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Abstract

We propose a variant of the classical augmented Lagrangian method for constrained
optimization problems in Banach spaces. Our theoretical framework does not
require any convexity or second-order assumptions and allows the treatment of
inequality constraints with infinite-dimensional image space. Moreover, we discuss
the convergence properties of our algorithm with regard to feasibility, global
optimality and KKT conditions. Some numerical results are given to illustrate the
practical viability of the method.

1 Introduction

Let X, Y be (real) Banach spaces and let f : X — R, g : X — Y be given mappings.
The aim of this paper is to describe an augmented Lagrangian method for the solution
of the constrained optimization problem

min f(z) subject to (s.t.) g(z) <0.

We assume that Y < L?(Q) for some measure space 2, where the natural order on L?(£2)
induces the order on Y. A detailed description together with some remarks about this
setting is given in Section 2.

Augmented Lagrangian methods for the solution of optimization problems belong to
the most famous and successful algorithms for the solution of finite-dimensional problems
and are described in almost all text books on continuous optimization, see, e.g. [5, 22].
Their generalization to infinite-dimensional problems has received considerable attention
throughout the last decades [12, 13, 15, 16, 17, 18]. However, most existing approaches
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either assume a very specific problem structure [16], require strong second-order conditions
[13] or consider only the case where Y is finite-dimensional [15, 18].

The contribution of the present paper is to overcome these limitations and to provide a
general convergence theory for infinite-dimensional problems. To this end, we extend some
of the recent contributions on the convergence of certain modified augmented Lagrangian
methods from the finite- to the infinite-dimensional case, cf. [7] and references therein for
more details regarding some of the newer convergence results in the finite-dimensional
setting. The main difference between the classical augmented Lagrangian approach and
its modified version consists of a more controlled way of the multiplier update which is
responsible for a stronger global convergence theory.

This paper is organized as follows. In Section 2, we give a detailed overview of our
problem setting and assumptions. Section 3 contains a precise statement of the algorithm,
and we conduct a convergence analysis dedicated to global optimization in Section 4.
Starting with Section 5, we assume that the mappings which constitute our problem are
continuously differentiable, and establish some theoretical foundations regarding KKT
conditions and constraint qualifications. In Section 6, we apply these insights to our
algorithm and deduce corresponding convergence results. Finally, Section 7 contains
practical applications and we conclude with some final remarks in Section 8.

Notation: We use standard notation such as (-, -) for the duality pairing on Y, (-,-),
for the scalar product on Z, and L to denote orthogonality in Z. The norms on X, Y, etc.
are denoted by || - ||, where an index (as in || - || x) is appended if necessary. Furthermore,
we write —, —, and —* for strong, weak, and weak-* convergence. Finally, we use the
abbreviation lsc for a lower semicontinuous function.

2 Preliminaries and Assumptions

We denote by e : Y — Z the (linear and continuous) embedding of Y into Z := L?(Q),
and by Ky, Kz the respective nonnegative cones in Y and 7, i.e.

Kz={z€Z|2(t)>0ae} and Ky ={yeY |ely) € Kz}
Note that the adjoint mapping e* embeds Z* into Y*. Hence, we have the chain
Y 227" Y" (1)

The main reason for the specific configuration of our spaces Y and 7 is that Z = L*(Q) is
a Hilbert lattice [3, 29] and, hence, the order on Z has some strong structural properties
which may not hold on Y. For instance, the order on a Hilbert lattice always satisfies
the relation

0<a<s = |all <l

which is trivial for L?-spaces but does not hold for, say, H' or H}. (Hence, these spaces
are not Hilbert lattices.) We will put the properties of Z to fruitful use by performing
the augmentation which constitutes our algorithm in Z. To simplify this, we denote by
zy and z_ the positive and negative parts of z € Z, i.e.

2z =max{z,0} and z_ = max{—z,0}. (2)



These operations coincide with the similarly denoted lattice operations on Z and have a
variety of properties which are easily verified by resorting to the pointwise definition (2).
For instance, we have z = 2z, — z_ and z, | z_ for every z € Z.

Recall that, as in the introduction, we are concerned with the optimization problem

min f(z) s.t. g(z) <0, (3)

where Y < Z = L?(Q). Here, the inequality g(z) < 0 has to be understood with respect
to the order induced by the cone Ky, which is implicitly given by the order on Z through
the embedding e.

The following is a list of assumptions which we will use throughout this paper.

Assumption 2.1 (General assumptions on the problem setting).

Al) f and ||g, ||z are weakly lower semicontinuous.

(A1)
(A2) f and g are continuously Fréchet-differentiable.
(A3) y > |y| is well-defined and continuous on Y.
(Ad)

A4

The unit ball in Y* is weak-* sequentially compact.

Most of the theorems we will encounter later use only a subset of these assumptions.
Hence, we will usually list the assumptions for each theorem explicitly by referencing to
the names (A1)-(A4).

One assumption which might require some elaboration is the weak lower semicontinuity
of ||g+|lz. To this end, note that there are various theorems which characterize the weak
lower semicontinuity of convex functions, e.g. [4, Thm. 9.1]. Hence, if ||g || is convex
(which is certainly true if g is convex with respect to the order in Y'), then the (strong)
lower semicontinuity of g already implies the weak lower semicontinuity. We conclude that
(A1) holds, in particular, for every lsc. convex function f and any mapping g € L(X,Y).

