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Abstract

Optimization problems with cardinality constraints are very difficult mathe-
matical programs which are typically solved by global techniques from discrete
optimization. Here we introduce a mixed-integer formulation whose stan-
dard relaxation still has the same solutions (in the sense of global minima)
as the underlying cardinality-constrained problem; the relation between the
local minima is also discussed in detail. Since our reformulation is a mini-
mization problem in continuous variables, it allows to apply ideas from that
field to cardinality-constrained problems. Here, in particular, we therefore
also derive suitable stationarity conditions and suggest an appropriate regu-
larization method for the solution of optimization problems with cardinality
constraints. This regularization method is shown to be globally convergent
to a Mordukhovich-stationary point. Extensive numerical results are given to
illustrate the behavior of this method.

Key Words: Cardinality constraints, global minima, local minima, stationary
points, M-stationarity, relaxation, regularization method



1 Introduction

We consider the cardinality-constrained optimization problem

min
x

f(x) s.t. x ∈ X, ‖x‖0 ≤ κ, (1)

where f : Rn → R denotes a continuously differentiable function, κ > 0 is a given
natural number, ‖x‖0 denotes the cardinality of the vector x ∈ Rn, i.e. the number of
its nonzero elements, and X ⊆ Rn is a subset determined by any further constraints
on x. Throughout this manuscript, we assume that κ < n since otherwise the
cardinality constraint would not constrain x.

The cardinality-constrained optimization problem (1) has a wide range of appli-
cations including portfolio optimization problems with constraints on the number of
assets [5], the subset selection problem in regression [18], or the compressed sensing
technique used in signal processing [8]. The optimization problem (1) is difficult to
solve mainly due to the fact that it involves the cardinality constraint defined by the
mapping ‖ · ‖0 which, despite its notation that is quite common in the community,
is not a norm, and neither convex nor continuous.

The difficulty to solve problem (1) is also reflected by the fact that it can be
reformulated as a mixed-integer problem. However, even for simple instances, just
testing feasibility of the constraints in (1) is known to be NP-complete [5]. Never-
theless, the mixed-integer formulation of the cardinality-constrained problem is the
basis for the development of many algorithms which use ideas and techniques from
discrete optimization in order to find the exact or an approximate solution of the
problem (1). We refer the reader to [4, 5, 9, 19, 24, 29, 30] and references therein
for a couple of different ideas.

The cardinality-constrained problem (1) is also closely related to the sparse op-
timization problem where the term ‖x‖0 is typically a part of the objective function
served for enhancing sparsity of produced solutions. A standard technique then is
to replace this term by the l1-norm ‖x‖1 which gives rise to a convex optimization
problem (provided that all other ingredients are convex) and for which a global
minimum can be computed by standard techniques. In general, however, this only
yields an approximation of the sparsest solution.

The very recent paper [11] uses a different basic idea and presents a reformu-
lation of the sparse optimization problem as a standard nonlinear program with
complementarity-type constraints, not involving any integer variables. The so-called
“half complementarity” formulation used in that paper corresponds to our reformula-
tion of the cardinality-constrained problem (1). Our derivation of this reformulation
is different from the one used in [11] and provides some insights in itself: We first use
another mixed-integer formulation of the cardinality-constrained problem employing
some binary variables and then show that the standard relaxation of these binary
variables has the nice property that its solutions are still the same as the solutions
of the original cardinality-constrained problem (1). We presented some preliminary
results on this reformulation without proofs in [6]. Apart from this derivation, the
remaining part of our paper is, in any case, different from [11]. Nonetheless, some
results from the present paper can be translated to sparse optimization problems.
A paper discussing the corresponding results and some interesting differences is
currently under preparation.
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We should also say that the NLP-reformulation used in [11] and also the one
introduced here yield a nonlinear program whose structure is very similar to a math-
ematical program with complementarity constraints (MPCC), cf. [17, 21]. In fact,
it is possible to further rewrite the NLP-reformulation in such a way that one really
gets an MPCC (this is the “full complementarity” formulation in [11]). Hence, in
principle, one might try to apply the full machinery known from MPCCs. However,
it turns out that, besides the usual constraint qualifications, also the MPCC-tailored
constraint qualifications are typically violated in this case. Despite this negative ob-
servation, we show that our current approach has some stronger properties that are
not exhibited in the MPCC-context. We comment on this later within this paper.

The organization is as follows: We begin with some background material in Sec-
tion 2. We then present our NLP-reformulation of the cardinality-constrained opti-
mization problem (1) and discuss in detail the relation between the global and local
minima in Section 3. Stationary conditions of our NLP-reformulation are discussed
separately in Section 4; here the difficulty is that standard constraint qualifications
are usually violated by our NLP-reformulation, nevertheless, it is shown that the
usual KKT-conditions are necessary optimality conditions for the case of a polyhe-
dral convex set X, whereas this is not true even if X is convex and satisfies the
Slater constraint qualification. The previous discussion motivates to consider a suit-
able regularization method for the solution of the cardinality-constrained problem
(1) which we describe and analyze in Section 5. Extensive numerical results are
presented in Section 6, and we conclude with some final remarks in Section 7.

Notation: The vector e := (1, . . . , 1)T ∈ Rn denotes the all one vector, whereas
ei := (0, . . . , 0, 1, 0, . . . , 0)T ∈ Rn is the i-th unit vector. With Br(a) := {x |
‖x− a‖2 ≤ r} we indicate the closed (Euclidean) ball of radius r > 0 centered in a
given point a ∈ Rn. An inequality x ≥ 0 for some vector x is defined componentwise.
Finally, supp(x) := {i | xi 6= 0} denotes the support of a given vector x.

2 Preliminaries

In this section, we recall some basic definitions related to standard nonlinear pro-
grams that will play some role in our subsequent analysis.

To this end, consider the optimization problem

min f(x) s.t. gi(x) ≤ 0 ∀i = 1, . . . ,m,
hi(x) = 0 ∀i = 1, . . . , p

(2)

with some continuously differentiable functions f, gi, hi : Rn → R.

Definition 2.1. A vector x∗ ∈ Rn is called a stationary point of the nonlinear
program (2) if there exist Lagrange multipliers λ ∈ Rm and µ ∈ Rp such that the
following KKT (Karush-Kuhn-Tucker) conditions hold:

∇xL(x∗, λ, µ) = 0,

λi ≥ 0, gi(x
∗) ≤ 0, λigi(x

∗) = 0 ∀i = 1, . . . ,m,

hi(x
∗) = 0 ∀i = 1, . . . , p,

where L(x, λ, µ) := f(x) +λTg(x) +µTh(x) denotes the Lagrangian of the optimiza-
tion problem (2).

2



Given a local minimum x∗ of (2) such that certain conditions are satisfied at x∗, it
is possible to show that x∗ is also a stationary point in the sense of Definition 2.1.
The conditions required here are called constraint qualifications (CQ). There are a
number of different CQs known for nonlinear programs, and we recall some of them
in the following discussion. To this end, let X := {x | g(x) ≤ 0, h(x) = 0} be the
feasible set of (2), and let us introduce some cones that play an important role in
the definition of some of these constraint qualifications: The set

TX(x∗) :=
{
d ∈ Rn | ∃{xk} ⊆ X ∃{tk} ↓ 0 : xk → x∗ and d = lim

k→∞

xk − x∗

tk

}
is called the (Bouligand) tangent cone of the set X at the point x∗ ∈ X. The
corresponding linearization cone of X at x∗ ∈ X is given by

LX(x∗) :=
{
d ∈ Rn | ∇gi(x∗)Td ≤ 0 (i : gi(x

∗) = 0), ∇hi(x∗)Td = 0 (i = 1, . . . , p)
}
.

Note that the inclusion TX(x∗) ⊆ LX(x∗) always holds.
Finally, we recall that the polar cone of an arbitrary cone C ⊆ Rn is defined by

C∗ := {w ∈ Rn | wTd ≤ 0 ∀d ∈ C}.

Using this notation, we can state some of the more prominent constraint qualifica-
tions.

Definition 2.2. Let x∗ be a feasible point of the nonlinear program (2). Then we
say that x∗ satisfies the

(a) linear independence CQ (LICQ) if the gradient vectors

∇gi(x∗) (i : gi(x
∗) = 0), ∇hi(x∗) (i = 1, . . . , p)

are linearly independent;

(b) Mangasarian-Fromovitz CQ (MFCQ) if the gradient vectors ∇hi(x∗) (i =
1, . . . , p) are linearly independent and, in addition, there exists a vector d ∈ Rn

such that ∇hi(x∗)Td = 0 (∀ i = 1, . . . , p) and ∇gi(x∗)Td < 0 (∀ i : gi(x
∗) = 0)

hold;

(c) constant rank CQ (CRCQ) if for any subsets I1 ⊆ {i | gi(x∗) = 0} and
I2 ⊆ {1, . . . , p} such that the gradient vectors

∇gi(x) (i ∈ I1), ∇hi(x) (i ∈ I2)

are linearly dependent in x = x∗, they remain linearly dependent for all x in
a neighborhood (in Rn) of x∗;

(d) constant linear dependence condition (CPLD) if for any subsets I1 ⊆ {i |
gi(x

∗) = 0} and I2 ⊆ {1, . . . , p} such that the gradient vectors

∇gi(x) (i ∈ I1) and ∇hi(x) (i ∈ I2)

are positive-linear dependent in x = x∗ (i.e. there exist multipliers (α, β) 6= 0
with α ≥ 0 and

∑m
i=1 αi∇gi(x∗) +

∑p
i=1 βi∇hi(x∗) = 0), they are linearly

dependent for all x in a neighborhood (in Rn) of x∗;
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(e) Abadie CQ (ACQ) if TX(x∗) = LX(x∗) holds;

(f) Guignard CQ (GCQ) if TX(x∗)∗ = LX(x∗)∗ holds.

The LICQ, MFCQ, ACQ, and GCQ conditions belong to the standard conditions in
the optimization community, see, e.g., [2, 20]. Also CRCQ, introduced originally in
[15], has found widespread applications, cf. [15] for some examples. Finally, CPLD
might be less known; the condition was introduced in [22] and afterwards shown to
be a CQ in [1]. The following implications hold:

LICQ

MFCQ

CRCQ

CPLD ACQ GCQ

Most of these implications follow immediately from the above definitions. The only
nontrivial part is that ACQ follows from CPLD, a statement that can be derived
from [1, 3]. In view of the previous diagram, LICQ is the strongest and GCQ the
weakest CQ among those given here. In fact, one can show that (in a certain sense)
GCQ is the weakest possible CQ which guarantees that a local minimum is also a
stationary point, see [2].

We close this section with a small example which may be viewed as a special
case of the class of problems that will be introduced in the following section and
which indicates that GCQ will play a central role in our analysis.

Example 2.3. Consider the two-dimensional optimization problem

min
x,y

f(x) s.t. xy = 0, 0 ≤ y ≤ 1,

where we denote the variables by x and y instead of x1 and x2 since this simplifies
the notation and since this also fits better into the framework that will be discussed
later. Geometrically, it is clear (and can also be verified analytically in an easy way)
that this simple optimization problem violates ACQ in (x∗, y∗) = (0, 0), hence also
the stronger conditions LICQ and MFCQ. On the other hand, GCQ is satisfied in
(x∗, y∗) and thus every local minimum is a stationary point. ♦

0
x

1

y

(a) feasible set

0
dx

1

dy

(b) TX(0, 0) ( LX(0, 0)

0
wx

wy

(c) TX(0, 0)∗ = LX(0, 0)∗

Figure 1: Illustration of Example 2.3
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3 Reformulation

This section presents a reformulation of the cardinality constrained problem (1)
as a smooth optimization problem and then discusses the relation between their
solutions (in the sense of global minima) and their local minima in Sections 3.1 and
3.2, respectively.

In order to obtain a suitable reformulation of the cardinality constrained problem
(1), we first consider the mixed integer problem

minx,y f(x) s.t. x ∈ X
eTy ≥ n− κ,
xiyi = 0 ∀i = 1, . . . , n,
yi ∈ {0, 1} ∀i = 1, . . . , n.

(3)

Next, we consider the following standard relaxation of the mixed-integer problem
(3):

minx,y f(x) s.t. x ∈ X
eTy ≥ n− κ,
xiyi = 0 ∀i = 1, . . . , n,
0 ≤ yi ≤ 1 ∀i = 1, . . . , n,

(4)

where the binary constraints are replaced in the usual way by some simple box
constraints. The formulation (4) will be of central importance for this paper.

Remark 3.1. Note that the subsequent considerations would also hold with the in-
equality eTy ≥ n− κ in (4) being replaced by the equality constraint eTy = n− κ.
The corresponding modifications are minor. Numerically, we prefer to work with the
inequality version because this enlarges the feasible region and therefore provides
some more freedom.

3.1 Relation between Global Minima

According to the following result, the two problems (1) and (3) have the same
solutions in x in the sense of global minima.

Theorem 3.2. A vector x∗ ∈ Rn is a solution of problem (1) if and only if there
exists a vector y∗ ∈ Rn such that the pair (x∗, y∗) is a solution of the mixed-integer
problem (3).

Proof. Since the objective functions of the two problems (1) and (3) are the same
and do not depend on y, it suffices to show that x is feasible for (1) if and only if
there exists a vector y such that (x, y) is feasible for (3).

First assume that x is feasible for (1). Then, due to ‖x‖0 ≤ κ, the vector y ∈ Rn

defined componentwise by

yi :=

{
0 if xi 6= 0,

1 if xi = 0
∀ i = 1, . . . , n

satisfies y ∈ {0, 1}n, eTy ≥ n − κ, and xiyi = 0 for all i = 1, . . . , n. Hence (x, y) is
feasible for problem (3).
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Conversely, assume that we have a feasible pair (x, y) of problem (3). Then
define the index set

J := {i | yi = 1}.

Since, by assumption, yi ∈ {0, 1} and eTy ≥ n − κ, it follows that |J | ≥ n − κ.
Furthermore, using xiyi = 0 for all i = 1, . . . , n, we see that xi = 0 at least for all
i ∈ J , hence ‖x‖0 ≤ κ. Consequently, x is feasible for problem (1).

