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Abstract

Optimization problems with composite functions consist of an objective function
which is the sum of a smooth and a (convex) nonsmooth term. This particular
structure is exploited by the class of proximal gradient methods and some of their
generalizations like proximal Newton and quasi-Newton methods. The current
literature on these classes of methods almost exclusively considers the case where
also the smooth term is convex. Here we present a globalized proximal Newton-type
method which allows the smooth term to be nonconvex. The method is shown
to have nice global and local convergence properties, and some numerical results
indicate that this method is very promising also from a practical point of view.

1 Introduction

In this paper we deal with the composite problem

min
x∈Rn

ψ(x) := f(x) + ϕ(x), (1)

where f : Rn → R is (twice) continuously differentiable and ϕ : Rn → R ∪ {+∞}
is convex, proper, and lower semicontinuous (lsc). In this formulation, the objective
function ψ is neither convex nor smooth, so it covers a wide class of problems in statistics,
machine learning, compressed sensing, and signal processing. Since ϕ is allowed to take
the value +∞, (1) also covers constrained problems on convex sets.

1.1 Background

Optimization problems in the form (1) arise in many applications, cf. the list given by
Combettes and Ways [11] and references therein. The function f often represents a
smooth loss function such as the quadratic loss f(x) := ‖Ax − b‖22 or the logistic loss

∗University of Würzburg, Institute of Mathematics, Emil-Fischer-Str. 30, 97074 Würzburg, Germany;
kanzow@mathematik.uni-wuerzburg.de, theresa.lechner2@mathematik.uni-wuerzburg.de

1



f(x) := 1
m

∑m
i=1 log

(
1 + exp(aTi x)

)
for some given data A ∈ Rm×n, b ∈ Rm, and ai ∈ Rn

for i = 1, . . . ,m. The basic aim is then to find a minimizer of f , e.g. for image deblurring
or to classify some data. A convex regularizer ϕ is added to cover some additional
constraints or to control some sparsity. Typical regularizers are the `1- and `2-norm, a
weighted `1-norm ϕ(x) :=

∑n
i=1 ωi|xi| for some weights ωi > 0, or the total variation

ϕ(x) = ‖∇x‖ :=
∑n−1

i=1 |xi+1 − xi|.

1.2 Description of the Method

In every step of the proximal Newton-type method, we (inexactly) solve the problem

arg min
y

{
f(x) +∇f(x)T (y − x) +

1

2
(y − x)TH(y − x) + ϕ(y)

}
(2)

for some x ∈ Rn and a given matrix H which is either equal to the Hessian ∇2f(x)
or represents a suitable approximation of the exact Hessian. The advantage of using
proximal Newton-type steps that take into account second order information of f is that,
similar to smooth Newton-type methods, one can prove fast local convergence. However,
they are only well-defined for convex f and the convergence theorems typically require
some strong convexity assumption.

In contrast, proximal gradient methods perform a backward step using only first order
information of f . This means that (2) is solved for some positive definite H ∈ Rn×n,
which is usually a fixed multiple of the identity matrix. The method can therefore be
shown to converge globally in the sense that every accumulation point of a sequence
generated by this method is a stationary point of ψ, but it is not possible to achieve fast
local convergence results.

In this paper, we take into account the advantages of both methods and join them
to get a globalized proximal Newton-type method. Since the proximal Newton-type
update is preferable, we try to solve the corresponding subproblem and use a novel
descent condition to control whether the current iterate is updated with its solution or a
proximal gradient step is performed. To achieve global convergence, we further add an
Armijo-type line search.

As the solution of the steps requires a high amount of computing, our convergence
theory allows some freedom in the choice of the matrices H, in particular, one can use
quasi-Newton or limited memory quasi-Newton matrices.

1.3 Related Work

The original proximal gradient method was introduced by Fukushima and Mine [16]. It
may be viewed as a special instance of the method described in Tseng and Yun [37], which
utilizes a block separable structure of ϕ and performs block wise descent. Numerous
authors [18, 29, 38] deal with acceleration techniques whereby all of them require the
Lipschitz continuity of the gradient ∇f . Further methods [5,33] also assume that f is
convex.
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In an intermediate approach between proximal Newton and proximal gradient methods,
the matrix H in (2) does not need to be a multiple of the identity matrix, but is still
positive definite, uniformly bounded, and does not necessarily contain second order
information of f . Various line search techniques and inexactness conditions on the
subproblem solution can be applied [7,15,17,20,21,34,35] to prove global convergence.
These references include fast local convergence results for the case that H is replaced by
the Hessian of f or some approximation and a suitable boundedness condition holds.

