.t. x1 + x2 ≤ 1,

minx2 (x2 − 1
2
)2

s.t. x1 + x2 ≤ 1.

The optimal solution sets are given by

S1(x
2) =

 1, if x2 ≤ 0,

1− x2, if x2 ≥ 0,
and S2(x

1) =


1
2
, if x1 ≤ 1

2
,

1− x1, if x1 ≥ 1
2
.

Then it is easy to check that the solutions of this problem are given by (α, 1−α) for every
α ∈ [1/2, 1]. Note that the problem has infinitely many solutions.

In the example above the sets Xν(x
−ν) are defined explicitly by inequality constraints.

This is the most common case and we will often use such an explicit representation in the
sequel. More precisely, in order to fix notation, we will several times assume that the sets
Xν(x

−ν) are given by

Xν(x
−ν) = {xν ∈ Rν : gν(xν , x−ν) ≤ 0}, (2)

where gν(·, x−ν) : Rnν → Rmν . Equality constraints can easily be incorporated, we omit
them for notational simplicity. Furthermore, we won’t make any distinction between con-
straints of player ν that depend on the player’s variables xν only and those that depend
also on the other players’ variables; in fact, the former can formally be included in the
latter without loss of generality.

The paper is organized as follows: In the next section, after some historical notes, we
describe some relevant applications. In Section 3 we discuss relations of the GNEP with
other problems and introduce an important subclass of the GNEP. In Section 4, existence
results are presented along with KKT conditions and some further theoretical results. In
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Section 5, we analyze solution procedures, while in the final section we briefly discuss
further topics of interest and draw some conclusions.

A few words regarding our notation and the necessary background. The Euclidean
projection of a vector x onto a set X is denoted by PX(x). We say that a function f is
C0 if it is continuous, and Ck if it is k-times continuously differentiable. For a real-valued
C1-function f , we denote its gradient at a point x by ∇f(x). Similarly, for a vector-valued
C1-function F , we write JF (x) for its Jacobian at a point x. We assume that the reader is
familiar with classical optimization concepts and has some basic notions about variational
inequalities (VIs) and quasi-variational inequalities (QVIs).

2 Historical Overview and Examples

The celebrated Nash equilibrium problem (NEP), where Xν(x
−ν) = Xν for all ν =

1, . . . , N , was formally introduced by Nash in his 1950/1 papers [82, 83], but the ori-
gins of the concept of equilibrium can be traced back to Cournot [23], in the context of an
oligopolistic economy, and have obvious and closer antecedents in the work of von Neumann
[84] and von Neumann and Morgenstern [85] on zero-sum two-person games. Nash papers
[82, 83] are a landmark in the scientific history of the twentieth century and the notion of
Nash equilibrium has extensively proved to be powerful, flexible, and rich of consequences.

However, the need of an extension of the NEP, where the players interact also at the level
of the feasible sets, soon emerged as necessary. The GNEP was first formally introduced
by Debreu [28] in 1952 (where the term social equilibrium was coined). This paper was
actually intended to be just a mathematical preparation for the famous 1954 Arrow and
Debreu paper [8] about economic equilibria. In this latter paper, Arrow and Debreu termed
the GNEP “an abstract economy” and explicitly note that “. . . In a game, the pay-off to
each player depends upon the strategies chosen by all, but the domain from which strategies
are to be chosen is given to each player independently of the strategies chosen by other
players. An abstract economy, then, may be characterized as a generalization of a game
in which the choice of an action by one agent affects both the pay-off and the domain of
actions of other agents”, cf. [8, p. 273]. It is safe to say that [8] and the subsequent book
[29] provided the rigorous foundation for the contemporary development of mathematical
economics.

The mathematical-economic origin of the GNEP explains why the GNEP has long been
(let’s say up to the beginning of the nineties) the almost exclusive domain of economists and
game-theory experts. In truth, it must also be noted that in this community some reserves
have been advanced on GNEPs, on the grounds that a GNEP is not a game. For example,
Ichiishi states, in his influential 1983 book [63, p. 60], “It should be emphasized, however,
that an abstract economy is not a game, . . . since player j must know the others’ strategies
in order to know his own feasible strategy set . . ., but the others cannot determine their
feasible strategies without knowing j’s strategy. Thus an abstract economy is a pseudo-
game and it is useful only as a mathematical tool to establish existence theorems in various
applied contexts.”
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The point here is that one cannot imagine a game where the players make their choices
simultaneously and then, for some reason, it happens that the constraints are satisfied.
But indeed, this point of view appears to be rather limited, and severely undervalues

(a) the descriptive and explanatory power of the GNEP model;

(b) its normative value, i.e., the possibility to use GNEPs to design rules and protocols,
set taxes and so forth, in order to achieve certain goals, a point of view that has been
central to recent applications of GNEPs outside the economic field (see below and
Section 2.2);

(c) the fact that in any case different paradigms for games can and have been adopted,
where it is possible to imagine that, although in a noncooperative setting, there are
mechanisms that make the satisfactions of the constraints possible.

Following the founding paper [8], researchers dedicated most of their energies to the study
of the existence of equilibria under weaker and weaker assumptions and to the analysis of
some structural properties of the solutions (for example uniqueness or local uniqueness).
The relevant literature will be discussed more in detail in Section 4. It was not until the
beginning of the 1990s, however, that applications of the GNEP outside the economic field
started to be considered along with algorithms for calculation of equilibria. In this respect,
possibly one of the early contributions was given by Robinson in 1993 in [100, 101]. In these
twin papers, Robinson considers the problem of measuring effectiveness in optimization-
based combat models, and gives several formulations that are nothing else but, in our
terminlogy, GNEPs. For some of these GNEPs, Robinson provides both existence results
and computational procedures.

More or less at the same time, Scotti, see [105] and references therein, introduced
GNEPs in the study and solution of complex structural design problems as an evolution
of the more standard use of nonlinear programming techniques promoted by Schmit in the
1960s (see [104] for a review) and motivated by some early suggestions in the previous
decade, see [98, 112].

After these pioneering contributions, in the last decade the GNEP became a relatively
common paradigm, used to model problems from many different fields. In fact GNEPs
arise quite naturally from standard NEPs if the players share some common resource (a
communication link, an electrical transmission line, a transportation link etc.) or limi-
tations (for example a common limit on the total pollution in a certain area). More in
general the ongoing process of liberalization of many markets (electricity, gas, telecommu-
nications, transportation and others) naturally leads to GNEPs. But GNEPs have also
been employed to model more technical problems that do not fit any of the categories
listed above, and it just seems likely that now that the model is winning more and more
popularity, many other applications will be uncovered in the near future. It is impossi-
ble to list here all relevant references for these applications; we limit ourselves to a few
that, in our view, are either particularly interesting or good entry points to the literature
[1, 2, 4, 8, 11, 12, 18, 22, 33, 48, 49, 52, 53, 54, 59, 60, 64, 66, 68, 70, 89, 93, 94, 95, 106,
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108, 110, 115, 116]. We finally mention that the very recent reference [40] presents a rather
comprehensive and sophisticated treatment of the GNEP based on a variational inequality
approach that allows to establish some interesting new results.

In the remaining part of this section, we illustrate the scope of the GNEP by considering
in some more detail three specific applications: The abstract economy by Arrow and
Debreu, a power control problem in telecommunications, and a GNEP arising from the
application of the Kyoto protocol. While the first application has a historical signification in
that it constitutes the original motivation for the study of GNEPs, the other two problems
described are examples of the contemporary use of GNEPs.

2.1 Arrow and Debreu Abstract Economy Model

The economic equilibrium model is a central theme to economics and deals with the prob-
lem of how commodities are produced and exchanged among individuals. Walras [114]
was probably the first author to tackle this issue in a modern mathematical perspective.
Arrow and Debreu [8] considered a general “economic system” along with a corresponding
(natural) definition of equilibrium. They then showed that the equilibria of their model
are those of a suitably defined GNEP (which they called an “abstract economy”); on this
basis, they were able to prove important results on the existence of economic equilibria.
Below we describe this economic model.

We suppose there are l distinct commodities (including all kinds of services). Each
commodity can be bought or sold at a finite number of locations (in space and time). The
commodities are produced in “production units” (companies), whose number is s. For each
production unit j there is a set Yj of possible production plans. An element yj ∈ Yj is
a vector in Rl whose h-th component designates the output of commodity h according to
that plan; a negative component indicates an input. If we denote by p ∈ Rl the prices of
the commodities, the production units will naturally aim at maximizing the total revenue,
pTyj, over the set Yj.

We also assume the existence of “consumptions units”, typically families or individuals,
whose number is t. Associated to each consumption unit i we have a vector xi ∈ Rl

whose h-th component represent the quantity of the h-th commodity consumed by the i-th
individual. For any commodity, other than a labor service supplied by the individual, the
consumption is non-negative. More in general, xi must belong to a certain set Xi ⊆ Rl.
The set Xi includes all consumption vectors among which the individual could choose if
there were no budgetary constraints (the latter constraints will be explicitly formulated
below). We also assume that the i-th consumption unit is endowed with a vector ξi ∈ Rl

of initial holdings of commodities and has a contractual claim to the share αij of the profit
of the j-th production unit. Under these conditions it is then clear that, given a vector of
prices p, the choice of the i-th unit is further restricted to those vectors xi ∈ Xi such that
pTxi ≤ pTξi +

∑s
j=1 αij(p

Tyj). As is standard in economic theory, the consumptions units

aim is to maximize a utility function ui(x
i), which can be different for each unit.

Regarding the prices, obviously the vector p must be non-negative; furthermore, after
normalization, it is assumed that

∑l
h=1 ph = 1. It is also expected that free commodities,
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i.e. commodities whose price is zero, are only possible if the supply exceeds the demand;
on the other hand, it is reasonable to require that the demand is always satisfied. These
two last requirements can be expressed in the form:

∑t
i=1 xi −

∑s
j=1 yj −

∑t
i=1 ξi ≤ 0 and

pT (
∑t

i=1 xi −
∑s

j=1 yj −
∑t

i=1 ξi) = 0.
With the above setting in mind Arrow and Debreu also make a series of further technical

assumptions (which are immaterial to our discussion) on the properties of the sets Yj, Xi,
the functions ui, etc., that correspond to rather natural economic features, and on this
basis they define quite naturally a notion of an economic equilibrium. Essentially, an
economic equilibrium is a set of vectors (x̄1, . . . , x̄t, ȳ1, . . . , ȳs, p̄) such that all the relations
described above are satisfied. From our point of view, the interesting thing is that Arrow
and Debreu show that the economic equilibria can also be described as the equilibria of
a certain GNEP, and this reduction is actually the basis on which they can prove their
key result: existence of equilibria. The GNEP they define has s + t + 1 players. The first
s players correspond to the production units, the following t ones are the consumption
units, and the final player is a fictious player who sets the prices and that is called “market
participant”. The j-th production player controls the variables yj, and his problem is

max
yj

pTyj s.t. yj ∈ Yj. (3)

The i-th consumption player controls the variables xi, and his problem is

maxxi ui(x
i)

s.t. xi ∈ Xi,

pTxi ≤ pTξi + max
{
0,
∑s

j=1 αij(p
Tyj)

}
.