On a further note, the above remarks offer another criterion for the weak lower
semicontinuity of ||g;||z. Since y — ||y || obviously has this property, we conclude that
it is sufficient for g to be weakly (sequentially) continuous.

Regarding the space Y which is embedded into Z, recall that (A3) assumed the
operation y — |y| to be well-defined and continuous on Y. (Note that this assumption
holds automatically if Y = Z, but in many applications, Y is only a subset of Z, cf. the
first remark below.) Hence, the same holds for the mappings y;, y_, min, max, etc.,
which may be defined in terms of their counterparts on Z. This allows us to use the
lattice structure of Z on Y — at least to a certain extent.

We now give some general remarks about the setting (3).

e (Clearly, one motivation for this setting is the case where €2 is a bounded domain in
R? and Y is one of the spaces H*(Q), Hi(Q2), or C(Q). Problems of this type will
be our main application in Section 7. Note that (A3) is satisfied for these spaces,
cf. [8, 19] for a proof in H'.



e In theory, we could easily generalize our work by allowing Z to be a Hilbert lattice
[3, 20, 26, 29]. However, it turns out [20, Cor. 2.7.5] that every Hilbert lattice is
(isometrically and lattice) isomorphic to L?(£2) for some measure space €. Hence,
this seemingly more general setting is already covered by ours.

e Related to the previous point, we note that our setting also covers the case Y = R™,
which is a Hilbert lattice and can be identified with L?(£2) on the discrete measure
space Q2 ={1,...,m}.

We conclude this section by proving a lemma for later reference. Recall that (-,-),
denotes the scalar product in Z = L?*(Q).

Lemma 2.2. Let (a*) and (b¥) be bounded sequences in Z. Then min{a*,b*} — 0 implies
(ak, bk)Z — 0.

Proof. This follows from (a", bk)z = (minf{a®, b*}, max{a®, b*}) O

s
Note that the above lemma becomes false if we drop the boundedness of one of the
sequences. For instance, consider the case where Q = {1} and Z = L?*(Q), which
can be identified with R. Then the sequences a* = k and b* = 1/k provide a simple
counterexample.

3 An Augmented Lagrangian Method

This section gives a detailed statement of our augmented Lagrangian method for the
solution of the optimization problem (3). It is motivated by the finite-dimensional
discussion in, e.g., [7] and differs from the traditional augmented Lagrangian method as
applied, e.g., in [12, 16] to a class of infinite-dimensional problems, in a more controlled
updating of the Lagrange multiplier estimates.

We begin by defining the augmented Lagrangian

2

L, XxZ R, Ly(x\ = fz)+ g H (g(w) + %)+ (4)

Z

This enables us to formulate the following algorithm for the solution of (3), which is a
variant of the (finite-dimensional) method from [7] in the context of our optimization
problem (3). In fact, formally, the method looks almost identical to the one from [7], but
some of the notations related to the order in Y or Z have a different and more general
meaning than those in the finite-dimensional literature.

Algorithm 3.1 (Augmented Lagrangian method).
(S.0) Let (a°, 09 € X X Z, po >0, u™™>* € Kz, v>1, 7€ (0,1), and set k = 0.

(S.1) If (z*, \*) satisfies a suitable stopping criterion: STOP.



(S.2) Choose 0 < u* < u™* and compute an approzimate solution z*+1 of

mmin Ly, (. u®). (5)

(S.3) Set N+t = (u* + prg(a*™)) . If k=0 or

k k—1
Hmin {—g@:’”m “—} wmin {—g<azk>, ! }
Pk Pk-1

holds, set pxi1 = pi; otherwise, set ppi1 = Ypk.

<T
Z

Z

(S.4) Set k < k+1 and go to (S.1).

Note that the case k = 0 is considered separately in Step 2 for formal reasons only since
u*~! and pj_; are not defined for this value of the iteration counter. In any case, the
treatment of this initial step has no influence on our convergence theory.

One of the most important aspects of the above algorithm is the sequence (u*). Note
that u* < ™ implies that (u”*) is bounded in Z. However, the precise choice of u*
does not affect the (theoretical) convergence properties of the method; for instance, we
could always choose u* = 0 and thus obtain a simplified algorithm which is essentially a
quadratic penalty method. However, the much more natural choice is u* = min{\¥, u™#*},
That is, u* is a bounded analogue of the possibly unbounded multiplier \*.

Another part of Algorithm 3.1 which needs some explanation is our notion of an
"approximate solution” in Step 2. The reason we have not specified this part is because we
will carry out two distinct convergence analyses which each require different assumptions.

4 Global Minimization

We begin by considering Algorithm 3.1 from a global optimization perspective. Note that
most of the analysis in this section can be carried out in the more general case where f
is an extended real-valued function, i.e. f maps to R U {oco}.

The global optimization perspective is particularly valid for convex problems, where
we can expect to solve the subproblems in Step 2 in a global sense. This is reflected in
the following assumption, which we require throughout this section.