In Lee, Sun, and Saunders [21] a generic version of the proximal Newton method
is presented and several convergence results based on the exactness of the subproblem
solutions and the Hessian approximation are stated. For the local convergence theory,
they need strong convexity of f . In Yue, Zhou, and So [39], an inexact proximal Newton
method with regularized Hessian is presented which assumes f to be convex, but not
strongly convex, and an error bound condition. Their inexactness criterion is similar to
ours. The authors in [22,36] assume that f is convex and self-concordant and apply a
damped proximal Newton method.

Further methods exist for the case where we can write ϕ = ϕ̃ ◦B for a linear mapping
B : Rn → Rp and a convex function ϕ̃ : Rp → R. This formulation is used if the proximity
operator of ϕ̃ is easy to compute whereas the one of ϕ is not. In [9, 10, 23] fixed point
methods are used to solve the problems under different assumptions, the reformulation
into a constrained problem is applied in [2, 40].

Another class of methods to solve (1) are semismooth Newton methods. Patrinos,
Stella and Bemporad assume in [31] that f is convex and apply a semismooth Newton
method combined with a line search strategy. For strongly convex f with Lipschitz
continuous gradient, Patrinos and Bemporad [30] state a semismooth Newton method
that uses a globalization strategy similar to our method and applies a proximal gradient
step if the given descent criterion does not hold. A semismooth Newton method with
filter globalization is introduced by Milzarek and Ulbrich [26] for ϕ(x) = λ‖x‖1 with
some λ > 0 and adapted for arbitrary convex ϕ by Milzarek [25]. For the semismooth
update, they check a filter condition and, if it does not hold, a proximal gradient step
with Armijo-type line search is performed.

1.4 Outline of the paper

This paper is organized as follows. First, we introduce the proximity operator with some
properties, formulate the proximal gradient method, and state a convergence result in
Section 2. The globalization of the proximal Newton-type method and its inexact variant
is deduced in Section 3, where we also state some preliminary observations. In Section 4,
we first prove global convergence under fairly mild assumptions, and then provide a fast
local convergence result. We then consider the numerical behaviour of our method(s)
on different classes of problems in Section 5, also including a comparison with several
state-of-the-art solvers. We conclude with some final remarks in Section 6.
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1.5 Notation

For x = (x1, . . . , xn)T ∈ Rn and J ⊂ {1, . . . , n}, the subvector xJ ∈ R|J | consists of all
elements xi of x with i ∈ J . Furthermore, R := R ∪ {∞} is the set of extended real
numbers. The set of all symmetric matrices in Rn×n is denoted by Sn, and the set of all
symmetric positive definite matrices is abbreviated by Sn++. We write H � 0 or H � 0
for H ∈ Rn×n if H is positive definite or positive semidefinite, respectively. Analogously,
we write H � G or H � G for G,H ∈ Rn×n if H −G is positive (semi)definite. Finally,
we write ‖x‖H :=

√
xTHx for the norm induced by a given matrix H � 0.

2 The Proximal Gradient Method

This section first recalls the definition and some elementary properties of the proximity
operator, and then describes a version of the proximal gradient method which is applicable
to possibly nonconvex composite optimization problems. Throughout this section, we
assume that f is continuously differentiable and ϕ is proper, lsc, and convex.

2.1 The Proximity Operator

The proximity operator was introduced by Moreau [28] and turned out to be a very
useful tool both from a theoretical and an algorithmic point of view. Here we restate
only some of its properties, and refer to the monograph [3] by Bauschke and Combettes
for more details.

For a positive definite matrix H ∈ Rn×n and a convex, proper, and lsc function
ϕ : Rn → R, the mapping

x 7→ proxHϕ (x) := arg min
y

{
ϕ(y) +

1

2
‖y − x‖2H

}
is called the proximity operator of ϕ with respect to H. Here, the minimizer proxHϕ (x) is
uniquely defined for all x ∈ Rn since the expression inside the arg min is a strongly convex
function. If H is the identity matrix, we simply write proxϕ(x) instead of proxIϕ(x).