(4)

Finally, the market participant’s problem is

maxp pT

(∑t
i=1 xi −

∑s
j=1 yj −

∑t
i=1 ξi

)
s.t. p ≥ 0,∑l

h=1 ph = 1.

(5)

Altogether, (3)–(5) represent a GNEP with the joint constraints coming from (4).

2.2 Power Allocation in a Telecommunication System

The next example comes from the telecommunication field and is an example of the kind
of applications of the GNEP that have flourished in the engineering world in the past ten
years. The problem we consider is the power allocation in a Gaussian frequency-selective
interference channel model [93]. In order to make the presentation self-contained and as
much as possible clear, we consider a simplified setting which, however, captures all the
technical issues at stake and is furthermore particularly significative.
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Consider then the Digital Subscriber Line (DSL) technology, which is a very common
method for broadband internet access. DSL customers use a home modem to connect to
a Central Office through a dedicated wire. In a standard setting, the wires are bundled
together in a common telephone cable, at least in proximity of the Central Office. Due
to electromagnetic couplings, the DSL signal in the wires can interfere with one another,
causing a degradation of the quality of the service. To complete the picture, one must take
into account that the current standards prescribes the use of discrete multitone modulation
which, in practice, divides the total available frequency band in each wire into a set of
parallel subcarriers (typically either 256 for Asymmetric DSL (ADSL) and 4096 for Very
high bit rate DSL (VDSL)). In this setting the parameter that can be controlled is, for
each wire q and for each subcarrier k, the power pq

k allocated for transmission. For each
wire, the transmission quality is given by the maximum achievable transmission rate Rq.

This quantity depends both on the vector (pq
k)

N
k=1 of power allocations across the N

available subcarriers for wire q, and p−q := (pr)Q
r 6=q, the vector representing the strategies

of all the other wires. Under adequate technical assumptions it can be shown that

Rq(p
q,p−q) =

N∑
k=1

log (1 + sinrqk) ,

with sinrqk denoting the Signal-to-Interference plus Noise Ratio (SINR) on the k-th carrier
for the q-th link:

sinrqk :=
|Hqq

k |
2 pq

k

σ2
q
(k) +

∑
r 6=q |H

qr
k |

2 pr
k

,

where σ2
q

and Hqr
k are parameters describing the behavior of the communication system

(see [93] for details).
In this setting, there is a single decision maker who must decide the power allocation.

This decision maker, loosely speaking, on the one hand wants to minimize the power
employed while guaranteeing to each wire q a transmission rate of at least R∗

q . For many
reasons we cannot discuss here, that are, however, rather intuitive, the telecommunication
engineers have come to the conclusion that a desirable way to choose the power allocation
is to take it as the equilibrium of a GNEP we describe below. Each wire q is a player of
the game, whose objective function is to minimize the total power used in transmission,
with the constraint that the maximum transmission rate is at least R∗

q , i.e. the problem of
the generic player q is

maxpq

∑N
k=1 pq

k

s.t. Rq(p
q,p−q) ≥ R∗

q ,

pq ≥ 0.

We stress that here the GNEP is used in a normative way. No one is really playing a game;
rather, a single decision maker has established that the outcome of the GNEP is desirable
and therefore (calculates and) implements it. This perspective is rather common in many
modern engineering applications of the GNEP.
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2.3 Environmental Pollution Control

1997 Kyoto agreements prescribe that the “Annex I Parties” (a list of developed countries
and countries in transition to a market economy) must reduce by the year 2012 their
overall emission of greenhouse gases 5 per cent below the 1990 levels. In order to reach this
goal, various mechanisms are envisaged. One of the most interesting one is the so called
“Joint Implementation”(JI). This mechanism is described in the Kyoto Protocol with the
following words: “for the purpose of meeting its commitments . . ., any Party included
in Annex I may transfer to, or acquire from, any other such Party emission reduction
units (ERU) resulting from projects aimed at reducing anthropogenic emissions by sources
or enhancing anthropogenic removals by sinks of greenhouse gases . . .”. Said in other
words, any country can invest in abroad projects in order to collect rewards in the form
of ERU. It is expected that the JI mechanism will provide incentives for the development
of environmental technologies and will channel physical and financial capitals to countries
with in-transition economies thus promoting their sustainable economic growth. As we
illustrate below, a GNEP can be used to asses the merits of the JI mechanism thus giving
a valuable contribution to well founded strategies for the reduction of greenhouse gases.
The following presentation is a modification of the one given in [18].

Let N be the number of countries (i.e. players) involved in the JI mechanism. For each
country i, let ei denote the emissions that result from its industrial production; we assume
that these emissions are proportional to the industrial output of the country thus enabling
us to express the revenue R of the country as a function of ei. Emissions can be abated
by investing in projects (e.g. installing filters, cleaning a river basin etc.) domestically
or abroad. Let us indicate with I i

j these environmental investments made by country i in
country j. The benefit of this investment lies in the acquisition of ERUs, assumed here
to be proportional to the investment, i.e. γijI

i
j (the coefficients γij depend on both the

investor, i, and the host country, j, because in general there is a dependence on both the
investor’s technologies and laws and the situation in the host country). The net emission
in country i is given by ei−

∑N
j=1 γjiI

j
i , which obviously cannot be negative. On the other

hand, country i is accounted for the emission of ei −
∑n

j=1 γijI
i
j, that is, its own emissions

minus the ERUs gained by investing in environmental projects; this quantity must be kept
below a prescribed level Ei. To conclude the description of the problem, we also assume
that pollution in one country can affect also other countries (for example pollution of a
river in a country can affect another country which is crossed by the same river; acid rains
are also influenced by air pollution in neighboring countries etc.). We therefore assume
that damages from pollution in one country depend on the net emissions of all countries,
according to a function Di

(
e1 −

∑N
j=1 γj1I

j
1 , . . . , e

N −
∑N

j=1 γjNIj
N

)
. With this setting, the
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i-th player’s problem becomes:

minei,Ii
1,...,Ii

N
Ri(e

i)−
∑N

j=1 I i
j −Di

(
e1 −

∑N
j=1 γj1I

j
1 , . . . , e

N −
∑N

j=1 γjNIj
N

)
s.t. ei, I i

1, . . . , I
i
N ≥ 0,

ei −
∑N

j=1 γijI
i
j ≤ Ei,

ei −
∑N

j=1 γjiI
j
i ≥ 0, j = 1, . . . , N.

Note that in the resulting GNEP, the constraints of each problem involving other player’s
variables (the last N linear constraints) are the same for all players. This is precisely in
the spirit of the JI mechanism.

3 Reformulations and the Jointly Convex Case

With this section, we begin a more in-depth examination of GNEPs. In our presentation,
we will sometimes consider some special subclasses of GNEPs; note, however, that we
won’t explore in detail the properties of standard NEPs. Although this is obviously an
extremely important subclass of GNEPs, the focus of this review is really on what happens
in the case of “genuine” GNEPs, i.e. equilibrium problems where the feasible sets depend
on the other player’s decisions. Furthermore, the literature on pure NEPs is enormous and
it would not be possible to review it in a single paper; we refer the interested reader to
[9, 11, 25, 38, 45, 50, 80] as an entry point to this literature.

From now on, unless otherwise stated explicitly, we assume that all the objective func-
tions satisfy the following continuity assumption.

Continuity Assumption For every player ν, the objective function θν is C0. �

3.1 Reformulations of the General GNEP

We begin our analysis by giving several equivalent formulations of the GNEP. On the
one hand, these formulations shed some light on the connections between the GNEP and
other better known problems while, on the other hand, they are often the basis for both
theoretical and algorithmic developments. We note that probably all the reformulations
given in this subsection are formally new, although they are the obvious extensions of
results well known in the more specialized context of jointly convex GNEPs that will be
introduced and discussed in Subsection 3.2.

We first introduce a function that historically played an important role in the study of
the GNEP.

Definition 3.1 The mapping

Ψ(x, y) :=
N∑

ν=1

[
θν(x

ν , x−ν)− θν(y
ν , x−ν)

]
9



is called the Nikaido-Isoda-function (NI-function for short) or the Ky Fan-function of the
GNEP.

Note that both names are used in the GNEP literature and that the function Ψ depends on
the utility functions of each player, but not on the strategy spaces. In particular, the NI-
function for GNEPs is identical to the NI-function for NEPs; and actually the NI-function
was first introduced in [87] as a tool to improve on Nash’s original existence result for
NEPs. The NI-function has a simple interpretation: Suppose that x and y are two feasible
points for the GNEP, each summand in the definition represents the improvement in the
objective function of player ν when he changes his action from xν to yν while all the other
players stick to the choice x−ν . It is rather intuitive, and simple to prove, that equilibria of
the GNEP are characterized by the impossibility to get any improvement for any feasible
choice y; this is essentially the content of the following theorem.

Theorem 3.2 Let Ψ be the NI-function of the GNEP, and define

X(x) := ΠN
ν=1Xν(x

−ν), V̂ (x) := sup
y∈X(x)

Ψ(x, y). (6)

Then the following statements hold:

(a) V̂ (x) ≥ 0 for all x ∈X(x).

(b) V̂ (x̄) = 0 and x̄ ∈X(x̄) if and only if x̄ is a solution of the GNEP.

Theorem 3.2 characterizes the solutions of a GNEP as the set of points x̄ ∈ X(x̄) such
that 0 = V̂ (x̄) ≤ V̂ (x), for all x ∈X(x̄). With a little abuse of notation we can say that
x̄ is a solution of the GNEP if and only if it is a global minimizer with zero objective value
of the problem

min V̂ (x) s.t. x ∈X(x) (7)

that we call “constrained quasi-optimization problem”. The term “quasi-optimization” is
used to emphasize the fact that this is not a standard optimization problem, since the
feasible set depends on the variable x, and also to highlight the parallelism to quasi-
variational inequalities we will discuss shortly. Although this reformulation is possibly of
not great practical interest in the general case, it turns out to be a useful tool in the case
of “jointly convex” problems to be discussed in Subsection 3.2. Furthermore, it is also the
basis for some more useful optimization reformulations that will be discussed in Subsection
5.3. If we consider a NEP, problem (7) becomes a real optimization problem (since the set
X(x) does not depend on x and is therefore fixed). Note, however, that the minimization
of the objective function is still a challenging task since V̂ is, in general, nondifferentiable.