The following result states that the relaxed problem (4) is still equivalent to the
original cardinality constrained problem (1) in the sense of the corresponding global
minima.

Theorem 3.3. A vector x∗ ∈ Rn is a solution of problem (1) if and only if there
exists a vector y∗ ∈ Rn such that the pair (x∗, y∗) is a solution of the relaxed problem
(4).

Proof. By analogy with the proof of Theorem 3.2, it can be shown that a vector x is
feasible for (1) if and only if there exists a vector y such that (x, y) is feasible for (4)
(take J := {i | yi ∈ (0, 1]} instead of J = {i | yi = 1} in the previous proof). Since
the objective function of both problems is the same, this implies the assertion.

An immediate consequence of the previous observation is the following existence
result.

Theorem 3.4. Suppose that the feasible set F := {x ∈ X | ‖x‖0 ≤ κ} of the cardi-
nality constrained problem (1) is nonempty and X is compact. Then both problem
(1) and the relaxed problem (4) have a nonempty solution set.

Proof. First note that the set C := {x ∈ Rn | ‖x‖0 ≤ κ} is obviously closed. Hence
the feasible set F of (1) is the intersection of a compact set X with a closed set
C and, therefore, compact. Since the objective function f is continuous, it follows
that the cardinality constrained optimization problem (1) has a nonempty solution
set. In view of Theorem 3.3, however, this implies that the relaxed problem (4) is
also solvable.

3.2 Relation between Local Minima

In view of Theorem 3.3, there is a one-to-one correspondence between the solutions
of the original problem (1) and the solutions of the relaxed problem (4). Our next
aim is to investigate the relation between the local minima of these two optimiza-
tion problems. The following result shows that every local minimum of the given
cardinality constrained problem yields a local minimum of the relaxed problem (4).

Theorem 3.5. Let x∗ ∈ Rn be a local minimum of (1). Then there exists a vector
y∗ ∈ Rn such that the pair (x∗, y∗) is also a local minimum of (4).

Proof. Let us define a vector y∗ componentwise by

y∗i :=

{
1, if x∗i = 0,
0, if x∗i 6= 0

∀i = 1, . . . , n.
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Then we have y∗i = 1 if and only if x∗i = 0 and hence eTy∗ = n − ‖x∗‖0 ≥ n − κ.
It is easy to see that (x∗, y∗) is feasible for problem (4). We claim that (x∗, y∗) is a
local minimum of (4). To this end, first note that there exists an r1 > 0 such that

f(x) ≥ f(x∗) ∀x ∈ X ∩Br1(x
∗), ‖x‖0 ≤ κ

due to the assumed local optimality of x∗ for problem (1). Furthermore, let us
choose r2 = 1

2
. Then we have yi > 0 for all y ∈ Br2(y

∗) and all i such that y∗i > 0.
This observation immediately yields the inclusion

{i | yi = 0} ⊆ {i | y∗i = 0} ∀y ∈ Br2(y
∗). (5)

Now take r := min{r1, r2} and let (x, y) ∈ Br(x
∗)× Br(y

∗) be an arbitrary feasible
vector of the relaxed problem (4). Then, in particular, we have x ∈ X. Moreover,
the inclusion (5) implies

xi 6= 0 =⇒ yi = 0 =⇒ y∗i = 0 =⇒ x∗i 6= 0

and therefore shows that ‖x‖0 ≤ ‖x∗‖0. Hence x is feasible for problem (1). Since
we also have x ∈ Br1(x

∗), we obtain f(x) ≥ f(x∗) from the local optimality of x∗

for problem (1). Consequently, (x∗, y∗) is a local minimum of the relaxed problem
(4).

Note that if ‖x∗‖0 = κ, then the vector y∗ in Theorem 3.5 is unique, i.e. there
exists exactly one y∗ such that (x∗, y∗) is a local minimum of (4) (see Proposi-
tion 3.8 below). If ‖x∗‖0 < κ, then y∗ is not unique. Unfortunately, the converse of
Theorem 3.5 is not true in general. This is shown by the following counterexample.

Example 3.6. Consider the three-dimensional problem

min
x
‖x− a‖22 s.t. ‖x‖0 ≤ κ, x ∈ R3 (6)

with a := (1, 2, 3)T and κ := 2. It is easy to see that this problem has a unique
global minimizer at

x∗ := (0, 2, 3)T

as well as two local minimizers at

x1 := (1, 0, 3)T and x2 := (1, 2, 0)T .

On the other hand, the relaxed problem (4) has a unique global minimum at

x∗ := (0, 2, 3)T , y∗ := (1, 0, 0)T

(this is consistent with Theorem 3.3), but the number of local minima is larger,
namely, they are

x1 := (1, 0, 3)T , y1 := (0, 1, 0)T ,
x2 := (1, 2, 0)T , y2 := (0, 0, 1)T ,
x3 := (1, 0, 0)T , y3 := (0, t, 1− t)T ∀t ∈ (0, 1),
x4 := (0, 2, 0)T , y4 := (t, 0, 1− t)T ∀t ∈ (0, 1),
x5 := (0, 0, 3)T , y5 := (t, 1− t, 0)T ∀t ∈ (0, 1),
x6 := (0, 0, 0)T , y6 := (t1, t2, t3)

T ∀ti > 0 such that t1 + t2 + t3 = 1.

Note that the corresponding yi is neither unique nor binary for i = 3, 4, 5, 6, i.e. for
all those xi which are not local minima of (1). ♦
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Let (x∗, y∗) be a local minimizer of problem (4). One may think that if y∗ is binary,
then x∗ is a local minimizer of problem (1). Unfortunately, this claim is not true in
general. We demonstrate this by a simple modification of the previous counterex-
ample.

Example 3.7. Consider once again the three-dimensional cardinality constrained
problem from (6), but this time with a := (1, 2, 0)T and the cardinality number
κ := 1. Here, it is easy to see that the pair (x∗, y∗) with x∗ := (0, 0, 0)T , y∗ :=
(1, 1, 0)T is a local minimizer of the corresponding relaxed problem (4) with a bi-
nary vector y∗, while x∗ is not a local minimizer of (1). Note, however, that the
vector y∗ is not unique in this case. ♦

The previous two examples illustrate that the relation between the local minima of
the two problems (1) and (4) is not as easy as for the global minima. A central
observation in this context is that those local minima of the relaxed problem, which
are also local minima of the original problem, satisfy the cardinality constraint
‖x‖0 ≤ κ with equality which, in view of the subsequent result, is equivalent to the
statement that the vector y∗ defined by x∗ is unique.

Proposition 3.8. Let (x∗, y∗) be a local minimum of problem (4). Then ‖x∗‖0 = κ
holds if and only if y∗ is unique, i.e. if there is exactly one y∗ such that (x∗, y∗) is
a local minimum of (4). In this case, the components of y∗ are binary.

Proof. First assume that ‖x∗‖0 = κ holds. Then it follows immediately from the
constraints in (4) that there exists a unique vector y∗ such that (x∗, y∗) is feasible
for problem (4). The components of this vector y∗ are obviously given by

y∗i :=

{
1, if x∗i = 0,
0, if x∗i 6= 0

∀i = 1, . . . , n

and are binary.
Conversely, suppose that y∗ is unique. To prove that ‖x∗‖0 = κ, we assume, on

the contrary, that ‖x∗‖0 < κ. Since this implies ‖x∗‖0 ≤ n− 2 (recall that κ < n),
we can find j1 6= j2 such that x∗j1 = x∗j2 = 0. Then consider the vectors y′, y′′ ∈ Rn

with components defined by

y′i :=

{
1, if x∗i = 0,
0, if x∗i 6= 0

y′′i :=


1
2
, if i ∈ {j1, j2},

1, if x∗i = 0, i /∈ {j1, j2},
0, if x∗i 6= 0

∀i = 1, . . . , n.

Then obviously y′ 6= y′′, but (x∗, y′) and (x∗, y′′) are both feasible for (4) since, e.g.,

eTy′′ = n− ‖x∗‖0 − 1 ≥ n− (κ − 1)− 1 = n− κ.

Similar to the proof of Theorem 3.5 it can be verified that both (x∗, y′) and (x∗, y′′)
are local minima of problem (4), thus contradicting the uniqueness of y∗. Hence,
we necessarily have ‖x∗‖0 = κ which, as it was noted above, implies that y∗ is
binary.

We are finally in the position to prove a special case of the converse of Theorem 3.5.
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Theorem 3.9. Let (x∗, y∗) be a local minimizer of problem (4) satisfying ‖x∗‖0 = κ.
Then x∗ is a local minimum of the cardinality constrained problem (1).

Proof. By assumption, there exists some number r1 > 0 such that (x∗, y∗) is a
minimum of the relaxed problem (4) in a neighborhood Br1(x

∗)×Br1(y
∗) of (x∗, y∗).

Let us choose
r2 > 0 with r2 < min{|x∗i | | x∗i 6= 0}

and r := min{r1, r2}. We claim that x∗ is a minimum of the cardinality constrained
problem (1) in the neighborhood Br(x

∗). To this end, let x ∈ Br(x
∗) be an arbitrary

feasible point of problem (1). By definition of r2 and r, we have

x∗i 6= 0 =⇒ xi 6= 0 ∀ i = 1, . . . , n,

which implies κ = ‖x∗‖0 ≤ ‖x‖0. Since the feasibility of x implies ‖x‖0 ≤ κ, we
obtain

{i | x∗i 6= 0} = {i | xi 6= 0},

or, equivalently, that
{i | x∗i = 0} = {i | xi = 0}.

This, however, implies that (x, y∗) is also feasible for the relaxed problem (4) sat-
isfying (x, y∗) ∈ Br(x

∗) × Br(y
∗). Consequently, we obtain f(x) ≥ f(x∗) from the

local optimality of (x∗, y∗) for problem (4). Altogether, this shows that x∗ is a local
minimum of (1).

Regarding the additional assumption ‖x∗‖0 = κ used in Theorem 3.9: Of course
it depends on the concrete problem whether this condition is satisfied in a global
minimum of (1). However, in instances where the cardinality constraint is a critical
resource constraint, it is not unreasonable to assume that it is active in a global
solution.

We close this section with a short comparison of our reformulation with the more
standard one used in [5].

Remark 3.10. Consider the cardinality-constrained optimization problem (1), and
assume, in addition, that the set X includes lower and upper bounds on the variables
xi, say 0 ≤ xi ≤ ui for all i = 1, . . . , n. Then, suppressing all other constraints, our
complementarity-type reformulation yields the equivalence

0 ≤ xi ≤ ui (i = 1, . . . , n),
‖x‖0 ≤ κ

}
⇐⇒


0 ≤ xi ≤ ui (i = 1, . . . , n),
0 ≤ yi ≤ 1, (i = 1, . . . , n),
xiyi = 0 (i = 1, . . . , n),
eTy ≥ n− κ.

On the other hand, the mixed-integer program suggested in [5] provides the equiv-
alence

0 ≤ xi ≤ ui (i = 1, . . . , n),
‖x‖0 ≤ κ

}
⇐⇒


0 ≤ xi ≤ ui(1− yi) (i = 1, . . . , n),
yi ∈ {0, 1} (i = 1, . . . , n),
eTy ≥ n− κ
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whose standard relaxation gives the constraints

0 ≤ xi ≤ ui(1− yi), 0 ≤ yi ≤ 1 (i = 1, . . . , n), eTy ≥ n− κ

which are linear in x and y, but no longer equivalent to the cardinality constraints.
It is interesting to compare this formulation with our complementarity-type refor-
mulation. To this end, we neglect the constraint eTy ≥ n−κ which is used in both
cases, and consider a single component i of the vectors xi and yi. Then we have the
constraints

0 ≤ xi ≤ ui, 0 ≤ yi ≤ 1, xiyi = 0, (7)

whereas [5] yields
0 ≤ xi ≤ ui(1− yi), 0 ≤ yi ≤ 1. (8)

The sets described by (7) and (8) are shown in Figure 2 (a) and (b), respectively. It
follows that (8) is simply the convex hull of our reformulation (7). Apart from this
relation, we note, however, that our formulation can also be used when there are no
lower or upper bounds on the variables. ♦

0 ui
xi

1

yi

(a) 0 ≤ xi ≤ ui, 0 ≤ yi ≤ 1, xiyi = 0

0 ui
xi

1

yi

(b) 0 ≤ xi ≤ ui(1− yi), 0 ≤ yi ≤ 1

Figure 2: Comparison of the two different reformulations/relaxations

4 Stationarity Conditions

Here we investigate the question whether the standard KKT conditions are necessary
optimality conditions for the relaxed program (4) or whether we have to deal with
a weaker stationary concept in general. It turns out that the KKT conditions are
indeed satisfied for the case where X is polyhedral convex, whereas this is no longer
true (in general) for the case of a nonlinear set X. We therefore divide this section
into two Subsections 4.1 and 4.2 where we discuss the linear and the nonlinear case
separately.

4.1 Linear Constraints

In order to be able to prove the existence of Lagrange multipliers in a minimum of
the reformulated problem (4), we consider the special case where X is polyhedral
convex, i.e.

X = {x ∈ Rn | aTi x ≤ αi (i = 1, . . . ,m), bTi x = βi (i = 1, . . . , p)}.
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We will show that in this case GCQ (Guignard CQ) is satisfied in every feasible
point and thus every local minimum of (4) is a KKT point.

To this end, let us denote the feasible set of (4) by Z, and define the following
index sets for all (x∗, y∗) ∈ Z:

Ia(x
∗) := {i ∈ {1, . . . ,m} | aTi x∗ = αi}

I0(x
∗) := {i ∈ {1, . . . , n} | x∗i = 0}

I±0(x
∗, y∗) := {i ∈ {1, . . . , n} | x∗i 6= 0, y∗i = 0},

I00(x
∗, y∗) := {i ∈ {1, . . . , n} | x∗i = 0, y∗i = 0},

I0+(x∗, y∗) := {i ∈ {1, . . . , n} | x∗i = 0, y∗i ∈ (0, 1)},
I01(x

∗, y∗) := {i ∈ {1, . . . , n} | x∗i = 0, y∗i = 1}.