Using Fermat’s rule and the sum rule for subdifferentials, the definition of the proximity
operator gives p = proxHϕ (x) if and only if 0 ∈ ∂ϕ(p) +H(p− x), or equivalently

p ∈ x−H−1∂ϕ(p). (3)

We next restate a result on the continuity of the proximity operator due to Milzarek [25,
Corollary 3.1.4], which states that the proximity operator is continuous not only with
respect to the argument, but also with respect to the positive definite matrix.

Lemma 2.1. The proximity operator proxϕ : Rn × Sn, (x,H) 7→ proxHϕ (x) is Lipschitz
continuous on every compact subset of Rn × Sn++, and continuous on Rn × Sn++.
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We call x∗ ∈ domϕ a stationary point of the program (1) if 0 ∈ ∇f(x∗) + ∂ϕ(x∗).
Using [3, Proposition 17.14] and (3), we obtain the characterizations

x∗ stationary point of (1)⇐⇒ −∇f(x∗) ∈ ∂ϕ(x∗)

⇐⇒ ψ′(x∗; d) ≥ 0 for all d ∈ Rn

⇐⇒ x∗ = proxHϕ
(
x∗ −H−1∇f(x∗)

)
,

where the last reformulation turns out to be independent of the particular matrix H.

2.2 Proximal Gradient Method

The proximal gradient method was introduced by Fukushima and Mine [16] as a general-
ization of the proximal point algorithm, which, in turn, was established by Rockafellar [32].
Note that the existing literature on the proximal gradient method usually assumes f
to be both convex and smooth with a (globally) Lipschitz continuous gradient. The
assumptions are required in order to obtain complexity and rate of convergence results,
cf. Beck [4] for more details.

Here we present a version of the proximal gradient method which still has nice global
convergence properties also in the case where f is only continuously differentiable (not
necessarily convex and without assuming any Lipschitz continuity of the corresponding
gradient mapping). The method itself is essentially known and may be viewed as a special
instance of the method described in Tseng and Yun [37], see also the PhD Thesis by
Milzarek [25]. This version differs from the orignal one in [16] and its variants considered
for convex problems by using a different line search globalization strategy. The proximal
gradient method described here plays a central role in the globalization of our proximal
Newton-type method.

To motivate the proximal gradient method, let us first recall that the classical
(weighted) gradient method for the minimization of a smooth objective function f first
computes a minimizer dk of the quadratic subproblem

min
d
f(xk) +∇f(xk)Td+

1

2
dTHkd (4)

for some Hk � 0, and then takes xk+1 = xk + tkd
k for some suitable stepsize tk > 0.

Usually, Hk is chosen as a positive multiple of the identity matrix. For Hk = I, we get
the method of steepest descent, hence dk is given by −∇f(xk) in this case.

Next consider the composite optimization problem from (1). To solve this nonsmooth
problem, we simply add the nonsmooth function to the argument of (4) and obtain the
subproblem

min
d
f(xk) +∇f(xk)Td+

1

2
dTHkd+ ϕ(xk + d). (5)

Let dk = dHk
(xk) be a solution of this subproblem. The next iterate is then defined by

xk+1 := xk + tkd
k for a suitable stepsize tk > 0. A simple calculation shows that the

solution dk of (5) is given by

dk = proxHk
ϕ

(
xk −H−1k ∇f(xk)

)
− xk. (6)
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We now state our proximal gradient method explicitly. The stepsize rule uses the
expression

∆k := ∇f(xk)Tdk + ϕ(xk + dk)− ϕ(xk) (7)

for k ∈ N0, which is a kind of alternative of the directional derivative ψ′(xk, dk), see
Lemma 2.3. Occasionally, we write ∆ instead of ∆k, if it is computed in some variables
x and d instead of xk and dk, respectively.

Algorithm 2.2 (Proximal Gradient Method)

(S.0) Choose x0 ∈ domϕ, β, σ ∈ (0, 1), and set k := 0.

(S.1) Choose Hk � 0 and determine dk as the solution of

min
d
∇f(xk)Td+

1

2
dTHkd+ ϕ(xk + d).

(S.2) If dk = 0: STOP.

(S.3) Compute tk = max{βl : l = 0, 1, 2, . . . } such that ψ(xk + tkd
k) ≤ ψ(xk) + tkσ∆k.

(S.4) Set xk+1 := xk + tkd
k, k ← k + 1, and go to (S.1).

The algorithm allows Hk to be any positive definite matrix. In general, it is chosen
independently of the iteration and as a positive multiple of the identity matrix, because
in that case the computation of the proximity operator is less costly, in some cases
(depending on the mapping ϕ) even an explicit expression is known.