Assumption 4.1. In Step 2 of Algorithm 3.1, we obtain z¥*! such that there is a
sequence € | 0 with

L, (2" 0" < L, (v,u*) + &, Ve X.

Assumption 4.1 is quite natural and basically asserts that we finish each inner iteration
with a point that is (globally) optimal within some tolerance g5, and that this tolerance
vanishes asymptotically. Note that ||gy ||z being weakly Isc implies a slightly stronger



statement. If z¥ — z and o* — 0, then the nonexpansiveness of z — 2z, together with
(A1) implies that

lim inf [[(9(a*) + a*). ]|, = timinf [|g (@M)], > llg ()] (7)

k—o0

This fact will be used in the proof of the following theorem.

Theorem 4.2. Suppose that (A1) and Assumption 4.1 hold. Let (z¥) be a sequence
generated by Algorithm 3.1, and let T be a weak limit point of (x*). Then:

(a) T is a global minimum of the function ||g.(z)|%.
(b) If T is feasible, then T is a solution of the optimization problem (3).

Proof. (a): We first consider the case where (py) is bounded. Recalling (6), we obtain

— 0.

k
. u
uaﬁﬁ“wstmm{—g@“wf—}
Pk z

Hence (A1) implies that Z is feasible and the assertion follows trivially.

Next, we consider the case where pr — 0o. Let K C N be such that x © T and
assume that there is an x € X with [|gy(2)]|% < |lg+(Z)]|%. By (7), the boundedness of
(u¥), and the fact that p, — oo, there is a constant ¢ > 0 such that

o5 U0 3,

holds for all k£ € K sufficiently large. Hence,

k1.

2

+c
A

pic

L, (2" uk)y > L, (2, uF) + 5

+ [ = f(2).
Using Assumption 4.1, we arrive at the inequality
c
e > Bm 4 (@) - [ (@),

where g, — 0. Since (f(2*™!))x is bounded from below by the weak lower semicontinuity
of f, this is a contradiction.

(b): Let K C N be such that 2¥*! — 7, and let o be any other feasible point. From
Assumption 4.1, we get
L, (2" uF) < L, (v, uF) + €.

Again, we distinguish two cases. First assume that p, — oo. By the definition of the
augmented Lagrangian, we have (recall that z is feasible)

2
(g($) + u_k> +ep < f($) + H k||2Z
Pk) 4

J@) < f)+ 5 ) o

2

+8k




Taking limits in the above inequality, using the boundedness of (u*) and the weak lower
semicontinuity of f, we get f(z) < f(x).

Next, consider the case where (py) is bounded. Using the feasibility of = and a similar
inequality to above, it follows that

k 2 k|2
s+ 2 (st + ) | s 5 | e
2 Pr) 2 1l pwllz
But 3 i N
(o) ) =2 —min f gt 2
Pk + Pk Pk
and the latter part tends to 0 because of (6). This implies f(z) < f(x). O

Note that, for part (a) of the theorem, we did not fully use €5 | 0; we only used the
fact that () is bounded. Hence, this result remains true under weaker conditions than
those given in Assumption 4.1. Furthermore, note that Theorem 4.2 does not require
any differentiability assumption, though, in practice, the approximate solution of the
subproblems in (S.2) of Algorithm 4.1 might be easier under differentiability assumptions.
Finally, note that, in view of statement (a), the weak limit point Z is always feasible if the
feasible set of the optimization problem (3) is nonempty, i.e. in this case the feasibility
assumption from statement (b) is always satisfied. On the other hand, if the feasible set
is empty, it is interesting to note that statement (a) still holds, whereas the assumption
from statement (b) cannot be satisfied.

5 Sequential KKT conditions

Throughout this section, we assume that both f and g are continuously Fréchet-
differentiable on X, and discuss the KKT conditions of the optimization problem (3).
Recalling that Ky is the nonnegative cone in Y, we denote by

Ky ={feY"|(f,y) >0y e Ky}
its dual cone. This enables us to define the KKT conditions as follows.

Definition 5.1. A tuple (z,)\) € X x Ky} is called a KKT point of (3) if
P+ g @ A=0, g(x) <0, and (A g(a)) =0, )
We also call x € X a KKT point of (3) if (x,\) is a KKT point for some .

From a practical perspective, when designing an algorithm for the solution of (3), we will
expect the algorithm to generate a sequence which satisfies the KK'T conditions in an

asymptotic sense. Hence, it will be extremely important to discuss a sequential analogue
of the KKT conditions.



Definition 5.2. We say that the asymptotic KKT (or AKKT) conditions hold in a
feasible point # € X if there are sequences x* — x and (A\*) C K such that

(@) + ¢ (") AF =0 and <)\k,g,(:r;k)> — 0. (9)

Asymptotic KKT-type conditions have previously been considered in the literature [1, 2, 7]
for finite-dimensional optimization problems. Furthermore, in [7], it is shown that AKKT
is a necessary optimality condition even in the absence of constraint qualifications. With
little additional work, this result can be extended to our infinite-dimensional setting.

Theorem 5.3. Suppose that (A1), (A2) hold, and that X is reflexive. Then every local
solution T of (3) satisfies the AKKT conditions.