Note that the two index sets I0(x
∗) and I±0(x

∗, y∗) form a partition of the set
{1, . . . , n}, whereas I0(x

∗) itself gets partitioned into the three subsets I00(x
∗, y∗), I0+(x∗, y∗),

and I01(x
∗, y∗).

For all subsets I ⊆ I00(x
∗, y∗), we define the restricted feasible sets

ZI := {(x, y) ∈ Rn × Rn | ∀i=1,...,m aTi x ≤ αi,
∀i=1,...,p bTi x = βi,

eTy ≥ n− κ,
∀i∈I0+(x∗,y∗)∪I01(x∗,y∗)∪I xi = 0, yi ∈ [0, 1],
∀i∈I±0(x∗,y∗)∪(I00(x∗,y∗)\I) yi = 0}.

(9)

Then we can rewrite the set Z locally around a feasible point (x∗, y∗) as follows.

Proposition 4.1. Let (x∗, y∗) ∈ Z and the sets ZI for I ⊆ I00(x
∗, y∗) be defined in

(9). Then the following statements hold:

(a) (x∗, y∗) ∈ ZI for all I ⊆ I00(x
∗, y∗).

(b) For all r > 0 sufficiently small

Z ∩Br(x
∗, y∗) =

( ⋃
I⊆I00(x∗,y∗)

ZI

)
∩Br(x

∗, y∗).

Proof. Statement (a) follows directly from the definition of the sets ZI . Hence
we only have to prove (b). By definition ZI ⊆ Z for all I ⊆ I00(x

∗, y∗). This
immediately implies

Z ∩Br(x
∗, y∗) ⊇

( ⋃
I⊆I00(x∗,y∗)

ZI

)
∩Br(x

∗, y∗).

Now consider an arbitrary element (x, y) ∈ Z ∩ Br(x
∗, y∗). Then x ∈ X and eTy ≥

n− κ. For all r > 0 sufficiently small, i ∈ I0+(x∗, y∗) ∪ I01(x∗, y∗) implies yi ∈ (0, 1]
and thus xi = 0. Analogously, we get xi 6= 0 and thus yi = 0 for all i ∈ I±0(x∗, y∗).
Now define

I = {i ∈ I00(x∗, y∗) | xi = 0}.
Due to the feasibility of (x, y), this implies yi ∈ [0, 1] for all i ∈ I and yi = 0 for all
i ∈ I00(x∗, y∗) \ I. Thus, we have proven (x, y) ∈ ZI and consequently the opposite
inclusion holds as well.
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This result can be used to replace the tangent cone TZ(x∗, y∗) and its polar cone
TZ(x∗, y∗)∗ by unions and intersections of simpler cones.

Lemma 4.2. Let (x∗, y∗) ∈ Z and the sets ZI for I ⊆ I00(x
∗, y∗) be defined in (9).

Then the tangent cone and its polar satisfy the following equations:

(a) TZ(x∗, y∗) =
⋃
I⊆I00(x∗,y∗) TZI

(x∗, y∗).

(b) TZ(x∗, y∗)∗ =
⋂
I⊆I00(x∗,y∗) TZI

(x∗, y∗)∗.

Proof. Let r > 0 be sufficiently small such that Proposition 4.1 holds. Then state-
ment (a) follows from

TZ(x∗, y∗) = TZ∩Br(x∗,y∗)(x
∗, y∗)

= T(⋃
I⊆I00(x

∗,y∗) ZI

)
∩Br(x∗,y∗)

(x∗, y∗)

= T⋃
I⊆I00(x

∗,y∗) ZI
(x∗, y∗)

=
⋃

I⊆I00(x∗,y∗)

TZI
(x∗, y∗),

where the first and third equations follow from the fact that the tangent cone, by
definition, depends only on the local properties around (x∗, y∗), the second equality
comes from Proposition 4.1, whereas the final identity is again a direct consequence
of the definition of the tangent cone, taking into account that we have the union
of only finitely many sets here. Statement (b) is then a direct application of [2,
Theorem 3.1.9] to the nonempty cones TZI

(x∗, y∗).

To verify GCQ, we now have to calculate the polar cones TZI
(x∗, y∗)∗ and their in-

tersection TZ(x∗, y∗)∗. However, since the sets ZI are polyhedral convex, calculating
the polar cones TZI

(x∗, y∗)∗ is straightforward.

Lemma 4.3. Let (x∗, y∗) ∈ Z and the sets ZI for I ⊆ I00(x
∗, y∗) be defined in (9).

(a) For all I ⊆ I00(x
∗, y∗), we have

TZI
(x∗, y∗)∗ = {(wx, wy) ∈ Rn × Rn | wx =

∑
i∈Ia(x∗) λiai +

∑p
i=1 µibi +

∑n
i=1 γiei,

wy = δe+
∑n

i=1 νiei,
∀i∈Ia(x∗) λi ≥ 0,
δ ≤ 0 and δ = 0 if eTy∗ > n− κ,
∀i∈I0+(x∗,y∗) νi = 0,
∀i∈I νi ≤ 0,
∀i∈I01(x∗,y∗) νi ≥ 0,
∀i∈I±0(x∗,y∗)∪(I00(x∗,y∗)\I) γi = 0}.

(b) The polar cone TZ(x∗, y∗)∗ is given by

TZ(x∗, y∗)∗ = {(wx, wy) ∈ Rn × Rn | wx =
∑

i∈Ia(x∗) λiai +
∑p

i=1 µibi +
∑n

i=1 γiei,

wy = δe+
∑n

i=1 νiei,
∀i∈Ia(x∗) λi ≥ 0,
δ ≤ 0 and δ = 0 if eTy∗ > n− κ,
∀i∈I0+(x∗,y∗) νi = 0,
∀i∈I00(x∗,y∗) γi = 0, νi ≤ 0,
∀i∈I01(x∗,y∗) νi ≥ 0,
∀i∈I±0(x∗,y∗) γi = 0}.
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Proof. (a) The set ZI is polyhedral convex for all I ⊆ I00(x
∗, y∗) and can be written

as

ZI = {(x, y) ∈ Rn × Rn | ∀i=1,...,m (ai, 0)T (x, y) ≤ αi,
∀i=1,...,p (bi, 0)T (x, y) = βi,

(0, e)T (x, y) ≥ n− κ,
∀i∈I0+(x∗,y∗)∪I01(x∗,y∗)∪I (ei, 0)T (x, y) = 0,
∀i∈I0+(x∗,y∗)∪I01(x∗,y∗)∪I (0, ei)

T (x, y) ≥ 0,
∀i∈I0+(x∗,y∗)∪I01(x∗,y∗)∪I (0, ei)

T (x, y) ≤ 1,
∀i∈I±0(x∗,y∗)∪(I00(x∗,y∗)\I) (0, ei)

T (x, y) = 0}

The polar cone TZI
(x∗, y∗)∗

(
= NZI

(x∗, y∗)) can thus be calculated using, for exam-
ple, [23, Theorem 6.46] which, after some simplification, leads to the formula stated
here.

(b) Let us denote the set on the right-hand side of the equation by W . By Lemma
4.2, we know TZ(x∗, y∗)∗ =

⋂
I⊆I00(x∗,y∗) TZI

(x∗, y∗)∗. Since W ⊆ TZI
(x∗, y∗)∗ for all

I ⊆ I00(x
∗, y∗), this implies W ⊆ TZ(x∗, y∗)∗. Now consider an arbitrary element

(wx, wy) ∈ TZ(x∗, y∗)∗. Choosing I = ∅, we can conclude (wx, wy) ∈ TZ∅(x
∗, y∗)∗.

Consequently, wx can be written as wx =
∑

i∈Ia(x∗) λiai +
∑p

i=1 µibi +
∑n

i=1 γiei with

λi ≥ 0 for all i ∈ Ia(x∗) and γi = 0 for all i ∈ I±0(x∗, y∗)∪ I00(x∗, y∗). If, instead we
choose I = I00(x

∗, y∗), we can write wy as wy = δe+
∑n

i=1 νiei with δ ≤ 0 and δ = 0
if eTy∗ > n−κ, νi = 0 for all i ∈ I0+(x∗, y∗), νi ≤ 0 for all i ∈ I00(x∗, y∗), and νi ≥ 0
for all i ∈ I01(x∗, y∗). Consequently, (wx, wy) ∈ W . Since (wx, wy) ∈ TZ(x∗, y∗)∗ was
chosen arbitrarily, this implies the missing inclusion.

Note that statement (b) is only true because there are no restrictions in ZI depending
on x and y at the same time.

Now, it remains to calculate the linearization cone LZ(x∗, y∗) and the corre-
sponding polar cone.

Lemma 4.4. Let (x∗, y∗) ∈ Z be arbitrarily given. Then the polar cone of LZ(x∗, y∗)
is given by

LZ(x∗, y∗)∗ = {(wx, wy) ∈ Rn × Rn | wx =
∑

i∈Ia(x∗) λiai +
∑p

i=1 µibi +
∑n

i=1 γiei,

wy = δe+
∑n

i=1 νiei,
∀i∈Ia(x∗) λi ≥ 0,
δ ≤ 0 and δ = 0 if eTy∗ > n− κ,
∀i∈I0+(x∗,y∗) νi = 0,
∀i∈I00(x∗,y∗) γi = 0, νi ≤ 0,
∀i∈I01(x∗,y∗) νi ≥ 0,
∀i∈I±0(x∗,y∗) γi = 0}.

Proof. By the definition of the linearization cone, we get

LZ(x∗, y∗) = {(dx, dy) ∈ Rn × Rn | ∀i∈Ia(x∗) aTi dx ≤ 0,
∀i=1,...,p bTi dx = 0,

eTdy ≥ 0 if eTy∗ = n− κ,
∀i∈I0+(x∗,y∗) (dx)i = 0,
∀i∈I00(x∗,y∗) (dy)i ≥ 0,
∀i∈I01(x∗,y∗) (dx)i = 0, (dy)i ≤ 0,
∀i∈I±0(x∗,y∗) (dy)i = 0}.

13



Since LZ(x∗, y∗) is polyhedral convex, the corresponding polar cone can again be
calculated using [23, Theorem 6.46], which leads to the given representation.

Using Lemmas 4.3 and 4.4, we immediately see TZ(x∗, y∗)∗ = LZ(x∗, y∗)∗, i.e. GCQ
is satisfied in any feasible point (x∗, y∗) ∈ Z und thus local minima of the reformu-
lated problem (4) are KKT points.

Corollary 4.5. Let (x∗, y∗) ∈ Z be an arbitrary feasible point of (4). Then GCQ
holds in (x∗, y∗).

Note that Example 2.3 essentially implies that we cannot expect stronger CQs (like
LICQ, MFCQ, or ACQ) to hold.

We also want to stress that Corollary 4.5 points out a significant difference
between our class of problems and the closely related class of mathematical programs
with complementarity constraints (MPCC) which are optimization problems defined
by

min
z
f(z) s.t. gi(z) ≤ 0 ∀i = 1, . . . ,m,

hi(z) = 0 ∀i = 1, . . . , p,

Gi(z) ≥ 0, Hi(z) ≥ 0, Gi(z)Hi(z) = 0 ∀i = 1, . . . , n

with continuously differentiable functions f, gi, hi, Gi, Hi : Rn → R. If, for example,
the set X from (1) is given, without loss of generality, in the standard form X =
{x | Ax = b, x ≥ 0}, then our relaxed problem (4) is a special case of an MPCC.
However, a counterexample in Scheel and Scholtes [25] shows that GCQ may not
hold for MPCCs although all functions gi, hi, Gi, Hi are linear. The reason that we
are able to prove the satisfaction of GCQ has to do with the very special structure of
our relaxed program where the two classes of variables x and y are combined only by
the complementarity-type constraint, whereas there are no other joint constraints,
cf. also the comment after the proof of Lemma 4.3.

4.2 Nonlinear Constraints

Here we consider the case where the set X is not (necessarily) polyhedral convex,
i.e.

X = {x ∈ Rn | gi(x) ≤ 0 (i = 1, . . . ,m), hi(x) = 0 (i = 1, . . . , p)} (10)

with continuously differentiable functions gi, hi : Rn → R. In the subsequent discus-
sion, we use the same index sets as in the linear case with the exception of Ia(x

∗)
which is replaced by

Ig(x
∗) = {i ∈ {1, . . . ,m} | gi(x∗) = 0}.

The nonlinear case is much more delicate since it turns out that GCQ may not be
satisfied. This is illustrated by the following example.

Example 4.6. Consider the convex, but not polyhedral convex, set

X := {x ∈ R2 | x21 + (x2 − 1)2 ≤ 1}
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and f(x) = x1 + x22. When we choose κ = 1, the unique global solution of the
cardinality constrained problem (1) is x∗ = (0, 0). Since ‖x∗‖0 = 0 < κ, the
corresponding y∗ is not uniquely determined. If we choose y∗ = (0, 1), then (x∗, y∗)
is a global solution of the relaxed problem (4). However, one easily verifies that it
is not a KKT point of (4) and thus GCQ cannot be satisfied in (x∗, y∗).

Note that other pairs such as (x∗, ỹ) with ỹ = (1, 1) are KKT points of (4). ♦

0 1
x1

1

x2
X

Figure 3: Illustration of Example 4.6

The previous example shows that, for nonlinear sets X (even if X is convex and
satisfies the Slater condition), we have to deal with another stationary concept than
the usual KKT conditions. This more suitable stationary concept is the M-stationary
part of the subsequent definition.

Definition 4.7. Let (x∗, y∗) be feasible for the relaxed program (4). Then (x∗, y∗)
is called

(a) S-stationary (S = strong) if there exist multipliers λ ∈ Rm, µ ∈ Rp, and γ ∈ Rn

such that the following conditions hold:

∇f(x∗) +
m∑
i=1

λi∇gi(x∗) +

p∑
i=1

µi∇hi(x∗) +
n∑
i=1

γiei = 0,

λi ≥ 0, λigi(x
∗) = 0 ∀i = 1, . . . ,m,

γi = 0 ∀i such that y∗i = 0.