A different kind of reformulation can be established under the following additional
convexity assumption.

Convexity Assumption For every player ν and every x−ν , the objective function θν(·, x−ν)
is convex and the set Xν(x

−ν) is closed and convex.

This assumption is very common and is often satisfied, especially in the economic applica-
tions that originated the GNEP. The following theorem holds under this assumption.
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Theorem 3.3 Let a GNEP be given, satisfying the Convexity Assumption, and suppose
further that the θν are C1 for all ν. Then, a point x is a generalized Nash equilibrium if
and only if it is a solution of the quasi-variational inequality QVI (X(x),F(x))4, where

X(x) := ΠN
ν=1Xν(x

−ν), F(x) := (∇xνθν(x))N
ν=1.

The connection stated in the previous theorem was first noted in [14], is certainly illumi-
nating and parallels the classical one showing that under the same Convexity Assumption,
a NEP is equivalent to a VI. Obviously this latter result is a particular case of Theorem
3.3 when the sets Xν do not depend on x−ν . We restate this result below for completeness.

Corollary 3.4 Let a NEP be given, satisfying the Convexity Assumption, and suppose
further that the θν are C1 for all ν. Then a point x is an equilibrium if and only if it is a
solution of the variational inequality VI (X,F(x))5, where

X := ΠN
ν=1Xν , F(x) := (∇xνθν(x))N

ν=1.

Unfortunately, while Corollary 3.4 turned out to be very useful in the study of the NEP (see
for example [38]), Theorem 3.3 has less interesting consequences since the theory for QVIs
(see, e.g., [21, 47, 52]) is far less advanced than that for VIs. It is therefore of interest to see
whether it is possible to reduce a GNEP to a VI, at least under some suitable conditions.
In this respect it turns out that valuable results can be obtained for a special class of
GNEPs, the “jointly convex” GNEP, that will be discussed in the next subsection.

An alternative characterization of the solutions of a GNEP can be obtained by a fixed-
point inclusion. To this end, let Ψ once again be the NI-function, let V̂ be the corresponding
merit function from (6), and let

Ŷ (x) := {yx ∈X(x) | V̂ (x) = Ψ(x, yx)} (8)

be the (possibly empty) set of vectors where the supremum is attained in the definition of
V̂ . Note that x 7→ Ŷ (x) is a point-to-set mapping. The fixed points of this function are
precisely the solutions of the GNEP according to the following result.

Theorem 3.5 A vector x̄ is a solution of the GNEP if and only if x̄ ∈ Ŷ (x̄) holds.

In the particular case where Ŷ (x) = {y(x)} is single-valued for each x, it therefore follows
that x̄ is a solution of the GNEP if and only if x̄ solves the fixed point equation x = y(x).
In general, however, unless relatively strong assumptions like uniform convexity of the
utility functions θν hold, the set Ŷ (x) does not reduce to a singleton, making the fixed
point inclusion a rather difficult problem. Note that the very definition of a generalized
Nash equilibrium is also given in terms of a fixed point inclusion (via the solution mapping

4The quasi-variational inequality problem QVI (X(x),F(x)) consists in finding a vector x̄ ∈ X(x̄)
such that (y − x̄)TF(x̄) ≥ 0 for all y ∈X(x̄).

5The variational inequality problem VI (X,F(x)) consists in finding a vector x̄ ∈ X such that (y −
x̄)TF(x̄) ≥ 0 for all y ∈X.
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S). The advantage of the fixed point characterization discussed above is that, in some
cases, it can be used to develop some algorithms for the solution of the GNEP, as we shall
discuss in Section 5.

The fact that all reformulations we have presented reduce to extremely difficult prob-
lems is not a deficiency in our analysis; rather it is a manifestation of the fact that the
GNEP, in its general form, is an extremely hard problem. It is then in order to investigate
if suitable subclasses of GNEPs are more amenable to fruitful analysis. To this end, we in-
troduce in the following subsection one such subclass. Further subclasses will be mentioned
in the conclusions section.

3.2 The Jointly Convex Case

We consider here a special class of GNEPs that is important since it arises in some inter-
esting applications and for which a much more complete theory exists than for the general
GNEP.

Definition 3.6 Let a GNEP be given, satisfying the Convexity Assumption. We say that
this GNEP is jointly convex if for some closed convex X ⊆ Rn and all ν = 1, . . . , N , we
have

Xν(x
−ν) = {xν ∈ Rnν : (xν , x−ν) ∈X}. (9)

Note that the Example 1.1 and the model described in Subsection 2.3 (under convexity
assumptions on the objective functions) are instances of jointly convex GNEPs.

Remark 3.7 When the sets Xν(x
−ν) are defined explicitly by a system of inequalities as

in (2), then it is easy to check that (9) is equivalent to the requirement that g1 = g2 =
· · · = gN := g and that g(x) be (componentwise) convex with respect to all variables x;
furthermore, in this case, it obviously holds that X = {x ∈ Rn : g(x) ≤ 0}.

This class of problems has been first studied in detail in a seminal paper by Rosen [103] and
has been often identified with the whole class of GNEPs. Jointly convex GNEPs are also
often termed as GNEPs with “coupled contraints”; however, we prefer the more descriptive
definition of jointly convex.

The reformulations introduced in the previous subsection simplify in the case of jointly
convex GNEPs. We first consider the quasi-optimization reformulation (7). Since, in the
special case of jointly convex constraints, it is easy to see that (cf. [55])

xν ∈ Xν(x
−ν) ∀ν = 1, . . . , N ⇐⇒ x ∈X,

problem (7) simplifies to the following “real” optimization problem:

min V̂ (x) s.t. x ∈X, (10)

where V̂ is defined as in (6). Theorem 3.2 can therefore be rewritten in the following way.

12



Theorem 3.8 A vector x̄ is a solution of the GNEP in the jointly convex case if and only
if x̄ is a global minimum of the optimization problem (10) with zero objective function
value.

Note that, in spite of the simplification, the objective function V̂ is still hard to compute in
general, usually nondifferentiable and sometimes even discontinuous, see [55, 32]; we will
deal further with these issues in Section 5.

We now consider the quasi-variational inequality reformulation of the GNEP to see how
the jointly convex structure can help to simplify, at least to a certain extent, things.

Theorem 3.9 Let a jointly convex GNEP be given with C1-functions θν . Then, every
solution of the VI (X,F) (where X is the set in the definition of joint convexity and, as
usual, F(x) := (∇xνθν(x))N

ν=1), is also a solution of the GNEP.

We remark that the above theorem does not say that any solution of a jointly convex
GNEP is also a solution of the VI (X,F), and actually in the passage from the GNEP to
the VI it is not difficult to see that “most” solutions are lost. We illustrate this with a
simple example.

Example 1.1 (continued) In the Introduction we have shown that this game has infinitely
many solutions given by (α, 1 − α) for every α ∈ [1/2, 1]. Consider now the VI (X,F)
where

X = { (x1, x2) ∈ R2 : x1 + x2 ≤ 1 }, F(x) =

(
2x1 − 2

2x2 − 1

)
.

F is clearly strictly monotone and therefore this VI has a unique solution which is given
by (3/4, 1/4) as can be checked by using the definition of VI. Note that, as expected, this
is a solution of the original GNEP.

Definition 3.10 Let a jointly convex GNEP be given with C1-functions θν . We call a
solution of the GNEP that is also a solution of VI(X,F) a variational equilibrium.

The alternative name normalized equilibrium is also frequently used in the literature instead
of variational equilibrium. In view of its close relation to a certain variational inequality
problem, however, we prefer to use the term “variational equilibrium” here.

With this new terminology, the point (3/4, 1/4) is the (unique) variational equilibrium
of the problem in Example 1.1. Note that, by Corollary 3.4, in the case of NEPs the set
of solutions and of variational solutions coincide. For GNEPs, however, every variational
equilibrium is a generalized Nash equilibrium, but Example 1.1 shows that the converse is
not true in general.

It may be interesting to see whether variational equilibria enjoy some relevant structural
properties. In order to investigate this point, we need the following definitions.
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Definition 3.11 Let X ⊆ Rn = Rn1+···+nN be a closed and convex set. The ν-th section
of X at a point x̄ is the set Sν(x̄) := {x ∈ X : x−ν = x̄−ν}, while we define the section
of X at x̄ as the set S(x̄) := ∪N

ν=1Sν(x̄). Finally, we define the internal cone IX(x̄) to
X at x̄ as the smallest closed, convex cone with vertex at the origin such that x̄ + IX(x̄)
contains S(x̄).

The above definition of internal cone can be used to refine the QVI reformulation in the
case of a jointly convex GNEP.

Proposition 3.12 ([20]) Let a jointly convex GNEP be given with C1-functions θν . Then
a point x̄ is an equilibrium if and only if it is a solution of the quasi-variational inequality
QVI ((x̄ + IX(x̄)) ∩X,F).

Note that S(x̄) ⊆ X and, therefore, IX(x̄) ⊆ TX(x̄) (where TX(x̄) is the usual tangent
cone to X at x̄). Since we therefore have

x̄ + IX(x̄) ∩X ⊆
(
x̄ + TX(x̄)

)
∩X = X,

we see from the definition of variational equilibria and Proposition 3.12 that variational
equilibria are “more socially stable” than other equilibria of the GNEP. In other words,
given an equilibrium, no deviation from x̄ in the internal cone will be acceptable for the
players, while if x̄ is a variational equilibrium, no deviation in the (possibly) larger tangent
cone will we acceptable.

The results above indicate that the calculation of a variational equilibrium could be a
valuable target for an algorithm. Furthermore, in some applicative contexts, variational
equilibria can also have further practical interest, see, for example, the comments in [52].

In order to state a useful characterization of a variational equilibrium, let us introduce
a variant of the function V̂ that will also be useful later, in the development of algorithms.
Set

V (x) := sup
y∈X

Ψ(x, y). (11)

Note that V is nonnegative over X and the difference between V̂ and V is simply in
the set over which the sup in the definition is taken. This minor difference changes the
properties of V considerably: While V̂ can be used to characterize all solutions of a GNEP,
cf. Theorem 3.8, the function V characterizes only the variational equilibria of a jointly
convex GNEP according to the following result.