Proof. By assumption, there is an > 0 such that z is a global solution of (3) on B,(Z).
Now, for k € N, we consider the problem

min f(z) +klgs (@)} + |z — 2P st € B(). (10)

Since the above objective function is weakly lsc and B,(Z) is weakly compact, this
problem has a solution z*. Due to (z*) C B,(Z), there is a K C N such that 2% — ¢ for
some jj € B,(Z). Since x* is a solution of (10), we have

F@*) + kllg @7 + |2 — 2[* < f(2) (11)

for every k. Dividing by k& and taking the limit & —x 0o, we obtain from (A1) that
g+ (9)]|z = 0, i.e. § is feasible. By (11), we also obtain f()+ ||y — z||* < f(Z). But 7 is
the unique solution of

min f(x) + ||z — Z||* st. x € B.(Z), g(z) <O0.

Hence, 4 = Z and (11) implies that 2% — Z. In particular, we have ||z¥ — Z|| < r for
sufficiently large k € I, and from (10) we obtain

f'(@®) + 2kg' (a%) g+ (a") + 2(a* — ) = 0.
Define \¥ = 2kg. (2¥). Then f'(z*) + ¢'(2*)*A* = 0 and (\¥, g_(z*)) = 0. O

The above theorem also motivates our definition of the AKKT conditions. In particular,
it justifies the formulation of the complementarity condition as <)\k, g_ (at’“)> — 0, since
the proof shows that (A\*) needs not be bounded. Hence, the conditions

min{—g(z*), \*} = 0, (N, g(z")) = 0, and (N g_(z")) =x 0

are not equivalent. Note that the second of these conditions (which might appear as the
most natural formulation of the complementarity condition) is often violated by practical
algorithms [2].

In order to get the (clearly desirable) implication "AKKT = KKT”, we will need a
suitable constraint qualification. In the finite-dimensional setting, constraint qualifications



such as MFCQ and CPLD [7, 23] have been used to enable this transition. However,
in the infinite-dimensional setting, our choice of constraint qualification is much more
restricted. For instance, we are not aware of any infinite-dimensional analogues of the
(very amenable) CPLD condition. Hence, we have decided to employ the Zowe-Kurcyusz
regularity condition [30], which is known to be equivalent to the Robinson condition [24]
and to be a generalization of the finite-dimensional MFCQ. It should be noted, however,
that any condition which guarantees ” AKKT = KKT” could be used in our analysis.

Definition 5.4. The Zowe-Kurcyusz condition holds in a feasible point x € X if
g'(x)X + cone(Ky +g(z)) =Y,
where cone is the conical hull in Y.

We note that the complete theory in this paper can be written down with Y = Z only,
so, formally, there seems to be no reason for introducing the imbedded space Y. One
of the main reasons for the more general framework considered here with an additional
space Y is that suitable constraint qualifications like the above Zowe-Kurcyusz condition
are typically violated even in simple applications when formulated in Z, whereas we will
see in Section 7 that this condition easily holds in suitable spaces Y. We therefore stress
the importance of Definition 5.4 being defined in Y, and not in Z.

One of the most important consequences of the above condition is that the set of
multipliers corresponding to a KKT point z is bounded [30]. From this point of view, it
is natural to expect that the sequence (A*) from Definition 5.2 is bounded, provided the
limit point x satisfies the Zowe-Kurcyusz condition.

Theorem 5.5. Suppose that (A2) holds. Let x € X be a point which satisfies the AKKT
conditions, and let (z*), (\F) be the corresponding sequences from Definition 5.2.

(a) If x satisfies the Zowe-Kurcyusz condition, then (\F) is bounded in Y*.

(b) If (A3), (A4) hold and (N\*) is bounded in Y*, then x is a KKT point.

Proof. (a): In view of [30, Thm. 2.1}, the Zowe-Kurcyusz condition implies that there is
an r > 0 such that
BY C ¢'(@)Bf + (Ky + g(x)) N BY,

where BX and B are the closed r-balls around zero in X and Y, respectively. By the
AKKT conditions and (A2), there is a ky € N such that
lg'(=") —g'(@)| <r/4 and [lg(a*) - g(2)]| < r/4

for every k > ko. Now, let u € BY and k > ko. It follows that —u = ¢'(z)w + z with
|lw||lx <1and z =2 + g(x), ||z]ly <1, 21 € Ky. Furthermore, the AKKT conditions

imply
(N¥ 21+ g(2%)) = (A%, 21) + (W, g2 (2%)) — (A, g_(2F))
Z - <)‘k7g—(xk)>
— 0,



ie. <)\k, 21+ g(xk)> is bounded from below. Using once again the AKKT conditions, we
see that (A\F, ¢/(z")w) is also bounded, and it follows that

(N, u) = = (8, g/ (m)w) — (A, 21+ g(x)
IX s = (N g/ (@hyw) + 2N

IN

Yy — <)\k,2’1 + g(iﬂk»

IN

r
ZINF
A

v+ +C

for some constant C' > 0. We conclude that

1 1
y+ = sup <)\k, —u> < - <C+ £||)\k|
r 2

lJull<r r

1N

")

vy < 2C)r.