(b) M-stationary (M = Mordukhovich) if there exist multipliers λ ∈ Rm, µ ∈ Rp,
and γ ∈ Rn such that the following conditions hold:

∇f(x∗) +
m∑
i=1

λi∇gi(x∗) +

p∑
i=1

µi∇hi(x∗) +
n∑
i=1

γiei = 0,

λi ≥ 0, λigi(x
∗) = 0 ∀i = 1, . . . ,m,

γi = 0 ∀i such that x∗i 6= 0.

The terminology used in the previous definition is similar to the one in the MPEC-
setting. Note that the only difference in the two definitions is that S-stationarity
requires γi = 0 for all indices i such that y∗i = 0, whereas M-stationarity says that
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this has to hold only for those indices i where x∗i 6= 0 (recall that the feasibility
of (x∗, y∗) then implies y∗i = 0), but M-stationarity does not require anything for
the multipliers γi for the bi-active indices where we have x∗i = 0 and y∗i = 0, hence
M-stationarity is a weaker condition than S-stationarity.

Of course, the definitions of S- and M-stationarity are completely unmotivated
so far. As for S-stationarity, the following result simply says that this is just a
reformulation of the standard KKT conditions.

Proposition 4.8. Let (x∗, y∗) be feasible for the relaxed program (4) with X defined
by (10). Then (x∗, y∗) is a stationary point of (4), i.e. satisfies the usual KKT
conditions, if and only if (x∗, y∗) is an S-stationary point.

Proof. Let (x∗, y∗) be a stationary point of (4). Then there exist Lagrange multi-
pliers λ, µ, ρ, γ̃, ν+, ν− such that the following KKT conditions hold:

∇f(x∗) +
m∑
i=1

λi∇gi(x∗) +

p∑
j=1

µj∇hj(x∗) +
n∑
i=1

γ̃iy
∗
i ei = 0,

−δe+
n∑
i=1

γ̃ix
∗
i ei +

n∑
i=1

(
ν+i − ν−i

)
ei = 0,

λi ≥ 0, λigi(x
∗) = 0 ∀i = 1, . . . ,m,

δ ≥ 0, δ
(
eTy∗ − n+ κ

)
= 0,

ν+i ≥ 0, ν+i (y∗i − 1) = 0 ∀i = 1, . . . , n,

ν−i ≥ 0, ν−i y
∗
i = 0 ∀i = 1, . . . , n.

Setting γi := γ̃iy
∗
i , it is easy to see that (x∗, y∗) is an S-stationary point.

Conversely, assume that (x∗, y∗) is S-stationary with some corresponding multi-
pliers λ, µ, γ. Then define

γ̃i :=

{ γi
y∗i

if y∗i > 0,

0 if y∗i = 0.

The definition of S-stationarity then implies γi = γ̃iy
∗
i for all i = 1, . . . , n. Therefore,

setting δ := 0, ν+i := 0, ν−i := 0 (for example), it follows immediately that (x∗, y∗)
together with these multipliers satisfies the above KKT conditions.

Hence S-stationarity is just a different way of writing down the KKT conditions of
the relaxed problem. Note, however, that the transformation of the corresponding
multipliers is not necessarily unique when going from S-stationarity to the KKT
conditions. This has to be expected since the Lagrange multipliers corresponding
to the KKT conditions are typically not unique (since LICQ and even MFCQ are
violated), whereas the multipliers from the S-stationary conditions are obviously
unique under a suitable (and obvious) linear independence assumption, see CC-
LICQ below.

M-stationarity may be viewed as a slightly weaker concept than S-stationarity (as
noted above), hence a weaker optimality condition than the usual KKT conditions.
More precisely, the M-stationarity conditions are exactly the KKT conditions of the
following tightened nonlinear program TNLP(x∗):

min
x
f(x) s.t. g(x) ≤ 0, h(x) = 0, xi = 0 (i ∈ I0(x∗)).
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Obviously, a local minimizer x∗ of the original problem (1) is also a local minimizer
of TNLP(x∗) and thus an M-stationary point under suitable CQs (see below).

M-stationarity will occur in our subsequent section where it is shown that our
relaxation method converges to an M-stationary point. We want to close this section
with another aspect that is of some interest: S-stationarity is an optimality measure
that depends both on x and y, whereas M-stationarity depends on x only. Hence
M-stationarity may be viewed as an optimality measure of the original cardinality
constrained problem (1) (which is a problem in the x-variables only), whereas S-
stationarity involves the somewhat artificial y-components. In particular, this allows
us to say that a vector x∗ itself (and not a pair (x∗, y∗)) is an M-stationary point of
the original problem (1).

Let us go back to Example 4.6, where (x∗, y) with any feasible y-component is
a global solution of the relaxed problem (4). Applying the previous stationarity
concepts, we see that x∗ is an M-stationary point. However, (x∗, y) is S-stationary
only, if we pick the “right” y-components such as ỹ whereas choosing the “wrong”
y-component such as y∗ can destroy S-stationarity.

We next want to introduce some problem-tailored CQs for the optimization prob-
lem with cardinality constraints. Again, we may try to follow the idea that our
relaxed program (4) is closely related to MPCCs. Indeed, also for nonlinear con-
straints, we may assume that all variables xi are nonnegative. Then the relaxed
program (4) becomes a special instance of an MPCC, and this, in principle, al-
lows to apply suitable MPCC-tailored constraint qualifications also to the program
(4). However, it turns out that these MPCC-tailored conditions, though being re-
laxations of standard CQs, are still too strong in our case: In all feasible points
(x, y) ∈ Z with ‖x‖0 = κ, we have yi ∈ {0, 1} and |xi| + yi 6= 0 for all i = 1, . . . , n
as well as eTy = n − κ. Thus, we have at least n + 1 active constraints in (x, y)
and the corresponding gradients are (0,±ei)T (i = 1, . . . , n) and (0, e). This implies
that MPCC-LICQ and MPCC-MFCQ are violated in all such points.

We are therefore urged to take into account the particular structure of the relaxed
cardinality problem (4) in order to define CQs that are better suited to this program.
To this end, let (x∗, y∗) be a feasible point of the relaxed program (4), and consider
again the tightened nonlinear program TNLP(x∗). We then say that (x∗, y∗) satisfies
a CQ for the relaxed problem (4) when x∗ satisfies the corresponding standard CQ
for TNLP(x∗). This leads to the following definition for CC-CPLD. The stronger
CQs CC-LICQ, CC-MFCQ and CC-CRCQ can be defined analogously.

Definition 4.9. A point x∗ feasible for the cardinality constrained problem (1) sat-
isfies CC-CPLD if for any subsets I1 ⊆ Ig(x

∗), I2 ⊆ {1, . . . , p} and I3 ⊆ I0(x
∗) such

that the gradients

∇gi(x) (i ∈ I1) and ∇hi(x) (i ∈ I2), ei (i ∈ I3)

are positively linearly dependent in x = x∗, they are linearly dependent in a neigh-
borhood (in Rn) of x∗.

Thanks to the definition of these CQs via TNLP(x∗), we immediately obtain the
same implications between the CC-CQs as mentioned in Section 2 for standard
CQs. Note that it is also possible to define suitable counterparts of ACQ and GCQ
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in the context of cardinality constrained optimization problems. Some details will
indeed be given in a forthcoming paper, but for the purpose of this paper, these
generalizations are not important.

5 Regularization Method and its Convergence

Having introduced the relaxed program (4) and taking into account its relation to
the cardinality constrained optimization problem (1), there exist different options to
solve the original problem (1). One way would be to apply a branch-and-bound/cut-
type strategy to the corresponding mixed-integer formulation from (3). This is
probably the only way which guarantees to find the global optimum, but it is very
costly and time-consuming and therefore not the path we want to follow here.

Alternatively, one may view the relaxed program (4) as an ordinary smooth
optimization problem and apply standard software to this program. However, even
in the case where X is polyhedral convex, the feasible set of the relaxed program
(4) is complicated and violates most CQs that are typically required by the existing
algorithms for nonlinear programs. Furthermore, the discussion in the previous
section indicates that the standard software that tries to find KKT points may fail
when X is not polyhedral convex.

We therefore follow a different approach, motivated by similar considerations for
mathematical programs with equilibrium constraints, and solve a sequence of suit-
ably regularized programs with the idea that each regularized program has better
properties than the relaxed program from (4). The particular regularization that
we use here is discussed in Section 5.1, and the convergence properties of the corre-
sponding regularization method are analyzed in Section 5.2. Finally, in Section 5.3,
we discuss some regularity properties of the regularized subproblems.

5.1 The Regularized Program

Here we adapt the approach from [16] and regularize the relaxed program (4) in the
following way: Define the functions

ϕ(a, b; t) :=

{
(a− t)(b− t) if a+ b ≥ 2t,
−1

2

[
(a− t)2 + (b− t)2

]
if a+ b < 2t

as well as

ϕ̃(a, b; t) :=

{
(−a− t)(b− t) if − a+ b ≥ 2t,
−1

2

[
(−a− t)2 + (b− t)2

]
if − a+ b < 2t.

Note that ϕ̃ differs from the mapping ϕ only in a being substituted by −a. We
want to replace the constraints xiyi = 0, 0 ≤ yi ≤ 1 by the inequalities 0 ≤ yi ≤
1, ϕ(xi, yi; t) ≤ 0, and ϕ̃(xi, yi; t) ≤ 0, where t > 0 denotes a suitable parameter.

It can be easily verified that for all t ≥ 0

ϕ(a, b; t) ≤ 0 ⇐⇒ a ≤ t or b ≤ t ⇐⇒ min{a, b} ≤ t.

More precisely, ϕ(·; 0) is an NCP-function, see [28] for more details on such functions.
Since ϕ̃ results from ϕ by replacing a with −a, we have for all t ≥ 0

ϕ̃(a, b; t) ≤ 0 ⇐⇒ −a ≤ t or b ≤ t ⇐⇒ min{−a, b} ≤ t.
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Thus, we enlarge the feasible region of the program (4), see Figure 4.

−t t
xi

t
1

yi

Figure 4: Illustration of the regularized feasible set

Similar to a result from [16], we have the following simple observation.

Lemma 5.1. The two functions ϕ and ϕ̃ are continuously differentiable everywhere
with gradients given by

∇ϕ(a, b; t) =


(
b− t
a− t

)
if a+ b ≥ 2t,

−
(
a− t
b− t

)
if a+ b < 2t

and

∇ϕ̃(a, b; t) =


(

t− b
−a− t

)
if − a+ b ≥ 2t,

−
(
a+ t
b− t

)
if − a+ b < 2t

respectively.

We now consider the following regularized problem NLP(t) of (4):

min
x,y

f(x) s.t. gi(x) ≤ 0 ∀i = 1, . . . ,m,

hi(x) = 0 ∀i = 1, . . . , p,

eTy ≥ n− κ,
ϕ(xi, yi; t) ≤ 0 ∀i = 1, . . . , n,

ϕ̃(xi, yi; t) ≤ 0 ∀i = 1, . . . , n,

0 ≤ yi ≤ 1 ∀i = 1, . . . , n,

where t ≥ 0 denotes a suitable parameter. Note here that, in our terminology,
we distinguish between the relaxed problem (4) (which results from a standard
relaxation of a mixed-integer problem) and the regularized problem NLP(t) (which,
in other contexts, is also very often called a relaxation).

The regularized problem has some obvious properties which we summarize in
the following result.

Proposition 5.2. Let Z(t) denote the feasible set of the regularized problem NLP(t),
and recall that Z denotes the feasible set of the relaxed program from (4). Then the
following statements hold:

(a) Z(t1) ⊆ Z(t2) for all 0 ≤ t1 ≤ t2.

(b) Z ⊆ Z(t) for all t ≥ 0.

(c) Z = Z(t) for t = 0.
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5.2 Convergence Result

The idea of the regularization method is to solve a sequence of programs NLP(tk)
with tk ↓ 0. Since it is unrealistic that we are able to solve (in the sense of finding a
global minimum) the program NLP(tk), we assume in the following result only that
we have a sequence of KKT points and show that any limit point is an M-stationary
point of the relaxed program (4) under the rather weak CC-CPLD condition. The
result then, of course, also holds under the stronger LICQ- and MFCQ-type condi-
tions.

Theorem 5.3. Let {tk} ↓ 0 and {(xk, yk, λk, µk, δk, τ k, τ̃ k, νk)} be a corresponding
sequence of KKT points of NLP(tk) such that (xk, yk) → (x∗, y∗). Assume that the
limit point satisfies CC-CPLD. Then x∗ is an M-stationary point of the program
(4).