Proposition 3.13 ([55]) Let a jointly convex GNEP be given with C1-functions θν . Then
a point x̄ is a variational equilibrium if and only if x̄ ∈X and V (x̄) = 0 holds, i.e., if and
only if x̄ is a minimum of

min V (x) s.t. x ∈X

satisfying V (x̄) = 0.
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Proposition 3.13 motivates to call any point x̄ ∈ X satisfying V (x̄) = 0 a variational
equilibrium of a jointly convex GNEP. This definition is slightly more general than the
previous one since it does not require any smoothness of the objective functions θν .

Note that the set of solutions of a GNEP is unaffected if we scale the utility functions
θν by a positive number rν . This, however, is not true for the variational equilibria.
To see this, consider Example 1.1 again, but with the objective function of the second
player multiplied with the factor r2 := 2 (whereas θ1 remains unchanged). Then an easy
calculation shows that the unique variational equilibrium is given by x̃ =

(
2
3
, 1

3

)
which is

different from the one given in Example 1.1. This observation immediately leads to the
slightly different, original definition of a normalized equilibrium given in Rosen’s paper
[103].6

We conclude this subsection by observing that the jointly convex GNEP has been
the subject of much analysis and certainly it covers some very interesting applications.
However, it should be noted that the jointly convex assumption on the constraints is
strong, and practically is likely to be satisfied only when the joint constraints gν = g,
ν = 1, . . . , N are linear, i.e. of the form Ax ≤ b for some suitable matrix A and vector b.

4 Theory

4.1 Basic Existence Results

Existence of solutions has been the main focus of early research in GNEPs. The 1952
Debreu paper [28], where the GNEP was formally introduced, also gives the first existence
theorem. This existence result was based on fixed-point arguments, and this turned out
to be the main proof tool used in the literature. Essentially this approach is based on the
very definition of equilibrium that states that a point x is an equilibrium if x ∈ S(x),
where S := ΠN

ν=1Sν with the solution mappings Sν of problem (1) as introduced in Section
1. This shows clearly that x is a fixed point of S, thus paving the way to the application of
the fixed-point machinery to establish existence of an equilibrium. There also exist some
other approaches, an interesting one being the one presented in [50], where a continuation
approach is used. The main existence result is probably the one established in [8]. We
report below a slightly simplified version given by Ichiishi [63]. Recall that, as usual, the
blanket Continuity Assumption is supposed to hold.

Theorem 4.1 Let a GNEP be given and suppose that

(a) There exist N nonempty, convex and compact sets Kν ⊂ Rnν such that for every x ∈
Rn with xν ∈ Kν for every ν, Xν(x

−ν) is nonempty, closed and convex, Xν(x
−ν) ⊆

Kν , and Xν , as a point-to-set map, is both upper and lower semicontinuous7.

6Rosen calls a vector x̄ a normalized equilibrium of a jointly convex GNEP if there exist positive
numbers rν > 0 such that, in our terminology, x̄ is a variational equilibrium of the game that is obtained
from our jointly convex GNEP by multiplying the utility functions θν by the factor rν .

7A point-to-set mapping G : Y ⇒ Z (with Y and Z metric spaces, for example closed subsets of an
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(b) For every player ν, the function θν(·, x−ν) is quasi-convex on Xν(x
−ν)8.

Then a generalized Nash equilibrium exists.

Remark 4.2 When the sets Xν are defined by inequality constraints as in (2), the lower
and upper semicontinuity requirements translate into reasonably mild conditions on the
functions gν . See for example [10, 102].

The relaxation of the assumptions in the previous theorem has been the subject of a fairly
intense study. Relaxations of the (a) continuity assumptions; (b) compactness assump-
tions and (c) quasi-convexity assumption have all been considered in the literature. The
relaxation of the continuity assumption is the most interesting one, since it is peculiar to
GNEPs. In fact, a number of classical problems in economics can be formulated as games
with discontinuous objective functions. The best known of these are probably Bertrand’s
model of duopolistic price competition [17] and Hotelling’s model of duopolistic spatial
competition [61]. In the Bertrand model, firms choose prices, and the firm that charges
the lower price supplies the whole market. In the Hotelling model, instead, firms choose
locations and each firm monopolizes the part of the market closer to that firm than to
the others. In each case, discontinuities arise when firms charge the same price or locate
at the same point. There are, however, a host of other problems that give rise to games
with discontinuous objective functions; good entry points to the literature on the subject
are [13, 26, 27]. There are several papers where the relaxation of continuity is pursued;
the seminal one is the 1986 paper by Dasgupta and Maskin [26], further developments and
applications are discussed in [13, 27, 99, 109, 113] and references therein. However, with
the (partial) exception of [13], where jointly convex GNEPs are discussed, all these papers
deal only with pure NEPs. The most general result for GNEPs seems to be the one in [78].
In order to present the main result in [78], we need the following definition.

Definition 4.3 Let f : F ⊆ Rt → R be a function.

1. f is said to be upper pseudocontinuous at x ∈ F , if for all y ∈ F such that f(x) <
f(y), we have lim supz→x f(z) < f(y), and f is said to be upper pseudocontinuous on
F if it is upper pseudocontinuous at every point x ∈ F .

2. f is said to be lower pseudocontinuous at x ∈ F (on F) if −f is upper pseudocon-
tinuous at x (on F).

3. f is said to be pseudocontinuous at x ∈ F (on F) if it is both upper and lower
pseudocontinuous at x (on F).

Euclidean space) is upper semicontinuous at y ∈ Y if for every sequence {yk} in Y converging to y ∈ Y ,
and for every neighborhood U of G(y) in Z, there exist k̄ such that G(yk) ⊆ U for all k ≥ k̄. G is lower
semicontinuous at y ∈ Y if for every sequence {yk} in Y converging to y ∈ Y , and for every open subset
U of Z, with G(y) ∩ U 6= ∅, there exists k̄ such that G(yk) ∩ U 6= ∅ for all k ≥ k̄. G is upper (lower)
semicontinuous on Y if it is upper (lower) semicontinuous at each point of Y .

8A function f : Rt → R is quasi-convex if the level sets L(α) := {x ∈ Rt : f(x) ≤ α} are convex for
every α ∈ R.
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We refer to [78] for a detailed discussion of pseudocontinuity, here we note only that
upper and lower pseudocontinuity are a relaxation of upper and lower semicontinuity. The
following result holds [78].

Theorem 4.4 Let a GNEP be given and suppose that the same assumptions of Theorem
4.1 hold, except that the objective functions are assumed to be pseudocontinuous instead
of continuous. Then a generalized Nash equilibrium exists.

Relaxations of the compactness assumption in Theorem 4.1 have also been considered; this
issue is rather slippery and although it can been expected that suitable coercivity assump-
tions on the objective functions can make up for the possible lack of (uniform) compactness
of the feasible sets, caution must be exercised to avoid inappropriate generalizations (a good
case in point being Corollary 4.2 of [11]).

Example 4.5 Take N = 2, n1 = n2 = 1 and set (x, y) := (x1
1, x

2
1) for simplicity. We

consider a NEP where the objective functions of the two players are given by θ1(x, y) :=
1
2
x2 − xy and θ2(x, y) := 1

2
y2 − (x + 1)y and the feasible sets are X1 = X2 := R (i.e. the

player’s subproblems are unconstrained). It is easy to see that in this case S1(y) = y and
S2(x) = x + 1. Therefore, by definition, a solution (x̄, ȳ) of this game should satisfy the
system x̄ = ȳ and ȳ = x̄ + 1, which has no solutions. We then conclude that the NEP has
no equilibria. Note that the two objective functions are strongly convex (and uniformly so
with respect to the rival’s variable).

Actually, already in [8] a relaxation of the compactness assumption was put forward that
is rather peculiar to the economic model considered there. Further results on this topic
can be found in [13, 20]; in both cases the NI-function plays a key role and, very roughly
speaking, the condition that substitutes the compactness assumption in Theorem 4.1, is
some kind of compactness of the level sets of the NI-function. Some general, although
not easy-to-apply, results have also been established in [40] based on a degree-theoretic
approach.

The relaxation of the quasi-convexity assumption is also of obvious interest. For ex-
ample, if we make reference to economic applications, when noncompetitive markets are
embedded into a general equilibrium framework, the quasi-convexity assumption stands
out as an artificial addition extraneous to the basic nature of the model, see for example
[72, 86]. There are not many results on this complex topic, relevant references are [13, 88].

4.2 KKT Conditions

It is not difficult to derive primal-dual conditions for the GNEP. Assume, for simplicity,
that the problem is defined as in (1) with the sets Xν(x

−ν) given by (2). With this structure
in place, and assuming all functions involved are C1, we can easily write down the KKT
conditions for each player’s problem; the concatenation of all these KKT conditions gives
us what we can call the KKT conditions of the GNEP. Let’s make this more precise.
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Suppose that x̄ is a solution of the GNEP. Then, if for player ν a suitable constraint
qualification holds (for example, the Mangasarian-Fromovitz or the Slater constraint quali-
fication), there is a vector λ̄ν ∈ Rmν of multipliers so that the classical Karush-Kuhn-Tucker
(KKT) conditions

∇xνLν(x
ν , x̄−ν , λν) = 0,

0 ≤ λν ⊥ −gν(xν , x̄−ν) ≥ 0

are satisfied by (x̄ν , λ̄ν), where Lν(x, λν) := θν(x)+gν(x)Tλν is the Lagrangian associated
with the ν-th player’s optimization problem. Concatenating these N KKT systems, we
obtain that if x̄ is a solution of the GNEP and if a suitable constraint qualification holds
for all players, then a multiplier λ̄ ∈ Rm exists that together with x̄ satisfies the system

L(x, λ) = 0,

0 ≤ λ ⊥ −g(x) ≥ 0,
(12)

where

λ :=

 λ1
...

λN

 , g(x) :=

 g1(x)...
gN(x)

 , and L(x, λ) :=

 ∇x1L1(x, λ1)
...

∇xN LN(x, λN)

 .

Under a constraint qualification, system (12) can therefore be regarded as a first order
necessary condition for the GNEP and indeed system (12) is akin to a KKT system.
However, its structure is different from that of a classical KKT system. Under further
convexity assumptions it can be easily seen that the x-part of a solution of system (12)
solves the GNEP so that (12) then turns out to be a sufficient condition as well.

Theorem 4.6 Let a GNEP be given defined by (1) and (2) and assume that all functions
involved are continuously differentiable.