We now want to prove that Algorithm 2.2 is well-defined and justify the termination
criterion. The analysis is mainly based on [25,37]. Note that we assume implicitly that
the algorithm does not terminate after finitely many steps.

We first give an estimate for the value of ∆, which is essentially [26, Lemma 3.5].

Lemma 2.3. Let x ∈ domϕ, H ∈ Sn++ be given, and set d := proxHϕ
(
x−H−1∇f(x)

)
−x,

cf. (6). Then the inequalities ψ′(x; d) ≤ ∆ ≤ −dTHd hold.

Note that this result implies that ∆k is always a negative number as long as dk is nonzero.
The case dk = 0 is discussed in the following result, which also justifies the termination
criterion in (S.2). Its proof coincides with [21, Proposition 2.5].

Lemma 2.4. Let Hk ∈ Sn++ be given. Then xk ∈ domϕ is a stationary point of ψ if and
only if dk = 0.

Thus, the termination criterion in (S.2) of Algorithm 2.2 ensures that the algorithm
terminates in a stationary point of ψ. Together with the next result, it follows that
Algorithm 2.2 is well-defined.
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Corollary 2.5. Algorithm 2.2 is well-defined, and we have ψ(xk+1) < ψ(xk) for all k.

Proof. Consider a fixed iteration index k. Since, by assumption, the algorithm generates
an infinite sequence, (S.2) yields dk 6= 0 for all k. Thus, by Lemma 2.3, we have ∆k < 0.
Using the first inequality in Lemma 2.3, we therefore obtain

ψ(xk + tdk)− ψ(xk)

t
≤ σ∆k

for all sufficiently small t > 0. Rearranging this inequality, we see that the step size rule
(S.3) and, consequently, the whole algorithm is well-defined. Furthermore, using ∆k < 0
in (S.3) yields ψ(xk+1) = ψ(xk + tkd

k) ≤ ψ(xk) + tkσ∆k < ψ(xk), and this completes the
proof.

The following convergence result is a special case of the corresponding theorem in [37].

Theorem 2.6. Let {Hk}k ⊂ Sn++ be a sequence such that there exist 0 < m < M with
mI � Hk �MI for all k ∈ N0. Then any accumulation point of a sequence generated by
Algorithm 2.2 is a stationary point of ψ.

Theorem 2.6 cannot be applied directly in order to verify global convergence of our inexact
proximal Newton-type method since only some of the search directions dk are computed by
a proximal gradient method, whereas other directions correspond to an inexact proximal
Newton-type step. However, a closer inspection of the proof of Theorem 2.6 yields that
the following slightly stronger convergence result holds.

Remark 2.7. An easy consequence of the proof of Theorem 2.6 is the following more general
result: Let {xk} be a sequence such that xk+1 = xk+ tkd

k holds for all k with some search
directions dk ∈ Rn (not necessarily generated by a proximal gradient step) and a stepsize
tk > 0. Assume further that ψ(xk+1) ≤ ψ(xk) holds for all k. Let {xk}K be a convergent
subsequence of the given sequence such that the search directions dk = dHk

(xk) are
obtained by proximal gradient steps for all k ∈ K, where mI � Hk �MI (0 < m ≤M),
and the corresponding step sizes tk > 0 are determined by the Armijo-type rule from
(S.3). Then the limit point of the subsequence {xk}K is still a stationary point of ψ. ♦

3 Globalized Inexact Proximal Newton-type Method

Let us start with the derivation of our globalized inexact proximal Newton-type method.
To this end, let us first assume that Hk stands for the exact Hessian ∇2f(xk) (later Hk

will be allowed to be an approximation of the Hessian only).
In smooth optimization, one step of the classical version of Newton’s method for

the minimizing of a function f : Rn → R consists in finding a solution of Hk(x− xk) =
−∇f(xk). This is equivalent (assuming Hk being positive definite for the moment) to
solve the problem minx fk(x), where

fk(x) := f(xk) +∇f(xk)T (x− xk) + 1
2
(x− xk)THk(x− xk) (8)
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is a quadratic approximation of f at the current iterate xk. To solve this problem
inexactly, one often uses the criterion

‖∇fk(x)‖ ≤ ηk‖∇f(xk)‖ (9)

for some ηk ∈ (0, 1).
Now we adapt this strategy to the nonsmooth problem (1). In this case, the objective

function is f + ϕ, and the corresponding approximation we use is

ψk(x) := fk(x) +ϕ(x) = f(xk) +∇f(xk)T (x−xk) + 1
2
(x−xk)THk(x−xk) +ϕ(x). (10)

In view of Lemma 2.4, we may view

F (x) := x− proxϕ
(
x−∇f(x)

)
(11)

as a replacement for the derivative of the objective function since F (x) = 0 if and only if
x is a stationary point of ψ.