Proof. By construction of the regularization functions ϕ and ϕ̃, the limit point
(x∗, y∗) is feasible for (4). Hence x∗ itself is feasible for the cardinality constrained
optimization problem (1). Furthermore, since the KKT conditions hold for each
k ∈ N, there exist suitable multipliers λk, µk, δk, τ k, τ̃ k, νk such that the following
conditions hold:

∇f(xk) +
m∑
i=1

λki∇gi(xk) +

p∑
i=1

µki∇hi(xk)+

n∑
i=1

τ ki ∇xϕ(xki , y
k
i ; tk) +

n∑
i=1

τ̃ ki ∇xϕ̃(xki , y
k
i ; tk) = 0,

−δke+
n∑
i=1

τ ki ∇yϕ(xki , y
k
i ; tk) +

n∑
i=1

τ̃ ki ∇yϕ̃(xki , y
k
i ; tk) +

n∑
i=1

νki ei = 0,

λki ≥ 0, gi(x
k) ≤ 0, λki gi(x

k) = 0 ∀i = 1, . . . ,m,

hi(x
k) = 0 ∀i = 1, . . . , p,

δk ≥ 0, eTyk − n+ κ ≥ 0, δk(eTyk − n+ κ) = 0,

τ ki ≥ 0, ϕ(xki , y
k
i ; tk) ≤ 0, τ ki ϕ(xki , y

k
i ; tk) = 0 ∀i = 1, . . . , n,

τ̃ ki ≥ 0, ϕ̃(xki , y
k
i ; tk) ≤ 0, τ̃ ki ϕ̃(xki , y

k
i ; tk) = 0 ∀i = 1, . . . , n,

νki ≥ 0 (i : yki = 1), νki = 0 (i : yki ∈ (0, 1)), νki ≤ 0 (i : yki = 0) ∀i = 1, . . . , n,

where νki denotes the (joint) multiplier of the box constraints 0 ≤ yki ≤ 1.
Using Lemma 5.1, we may rewrite the first two equations as

∇f(xk) +
m∑
i=1

λki∇gi(xk) +

p∑
i=1

µki∇hi(xk) +
n∑
i=1

τ ki (yki − tk)ei +
n∑
i=1

τ̃ ki (tk − yki )ei = 0

(11)
and

n∑
i=1

νki ei − δke+
n∑
i=1

τ ki (xki − tk)ei +
n∑
i=1

τ̃ ki (−xki − tk)ei = 0,

respectively. Here, we used the fact that we always have τ ki ∇xϕ(xki , y
k
i ; tk) = τ ki (yki −

tk)ei and, similarly, for the other partial derivative and for the mapping ϕ̃. This
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equality comes from the observation that, if ϕ(xki , y
k
i ; tk) < 0 is inactive, we have

τ ki = 0 from the KKT conditions, in particular, the above equation holds, whereas
if ϕ(xki , y

k
i ; tk) = 0, we necessarily have xki + yki ≥ 2tk and the equation follows from

Lemma 5.1.
Now, it is easy to see that, for all k ∈ N sufficiently large, we (in particular) have

λki > 0 =⇒ gi(x
k) = 0 =⇒ gi(x

∗) = 0

and supp(τ k) ∩ supp(τ̃ k) = ∅. The latter implies that the following multipliers

γki :=


τ ki (yki − tk) if i ∈ supp(τ k),
τ̃ ki (tk − yki ) if i ∈ supp(τ̃ k),
0 otherwise

are well defined and by equation (11) satisfy

∇f(xk) +
m∑
i=1

λki∇gi(xk) +

p∑
i=1

µki∇hi(xk) +
n∑
i=1

γki ei = 0 (12)

We claim that, for all i with x∗i 6= 0, we have γki = 0 for all k ∈ N sufficiently
large. First, consider the case x∗i > 0. Then xki > tk for all k sufficiently large. If
i ∈ supp(τ k), the KKT conditions imply ϕ(xki , y

k
i ; tk) = 0 and therefore, in view

of the definition of this mapping, we necessarily get yki = tk which, in turn, yields
γki = 0. On the other hand, if i ∈ supp(τ̃ k), we have ϕ̃(xki , y

k
i ; tk) = 0, hence once

again yki = tk since −xki − tk < 0 for all sufficiently large k. This also yields γki = 0.
For i 6∈ supp(τ k)∪supp(τ̃ k), we automatically have γki = 0 by definition. In a similar
way, one can treat the case x∗i < 0, which implies −xki > tk for all k sufficiently large,
and the corresponding arguments are then symmetric to the case x∗i > 0.

By [27, Lemma A.1], we can assume without loss of generality that the gradi-
ents (including the unit vectors) corresponding to nonvanishing multipliers in equa-
tion (12) are linearly independent. Note that this might change the multipliers
{(λk, µk, γk)} but preserves their signs and vanishing multipliers remain zero.

We claim that the sequence {(λk, µk, γk)} is bounded. Assume it is unbounded.
Taking a subsequence if necessary, we may assume without loss of generality that
the corresponding normalized sequence converges, say

(λk, µk, γk)

‖(λk, µk, γk)‖2
→
(
λ̄, µ̄, γ̄

)
6= 0.

Dividing (12) by ‖(λk, µk, γk)‖ and taking the limit k →∞, we then obtain

m∑
i=1

λ̄i∇gi(x∗) +

p∑
i=1

µ̄i∇hi(x∗) +
n∑
i=1

γ̄iei = 0 (13)

with λ̄i ≥ 0 for all i = 1, . . . ,m and λ̄i = 0 for all i such that gi(x
∗) < 0 (since

then gi(x
k) < 0 for all k sufficiently large and, therefore, λki = 0 in view of the

corresponding KKT conditions). Furthermore, for all i with x∗i 6= 0, we have γki = 0
for all k sufficiently large in view of the preceding discussion and, therefore, also
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γ̄i = 0. Hence, we know λ̄ ≥ 0, supp(λ̄) ⊆ Ig(x
∗) and supp(γ̄) ⊆ I0(x

∗). But then
by CC-CPLD, the positively linearly dependent gradients

{∇gi(x∗) | i ∈ supp(λ̄)} ∪
{
{∇hi(x∗) | i ∈ supp(µ̄)} ∪ {ei | i ∈ supp(γ̄)}

}
would have to remain linearly dependent in a neighborhood of x∗, a contradiction
to the choice of the multipliers {(λk, µk, γk)}.

This shows that the sequence {(λk, µk, γk)} remains bounded. Subsequencing
if necessary, we may therefore assume that (λk, µk, γk) → (λ, µ, γ). Similar to the
previous argument, we then obtain

∇f(x∗) +
m∑
i=1

λi∇gi(x∗) +

p∑
i=1

µi∇hi(x∗) +
n∑
i=1

γiei = 0,

λi ≥ 0 (i ∈ Ig(x∗)), λi = 0 (i /∈ Ig(x∗)),
γi = 0 (i : x∗i 6= 0),

i.e., x∗ is an M-stationary point.

5.3 Properties of the Regularized Subproblems

Since we want to solve the regularized problems NLP(tk) numerically, it would be
beneficial to know whether they inherit properties such as constraint qualifications
from the original relaxed problem (4). In order to answer this question, we define
the following index sets for a t > 0 and (x̂, ŷ) feasible for NLP(t):

Iϕ(x̂, ŷ; t) := {i ∈ {1, . . . , n} | ϕ(x̂i, ŷi; t) = 0},
I00ϕ (x̂, ŷ; t) := {i ∈ {1, . . . , n} | x̂i = t, ŷi = t},
I0+ϕ (x̂, ŷ; t) := {i ∈ {1, . . . , n} | x̂i = t, ŷi > t},
I+0
ϕ (x̂, ŷ; t) := {i ∈ {1, . . . , n} | x̂i > t, ŷi = t},
Iϕ̃(x̂, ŷ; t) := {i ∈ {1, . . . , n} | ϕ̃(x̂i, ŷi; t) = 0},
I00ϕ̃ (x̂, ŷ; t) := {i ∈ {1, . . . , n} | x̂i = −t, ŷi = t},
I0+ϕ̃ (x̂, ŷ; t) := {i ∈ {1, . . . , n} | x̂i = −t, ŷi > t},
I−0ϕ̃ (x̂, ŷ; t) := {i ∈ {1, . . . , n} | x̂i < −t, ŷi = t}

Note that, due to the feasibility of (x̂, ŷ), the three index sets I00ϕ (x̂, ŷ; t), I0+ϕ (x̂, ŷ; t),
and I+0

ϕ (x̂, ŷ; t) form a partitioning of the set Iϕ(x̂, ŷ; t). A corresponding observation
holds for the index set Iϕ̃(x̂, ŷ; t).

For all subsets I ⊆ I00ϕ (x̂, ŷ; t) and Ĩ ⊆ I00ϕ̃ (x̂, ŷ; t), we define the nonlinear

programs NLP(t, I, Ĩ) as

min
x,y

f(x) s.t. g(x) ≤ 0, h(x) = 0, eTy ≥ n− κ,

0 ≤ yi ≤ t ∀i ∈ I+0
ϕ (x̂, ŷ; t) ∪

(
I00ϕ (x̂, ŷ; t) \ I

)
∪ I−0ϕ̃ (x̂, ŷ; t) ∪

(
I00ϕ̃ (x̂, ŷ; t) \ Ĩ

)
,

−t ≤ xi ≤ t, 0 ≤ yi ≤ 1 ∀i ∈ I0+ϕ (x̂, ŷ; t) ∪ I ∪ I0+ϕ̃ (x̂, ŷ; t) ∪ Ĩ ,
ϕ(xi, yi; t) ≤ 0, ϕ̃(xi, yi; t) ≤ 0, 0 ≤ yi ≤ 1 ∀i /∈ Iϕ(x̂, ŷ; t) ∪ Iϕ̃(x̂, ŷ; t)
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Let us denote the feasible set of NLP(t) by Z(t) and the feasible set of NLP(t, I, Ĩ)
by Z(t, I, Ĩ). Analogously to Proposition 4.1, one can show that (x̂, ŷ) ∈ Z(t, I, Ĩ)
for all subsets I ⊆ I00ϕ (x̂, ŷ; t) and Ĩ ⊆ I00ϕ̃ (x̂, ŷ; t). Furthermore, there exists a
sufficiently small r > 0 such that

Z(t) ∩Br(x̂, ŷ) =

( ⋃
I⊆I00ϕ (x̂,ŷ,t),Ĩ⊆I00ϕ̃ (x̂,ŷ;t)

Z(t, I, Ĩ)

)
∩Br(x̂, ŷ)

holds. In fact, due to the preceding observation, it is fairly easy to see that the
right-hand side is included in the left-hand side, whereas the other direction follows
by taking, e.g.

I := {i ∈ I00ϕ (x̂, ŷ; t) | yi > t} and Ĩ := {i ∈ I00ϕ̃ (x̂, ŷ; t) | yi > t}.

Similar to Lemma 4.2, this implies

TZ(t)(x̂, ŷ) =
⋃

I⊆I00ϕ (x̂,ŷ;t),Ĩ⊆I00ϕ̃ (x̂,ŷ;t)

TZ(t,I,Ĩ)(x̂, ŷ),

TZ(t)(x̂, ŷ)∗ =
⋂

I⊆I00ϕ (x̂,ŷ;t),Ĩ⊆I00ϕ̃ (x̂,ŷ;t)

TZ(t,I,Ĩ)(x̂, ŷ)∗. (14)

Using these preparations, we can now prove the main result in this section.

Theorem 5.4. Let (x∗, y∗) be feasible for the relaxed problem (4). When CC-CPLD
is satisfied in (x∗, y∗), then there is a t̄ > 0 and an r > 0 such that the following
holds for all t ∈ (0, t̄]: Is (x̂, ŷ) ∈ Br(x

∗)×Br(y
∗) feasible for NLP(t), then standard

GCQ for NLP(t) holds there.

Proof. Since CC-CPLD holds in (x∗, y∗) and the constraints are continuously differ-
entiable, there is a neighborhood Br(x

∗) such that the gradients

{∇gi(x) | i ∈ Ig(x∗)} ∪
{
{∇hj(x) | j = 1, . . . , p} ∪ {ei | i ∈ I0(x∗)}

}
satisfy CPLD in every element x̂ ∈ Br(x

∗), i.e. all subsets of these gradients, which
are positively linearly dependent at x̂, remain linearly dependent in a neighborhood
of x̂. Decreasing r > 0 if necessary, we can find a t̄ > 0 such that for all t ∈ (0, t̄] all
elements (x̂, ŷ) ∈ Br(x

∗)×Br(y
∗) feasible for NLP(t) additionally satisfy

Ig(x̂) ⊆ Ig(x
∗) and I0+ϕ (x̂, ŷ, t) ∪ I00ϕ (x̂, ŷ, t) ∪ I0+ϕ̃ (x̂, ŷ, t) ∪ I00ϕ̃ (x̂, ŷ, t) ⊆ I0(x

∗).

Now consider an arbitrary t ∈ (0, t̄] and an arbitrary element (x̂, ŷ) ∈ Br(x
∗)×Br(y

∗)
feasible for NLP(t). The point (x̂, ŷ) is then feasible for all NLP(t, I, Ĩ) with I ⊆
I00ϕ (x̂, ŷ; t) and Ĩ ⊆ I00ϕ̃ (x̂, ŷ; t) (see the discussion preceding this theorem), and the
gradients of the active inequality constraints and the equality constraints at that
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point are{{(
∇gi(x̂)

0

)
| i ∈ Ig(x̂)

}
∪
{(

0

−e

)
| if eT ŷ = n− κ

}
∪
{(

0

ei

)
| i ∈ I+0

ϕ (x̂, ŷ; t) ∪ (I00ϕ (x̂, ŷ; t) \ I) ∪ I−0ϕ̃ (x̂, ŷ; t) ∪ (I00ϕ̃ (x̂, ŷ; t) \ Ĩ)

}
∪
{(

ei
0

)
| i ∈ I0+ϕ (x̂, ŷ; t) ∪ I

}
∪
{(
−ei
0

)
| i ∈ I0+ϕ̃ (x̂, ŷ; t) ∪ Ĩ

}
∪
{(

0

ei

)
| ŷi = 1

}
∪
{(

0

−ei

)
| ŷi = 0

}}

∪
{(
∇hj(x̂)

0

)
| j = 1, . . . , p

}
.

Since all constraints depend either on x or on y but never on both, we can show
that CPLD for NLP(t, I, Ĩ) is satisfied at (x̂, ŷ) by considering them separately. All
constraints depending on y are linear and therefore satisfy the CPLD condition. The
constraints depending on x, in turn, satisfy CPLD due to the choice of r and t̄.