(a) Let x̄ be an equilibrium of the GNEP at which all the player’s subproblems satisfy
a constraint qualification. Then, a λ̄ exists that together with x̄ solves system (12).

(b) Assume that (x̄, λ̄) solves the system (12) and that the GNEP satisfies the Convexity
Assumption. Then x̄ is an equilibrium point of the GNEP.

Remark 4.7 The differentiability assumption on the problem functions involved can be
relaxed by using some suitable notion of subdifferential. This is rather standard and we
do not go into details on this point here.

Next consider the case of a jointly convex GNEP with the feasible set X having the explicit
representation

X = {x ∈ Rn : g(x) ≤ 0}
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for some (componentwise) convex function g : Rn → Rm, cf. Remark 3.7. Hence the
strategy space for player ν is given by

Xν(x
−ν) = {xν : g(xν , x−ν) ≤ 0}

for all ν = 1, . . . , N . Similar to the previous discussion on general GNEPs, it follows that
the KKT conditions of player ν-th optimization problem is given by

∇xνθν(x
ν , x−ν) +∇xνg(xν , x−ν)λν = 0,

0 ≤ λν ⊥ −g(xν , x−ν) ≥ 0
(13)

for some multiplier λν ∈ Rm. On the other hand, consider the corresponding VI (X,F)
from Theorem 3.9. The KKT conditions of this VI (see [38]) are given by

F(x) +∇g(x)λ = 0,

0 ≤ λ ⊥ −g(x) ≥ 0
(14)

for some multiplier λ ∈ Rm. The precise relation between these two KKT conditions and a
GNEP solution is given in the following result which, basically, says that (14) holds if and
only if (13) is satisfied with the same multiplier for all players ν or, in other words, that
a solution of the GNEP is a variational equilibrium if and only if the shared constraints
have the same multipliers for all the players.

Theorem 4.8 ([34, 52]) Consider the jointly convex GNEP with g, θν being C1. Then
the following statements hold:

(a) Let x̄ be a solution of the VI (X,F) such that the KKT conditions (14) hold with
some multiplier λ̄. Then x̄ is a solution of the GNEP, and the corresponding KKT
conditions (13) are satisfied with λ1 := . . . := λN := λ̄.

(b) Conversely, assume that x̄ is a solution of the GNEP such that the KKT conditions
(13) are satisfied with λ̄1 = . . . = λ̄N . Then (x̄, λ̄) with λ̄ := λ̄1 is a KKT point of
VI (X,F), and x̄ itself is a solution of VI (X,F).

4.3 Uniqueness

Uniqueness of the solution is a classical topic in analyzing a mathematical programming
problem, and is of obvious interest also in the case of GNEPs. In fact, in some applications,
it may be claimed that a GNEP model makes sense only if it has a unique solution; for
example, this is the position hold by many economists with respect to GNEPs. Unfortu-
nately, GNEPs have the “tendency” to have non unique solutions and to present, in fact,
manifolds of solutions; Example 1.1 is just a manifestation of this. This fact is part of
the folklore on GNEPs and is well recognized by practitioners. To understand a bit more
about this phenomenon, we can have a second look at the KKT conditions (12). It is well
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known that we can reformulate (12) as a (possibly nonsmooth) system of equations by
using complementarity functions. A complementarity function φ : R2 → R is a function
such that

φ(a, b) = 0 ⇐⇒ a ≥ 0, b ≥ 0, ab = 0.

If φ is a complementarity function, then it is immediate to see that (12) can be reformulated
as the square system

Φ(x, λ) :=

(
L(x, λ)

φ(−g(x), λ)

)
= 0, (15)

where φ : Rm+m → Rm (m =
∑N

ν=1 mν) is defined, for all a, b ∈ Rm, by

φ(a, b) :=

 φ(a1, b1)
...

φ(am, bm)

 .

Many complementarity functions are known (see, e.g., [38]). Probably the simplest one is
the min function

φ(a, b) := min{a, b} for all a, b ∈ R,

which is the one we assume is used in the sequel. This obviously makes the function
φ nondifferentiable. Although it is possible to envisage differentiable complementarity
functions φ, it is well known that the use of a nondifferentiable φ is advantageous from many
points of view (see [38]; this topic will also be taken up again in Subsection 5.6). Assume
now this simple setting: the GNEP we are considering is jointly convex (therefore gν = g
for all players ν) and x̄ is a solution with λ̄ being a corresponding Lagrange multiplier.
Assume further that the gradients of the active constraints are linearly independent and
strict complementarity holds (i.e., for all players, if a constraint is active, the corresponding
multiplier is positive). Note that it is difficult to think of a “better behaved” GNEP: we
are in the particularly simple jointly convex case, and all kind of regularities one may wish
for are satisfied. Assume now, to avoid a trivial case, that in x̄ at least one constraint gi is
active for two players, let’s say players 1 and 2 (this means that, locally, the GNEP “does
not behave” like a NEP). Straightforward calculations show that under these conditions,
φ is differentiable at (x̄, λ̄) and that its Jacobian is singular due to the presence of two
rows that are equal in correspondence to the gradients of the constraint gi for players 1
and 2. Some further, elementary elaboration based on the implicit function theorem leads
easily to the following result.

Proposition 4.9 ([35]) In the setting described above, the solution x̄ is a non isolated
solution of the GNEP and (x̄, λ̄) is a nonisolated solution of the system (12).

Global uniqueness results can certainly be obtained, but usually only in the context of
specific applicative contexts where the structure of the problem can be suitably exploited;
we do not go into detail on this here.
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For jointly convex GNEPs one can hope for global uniqueness of a variational equilib-
rium. Example 1.1 (continued) illustrates such a case. The theory of VI indicates that a
simple condition to have this is to require that F be strictly monotone; this is exactly the
case of Example 1.1 (continued). Note, however, that this is still a strong requirement.

Local uniqueness could also be of interest. This issue has not been much considered
in the literature, though, with the significant exception of [30]. Note that Proposition
4.9 shows that even local uniqueness can easily be in jeopardy. In any case, it should be
possible to derive some sensible conditions using, for example, the KKT conditions or some
suitable conditions on any of the reformulations we described in Section 3.1.

4.4 Stability

Stability of the solution, when data are varied, is another classical topic in mathematical
programming. This issue has been analyzed in some detail for NEPs, see for example
[3, 19, 24, 43, 74, 75, 76]. Obviously, for NEPs one can use its reduction to VI and then
apply the well-developed sensitivity theory existing for the latter class of problems [38].

However, when it comes to GNEPs in their full generality, very few results are available.
Let a GNEP be parametrized by a parameter p ∈ Rt; by this we mean that we have a
GNEP(p) for each value of p in a suitable set P ⊆ Rt, which is defined by the functions
θν(p, ·) and Xν(p, ·). Denote by S(p) the solution set of GNEP(p). The following result
is proved in [77]. It is rather intuitive and its main interest lies in the minimal continuity
assumptions adopted.

Theorem 4.10 Let a family of GNEP(p) be given, satisfying the following assumptions
for every ν = 1, . . . , N and for some p̄ ∈ P :

(a) θν is pseudocontinuous at (p̄, x) for every x such that xν ∈ Xν(p̄, x
−ν);

(b) Xν is upper and lower semicontinuous at (p̄, x−ν) for every x−ν .

Let {pk} be a sequence such that pk ∈ P for every k and {pk} → p̄, and let {xk} → x̄,
with xk ∈ S(pk) for every k. Then x̄ is a solution of GNEP(p̄).

Note that even if we assume that S(p̄) 6= ∅, the theorem above neither says anything about
the solvability of GNEP(p) when p is close to p̄, nor gives any quantitative result about
the solutions of the unperturbed problem and of the perturbed ones. These are usually
the difficult issues one has to deal with in analyzing sensitivity results. It seems there is
huge room for improvements in this respect; we are only aware of some partial results in
this direction that, however, can only be applied to GNEPs with particular structures, see
[40, 92]. See also [65] and references therein for some related work.

5 Algorithms

In this section, we discuss algorithms for the solution of GNEPs. This topic is currently a
very active research field, and there are many proposals. Our focus will be on methods for
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general GNEPs and jointly convex GNEPs, not on specific methods that can be developed
for particular applications of GNEPs by taking into account their more specialized struc-
ture. We make clear from the outset that, in spite of the many proposals, it is probably
safe to say that, at present, almost no algorithm can be shown to be globally convergent
under clear or reasonable assumptions; certainly, there is still a lot of theoretical work
needed in order to develop a reliable convergence theory for GNEPs. The only case for
which some more interesting results have been obtained is when the GNEP has a jointly
convex structure. Numerical experience with all these algorithms is still very limited, and
it is not easy to assess which method is more promising in practice.

5.1 Practitioners Methods

Under this heading we present some methods that are most popular among practitioners
and whose rationale is particular simple to grasp. They are “natural” decomposition meth-
ods, be it of Jacobi- or Gauss-Seidel-type (see, e.g., [107] for the well-known counterparts
of these methods in the case of systems of linear equations). Consider the general GNEP
where the subproblem of player ν is given by

min
xν

θν(x
ν , x−ν) s.t. xν ∈ Xν(x

−ν).

We first describe the nonlinear Jacobi-type method.

Algorithm 5.1 (Nonlinear Jacobi-type Method)

(S.0) Choose a starting point x0 =
(
x0,1, . . . , x0,N

)
, and set k := 0.

(S.1) If xk satisfies a suitable termination criterion: STOP.

(S.2) FOR ν = 1, . . . , N
Compute a solution xk+1,ν of

min
xν

θν(x
ν , xk,−ν) s.t. xν ∈ Xν(x

k,−ν).

END

(S.3) Set xk+1 :=
(
xk+1,1, . . . , xk+1,N

)
, k ← k + 1, and go to (S.1).

At each iteration k, Algorithm 5.1 has to solve N optimization problems in (S.2): For each
ν ∈ {1, . . . , N} the objective function

θν

(
xk,1, . . . , xk,ν−1, xν , xk,ν+1, . . . , xk,N

)
(16)

has to be minimized over all xν ∈ Xν(x
−ν), whereas all block variables xk,µ of the other

players µ 6= ν are fixed. However, this version does not use the newest information, since,
when computing xν , we already have the new variables xk+1,1, . . . , xk+1,ν−1 and may use
them instead of xk,1, . . . , xk,ν−1. In fact, we can use these variables both in θν and in the
feasible sets. In this way, we obtain the following Gauss-Seidel-type method.
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Algorithm 5.2 (Nonlinear Gauss-Seidel-type Method)

(S.0) Choose a starting point x0 =
(
x0,1, . . . , x0,N

)
, and set k := 0.