(b): Since (AF) is bounded in Y* and the unit ball in Y* is weak-* sequentially compact
by (A4), there is a K C N such that A¥ —% X for some A € Y*. Using \* € K} for all
k € N, it follows that

and, hence, | \¥|

A y) = LEPCWJD >0

for every y € Ky. In other words, A € Ky. Hence, taking the limit in the AKKT
conditions and using g_(z*) — g_(x) = g(z) in Y, which is a consequence of (A3) and
the feasibility of x, we see that (x, \) satisfies the KKT conditions. O

The above theorem is a generalization of a well-known result for the MFCQ constraint
qualification in finite dimensions. Recall that, for Y = R™ with the natural ordering, the
Zowe-Kurcyusz condition is equivalent to MFCQ [30].

6 Convergence to KKT Points

We now discuss the convergence properties of Algorithm 3.1 from the perspective of KKT
points. To this end, we make the following assumption.

Assumption 6.1. In Step 2 of Algorithm 3.1, we obtain 2**' such that L/, (z**, u*) — 0
holds for k — oo.

The above is a very natural assumption which states that z**! is an (approximate)

stationary point of the respective subproblem. Note that, from (4), we obtain the
following formula for the derivative of L, with respect to x:

L (4 0) = F) 4 g () ()
— f/(karl) —|—g/(l’k+1)*)\k+l.
Our further analysis is split into a discussion of feasibility and optimality. Regarding the
feasibility aspect, note that we can measure the infeasibility of a point x by means of
the function ||g.(z)||%. By standard projection theorems, this is a Fréchet-differentiable

function and its derivative is given by D||gy(z)]|% = 2¢'(x)*g. (x), cf. [4, Cor. 12.31].
This will be used in the proof of the following theorem.

10



Theorem 6.2. Suppose that (A2) and Assumption 6.1 hold. If (z*) is generated by
Algorithm 3.1 and T is a limit point of (x*), then D||g.(Z)]|% = 0.

Proof. Let K C N be such that 2%t! —x z. If (p) is bounded, then we can argue as in
the proof of Theorem 4.2 (a) and conclude that z is feasible. Hence, there is nothing to
prove. Now, assume that p, — oco. By Assumption 6.1, we have

P + g @Y+ prg( )y 0.
Dividing by px and using the boundedness of (u*) and (f'(z**1))x, it follows that
g (@) g (@) = 0.
This completes the proof. O

Similarly to Theorem 4.2, we remark that the above result does not fully use the fact
that L/, (F1 u*) — 0 and remains valid if this sequence is only bounded.

We now turn to the optimality of limit points of Algorithm 3.1. To this end, recall
that Assumption 6.1 implies that

f/<l'k+1) +g/<xk+l)*>\k+1 N O, (12)

which already suggests that the sequence of tuples (z*, \¥) satisfies AKKT for the
optimization problem (3). In fact, the only missing ingredient is the asymptotic comple-
mentarity of g and A\. We deal with this issue in two steps. First, we consider the case
where (py) is bounded. In this case, we even obtain the (exact) KKT conditions without
any further assumptions.

Theorem 6.3. Suppose that (A2) and Assumption 6.1 hold. Let (z*) be generated by
Algorithm 3.1 and assume that (py,) is bounded. Then every limit point & of (z*) is a
KKT point of (3). The associated Lagrange multiplier X belongs to Z.

Proof. Let K C N be such that 2**! — z. Without loss of generality, we assume that
pr = po for all k. From Algorithm 3.1, it follows that (A**1)x is bounded in Z and

ok
min {—g(ka), —} —0 in Z.
Po

As in the proof of Theorem 4.2 (a), this implies ||g4(2*™1)||z — 0. Furthermore, from
Lemma 2.2, we get (u¥, g(#"*1)) , —x 0. Using the definition of A¥**, we now obtain

Po

uk . uk
o (— _ min {—g@k“), —} ,g<x’f“>)
Po £o VA

—i 0.

(W41 g(a+1), = po ((“— Falat ) + yes) Z

11



Since (A1) is bounded in Z, this also implies (A1, g_(2**1))  — 0. Hence, recalling
(12), the AKKT conditions hold in Z. Now, the claim essentially follows from Theorem 5.5
(b), the only difference here is that we are working in the Hilbert space Z instead of Y
or Y*, hence the two conditions (A3) and (A4) formally required in Theorem 5.5 (b) are
automatically satisfied in the current Hilbert space situation. O

Some further remarks about the case of bounded multipliers are due. In this case, the
multiplier sequence (A¥)x is also bounded in Z, and it does not make a difference whether
we state the asymptotic complementarity of g(z*) and \* as

min{—g(z"*), \*} —x 0, (/\k,g(xk))z —k 0, or ()\k79—(xk))z —x 0,

cf. the remarks after Theorem 5.3. However, this situation changes if we turn to the
case where (py) is unbounded. Here, it is essential that we define the asymptotic KKT
conditions exactly as we did in Definition 5.2.

Theorem 6.4. Suppose that (A2), (A3) and Assumption 6.1 hold. Let (z*) be generated
by Algorithm 3.1 and let p, — oo. Then every limit point T of (z*) which is feasible
satisfies AKKT for the optimization problem (3).