Since CPLD implies ACQ, cf. Section 2, we thus have shown that

TZ(t,I,Ĩ)(x̂, ŷ) = LZ(t,I,Ĩ)(x̂, ŷ)

holds for all I ⊆ I00ϕ (x̂, ŷ; t) and Ĩ ⊆ I00ϕ̃ (x̂, ŷ; t). Combining this with (14), we obtain

TZ(t)(x̂, ŷ)∗ =
⋂

I⊆I00ϕ (x̂,ŷ;t),Ĩ⊆I00ϕ̃ (x̂,ŷ;t)

LZ(t,I,Ĩ)(x̂, ŷ)∗. (15)

In order to prove that (x̂, ŷ) satisfies GCQ for NLP(t), we have to prove the inclusion
TZ(t)(x̂, ŷ)∗ ⊆ LZ(t)(x̂, ŷ)∗. Hence our next step is to calculate the linearization cones
and their polar cones. For NLP(t), these are (cf. Lemma 5.1)

LZ(t)(x̂, ŷ) = {(dx, dy) ∈ Rn × Rn | ∀i∈Ig(x̂) ∇gi(x̂)Tdx ≤ 0,
∀i=1,...,p ∇hi(x̂)Tdx = 0,
∀i∈I0+ϕ (x̂,ŷ;t) eTi dx ≤ 0,

∀i∈I0+ϕ̃ (x̂,ŷ;t) eTi dx ≥ 0,

eTdy ≥ 0 if eT ŷ = n− κ,
∀i∈{i|ŷi=1}∪I+0

ϕ (x̂,ŷ;t)∪I−0
ϕ̃ (x̂,ŷ;t) eTi dy ≤ 0,

∀i∈{i|ŷi=0} eTi dy ≥ 0}
and

LZ(t)(x̂, ŷ)∗ = {(wx, wy) ∈ Rn × Rn | wx =
∑

i∈Ig(x̂) λi∇gi(x̂) +
∑p

i=1 µi∇hi(x̂) +
∑n

i=1 γiei,

wy = δe+
∑n

i=1 νiei,
∀i∈Ig(x̂) λi ≥ 0,
∀i∈I0+ϕ (x̂,ŷ;t) γi ≥ 0,

∀i∈I0+ϕ̃ (x̂,ŷ;t) γi ≤ 0,

∀other i γi = 0,
δ ≤ 0 and δ = 0 if eT ŷ > n− κ,
∀i∈{i|ŷi=1}∪I+0

ϕ (x̂,ŷ;t)∪I−0
ϕ̃ (x̂,ŷ;t) νi ≥ 0,

∀i∈{i|ŷi=0} νi ≤ 0,
∀other i νi = 0}.
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For NLP(t, I, Ĩ) the cones are

LZ(t,I,Ĩ)(x̂, ŷ) = {(dx, dy) ∈ Rn × Rn | ∀i∈Ig(x̂) ∇gi(x̂)Tdx ≤ 0,

∀i=1,...,p ∇hi(x̂)Tdx = 0,
∀i∈I0+ϕ (x̂,ŷ;t)∪I eTi dx ≤ 0,

∀i∈I0+ϕ̃ (x̂,ŷ;t)∪Ĩ eTi dx ≥ 0,

eTdy ≥ 0 if eT ŷ = n− κ,
∀i∈{i|ŷi=1}∪I+0

ϕ (x̂,ŷ;t)∪(I00ϕ (x̂,ŷ;t)\I) eTi dy ≤ 0,

∀i∈∪I−0
ϕ̃ (x̂,ŷ;t)∪(I00ϕ̃ (x̂,ŷ;t)\Ĩ) eTi dy ≤ 0,

∀i∈{i|ŷi=0} eTi dy ≥ 0}

and

LZ(t,I,Ĩ)(x̂, ŷ)∗ = {(wx, wy) ∈ Rn × Rn | wx =
∑

i∈Ig(x̂) λi∇gi(x̂) +
∑p

i=1 µi∇hi(x̂) +
∑n

i=1 γiei,

wy = δe+
∑n

i=1 νiei,
∀i∈Ig(x̂) λi ≥ 0,
∀i∈I0+ϕ (x̂,ŷ;t)∪I γi ≥ 0,

∀i∈I0+ϕ̃ (x̂,ŷ;t)∪Ĩ γi ≤ 0,

∀other i γi = 0,
δ ≤ 0 and δ = 0 if eT ŷ > n− κ,
∀i∈{i|ŷi=1}∪I+0

ϕ (x̂,ŷ;t)∪(I00ϕ (x̂,ŷ;t)\I) νi ≥ 0,

∀i∈I−0
ϕ̃ (x̂,ŷ;t)∪(I00ϕ̃ (x̂,ŷ;t)\Ĩ) νi ≥ 0,

∀i∈{i|ŷi=0} νi ≤ 0,
∀other i νi = 0}.

We now put all these pieces together: Let (wx, wy) ∈ TZ(t)(x̂, ŷ)∗ be arbitrarily
given. In view of (15), this implies that (wx, wy) also belongs to LZ(t,∅,∅)(x̂, ŷ)∗

and LZ(t,I00ϕ (x̂,ŷ;t),I00ϕ̃ (x̂,ŷ;t))(x̂, ŷ)∗. Taking into account that the coefficients γi and νi
only occur separately in the expressions for wx and wy, respectively, this immedi-
ately gives (wx, wy) ∈ LZ(t)(x̂, ŷ)∗. Altogether, this proves that GCQ for NLP(t) is
satisfied at (x̂, ŷ).

Note that, in order to obtain a similar result for the related regularization method
for MPCCs, an LICQ-type condition had to be assumed in [16], whereas here only
CC-CPLD is required.

6 Numerical Results

To test the approach presented in this paper, we consider cardinality constrained
problems of the form

min
x
xTQx s.t. µTx ≥ ρ,

eTx ≤ 1,

0 ≤ xi ≤ ui ∀i = 1, . . . , n,

‖x‖0 ≤ κ.
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This is a classical portfolio optimization problem where Q and µ are the covariance
matrix and mean of n possible assets, respectively, and eTx ≤ 1 is a resource con-
straint, see e.g. [5, 9]. To create test examples, we take the same randomly generated
data Q, µ, ρ, and u which were used by Frangioni and Gentile in [12] and which
are available at their webpage http://www.di.unipi.it/optimize/Data/MV.html.
This gives us 30 test instances for each of the three dimensions n = 200, 300, 400.
In addition, we consider for every instance the three cardinality constraints defined
by κ = 5, 10, 20 and thus end up with 270 test problems.

We implemented the following three solution strategies in MATLAB: First, we
followed [5] (see also Remark 3.10, where yi was replaced by 1−yi for an easier com-
parison with our approach) and reformulated the cardinality constrained problem
using binary constraints as

minx,y x
TQx s.t. µTx ≥ ρ,

eTx ≤ 1,
0 ≤ xi ≤ uiyi ∀i = 1, . . . , n,
yi ∈ {0, 1} ∀i = 1, . . . , n,
eTy ≤ κ.

We tried to solve these mixed-integer problems directly using GUROBI 5.6.2 via the
provided MATLAB interface. GUROBI is a solver specialized in mixed-integer linear
and quadratic optimization problems (see [14]). To avoid serious memory problems
experienced earlier, we set the parameter MIPFocus = 1 for GUROBI to spend more
effort on finding good feasible solutions quickly and less effort on proving optimality.
Additionally, we set TimeLimit = 600 to limit the calculation time by 10 minutes.
This may sound very restrictive, but in our numerical experiments, we observed that
GUROBI most often found a good solution within the first 60 seconds and then spent
the remaining time on proving optimality. All computations were performed on a
hyper threading enabled computer with 6 cores, so the 600 seconds correspond to
approximately two hours of computation time.

Our second approach is based on the relaxed problem (4), which in this case is:

minx,y x
TQx s.t. µTx ≥ ρ,

eTx ≤ 1,
0 ≤ xi ≤ ui ∀i = 1, . . . , n,
eTy ≥ n− κ,
xiyi = 0 ∀i = 1, . . . , n,
0 ≤ yi ≤ 1 ∀i = 1, . . . , n.

(16)

This problem has orthogonality/complementarity-type constraints. Since it can
still be viewed as a standard nonlinear optimization problem, we applied TOMLAB

version of SNOPT to solving (16). SNOPT is based on an SQP approach combined
with an augmented Lagrangian merit function [13].

Finally, we implemented the regularization method from the previous section as
well. It replaces the orthogonality condition xiyi = 0 by the two inequalities
ϕ(xi, yi; t) ≤ 0 and ϕ̃(xi, yi; t) ≤ 0. Due to the presence of the constraint xi ≥ 0 in
our test problems, we could ignore the inequality ϕ̃(xi, yi; t) ≤ 0. Nonetheless, it is
still included to make the method applicable to more general instances. We solved
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the regularized problems NLP(t) iteratively using the TOMLAB version of SNOPT,
beginning with the regularization parameter t0 = 1. In every iteration, we decreased
the regularization parameter by tk+1 = 0.01 tk and used the solution of the previous
iteration as initial value. We stopped the algorithm if either the regularization
parameter became too small, i.e. tk < 10−8, or the violation of the orthogonality
conditions was sufficiently small, i.e. maxi=1,...,n |xiyi| ≤ 10−6. The feasibility of the
other constraints (all of which are linear) never caused any problems.

We used x0 = (0, . . . , 0)T and y0 = (1, . . . , 1)T as initial values for all three
methods. In the following, the computational results are grouped by n and κ. The
average computation time in seconds and the average orthogonality violation can
be found in Table 1. Here, the orthogonality violation means maxi=1,...,n |xi(1− yi)|
for GUROBI and maxi=1,...,n |xiyi| for the other two approaches. Since the violations
of the linear and box constraints are, if existent, a lot smaller than the violation of
the orthogonality constraint, we chose not to display them.

n 200 300 400
κ 5 10 20 5 10 20 5 10 20

GUROBI
T 600.2 600.2 600.1 580.8 598.4 580.8 596.8 600.1 600.1
v 0 0 0 0 0 0 0 0 0

relaxation
T 0.0608 0.0592 0.0551 0.1743 0.1587 0.1089 0.2499 0.2129 0.1981
v 10−12 10−12 10−12 2 · 10−12 2 · 10−12 2 · 10−12 3 · 10−12 3 · 10−12 3 · 10−12

regularization
T 1.3562 1.4810 1.9636 3.3107 3.6135 3.8653 7.0481 7.3284 8.0956
v 10−6 10−6 10−6 10−6 10−6 10−6 10−6 10−6 10−6

Table 1: Average computation time T and average orthogonality violation v

Figure 5 illustrates the different objective function values found by the three
methods. For every test example, we divided the values found by all three methods
by the one found by GUROBI and plotted the resulting factors, hence the GUROBI lines
are normalized to one. Thus, a value of 10 for the relaxed approach would mean
that, for this example, the relaxed approach found a solution where the objective
function value was 10 times as big as the one found by GUROBI. The order in which
the results for the 30 test examples are plotted for each n and κ is chosen such that
the normalized values obtained for the regularization method are ascending. This
way it is easy to see that, e.g. for n = 200 and κ = 20, the regularization method
obtains function values almost equal to the ones found by GUROBI in more than 90%
of the considered problems. More detailed results for each test run can be found in
the tables given in the appendix of the preprint version of this paper [7].

If we compare the average computation time, we see that the relaxed approach is
the fastest, followed by the regularized method. Whenever the average computation
time of GUROBI is less than 600 seconds, GUROBI managed to solve one of the 30 test
examples in less than 10 minutes.

The orthogonality constraints also hold. Due to the declaration of yi as a bi-
nary variable, GUROBI produces no measurable violation of the orthogonality. The
slightly higher orthogonality violation of the regularization method compared to
the relaxation approach is a direct consequence of the fact that we terminated the
regularization method as soon as this violation was at most 10−6. Nonetheless, if
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we consider the solutions found by the regularization method and eliminate the κ
largest components, the remaining entries, which should be zero, exceed 10−6 only
in 1 out of 270 examples.

The most interesting results are the objective function values in the solutions.
Even though we allowed GUROBI only to run for 600 seconds, it managed to find
the best value in almost all examples. However, when we compare the relaxation
and regularization approach, we see a huge difference. Whereas the value found
by the relaxation approach is always significantly worse than the one found by
GUROBI (in more than 80% of the examples between 2.5 and 14 times as big), the
regularization method behaves almost as good as GUROBI. In 71.5% of the examples,
it manages to find a similar (in the sense that the function value is at most 1%
worse than the one computed by GUROBI) or even slightly better value than GUROBI.
In all test examples, the value is less than 2 times as big as GUROBI’s. Hence,
although both methods in their present implementation cannot completely keep
up with the professional (global!) solver GUROBI, the regularization method shows
a very promising behavior whereas relaxing the cardinality constrained problem
without additional regularization seems less successful.

One possible reason for the better results of the regularization method is that the
regularized feasible set is bigger than the one of the relaxed problem and therefore
the method is probably less dependent on the initial value. In order to illustrate
this effect, we consider the problem

min
x
x1 + 10x2 s.t. (x1 − 1

2
)2 + (x2 − 1)2 ≤ 1, ‖x‖0 ≤ 1.

The feasible set then consists of a part of the x2-axis including the local minimizer
(0, 1− 1

2

√
3)T and the isolated global minimizer (1

2
, 0)T . We discretized the rectangle

[−1, 3
2
] × [−1

2
, 2] and started both the relaxation approach and the regularization

method in each of the resulting 441 node points. As expected, the regularization
method converged to the global minimizer in all 441 cases, whereas the relaxation
approach found the global solution only in 204 cases, which is less than 50%.