(S.1) If xk satisfies a suitable termination criterion: STOP.

(S.2) FOR ν = 1, . . . , N
Compute a solution xk+1,ν of

minxν θν

(
xk+1,1, . . . , xk+1,ν−1, xν , xk,ν+1, . . . , xk,N

)
s.t. xν ∈ Xν(x

k+1,1, . . . , xk+1,ν−1, xk,ν+1, . . . xk,N).
(17)

END

(S.3) Set xk+1 :=
(
xk+1,1, . . . , xk+1,N

)
, k ← k + 1, and go to (S.1).

While conceptually quite simple, the convergence properties of both Algorithm 5.1 and
Algorithm 5.2 are not well-understood. Even in the simplest case of a standard NEP, it is
known and easy to prove that x̄ is a Nash equilibrium if the entire sequence {xk} (provided
that it exists!) generated by one of these methods converges to this point x̄. This result
is not necessarily true if x̄ is only an accumulation point of such a sequence. Conditions
which guarantee the convergence of the whole sequence {xk}, however, are typically not
known or extremely restrictive, see [40]. The situation becomes even more complicated
for GNEPs, where additional properties of the constraints are required in order to prove
suitable convergence results.

In some applications, however, convergence of these methods can be shown, see [93] for
an example. The special case in which the objective functions of the GNEP do not depend
on the other players’ variables (and a few more technical assumptions hold) is analyzed
in [41]. It is shown there that a modification of the Gauss-Seidel method from Algorithm
5.2, where proximal terms are added in the objective functions of the subproblems (17),
so that the subproblems solved in step (S.2) become

minxν θν

(
xk+1,1, . . . , xk+1,ν−1, xν , xk,ν+1, . . . , xk,N

)
+ τ k‖xν − xk,ν‖2

s.t. xν ∈ Xν(x
k+1,1, . . . , xk+1,ν−1, xk,ν+1, . . . xk,N),

(with τ k > 0 and possibly tending to 0), has significant convergence properties. Among
others, under a convexity assumption, every limit point of the sequence produced by Al-
gorithm 5.2 is a solution of the GNEP (no need for convergence of the whole sequence).

Comments. The methods described in this subsection are most straightforward and easy
to implement and this explains their popularity among practitioners. However, at present,
they can be considered, at most, good and simple heuristics.
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5.2 VI-type Methods

First consider the GNEP with general constraints given by (2). Theorem 4.6 (b) shows that,
under convexity and differentiability assumptions, a KKT point, i.e. a solution of system
(12), will yield a solution of the GNEP. Note that (12) is a mixed complementarity problem,
i.e. a special variational inequality, for which efficient solvers are available [31, 38, 79]. This
paves the way to several solution approaches to the solution of GNEPs. Unfortunately this
statement has to be immediately qualified, since the convergence requirements for these
methods are not easily applicable to the KKT system (12), and the conditions one obtains
this way are rather unnatural in terms of the original GNEP and are not at all clear.
Garcia and Zangwill [50] advocate the use of homotopy methods for the solution of the
KKT conditions (12). While this approach is theoretically well founded and enjoys strong
global convergence properties, it is well known that in practice homotopy methods fail to
solve problems as soon as the dimension of the problem itself becomes realistic. In this
context, it should also be mentioned that the VI approach increases the dimension from
n to n + m (recall that m =

∑N
ν=1 mν), so the VI problem could be significantly larger

depending on the overall number of constraints.
The situation is somewhat better for jointly convex GNEPs. In this case we can apply

Theorem 3.9. According to this result, we can calculate a solution of the GNEP by finding
a solution of the corresponding VI(X,F) (where X is the set in the definition of joint
convexity and F(x) := (∇xνθν(x))N

ν=1). In principle then a (variational) equilibrium can
be found by solving the variational inequality problem. Since there are plenty of algorithms
available for VIs (see, e.g., [38]), we therefore obtain a whole bunch of methods for the
solution of jointly convex GNEPs. However, the conditions for convergence derived in this
way are very restrictive at best. To give a feel of what one can expect, consider the case
in which F is monotone on X9. It is known [38] that this is one of the weakest conditions
under which global convergence can be proved for the VI(X,F). The monotonicity of
the defining function is a standard and well accepted assumption in the VI theory, and
it is satisfied in many practical applications. However, when one looks at the specific
structure of F, it is easy to see that the monotonicity assumption implies a connection
among the θν that cannot be expected to hold in general. To see this better assume that
F is continuously differentiable. Then it is well known that F is monotone if and only if
its Jacobian is positive semidefinite on X. We have

JF =


∇2

x1x1θ1 ∇2
x1x2θ1 · · · ∇2

x1xN θ1

∇2
x2x1θ2 ∇2

x2x2θ2 · · · ∇2
x2xN θ2

...
...

. . .
...

∇2
xNx1θN ∇2

xNx2θN · · · ∇2
xNxN θN

 .

It should be clear that requiring the positive semidefiniteness of this matrix amounts to
making a very strong assumption on the structure and relations of the objective func-

9F is monotone on the set X if, for any two x,y ∈X, it holds that (F(x)− F(y))T (x− y) ≥ 0.
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tions θν . Note that the diagonal blocks of this matrix are positive semidefinite under the
Convexity Assumption. Therefore, roughly speaking, diagonal dominance of these blocks
would ensure positive semidefiniteness of the whole matrix. This can be interpreted as the
fact that player ν has “more influence” on his objective function than the other players do,
and can therefore be expected to hold is some applications. But it should be clear that, in
general, this is a very strong requirement.

A possible disadvantage of this VI-approach is the fact that one can compute variational
equilibria only, which excludes possible other solutions that might be of interest from a
practical point of view. To circumvent this problem, one can alternatively use the charac-
terization of all solutions of the GNEP as a QVI from Theorem 3.3. This characterization
is true for a general (not necessarily jointly convex) GNEP. However, although there do
exist a few ideas for solving QVIs (see, e.g., [46, 67]), none of these ideas can be viewed
as an efficient and robust tool for solving GNEPs since the numerical solution of QVIs
itself is still a highly difficult problem. Another way to avoid the problem that only varia-
tional equilibria can be computed was recently suggested in [81] by using a parametrized
VI-approach whose solutions correspond to different solutions of the GNEP. A full char-
acterization of all GNEP-solutions, however, is not given by this parametrized approach.

Comments. The direct solution of the KKT conditions in order to develop globally
convergent algorithms seems very appealing and quite simple (actually, we could also have
included this approach in the previous subsection). However the methods proposed in the
literature are deficient either on the theoretical or on the practical side. The VI reduction
of a jointly convex problem allows us to use well established methods for the solution
of a VI. The disadvantage is that only variational equilibria can be computed this way
(see, however, [81]) and that the resulting assumptions are rather stringent. Technically
speaking, probably the weakest assumption under which one can ensure convergence of
an algorithm for the solution of the VI(X,F) is that F be pseudo-monotone with respect
to the solution set of the VI10 (see [38, Chapter 12]). As observed in [34], although not
mild, this is in any case a weaker assumption than those required by other methods for
the solution of jointly convex GNEPs to be discussed in the following subsections.

5.3 NI-Function-type Methods

Consider the general (not necessarily jointly convex) GNEP first. In principle, Theorem 3.2
allows us to apply optimization techniques to the constrained optimization problem (7) in
order to solve the GNEP. Similarly, Theorem 3.5 also motivates the application of suitable
fixed-point methods in order to solve the GNEP. However, due to the complications of these
reformulations, none of these approaches has, so far, been investigated in the literature. In
fact, all papers that we are currently aware of and that apply the NI-function in some way

10The function F is pseudo-monotone with respect to the solution set of the VI(X,F), if the solution
set of the VI is nonempty and for every solution x̄ it holds that F(y)T (y − x̄) ≥ 0 for all y ∈ X. Note
that pseudo-monotonicity with respect to the solution set is obviously implied by the monotonicity of F.
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to solve the GNEP are dealing with the jointly convex case. Hence, in this subsection, we
always assume that the GNEP is jointly convex.

In this situation, Theorem 3.8 guarantees that we have the reformulation (10) of the
GNEP as a constrained optimization problem where the feasible set has a much simpler
structure as in the reformulation (7). However, as noted before, the objective function of
this program is (usually) still nonsmooth and possibly discontinuous (nevertheless, we will
come back to this point shortly). In order to avoid this nonsmoothness, we first introduce
a suitable modification of the NI-function that was proposed in [51] in the context of
standard NEPs and later applied to GNEPs in [55].

Definition 5.3 Given a parameter γ > 0, the mapping

Ψγ(x, y) :=
N∑

ν=1

[
θν(x

ν , x−ν)− θν(y
ν , x−ν)− γ

2
‖xν − yν‖2

]
. (18)

is called the regularized Nikaido-Isoda-function (regularized NI-function for short) of the
GNEP.

Let Ψ denote the standard NI-function from Definition 3.1, then the regularized NI-function
can be written as

Ψγ(x, y) = Ψ(x, y)− γ

2
‖x− y‖2.

Let us also denote by

Vγ(x) := max
y∈X

Ψγ(x, y)

= max
y∈X

N∑
ν=1

[
θν(x

ν , x−ν)− θν(y
ν , x−ν)− γ

2
‖xν − yν‖2

]
(19)

= max
y∈X

N∑
ν=1

[
θν(x

ν , x−ν)− θν(y
ν , x−ν)

]
− γ

2
‖x− y‖2

the corresponding merit function. Note that, for standard NEPs, this mapping Vγ coincides

with the previously defined mapping V from (11) (but is different from the function V̂ from
(7)) when γ = 0.

The following result is the counterpart of Proposition 3.13 (for the mapping V ) and
Theorem 3.2 (for the mapping V̂ ) and shows, in particular, that the mapping Vγ has similar

properties as V and V̂ and that, in addition, it turns out to be continuously differentiable
for each γ > 0. On the other hand, note that it gives a characterization of variational
equilibria only, whereas V̂ provides a complete characterization of all solutions of a GNEP.

Theorem 5.4 ([55]) Consider a jointly convex GNEP. Then the regularized function Vγ

has the following properties:

(a) Vγ(x) ≥ 0 for all x ∈X.
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(b) x̄ is a variational equilibrium if and only if x̄ ∈X and Vγ(x̄) = 0.

(c) For every x ∈X, there exists a unique maximizer yγ(x) such that

argmaxy∈X

[
Ψ(x, y)− γ

2
‖x− y‖2

]
= yγ(x),

and yγ(x) is continuous in x.