Proof. Recalling (12), it suffices to show that
(A= (@) = (" + peg (@) 4, g- (&) =5 0

holds on some subset K C N such that 2**' —x z. To this end, let v = (u*F +
prg(2Ft)) 4 - g_(2F*1) € LY(Q2). Since v* > 0, we show that [,v* — 0 by using the
dominated convergence theorem. Subsequencing if necessary, we may assume that g(a**1)
converges pointwise to ¢(z), and |g(z**!)| is bounded a.e. by an L2-function. It follows
that v* is bounded a.e. by an L'-function (recall that, if g(z**')(t) > 0, then v*(¢) = 0).
Hence, we only need to show that v* — 0 pointwise. Let ¢t € Q and distinguish two cases:
Case 1. ¢(7)(t) < 0. In this case, the pointwise convergence implies that u*(t) +
org(2* 1) (t) < 0 for sufficiently large k and, hence, v*(t) = 0 for all such k.
Case 2. g(Z)(t) = 0. Then consider a fixed k € K. If g(z**1)(¢) > 0, it follows again
from the definition of v* that v¥(¢) = 0. On the other hand, if g(z**1)(t) <0, it follows
that v¥(¢) < uf(t) - [g(2*T1)(¢)] (note that the right-hand side converges to zero if this
subcase occurs infinitely many times).

Summarizing these two cases, the pointwise convergence v*(t) — 0 follows immediately.
The assertion is therefore a consequence of the dominated convergence theorem. O]

For a better overview, we now briefly summarize the two previous convergence theorems.
To this end, let (2¥) be the sequence generated by Algorithm 3.1 and let Z be a limit
point of (z¥). For the sake of simplicity, we assume that (A2)-(A4) hold. Then Theorems
6.3, 6.4 and 5.5 imply that z is a KK'T point if either

(a) the sequence (py) is bounded, or

(b) pr — o0, T is feasible and the Zowe-Kurcyusz condition holds in z.
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Hence, for pp — oo, the success of the algorithm crucially depends on the achievement
of feasibility and the regularity of the constraint function g. Recall that, by Theorem
6.2, the limit point T is always a stationary point of the constraint violation ||g.(z)[/%.
Hence, situations in which Z is infeasible are rare; in particular, this cannot occur for
convex problems (unless, of course, the feasible set itself is empty).

We now turn to a convergence theorem under stronger assumptions. Note that
convergence results using local [6, 11] and global [13] second-order conditions have been
proven in the literature for algorithms similar to ours (some of these results deal with the
finite-dimensional case only). Here, we prove a theorem which shows that our method
converges globally for convex problems where the objective function is strongly convex.
Note that the theorem does not require any constraint qualification.

Theorem 6.5. Suppose that (AQ)_cmd Assumption 6.1 hold. Furthermore, assume that
problem (3) has a KKT point (Z,\) in X X Z, that g is convex, and that f is strongly
convex. Then the sequence (z*) from Algorithm 3.1 converges to T.

Proof. We first prove that (z*) is bounded. Denoting by ¢ > 0 the modulus of convexity
of f, it is clear that the augmented Lagrangian L,(-,u) is strongly convex with modulus
at least ¢, independently of p and u. It follows that

CHiEk—H o jHZ S <L;k(xk+1,uk) . L/pk(a—:’ukz)’xk—i—l . j>

for all k. Since (L (z,u")) is bounded and L/ (z**! u*) — 0 by Assumption 6.1, it
follows that c||z*+1 — z||> < C||z*** — z]| for some C' > 0, which implies the boundedness
of (a*).

Next, we prove that |lg(z*"!)||z — 0. Recalling the proof of Theorem 6.2, this is
clear if (p;,) is bounded. On the other hand, if p, — oo, we obtain A/(z*™!) — 0, where
h(z) :=||g+()||%. Since h is convex,

0= h(f) Z h($k+1) + h/(ilik+1)(.’f] . :L’k+1).

Hence, h(z¥*1) — 0 and this implies ||g, (z*1)||z — 0.

Our final ingredient is the assertion liminfj_,., r* > 0, where (r*) is the sequence
given by r* = (AFF1 g(2F 1) — g(Z)). If (pk) is bounded, then this assertion is clear from
9(Z) < 0 and the proof of Theorem 6.3. Now, let p — co. Then

= (A g(a"h) — g(2))
> 1 (N UF 4 prg(aTh)) — = (AL uF)
Pk Pk
1 1

— _k||)\k+1||2Z . E (/\k+1,uk)z

1
> k2,
> 4pkll Iz

where the last inequality follows from simple quadratic minimization. Hence, we also
obtain liminfx_,, 7* > 0 in this case.
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Now, write e = L/ (2" u*)(z*"" — Z) and recall that Assumption 6.1 implies
e¥ — 0. Using the strong monotonicity of f’ and the convexity of g, we finally conclude
that

k+1 j’”Q S

f/(xk-i-l) _ f/(:f),l‘k—H . ZZ‘>

g/(f)*j\ _ gl(l,kﬁ-l)*)\k-i-l’xk-i-l _ :Z,> + 5k

cllz

This implies ||z — z|| — 0. O

The main purpose of Theorem 6.5 is to provide a sufficient condition for the existence of
a strong limit point of a sequence (z¥) generated by Algorithm 3.1, as assumed in some
of our convergence theorems. Other assumptions like a strong second order sufficiency
condition might also guarantee this property.