7 Final Remarks

This paper presents an NLP-formulation of the cardinality-constrained optimization
problem. Several theoretical results regarding minima and stationary points as
well as a suitable regularization method are presented. We believe that the NLP-
reformulation given here can be used as the basis for several other developments for
cardinality-constrained problems. Here we only mention two points that will be part
of our future research: First, instead of extending the regularization scheme from
[16] to cardinality constraints, it seems more obvious to apply the regularization
from [26] to cardinality constraints. To some extend, this has been done in the
context of sparse optimization problems in [11] for a simple example. We tried
to apply this approach for more general problems, but failed so far due to some
complications with certain Lagrange multipliers. Second, taking into account that
we derived the NLP-reformulation as a relaxation of a mixed-integer problem, there
should be a good chance to use techniques from binary problems in order to get
closer to a global minimum.
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Example fGurobi frelaxed Trelaxed vrelaxed fregularized Tregularized vregularized
orl200-005-a 34.04 106.32 0.183 3.38e-12 34.07 1.20 1.00e-06
orl200-005-b 42.10 149.64 0.056 2.82e-12 42.08 1.51 1.00e-06
orl200-005-c 71.48 177.22 0.058 6.43e-12 71.46 1.86 1.00e-06
orl200-005-d 37.37 102.12 0.068 4.82e-12 37.35 1.22 1.00e-06
orl200-005-e 33.25 91.09 0.051 0.00e+00 33.43 1.18 1.00e-06
orl200-005-f 67.73 158.22 0.069 7.66e-13 69.85 1.89 1.00e-06
orl200-005-g 71.85 204.87 0.051 0.00e+00 74.13 1.69 1.00e-06
orl200-005-h 89.11 309.88 0.040 0.00e+00 97.88 1.66 1.00e-06
orl200-005-i 10.44 90.48 0.040 0.00e+00 10.43 1.30 1.00e-06
orl200-005-j 38.24 114.31 0.057 1.44e-12 38.49 1.30 1.00e-06
orl200-05-a 17.95 105.67 0.046 0.00e+00 18.08 1.15 1.00e-06
orl200-05-b 10.34 170.99 0.040 0.00e+00 10.33 1.30 1.00e-06
orl200-05-c 12.01 65.33 0.051 0.00e+00 12.00 1.18 1.00e-06
orl200-05-d 97.57 191.58 0.064 0.00e+00 100.71 1.08 1.00e-06
orl200-05-e 108.59 217.99 0.074 4.50e-15 121.51 1.17 1.00e-06
orl200-05-f 81.77 146.85 0.070 0.00e+00 82.76 1.40 1.00e-06
orl200-05-g 5.76 24.02 0.043 0.00e+00 5.86 1.24 1.00e-06
orl200-05-h 21.20 64.97 0.060 0.00e+00 21.26 1.04 1.00e-06
orl200-05-i 20.63 59.12 0.055 0.00e+00 20.72 1.11 1.00e-06
orl200-05-j 64.19 188.68 0.048 0.00e+00 68.47 1.49 1.00e-06
pard200-a 141.03 415.51 0.057 4.28e-12 140.97 1.42 1.00e-06
pard200-b 381.19 840.74 0.067 2.30e-15 389.90 1.10 1.00e-06
pard200-c 356.04 660.29 0.069 1.68e-13 358.10 1.19 1.00e-06
pard200-d 342.41 766.65 0.069 8.06e-15 348.44 1.31 1.00e-06
pard200-e 101.80 281.86 0.052 2.99e-12 101.75 1.43 1.00e-06
pard200-f 25.09 172.66 0.046 0.00e+00 25.06 1.32 1.00e-06
pard200-g 324.54 736.63 0.077 0.00e+00 326.90 1.73 1.00e-06
pard200-h 55.59 266.99 0.047 0.00e+00 55.55 1.46 1.00e-06
pard200-i 130.41 478.37 0.074 2.55e-12 130.35 1.42 1.00e-06
pard200-j 71.30 428.30 0.041 0.00e+00 71.26 1.34 1.00e-06

Table 2: Results for n = 200 and κ = 5
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Example fGurobi frelaxed Trelaxed vrelaxed fregularized Tregularized vregularized
orl200-005-a 18.52 106.32 0.151 3.38e-12 18.51 1.29 1.00e-06
orl200-005-b 23.55 149.64 0.053 2.82e-12 23.58 1.47 1.00e-06
orl200-005-c 38.18 177.22 0.053 6.43e-12 39.89 1.85 1.00e-06
orl200-005-d 20.35 102.12 0.065 4.82e-12 20.34 1.19 1.00e-06
orl200-005-e 17.91 91.09 0.057 0.00e+00 17.90 1.54 1.00e-06
orl200-005-f 37.22 158.22 0.056 7.66e-13 38.95 1.83 1.00e-06
orl200-005-g 40.79 204.87 0.051 0.00e+00 41.07 1.77 1.00e-06
orl200-005-h 48.85 309.88 0.053 0.00e+00 50.65 1.88 1.00e-06
orl200-005-i 5.82 90.48 0.041 0.00e+00 5.81 1.36 1.00e-06
orl200-005-j 21.00 114.31 0.054 1.44e-12 21.23 1.38 1.00e-06
orl200-05-a 10.12 105.67 0.040 0.00e+00 10.12 1.51 1.00e-06
orl200-05-b 5.66 170.99 0.042 0.00e+00 5.66 1.50 1.00e-06
orl200-05-c 6.61 65.33 0.042 0.00e+00 6.62 1.43 1.00e-06
orl200-05-d 53.53 191.58 0.136 0.00e+00 54.46 1.59 1.00e-06
orl200-05-e 59.68 217.99 0.064 4.50e-15 67.55 1.20 1.00e-08
orl200-05-f 45.24 146.85 0.064 0.00e+00 45.27 1.79 1.00e-06
orl200-05-g 3.23 24.02 0.040 0.00e+00 3.23 1.30 1.00e-06
orl200-05-h 11.90 64.97 0.053 0.00e+00 11.90 1.08 1.00e-06
orl200-05-i 11.75 59.12 0.055 0.00e+00 11.83 1.15 1.00e-06
orl200-05-j 35.80 188.68 0.052 0.00e+00 37.46 1.58 1.00e-06
pard200-a 74.63 415.51 0.054 4.28e-12 74.61 1.50 1.00e-06
pard200-b 207.02 840.74 0.062 2.30e-15 210.84 1.24 1.00e-06
pard200-c 194.90 660.29 0.066 1.68e-13 197.03 1.40 1.00e-06
pard200-d 184.07 766.65 0.063 8.06e-15 184.41 1.46 1.00e-06
pard200-e 55.84 281.86 0.053 2.99e-12 55.81 1.44 1.00e-06
pard200-f 13.69 172.66 0.043 0.00e+00 13.69 1.31 1.00e-06
pard200-g 177.76 736.63 0.071 0.00e+00 194.61 2.33 1.00e-06
pard200-h 30.22 266.99 0.042 0.00e+00 30.21 1.51 1.00e-06
pard200-i 70.03 478.37 0.055 2.55e-12 70.00 1.29 1.00e-06
pard200-j 38.42 428.30 0.043 0.00e+00 38.40 1.26 1.00e-06

Table 3: Results for n = 200 and κ = 10
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Example fGurobi frelaxed Trelaxed vrelaxed fregularized Tregularized vregularized
orl200-005-a 11.06 106.32 0.153 3.38e-12 11.08 1.91 1.00e-06
orl200-005-b 13.79 149.64 0.053 2.82e-12 13.78 2.14 1.00e-06
orl200-005-c 22.76 177.22 0.053 6.43e-12 22.94 2.43 1.00e-06
orl200-005-d 12.01 102.12 0.055 4.82e-12 12.00 1.72 1.00e-06
orl200-005-e 10.54 91.09 0.051 0.00e+00 10.55 1.47 1.00e-06
orl200-005-f 21.61 158.22 0.055 7.66e-13 21.74 2.22 1.00e-06
orl200-005-g 23.99 204.87 0.049 0.00e+00 24.06 2.26 1.00e-06
orl200-005-h 27.93 309.88 0.043 0.00e+00 53.10 2.01 1.00e-06
orl200-005-i 3.35 90.48 0.040 0.00e+00 3.35 1.81 1.00e-06
orl200-005-j 12.00 114.31 0.052 1.44e-12 12.00 1.97 1.00e-06
orl200-05-a 6.28 105.67 0.040 0.00e+00 6.28 1.69 1.00e-06
orl200-05-b 3.35 170.99 0.040 0.00e+00 3.37 1.58 1.00e-06
orl200-05-c 3.88 65.33 0.042 0.00e+00 3.88 1.83 1.00e-06
orl200-05-d 30.84 191.58 0.064 0.00e+00 31.14 1.74 1.00e-06
orl200-05-e 34.78 217.99 0.066 4.50e-15 37.61 1.88 1.00e-06
orl200-05-f 26.98 146.85 0.065 0.00e+00 28.02 4.11 1.00e-06
orl200-05-g 1.88 24.02 0.041 0.00e+00 1.88 2.08 1.00e-06
orl200-05-h 7.21 64.97 0.053 0.00e+00 7.21 1.70 1.00e-06
orl200-05-i 7.02 59.12 0.052 0.00e+00 7.03 1.70 1.00e-06
orl200-05-j 21.15 188.68 0.042 0.00e+00 21.24 1.72 1.00e-06
pard200-a 40.12 415.51 0.053 4.28e-12 40.19 1.52 1.00e-06
pard200-b 115.16 840.74 0.061 2.30e-15 117.65 1.64 1.00e-06
pard200-c 109.99 660.29 0.066 1.68e-13 113.65 1.61 1.00e-06
pard200-d 103.32 766.65 0.061 8.06e-15 108.17 1.75 1.00e-06
pard200-e 32.04 281.86 0.062 2.99e-12 32.02 1.73 1.00e-06
pard200-f 7.71 172.66 0.041 0.00e+00 8.79 1.69 1.00e-06
pard200-g 100.42 736.63 0.058 0.00e+00 121.11 3.82 3.30e-06
pard200-h 17.06 266.99 0.041 0.00e+00 17.06 1.56 1.00e-06
pard200-i 39.42 478.37 0.060 2.55e-12 50.28 1.92 1.00e-06
pard200-j 21.72 428.30 0.042 0.00e+00 21.71 1.70 1.00e-06

Table 4: Results for n = 200 and κ = 20
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Example fGurobi frelaxed Trelaxed vrelaxed fregularized Tregularized vregularized
orl300-005-a 207.76 447.34 0.142 0.00e+00 209.14 2.25 1.00e-06
orl300-005-b 99.37 295.89 0.112 8.17e-12 99.32 3.16 1.00e-06
orl300-005-c 43.60 123.37 0.118 0.00e+00 43.57 3.32 1.00e-06
orl300-005-d 168.98 377.59 0.165 0.00e+00 193.54 3.73 1.00e-06
orl300-005-e 95.11 344.49 0.126 8.70e-12 98.43 3.27 1.00e-06
orl300-005-f 62.54 231.49 0.144 1.44e-12 62.50 3.34 1.00e-06
orl300-005-g 39.10 286.91 0.111 0.00e+00 39.06 3.33 1.00e-06
orl300-005-h 45.16 145.13 0.144 1.17e-12 45.12 3.16 1.00e-06
orl300-005-i 38.44 195.40 0.115 0.00e+00 38.40 3.57 1.00e-06
orl300-005-j 15.27 175.32 0.114 0.00e+00 15.24 2.88 1.00e-06
orl300-05-a 157.74 255.65 0.166 7.30e-16 165.49 2.42 1.00e-06
orl300-05-b 111.43 314.20 0.108 4.04e-13 111.68 4.08 1.00e-06
orl300-05-c 53.18 173.87 0.121 4.35e-12 53.14 2.92 1.00e-06
orl300-05-d 113.85 315.02 0.097 0.00e+00 114.15 3.72 1.00e-06
orl300-05-e 33.26 103.65 0.136 0.00e+00 33.34 2.84 1.00e-06
orl300-05-f 32.63 103.00 0.120 0.00e+00 32.80 2.92 1.00e-06
orl300-05-g 173.63 322.97 0.140 3.28e-14 184.76 2.58 1.00e-06
orl300-05-h 33.86 85.67 0.115 0.00e+00 33.83 3.51 1.00e-06
orl300-05-i 179.36 286.79 0.148 1.00e-14 187.56 2.37 1.00e-06
orl300-05-j 139.09 254.75 0.133 0.00e+00 139.04 3.08 1.00e-06
pard300-a 64.79 560.25 0.109 0.00e+00 64.97 3.58 1.00e-06
pard300-b 232.07 573.31 0.142 5.22e-12 231.94 4.04 1.00e-06
pard300-c 375.48 1066.79 0.125 2.26e-14 375.52 3.45 1.00e-06
pard300-d 195.90 620.99 0.146 2.14e-12 195.77 3.49 1.00e-06
pard300-e 113.96 575.33 0.109 0.00e+00 113.86 3.79 1.00e-06
pard300-f 53.47 315.72 0.083 0.00e+00 53.40 3.69 1.00e-06
pard300-g 467.23 912.80 0.157 0.00e+00 481.89 4.16 1.00e-06
pard300-h 81.69 545.84 0.098 0.00e+00 81.60 3.59 1.00e-06
pard300-i 310.31 1106.52 1.544 1.17e-11 310.15 3.56 1.00e-06
pard300-j 150.82 377.76 0.141 2.45e-12 150.71 3.53 1.00e-06

Table 5: Results for n = 300 and κ = 5
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Example fGurobi frelaxed Trelaxed vrelaxed fregularized Tregularized vregularized
orl300-005-a 110.95 447.34 0.157 0.00e+00 113.84 3.42 1.00e-06
orl300-005-b 54.16 295.89 0.137 8.17e-12 54.25 3.65 1.00e-06
orl300-005-c 23.62 123.37 0.108 0.00e+00 23.62 3.61 1.00e-06
orl300-005-d 95.16 377.59 0.141 0.00e+00 97.74 4.05 1.00e-06
orl300-005-e 50.41 344.49 0.119 8.70e-12 50.52 3.56 1.00e-06
orl300-005-f 34.43 231.49 0.116 1.44e-12 35.15 3.56 1.00e-06
orl300-005-g 20.89 286.91 0.092 0.00e+00 20.87 3.20 1.00e-06
orl300-005-h 24.65 145.13 0.117 1.17e-12 24.75 3.74 1.00e-06
orl300-005-i 20.44 195.40 0.083 0.00e+00 20.54 3.71 1.00e-06
orl300-005-j 8.11 175.32 0.081 0.00e+00 8.10 2.88 1.00e-06
orl300-05-a 86.81 255.65 0.133 7.30e-16 90.40 2.70 1.00e-06
orl300-05-b 59.80 314.20 0.104 4.04e-13 59.87 4.14 1.00e-06
orl300-05-c 29.01 173.87 0.114 4.35e-12 29.00 2.88 1.00e-06
orl300-05-d 61.16 315.02 0.088 0.00e+00 61.48 3.81 1.00e-06
orl300-05-e 18.16 103.65 0.112 0.00e+00 18.15 2.92 1.00e-06
orl300-05-f 17.62 103.00 0.104 0.00e+00 17.74 3.63 1.00e-06
orl300-05-g 93.61 322.97 0.142 3.28e-14 99.46 2.08 1.00e-06
orl300-05-h 18.53 85.67 0.124 0.00e+00 18.54 3.84 1.00e-06
orl300-05-i 99.04 286.79 0.153 1.00e-14 105.29 2.84 1.00e-06
orl300-05-j 75.18 254.75 0.141 0.00e+00 91.40 5.87 1.00e-06
pard300-a 34.41 560.25 0.084 0.00e+00 34.37 3.55 1.00e-06
pard300-b 125.26 573.31 0.117 5.22e-12 125.19 4.11 1.00e-06
pard300-c 196.50 1066.79 0.125 2.26e-14 196.41 3.56 1.00e-06
pard300-d 106.35 620.99 0.121 2.14e-12 106.41 3.75 1.00e-06
pard300-e 60.59 575.33 0.086 0.00e+00 60.54 3.99 1.00e-06
pard300-f 28.43 315.72 0.083 0.00e+00 28.40 3.79 1.00e-06
pard300-g 253.06 912.80 0.139 0.00e+00 260.94 4.35 1.00e-06
pard300-h 44.00 545.84 1.392 0.00e+00 43.96 3.75 1.00e-06
pard300-i 165.49 1106.52 0.127 1.17e-11 165.41 3.53 1.00e-06
pard300-j 80.01 377.76 0.120 2.45e-12 80.03 3.92 1.00e-06