(d) The mapping Vγ is continuously differentiable if all θν are continuously differentiable.

Note that statements (a), (b), and (c) hold without any smoothness of the mappings θν .
Using the first two statements of Theorem 5.4, we see that finding a solution of the GNEP
is equivalent to computing a global minimum of the constrained optimization problem

min Vγ(x) s.t. x ∈X.

The last statement of Theorem 5.4 shows that the new objective function overcomes one
of the deficiencies of the mappings V and V̂ that was used in the related optimization
reformulations (7) and (10), respectively.

The following result shows that the definition of the mapping Vγ can also be used in
order to get a fixed point characterization of the GNEP, cf. Theorem 3.5.

Theorem 5.5 ([55]) Let yγ(x) be the vector defined in Theorem 5.4 (c) as the unique
maximizer in the definition of the regularized function Vγ from (19). Then x̄ is a solution
of GNEP if and only if x̄ is a fixed point of the mapping x 7→ yγ(x), i.e., if and only if
x̄ = yγ(x̄).

Using the difference of two regularized NI-functions, it is also possible to reformulate the
GNEP as an unconstrained optimziation problem. In fact, let 0 < α < β be two given
parameters, let Ψα, Ψβ denote the corresponding regularized NI-functions, and let Vα, Vβ

be the corresponding merit functions. Then define

Vαβ(x) := Vα(x)− Vβ(x), x ∈ Rn.

This mapping has the following properties.

Theorem 5.6 ([55]) Under the assumption of Theorem 5.4, the following statements
about the function Vαβ hold:

(a) Vαβ(x) ≥ 0 for all x ∈ Rn.

(b) x̄ is a variational equilibrium of the GNEP if and only if x̄ is a global minimum of
Vαβ with Vαβ(x̄) = 0.

(c) The mapping Vαβ is continuously differentiable if all θν are continuously differentiable.
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Similar to Theorem 5.4, we note that the differentiability assumption is needed in the
previous result only for statement (c), whereas the other two statements hold without any
smoothness assumption on the utility mappings θν .

Theorem 5.6 shows that the variational equilibria of a GNEP are precisely the global
minima of the unconstrained optimization problem

min Vαβ(x), x ∈ Rn. (20)

In view of Theorem 5.6 (c), this is a continuously differentiable optimization problem.
In general, it is not twice continuously differentiable since Vγ is not twice continuously
differentiable. However, under additional assumptions, one can show that the mapping Vγ

(and, therefore, also the objective function Vαβ) is an SC1-mapping, i.e. the gradient ∇Vγ

is semismooth (see [91, 96, 97] for more details on semismoothness). More precisely, it
turns out that ∇Vγ is piecewise smooth under mild conditions. This, in turn, allows the
application of locally fast convergent Newton-type methods, cf. [56, 58] for more details.

Similar (or almost similar) to the previous modifications of the mapping V , it is also
possible to define regularized functions V̂γ and V̂αβ of the mapping V̂ from Theorem 3.2.
These regularized functions can also be used to get constrained and unconstrained op-
timization reformulations of the GNEP. Under suitable conditions, both V̂γ and V̂αβ are

piecewise smooth (like V̂ itself, they are usually nonsmooth and possibly even discontinu-
ous). Hence there degree of smoothness is less than the one of Vγ and Vαβ, however, the
corresponding optimization problems have the advantage that their solution characterize
all equilibria of a GNEP (not just the variational equilibria), see [32] for more details.

Another approach that is based on the NI-function and that exploits the fixed-point
characterization from Theorem 3.5 is the relaxation method [111], that uses the recursion

xk+1 := (1− tk)x
k + tky

k,

where yk is an element of the set Ŷ (xk) defined in (8) and where the stepsize tk satisfies
the conditions

tk ∈ (0, 1] ∀k ∈ N, tk → 0,
∞∑

k=0

tk =∞,

or [71] the (optimal) choice

tk := arg min
tk∈(0,1]

V̂ (1− tk)x
k + tky

k).

We see that, in the relaxation method, the new iterate is constructed as a weighted average
of the “improved” point yk and the current iteration. From the point of view of a fixed-
point iteration, this is called a Krasnoselskij- or Mann-type iteration, cf. [15]. Under a
number of technical assumptions, including the condition that the set Ŷ (x) is single-
valued and continuous for all x, it is shown in [111] that the relaxation method converges
to a variational equilibrium of the GNEP. It is interesting to note that, from the theoretical
point of view, the differentiability of the objective functions θν is not required.

28



The relaxation method has been applied successfully to some applications of NEPs and
GNEPs, see, e.g., [1, 2, 16, 22, 69, 71]. The relaxation method is well reviewed in [70].
A modification of the relaxation method based on a slightly different (regularized) fixed
point characterization is given in [57].

Comments. The direct (constrained or uncontrained) optimization of one of the several
variants of the functions V and V̂ introduced in this subsection is very appealing, since
optimization methods are extremely reliable and well understood. Note, however, that, as
usual, little is known regarding conditions on the GNEP that guarantee the verification
of favorable conditions of one of these functions. Furthermore, the mere evaluation of any
of these variants of V and V̂ entails the solution of a constrained optimization problem.
This last disadvantage is shared by the relaxation method. On the other hand, it must
be said that the relaxation method, together with the penalty method to be described
next, is probably one of the few methods for which a certain practical experience has
been gathered. As a final observation on this method, we remark that the conditions
under which the method converges imply that the F is strictly monotone [70]. This shows
that, from the theoretical point of view, the relaxation method holds little advantage in
comparison to the (in some cases much simpler) methods based on the VI-reformulation
discussed in the previous subsection. It would be interesting to see a numerical comparison
of these two classes of methods. Moreover, a theoretical and numerical comparison with
the corresponding optimization approaches is currently also not available.

5.4 Penalty Methods

Another idea that comes from constrained optimization is to get rid of the complicated
joint constraints in a GNEP and to solve a (possibly infinite sequence of) standard NEP(s)
by adding the (difficult) joint constraints as a penalty term to the objective function of
each player. This approach has been advocated for the first time in [47]. In this paper, a se-
quential penalty/augmented Lagrangian-type method is analyzed whereas at each iteration
a NEP is solved whose objective function is obtained by summing the original objective
function and a smooth term involving the joint constraints and a penalty parameter that
goes to infinity as the process progresses. Since the description of this method is rather
complicated, we prefer to present its simpler “exact” counterpart, analyzed in [37, 39].

Consider the general GNEP

min
xν

θν(x
ν , x−ν) s.t. xν ∈ Xν(x

−ν)

with strategy spaces Xν(x
−ν) given by (2) for some smooth mappings gν : Rn → Rmν . Let

ρν > 0 be a penalty parameter and consider the penalized problem, where each player ν
tries to solve the optimization problem

min
xν

Pν(x; ρν) := θν(x
ν , x−ν) + ρν

∥∥gν
+(xν , x−ν)

∥∥, (21)

where ‖ · ‖ denotes the Euclidean norm. Note that this penalized problem is a standard
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(unconstrained) NEP (though having nonsmooth objective function). The corresponding
penalty method then looks as follows.

Algorithm 5.7 (Exact Penalty-type Method)

(S.0) Choose x0 ∈ Rn, ρν > 0 and cν ∈ (0, 1) for ν = 1, . . . , N , set k := 0.

(S.1) If xk satisfies a suitable termination criterion: STOP.

(S.2) Let Ik := {ν : xk,ν 6∈ Xν(x
k,−ν)}. For every ν ∈ Ik, if

‖∇xνθν(x
k,ν , xk,−ν)‖ > cν

[
ρν

∥∥∇xν‖gν
+(xk,ν , xk,−ν)‖

∥∥] , (22)

then double ρν .

(S.3) Compute a solution of the penalized problem (21), set k ← k + 1, and go to (S.1).

Note that other penalty updating schemes than those from (S.2) are possible, and indeed
[37] uses another technique for jointly convex GNEPs in order to obtain stronger conver-
gence results in this particular case. In any event, the key point is that, under suitable
conditions, after a finite number of possible updates of the penalty parameter, the solution
of the penalized problem (21) is also a solution of the original GNEP. Note that, although
structurally non differentiable, the penalized NEPs are unconstrained.

Comments. The main drawback of the exact penalty method we just described is that the
penalized problem (21) may be very difficult to solve in practice. Similar observations also
hold for the sequential penalty method in [47], the difference being that in this latter case
the penalized problems are differentiable (assuming θν and gν are differentiable), but the
penalty parameter has to go to infinity to have convergence. On the plus side, in principle
penalty methods can be applied to general GNEPs (and not just to jointly convex ones).
Therefore, in our opinion they hold the potential for interesting developments and actually,
the rather extensive numerical results reported in [37] suggest that penalty methods can
be rather efficient. As side remark, we may add that also these methods, as the relaxation
method, can be in principle applied in the case of nondifferentiable GNEPs. The conditions
required for the convergence of penalty methods do not seem too strong, but they are
substantially different from and difficult to compare to those used in methods described in
the previous subsections.

5.5 ODE-based Methods

It is possible to characterize the solutions of GNEPs as stationary points of a certain system
of ordinary differential equations (ODEs for short). The crucial question which then arises
is under which conditions such a stationary point is (asymptotically) stable.

In order to give at least a feel for the kind of results one can obtain, we consider once
again only the jointly convex GNEP in this subsection. Then x̄ is a variational equilibrium
of this GNEP if and only if x̄ solves the variational inequality VI (X,F) with X and F
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being defined as in Theorem 3.9. Using standard characterizations for variational inequality
solutions (see [38], for example), it therefore follows that x̄ is a variational solution of the
GNEP if and only if x̄ satisfies the fixed point equation

x = PX

(
x− γF(x)

)
(23)

for some fixed parameter γ > 0. Hence x̄ is a variational equilibrium if and only if x̄ is a
stationary point of the dynamical system

x′(t) = PX

(
x(t)− γF(x(t))

)
− x(t). (24)

Assuming that all functions θν are C1 and have a locally Lipschitz continuous partial
derivative ∇xνθν , it follows from the Lipschitz-continuity of the projection operator that
the right-hand side of (24) is locally Lipschitz, too. Hence the system (24), given any initial
state x(0) = x0 with some x0 ∈X, has a unique solution x(t). The idea of the ODE-based
methods is then to follow the trajectory given by this solution x(t). The natural question
arising in this context is then under which conditions (with respect to the initial value x0)
the solution x(t) converges to the stationary point of (24). This leads to the question of
(asymptotic) stability of the system (24).