Since ψk is another function of the form (1), one can use the same idea to replace the
derivative of ψk by

F k(x) := x− proxϕ
(
x−∇fk(x)

)
= x− proxϕ

(
x− (∇f(xk) +Hk(x− xk))

)
.

This observation motivates to replace the inexactness criterion (9) by a condition like
‖F k(x)‖ ≤ ηk‖F (xk)‖ for some τ > 0 and ηk ≥ 0, see [7, 21].

The main idea of our globalized proximal Newton-type method is now similar to
a standard globalization of the classical Newton method for smooth unconstrained
optimization problems: Whenever the proximal Newton-type direction exists and satisfies
a suitable sufficient decrease condition, the proximal Newton-type direction is accepted
and followed by a line search. Otherwise, a proximal gradient step is taken which always
exists and guarantees suitable global convergence properties. The descent criterion used
here is motivated by the condition in [12,30]. The line search is based on the Armijo-type
condition already used in the proximal gradient method and makes use of the same ∆k

that was already defined in (7). The exact statement of our method is as follows, where,
now, we allow Hk to be an approximation of the Hessian of f at xk.

Algorithm 3.1 (Globalized Inexact Proximal Newton-type Method (GIPN))

(S.0) Choose initial parameters: x0 ∈ domϕ, ρ > 0, p > 2, , β, η ∈ (0, 1), σ ∈ (0, 1
2
),

ζ ∈ (σ, 1
2
), 0 < cmin ≤ cmax, and set k := 0.

(S.1) Choose Hk ∈ Rn×n symmetric, ηk ∈ [0, η) and compute an inexact solution x̂k of
the subproblem minx ψk(x) satisfying

‖F k(x̂k)‖ ≤ ηk‖F (xk)‖ and ψk(x̂
k)− ψk(xk) ≤ ζ∆k, (12)

and set dk := x̂k − xk. If this is not possible or the condition

∆k ≤ −ρ‖dk‖p (13)

is not satisfied, choose ck ∈ [cmin, cmax] and determine dk as the (unique) solution of

min
d
∇f(xk)Td+

1

2
ck‖d‖2 + ϕ(xk + d).
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(S.2) If dk = 0: STOP.

(S.3) Compute tk = max{βl | l = 0, 1, 2, . . . } such that ψ(xk + tkd
k) ≤ ψ(xk) + σtk∆k.

(S.4) Set xk+1 := xk + tkd
k, k ← k + 1 and go to (S.1).

Before we start to analyse the convergence properties of Algorithm 3.1, let us add a few
comments regarding the proximal subproblems that we try to solve inexactly in (S.1).
Since Hk is not necessarily positive definite, these subproblems are not guaranteed to have
a solution. The same difficulty arises within the classical Newton method since, in the
indefinite case, the quadratic subproblem (8) certainly has no minimizer. Nevertheless,
the classical Newton method is often quite successful even if Hk is indefinite (at least
during some intermediate iterations), and the Newton direction is usually well-defined
because it just computes a stationary point of the subproblem (8) which exists also for
indefinite matrices Hk. Here, the situation is similar since the conditions (12) only check
whether we have an (inexact) stationary point (note that these conditions certainly hold
for the exact solution of the corresponding subproblem, cf. [21, Proposition 2.4] for the
second condition and note that ζ < 1

2
). Moreover, the situation here is even better than

in the classical case since the additional function ϕ may guarantee the existence of a
minimum even for indefinite Hk (e.g. if ϕ has compact support as this occurs when ϕ is
the indicator function of a bounded feasible set). We therefore believe that our proximal
Newton-type direction does exist in many situations (otherwise we switch to the proximal
gradient direction).

The properties of Algorithm 3.1 obviously depend on the choice of the matrices Hk

and the degree of inexactness that is used to compute the inexact proximal Newton-type
direction in (S.1). This degree is specified by the test in (12). The local convergence
analysis requires some additional conditions regarding the choice of the sequence ηk,
whereas the global convergence analysis depends only on the choice ηk ∈ [0, η) for some
given η ∈ (0, 1) and does not need the second condition in (12). The condition in (13) is
a sufficient decrease condition, with ρ > 0 typically being a small constant.