Table 6: Results for n = 300 and κ = 10
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Example fGurobi frelaxed Trelaxed vrelaxed fregularized Tregularized vregularized
orl300-005-a 62.25 447.34 0.123 0.00e+00 69.12 5.62 1.00e-06
orl300-005-b 30.15 295.89 0.106 8.17e-12 30.13 3.54 1.00e-06
orl300-005-c 13.20 123.37 0.118 0.00e+00 13.20 3.82 1.00e-06
orl300-005-d 53.97 377.59 0.137 0.00e+00 54.27 4.03 1.00e-06
orl300-005-e 28.06 344.49 0.110 8.70e-12 28.78 3.50 1.00e-06
orl300-005-f 19.67 231.49 0.117 1.44e-12 19.86 4.20 1.00e-06
orl300-005-g 11.84 286.91 0.084 0.00e+00 11.85 3.26 1.00e-06
orl300-005-h 13.92 145.13 0.109 1.17e-12 13.93 4.00 1.00e-06
orl300-005-i 11.34 195.40 0.084 0.00e+00 11.37 3.95 1.00e-06
orl300-005-j 4.58 175.32 0.080 0.00e+00 4.57 2.97 1.00e-06
orl300-05-a 50.01 255.65 0.137 7.30e-16 52.01 3.21 1.00e-06
orl300-05-b 34.60 314.20 0.107 4.04e-13 34.86 4.73 1.00e-06
orl300-05-c 16.65 173.87 0.108 4.35e-12 16.68 3.01 1.00e-06
orl300-05-d 33.98 315.02 0.087 0.00e+00 34.09 3.74 1.00e-06
orl300-05-e 10.24 103.65 0.108 0.00e+00 10.25 2.90 1.00e-06
orl300-05-f 9.92 103.00 0.108 0.00e+00 9.93 3.72 1.00e-06
orl300-05-g 54.00 322.97 0.143 3.28e-14 55.99 3.36 1.00e-06
orl300-05-h 10.42 85.67 0.101 0.00e+00 10.42 3.72 1.00e-06
orl300-05-i 58.27 286.79 0.126 1.00e-14 59.32 3.23 1.00e-06
orl300-05-j 42.99 254.75 0.129 0.00e+00 49.16 3.49 1.00e-06
pard300-a 19.13 560.25 0.102 0.00e+00 19.11 3.65 1.00e-06
pard300-b 69.81 573.31 0.109 5.22e-12 69.77 4.39 1.00e-06
pard300-c 106.37 1066.79 0.116 2.26e-14 106.32 3.94 1.00e-06
pard300-d 57.76 620.99 0.118 2.14e-12 57.72 4.37 1.00e-06
pard300-e 33.50 575.33 0.081 0.00e+00 33.47 4.16 1.00e-06
pard300-f 15.74 315.72 0.082 0.00e+00 15.72 4.38 1.00e-06
pard300-g 139.35 912.80 0.127 0.00e+00 141.19 4.55 1.00e-06
pard300-h 24.23 545.84 0.082 0.00e+00 24.21 4.51 1.00e-06
pard300-i 92.41 1106.52 0.107 1.17e-11 92.38 3.74 1.00e-06
pard300-j 43.80 377.76 0.124 2.45e-12 43.77 4.29 1.00e-06

Table 7: Results for n = 300 and κ = 20
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Example fGurobi frelaxed Trelaxed vrelaxed fregularized Tregularized vregularized
orl400-005-a 202.68 550.04 1.570 1.31e-12 203.19 6.29 1.00e-06
orl400-005-b 247.85 632.03 0.258 6.11e-14 263.29 7.14 1.00e-06
orl400-005-c 114.93 365.74 0.233 1.14e-12 115.19 7.27 1.00e-06
orl400-005-d 96.06 274.67 0.224 4.66e-12 96.21 6.82 1.00e-06
orl400-005-e 133.89 383.44 0.218 2.72e-12 134.22 6.86 1.00e-06
orl400-005-f 190.13 568.38 0.216 2.50e-12 190.03 7.34 1.00e-06
orl400-005-g 115.35 370.89 0.196 7.72e-12 119.14 7.60 1.00e-06
orl400-005-h 41.48 289.90 0.153 0.00e+00 41.45 7.45 1.00e-06
orl400-005-i 188.04 581.59 0.163 0.00e+00 187.92 6.65 1.00e-06
orl400-005-j 245.55 501.98 0.240 1.16e-16 325.72 6.88 1.00e-06
orl400-05-a 134.53 375.86 0.229 1.26e-11 134.45 6.45 9.94e-07
orl400-05-b 105.79 359.75 0.193 7.83e-12 105.72 6.38 1.00e-06
orl400-05-c 122.82 326.06 0.235 1.36e-11 122.75 6.71 1.00e-06
orl400-05-d 176.90 379.40 0.224 1.03e-14 195.86 7.00 1.00e-06
orl400-05-e 171.07 319.72 0.241 0.00e+00 180.46 7.23 1.00e-06
orl400-05-f 76.85 251.92 0.193 5.34e-12 76.79 6.58 1.00e-06
orl400-05-g 174.02 361.88 0.255 6.54e-14 177.44 7.51 1.00e-06
orl400-05-h 82.36 216.75 0.199 4.78e-12 83.03 6.83 1.00e-06
orl400-05-i 34.01 279.54 0.146 0.00e+00 33.99 6.84 1.00e-06
orl400-05-j 38.66 213.23 0.151 0.00e+00 39.32 7.98 1.00e-06
pard400-a 318.76 975.56 0.196 4.92e-12 318.69 7.83 1.00e-06
pard400-b 861.62 1852.84 0.184 5.19e-12 911.22 3.62 1.00e-06
pard400-c 716.54 1191.28 0.261 3.93e-14 802.06 6.02 1.00e-06
pard400-d 373.44 1100.84 0.208 1.28e-12 373.32 7.90 1.00e-06
pard400-e 290.89 1081.20 0.200 3.84e-12 290.65 8.56 1.00e-06
pard400-f 802.75 1969.15 0.217 2.33e-14 844.02 3.94 1.00e-06
pard400-g 203.55 602.67 0.196 2.73e-12 203.35 8.45 1.00e-06
pard400-h 438.28 1650.95 0.206 6.42e-13 437.98 8.67 1.00e-06
pard400-i 61.96 529.12 0.146 0.00e+00 62.00 7.83 1.00e-06
pard400-j 98.68 775.68 0.147 0.00e+00 98.80 8.81 1.00e-06

Table 8: Results for n = 400 and κ = 5
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Example fGurobi frelaxed Trelaxed vrelaxed fregularized Tregularized vregularized
orl400-005-a 106.65 550.04 0.332 1.31e-12 107.16 6.18 1.00e-06
orl400-005-b 136.42 632.03 0.286 6.11e-14 139.80 7.82 1.00e-06
orl400-005-c 60.94 365.74 0.212 1.14e-12 60.90 6.95 1.00e-06
orl400-005-d 51.18 274.67 0.220 4.66e-12 51.17 7.19 1.00e-06
orl400-005-e 71.21 383.44 0.192 2.72e-12 71.22 7.14 1.00e-06
orl400-005-f 100.15 568.38 0.187 2.50e-12 101.34 7.80 1.00e-06
orl400-005-g 61.90 370.89 0.198 7.72e-12 63.20 7.50 1.00e-06
orl400-005-h 21.82 289.90 0.180 0.00e+00 21.96 7.49 1.00e-06
orl400-005-i 98.90 581.59 0.153 0.00e+00 98.84 6.99 1.00e-06
orl400-005-j 131.88 501.98 0.242 1.16e-16 170.42 6.81 1.00e-06
orl400-05-a 72.62 375.86 0.225 1.26e-11 72.84 6.63 1.00e-06
orl400-05-b 56.86 359.75 0.200 7.83e-12 56.97 6.88 1.00e-06
orl400-05-c 65.85 326.06 0.189 1.36e-11 65.97 7.73 1.00e-06
orl400-05-d 96.23 379.40 0.235 1.03e-14 96.36 7.51 1.00e-06
orl400-05-e 92.80 319.72 0.267 0.00e+00 94.41 7.52 1.00e-06
orl400-05-f 42.95 251.92 0.199 5.34e-12 42.99 6.49 1.00e-06
orl400-05-g 92.57 361.88 0.313 6.54e-14 93.56 7.45 1.00e-06
orl400-05-h 44.10 216.75 0.202 4.78e-12 44.26 7.26 1.00e-06
orl400-05-i 18.36 279.54 0.151 0.00e+00 18.40 6.99 1.00e-06
orl400-05-j 20.62 213.23 0.173 0.00e+00 20.67 8.12 1.00e-06
pard400-a 165.17 975.56 0.202 4.92e-12 165.05 8.05 1.00e-06
pard400-b 451.99 1852.84 0.190 5.19e-12 530.89 4.36 1.00e-06
pard400-c 376.21 1191.28 0.276 3.93e-14 464.19 6.30 1.00e-06
pard400-d 195.47 1100.84 0.211 1.28e-12 195.33 7.98 1.00e-06
pard400-e 150.89 1081.20 0.187 3.84e-12 150.77 7.85 1.00e-06
pard400-f 431.08 1969.15 0.250 2.33e-14 460.59 6.03 1.00e-06
pard400-g 108.92 602.67 0.224 2.73e-12 108.82 9.07 1.00e-06
pard400-h 233.89 1650.95 0.202 6.42e-13 233.74 8.43 1.00e-06
pard400-i 33.11 529.12 0.144 0.00e+00 33.06 8.80 1.00e-06
pard400-j 51.48 775.68 0.144 0.00e+00 51.42 8.54 1.00e-06

Table 9: Results for n = 400 and κ = 10
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Example fGurobi frelaxed Trelaxed vrelaxed fregularized Tregularized vregularized
orl400-005-a 58.11 550.04 0.184 1.31e-12 58.08 7.57 1.00e-06
orl400-005-b 75.71 632.03 0.252 6.11e-14 77.09 7.70 1.00e-06
orl400-005-c 32.91 365.74 0.213 1.14e-12 32.89 7.17 1.00e-06
orl400-005-d 28.34 274.67 0.196 4.66e-12 28.32 8.02 1.00e-06
orl400-005-e 39.50 383.44 0.173 2.72e-12 39.53 7.06 1.00e-06
orl400-005-f 54.33 568.38 0.191 2.50e-12 55.53 8.12 1.00e-06
orl400-005-g 34.36 370.89 0.185 7.72e-12 34.92 7.22 1.00e-06
orl400-005-h 11.86 289.90 0.146 0.00e+00 11.91 7.69 1.00e-06
orl400-005-i 54.37 581.59 0.151 0.00e+00 54.40 7.11 1.00e-06
orl400-005-j 72.91 501.98 0.231 1.16e-16 83.85 7.05 1.00e-06
orl400-05-a 40.55 375.86 0.202 1.26e-11 40.53 7.21 1.00e-06
orl400-05-b 31.66 359.75 0.189 7.83e-12 31.83 7.32 1.00e-06
orl400-05-c 36.04 326.06 0.205 1.36e-11 36.53 8.27 1.00e-06
orl400-05-d 53.49 379.40 0.241 1.03e-14 53.93 7.69 1.00e-06
orl400-05-r 52.28 319.72 0.254 0.00e+00 52.75 8.21 1.00e-06
orl400-05-f 24.83 251.92 0.197 5.34e-12 24.86 8.28 1.00e-06
orl400-05-g 51.44 361.88 0.258 6.54e-14 51.66 7.57 1.00e-06
orl400-05-h 24.63 216.75 0.186 4.78e-12 24.62 7.49 1.00e-06
orl400-05-i 10.38 279.54 0.146 0.00e+00 10.41 6.87 1.00e-06
orl400-05-j 11.54 213.23 0.157 0.00e+00 11.54 8.48 1.00e-06
pard400-a 88.63 975.56 0.198 4.92e-12 88.60 9.02 1.00e-06
pard400-b 254.62 1852.84 0.192 5.19e-12 272.76 13.87 1.00e-06
pard400-c 203.08 1191.28 0.225 3.93e-14 234.15 7.12 1.00e-06
pard400-d 106.56 1100.84 0.201 1.28e-12 106.50 9.05 1.00e-06
pard400-e 82.50 1081.20 0.201 3.84e-12 82.46 7.99 1.00e-06
pard400-f 233.70 1969.15 0.237 2.33e-14 275.20 7.46 1.00e-06
pard400-g 60.34 602.67 0.204 2.73e-12 60.28 9.40 1.00e-06
pard400-h 130.03 1650.95 0.225 6.42e-13 129.96 8.64 1.00e-06
pard400-i 18.05 529.12 0.154 0.00e+00 18.05 9.36 1.00e-06
pard400-j 27.38 775.68 0.148 0.00e+00 27.34 8.83 1.00e-06

Table 10: Results for n = 400 and κ = 20
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