7 Applications

We now give some applications and numerical results for Algorithm 3.1. To this end,
we consider some standard problems from the literature. Apart from the first example,
we place special emphasis on nonlinear and nonconvex problems since the appropriate
treatment of these is one of the focal points of our method.

All our examples follow the general pattern that X, Y, Z are (infinite-dimensional)
function spaces on some bounded domain 2 C R?, d € N. In each of the subsections,
we first give a general overview about the problem in question and then present some
numerical results on the unit square Q = (0,1).

In practice, Algorithm 3.1 is then applied to a (finite-dimensional) discretization of
the corresponding problem. Hence, we implemented the algorithm for finite-dimensional
problems. The implementation was done in MATLAB® and uses the parameters

N=0, po=1 u™™>=10%, ~=10, 7=0.5

(where A\, ™ and e := (1,...,1)T are understood to be of appropriate dimension),
together with a problem-dependent starting point 2°. The overall stopping criterion
which we use for our algorithm is given by

IVf(z) + Vg(@)All, <107 and  [min{—g(z), A}l <107,

i.e. it is an inexact KK'T condition. Furthermore, in each outer iteration, we solve the
corresponding subproblem in Step 2 by computing a point 2**! which satisfies

g, (24,0 < 1070

We now turn to our three test problems.
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7.1 The Obstacle Problem

We consider the well-known obstacle problem [16, 25]. To this end, let Q@ C R? be a
bounded domain, and let X =Y = H}(Q), Z = L*(). The obstacle problem considers

the minimization problem
min f(u) s.t. u >, (13)

where f(u) = ||Vul|2, and ¢ € X is a fixed obstacle. In order to formally describe this
problem within our framework (3), we make the obvious definition

g: X—=Y, gu)=¢—u

Using the Poincaré inequality, it is easy to see that f is strongly convex. Hence, the
obstacle problem satisfies the requirements of Theorem 6.5, which implies that the
augmented Lagrangian method is globally convergent. Furthermore, since X =Y it
follows that ¢'(u) = —idx for every u € X. Hence, the Zowe-Kurcyusz condition (cf.
Definition 5.4) is trivially satisfied in every feasible point, which implies the boundedness
of the dual iterates (A¥), cf. Theorem 5.5.

In fact, the constraint function ¢ satisfies much more than the Zowe-Kurcyusz
condition. For every u € X, the mapping ¢'(u) = —idx is bijective. Hence, if a
subsequence (7¥)x converges to a KKT point Z of (13) and X is the corresponding
multiplier, then we obtain

f(@¥) = N = f/(a%) + g/ (z")" A" = 0.

In other words, we see that \* —¢ f/(z) = A, i.e. (\F)x converges to the (unique)
Lagrange multiplier corresponding to Z.
We now present some numerical results for Q = (0,1)? and the obstacle

¥(z,y) = max {0.1 — 05 H (;’j - 8;’) ,0} :

cf. Figure 1. For the solution process, we choose n € N and discretize (2 by means of
a standard grid which consists of n (interior) points per row or column, i.e. n* interior
points in total. Furthermore, we use

Fu) = |Vul2: = — (Au,u),, forallue X

and approximate the Laplace operator by a standard five-point finite difference scheme.
The subproblems occurring in Algorithm 3.1 are unconstrained minimization problems
which we solve by means of a globalized (semismooth) Newton method. The implemen-
tation details of this method are rather straightforward and, hence, we do not give them
here.

The following table contains iteration numbers for some values of the discretization
parameter n.

n |16 32 64 128 256
outerit. | 4 4 3 3 3
innerit. | 7 8 11 14 20
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Figure 1: Numerical results for the obstacle problem with n = 64.

It is interesting to note that the outer iteration numbers stay approximately the same
as n increases. Furthermore, we observed that the same holds for the final penalty
parameter p, which is equal to 10 regardless of the dimension n. This suggests that our
method is well-formed and works quite well for the obstacle problem.

7.2 The Obstacle Bratu Problem

Let us briefly consider the obstacle Bratu problem [9, 14], which we simply refer to as
Bratu problem. This is a non-quadratic and nonconvex problem which differs from (13)
in the choice of objective function. To this end, let

Flu) = [Vl = a [ e
for some fixed a > 0. To ensure well-definedness of f, we set
X=Y=H(QnCQ), with [ulx=lullue) + lullow-
As before, Z = L*(Q2) and we consider the minimization problem
min f(u) s.t. > (14)

for some fixed obstacle i) € X; that is, g(u) = ¢ — u.

From a theoretical point of view, the Bratu problem is much more difficult than the
obstacle problem from Section 7.1. While the constraint function is equally well-behaved,
the objective function in (14) is neither quadratic nor convex. Hence, we cannot apply
Theorem 6.5 or the theory from Section 4, wheras the KKT-like convergence results from
Sections 5 and 6 still hold.