A stability result for this ODE system is as follows.

Theorem 5.8 ([20]) Consider the jointly convex GNEP, and let X and F be defined as
in Theorem 3.9. Suppose that F is Lipschitz continuous with Lipschitz constant L > 0 and
uniformly monotone with modulus µ > 0. Then, for all γ ∈

(
0, 2µ

L2

)
, there is a constant

c > 0 such that every solution of (24) with x(0) ∈X satisfies

‖x(t)− x̄‖ ≤ ‖x(0)− x̄‖ exp(−ct) ∀t ≥ 0,

i.e., x(t) converges exponentially to x̄.

The conditions used in Theorem 5.8 are relatively strong and correspond precisely to the
convergence conditions for the standard projection method for the solution of variational
inequalities that is also based on the fixed point characterization (23) of a solution of
VI(X,F). Since there exists many modifications of this standard projection method (see,
e.g., [38]) that are known to work under much weaker assumptions, we believe that one
can also show suitable stability results for related ODE approaches.

Other ODE-approaches, always under rather stringent convexity/monotonicity assump-
tions, are given in the paper [103] by Rosen, which is based on the corresponding KKT
conditions, in [42], and in [20] with a right-hand side that is possibly not continuous (hence
it is not guaranteed that a solution x(t) of an initial value problem exists). Related ideas
are also used in a series of papers by Antipin [5, 6, 7] in a slightly different context that
can also be applied to GNEPs.

Comments. We believe that, at the current state-of-the-art, ODE-based methods are
really non competitive with the other methods discussed previously, neither from the theo-
retical point of view (as we explained above) nor from the practical point of view (although
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this latter belief is not based on practical experience, but rather suggested by the behav-
ior of ODE methods in nonlinear optimization). The main interest of ODE methods is
historical, since they were first proposed in the influential paper [103].

5.6 Local Newton Methods

All the methods we have considered so far are global methods, i.e. they are designed to
converge to a solution when the starting point is possibly very distant from the solution
itself. Local methods assume that the starting point of the algorithm is “close enough”
to a solution and aim at proving convergence at a good rate. The prototype of a local
algorithm is obviously Newton’s method that exhibits a superlinear/quadratic convergence
rate. The extension of this method (or of some suitable variant) to the GNEP has been
investigated in [35, 90]. The approach of both papers is similar in that they are based
on some kind of Newton method applied to the KKT conditions (12). As we discussed
in Subsection 4.3, system (12) can be rewritten as a suitable system of nondifferentiable
equations Φ(x, λ) = 0, to which nonsmooth methods can be applied. In particular, we
could think to apply the famous semismooth Newton method. This is essentially the route
taken in [35]. However, we saw in Subsection 4.3 that the solutions of the GNEP (and
therefore also the solutions of (12)) are usually nonisolated. This fact is well known to cause
severe difficulties to most Newton-type methods, and the semismooth Newton method is
no exception. Therefore, one has to rely on some more sophisticated recent methods that
are able, with some restrictions, to cope with nonisolated solutions and still guarantee a
superlinear/quadratic convergence rate. We refer the reader to [35] for details. Here we
only mention that the most general method in [35] is a semismooth Levenberg-Marquardt-
type method applied to Φ(x, λ) = 0 whose iteration is

(xk+1, λk+1) := (xk, λk) + dk,

where α(xk, λk) := ‖Φ(xk, λk)‖, dk := (∆xk, ∆λk) solves the linear system[
JΦ(xk, λk)TJΦ(xk, λk) + α(xk, λk)I

]
d = −JΦ(xk, λk)TΦ(xk, λk) (25)

and JΦ(xk, λk) is a “generalized Jacobian” of Φ at (xk, λk). We refer the reader to [38]
for the necessary notions of nonsmooth analysis. Here we only remark that the generalized
Jacobian used in the above Newton method is just a matrix that is easy to calculate
in our setting and that reduces to the usual Jacobian if the function Φ is continuously
differentiable around the point of interest.

The critical assumption needed in establishing a fast convergence rate is an “error
bound” condition. Roughly speaking, this means that we must be able to estimate the
distance to a solution based on the information at the current iteration. Error bound
analysis is a well developed area in nonlinear programming; in the case of GNEPs, however,
very little is known on this topic; [35] contains some preliminary results in this direction.

As an alternative to semismooth methods, [90] advocates the use of a Josephy-Newton
method for the solution of system (12). This means that, at each iteration of the method,
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a linear complementarity problem has to be solved. This does not compare favorably with
the method in [35]; furthermore, in this latter paper, it is pointed out that the assumptions
used in the analysis of the method in [90] are somewhat restrictive.

6 Final Considerations

The GNEP is a very useful and flexible modelling tool and its use is increasing steadily.
However, with possibly the exception of existence theory, the study of GNEPs in general
form is still largely incomplete. Until now the emerging pattern for the study of the GNEP
has been: (a) consider a GNEP; (b) transform it into another, better understood, problem
(be it a VI, a QVI, a minimization problem etc.); (c) apply to the latter problem some
known results. Unfortunately, this (classical) approach has had a somewhat limited success.
The main reason being that once the conditions imposed on the transformed problem are
“brought back” to the original problem, they turn out to be extremely demanding or of
difficult interpretation.

We believe there are two avenues to overcome this state of affairs. The first one is
studying problems with special structures emerging from some real-world applications.
This has already been done for some of the recent applications of GNEPs, especially those
coming from web and telecommunication applications. The other, parallel avenue, is to
undertake the study of GNEPs that have some additional mathematical structure making
the problem more amenable to analysis. The study of the jointly convex GNEP is certainly
an extremely significative example of this second approach. There are other mathematical
structures that also appear promising, we can mention (a) problems where the feasible sets
are of the form Xν(x

−ν) = f ν(x−ν) + Xν for some fν : R−nν → Rν and a fixed set Xν

(see [92]); (b) problems where the objective functions are independent of the other players’
variables (see [41]); (c) problems where the coupling constraints have a kind of symmetric
structure (see [5, 6, 7]); (d) problems where the NI-function is convex-concave [44]. But
certainly, what is still lacking seems to be a method of analysis that is really tailored to
the GNEP and fully takes into account its nature and peculiarities.

We believe the near future will witness a larger and larger diffusion of GNEP models and
a parallel increase in the interest in their theoretical and algorithmic analysis. We hope
we made plain that the study of GNEPs is still in its infancy, its age notwithstanding.
There are still many stimulating open problems to be attacked, both on the theoretical
side and on the algorithmic/numerical one. Furthermore, beyond those we listed, there are
further interesting topics on which little is known and that yet are emerging as important.
Among these we just mention two. First the problem of selecting one specific solution
among the many the GNEP usually has (what criteria can we use to establish that a certain
solution is preferable to another, how can we compute it?). Second the EPEC: Equilibrium
Programming with Equilibrium Constraints. EPECs can be viewed as GNEPs whose
constraints are in turn defined by some kind of equilibrium condition. These problems
naturally arise when considering multi-leader-follower games used in modelling complex
competition situations, see, e.g., [33, 47, 62, 73, 116]. These problems are challenging and
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extremely hard to analyze.
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[44] Fl̊am S.D., Ruszczyński A.: Noncooperative convex games: Computing equilibrium
by partial regularization. IIASA Working Paper 94-42 (1994)

[45] Fudenberg D., Tirole J.: Game Theory. MIT Press, Cambridge, Massachusetts (1991)

[46] Fukushima M.: A class of gap functions for quasi-variational inequality problems. J.
Ind. Manag. Optim. 3, 165–171 (2007)

[47] Fukushima M, Pang J.-S.: Quasi-variational inequalities, generalized Nash equilibria,
and multi-leader-follower games. Comput. Manag. Sci. 2, 21–56 (2005)

[48] Gabriel S.A., Kiet S., Zhuang J.: A mixed complementarity-based equilibrium model
of natural gas markets. Oper. Res. 53, 799-818 (2005)

[49] Gabriel S., Smeers Y.: Complementarity problems in restructured natural gas mar-
kets. In Recent Advances in Optimization, Lectures Notes in Economics and Math-
ematical Systems 563, 343–373 (2006)

[50] Garcia C.B., Zangwill W.I.: Pathways to Solutions, Fixed Points, and Equilibria.
Prentice-Hill, New Jersey (1981)

[51] Gürkan G., Pang J.-S.: Approximations of Nash equilibria. Math. Program. 117,
223–253 (2009)

[52] Harker P.T.: Generalized Nash games and quasi-variational inequalities. Eur. J.
Oper. Res. 54, 81–94 (1991)

[53] Harker P.T., Hong S.: Pricing of track time in railroad operations: An internal
market approach. Transport. Res. B-Meth. 28, 197–212 (1994)

[54] Haurie A., Krawczyk J.-B.: Optimal charges on river effluent from lumped and
distributed sources. Environ. Model. Assess. 2, 93-106 (1997)

[55] von Heusinger A., Kanzow C.: Optimization reformulations of the generalized Nash
equilibrium problem using Nikaido-Isoda-type functions. Comput. Optim. Appl., to
appear

[56] von Heusinger A., Kanzow C.: SC1 optimization reformulations of the generalized
Nash equilibrium problem. Optim. Methods Softw. 23, 953-973 (2008)

[57] von Heusinger A., Kanzow C.: Relaxation methods for generalized Nash equilibrium
problems with inexact line search. J. Optim. Theory Appl., to appear.

37



[58] von Heusinger A., Kanzow C., Fukushima M.: Newton’s method for computing a
normalized equilibrium in the generalized Nash game through fixed point formula-
tion. Technical report, Institute of Mathematics, University of Würzburg, Würzburg,
Germany (2009)

[59] Hobbs B, Helman U., Pang J.-S.: Equilibrium market power modeling for large scale
power systems. IEEE Power Engineering Society Summer Meeting, 2001. 558–563
(2001)

[60] Hobbs B, Pang J.-S.: Nash-Cournot equilibria in electric power markets with piece-
wise linear demand functions and joint constraints. Oper. Res. 55, 113–127 (2007)

[61] Hotelling H.: Game theory for economic analysis. Econom. J. 39, 41–47 (1929)

[62] Hu X., Ralph D.: Using EPECs to model bilevel games in restructured electricity
markets with locational prices. Technical report CWPE 0619 (2006)

[63] Ichiishi T.: Game theory for economic analysis. Academic Press, New York (1983)

[64] Jiang H.: Network capacity management competition. Technical report, Judge Busi-
ness School at University of Cambridge, UK (2007)
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