To analyse how our method behaves in practice, we again considered © = (0,1)? and
implemented the Bratu problem using the same obstacle and a similar implementation
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Figure 2: Numerical results for the Bratu problem with o = 1 and n = 64.

as we did for the standard obstacle problem. The resulting images are given in Figure 2,
and some iteration numbers are given in the following table.

n |16 32 64 128 256
outerit. | 4 4 3 3 3
inner it. | 12 10 13 17 21

As with the obstacle problem, we note that both the inner iteration numbers and the
final penalty parameters remain nearly constant as n increases. The final value of p is
again equal to 10, regardless of the dimension n.

7.3 Optimal Control Problems

We now turn to a class of optimal control problems subject to a semilinear elliptic
equation. Let Q C R? d = 2,3, be a bounded Lipschitz domain. The control problem
we consider consists of minimizing the functional

1 a
ﬂ%@f—ﬂy—wﬁmn+jWan (15)

T2
subject to y € H} () N C(Q) and u € L*(Q) satisfying the semilinear equation
~Ay+d(y) =u in Hy(Q)*
and the pointwise state constraints

y >y inQ. (16)

Here, o is a positive parameter, y; € L(Q), and 5. € C(Q) with y. < 0 on 9Q are given
functions. The nonlinearity d in the elliptic equation is induced by a function d : R — R,
which is assumed to be continuously differentiable and monotonically increasing.
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Before we can apply the augmented Lagrangian method to (15), we need to formally
eliminate the state equation coupling the variables y and u. Due to elliptic regularity
results, this equation admits for each control u € L*(€) a uniquely determined weak
solution y € H}(Q) N C(Q). Moreover, the mapping u + y is Fréchet differentiable in
this setting [27, Thm. 4.15]. Let us denote this mapping by S. Using S, we can eliminate

the state equation to obtain an optimization problem with inequality constraints:
min J(S(u),u) s.t. S(u) > ye. (17)

We can now apply Algorithm 3.1 to this problem. The inequality S(u) > y. has to be
understood in the sense of C'(Q), which necessitates the choice Y = C({2). Furthermore,
we have X = Z = L?*(2). Assuming a linearized Slater condition, one can prove that the
Zowe-Kurcyusz condition is fulfilled, and there exists a Lagrange multiplier A € C'(Q)*
to the inequality constraint S(u) > y., see, e.g., [27, Thm. 6.8].

The subproblems generated by Algorithm 3.1 are unconstrained optimization problems.

By reintroducing the state variable y, we can write these subproblems as

2

st. y=S(u). (18)

. uk
min J(y,u)%—& H(yc—y—k—)
2 Pk ) 4

Hence, we have transformed (15) into a sequence of optimal control problems which
include the state equation but not the pointwise constraint (16). Recall that u* is an
iteration parameter and should not be confused with the control w.

In the following, let us report about numerical results. As a test problem, we choose
the example presented in [21], where Q = (0,1)? and d(y) = y*. Clearly, in this setting,
(15) and its reformulation (17) are nonconvex problems. We solve the subproblems (18)
by applying a semismooth Levenberg-Marquardt-type method to the corresponding KKT
conditions (cf. [10, 28] for some similar methods). Some iteration numbers are given as
follows:

n |16 32 64 128 256
outerit. [ 11 11 11 14 16
inner it. | 268 573 701 2187 3459

As before, n € N is the number of points per row or column of our discretization scheme.
The state constraint y. and the results of our method are given in Figure 3. It is
interesting to note that the multiplier A appears to be much less regular than the optimal
control w and state y. This is not surprising because, due to our construction, we have

ue L*(), yeC(), and X C(Q)*

The latter is well-known to be the space of Radon measures on 2, which is a superset
of L?(Q). In fact, the convergence data shows that the (discrete) L?-norm of \ grows
approximately linearly as n increases, possibly even diverging to +oo, which suggests
that the underlying (infinite-dimensional) problem (15) does not admit a multiplier in
L*(Q) but only in C(Q)*.
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Figure 3: Numerical results for the optimal control problem with n = 64.

8 Final Remarks

We have presented an augmented Lagrangian method for the solution of optimization
problems in Banach spaces, which is essentially a generalization of the modified augmented
Lagrangian method from [7]. Furthermore, we have shown how the method can be applied
to well-known problem classes, and the corresponding numerical results appear quite
promising.

The main strength of our method is the ability to deal with very general classes of
inequality constraints; in particular, inequality constraints with infinite-dimensional image
space. Other notable features include desirable convergence properties for nonsmooth
problems; the ability to find KKT points of arbitrary nonlinear (and nonconvex) problems,
and a global convergence result which covers many prominent classes of convex problems.
We believe the sum of these aspects to be a substantial contribution to the theory of
augmented Lagrangian methods.

Another key concern in our work is the compatibility of the algorithm with suitable
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constraint qualifications. To deal with this matter properly, we investigated the well-
known Zowe-Kurcyusz regularity condition [30], see also Robinson [24], and showed that
this condition can be used to guarantee the boundedness of suitable multiplier sequences
corresponding to asymptotic KKT conditions. While the main application of this result
is clearly the boundedness of the multiplier sequence generated by the augmented
Lagrangian method, we state explicitly that the underlying theory is independent of our
specific algorithm. With the understanding that most iterative methods for constrained
optimization usually satisfy the KKT conditions in an asymptotic sense, we hope that this
aspect of our theory will facilitate similar research into other methods or find applications
in other topics.
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