For our subsequent analysis, we set

KG : = {k : xk+1 was generated by the proximal gradient method},
KN : = {k : xk+1 was generated by the inexact proximal Newton-type method}.

The following result shows that the step size rule in (S.3) is well-defined and Algorithm 3.1
is a descent method.

Proposition 3.2. Consider a fixed iteration k and suppose that dk 6= 0. Then the line
search in (S.3) is well-defined and yields a new iterate xk+1 satisfying ψ(xk+1) < ψ(xk).

Proof. Since the proximal gradient method is well-defined by Corollary 2.5, the claim
holds for k ∈ KG. Now, assume k ∈ KN , in which case (13) holds. Then ∆k < 0 and,
therefore, the remaining part of the proof is identical to the one of Corollary 2.5.

Proposition 3.2 requires dk 6= 0. In view of the following result, this assumption can
be stated without loss of generality. In particular, this result justifies our termination
criterion in (S.2).
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Lemma 3.3. An iterate xk generated by GIPN is a stationary point of ψ if and only if
dk = 0.

Proof. For k ∈ KG, the result follows from Lemma 2.4. Hence assume k ∈ KN , and let
dk = 0. This yields x̂k = xk. Since F k(xk) = F (xk), condition (12) yields ‖F (xk)‖ ≤
ηk · ‖F (xk)‖. As ηk ∈ [0, 1), we get F (xk) = 0 and xk is a stationary point of ψ, using
again Lemma 2.4. Conversely, assume that dk 6= 0 for k ∈ KN . Then, analogous to
Lemma 2.3, we get ψ′(xk; dk) ≤ ∆k ≤ −ρ‖dk‖p < 0. Hence xk is not a stationary point
of ψ.

Altogether, the previous results show that Algorithm 3.1 is well-defined.

4 Convergence Theory

In the following, we will prove global and local convergence results for algorithm GIPN.
For this purpose, we assume that GIPN generates an infinite sequence and dk 6= 0 holds
for all k ∈ N. The latter is motivated by Lemma 3.3.

4.1 Global Convergence

The following is the main global convergence result for Algorithm 3.1. It guarantees
stationarity of any accumulation point. Hence, if f is also convex, this implies that any
accumulation point is a solution of the composite optimization problem from (1).

Theorem 4.1. Consider Algorithm GIPN with a bounded sequence of matrices {Hk}.
Then every accumulation point of a sequence generated by this method is a stationary
point of ψ.

Proof. Let {xk} be a sequence generated by GIPN and {xk}K a subsequence of {xk}
converging to some x∗. If there are infinitely many indices k ∈ K with k ∈ KG, i.e.
the subsequence contains infinitely many iterates xk such that xk+1 is generated by the
proximal gradient method, Proposition 3.2 and the statement of Remark 2.7 yield that
x∗ is a stationary point of ψ.

Hence consider the case where all elements of the subsequence {xk+1}K are generated
by inexact Newton-type steps. Since {ψ(xk)} is monotonically decreasing by Proposi-
tion 3.2, {xk}K converges to x∗, and since ψ is lsc, we get the convergence of the entire
sequence {ψ(xk)} to some finite number ψ∗. The line search rule therefore yields

0← ψ(xk+1)− ψ(xk) ≤ σtk∆k < 0

and, hence, tk∆k → 0 for k → ∞. We claim that this implies {‖dk‖}K → 0 (possibly
after taking another subsequence). To verify this statement, we distinguish two cases:

Case 1: lim infk∈K tk > 0. Then {∆k}K → 0, and we therefore obtain {‖dk‖}K → 0 in
view of (13).
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Case 2: lim infk∈K tk = 0. Without loss of generality, assume limk∈K tk = 0. Then, for all
k ∈ K sufficiently large, the line search test is violated for the stepsize τk := tk/β. Using
the monotonicity of the difference quotient of convex functions, cf. [3, Proposition 9.27],
and the definition of ∆k, we therefore obtain

σ∆k <
ψ(xk + τkd

k)− ψ(xk)

τk
≤ f(xk + τkd

k)− f(xk)

τk
+ ϕ(xk + dk)− ϕ(xk)

=
f(xk + τkd

k)− f(xk)

τk
−∇f(xk)Tdk + ∆k =

(
∇f(ξk)−∇f(xk)

)T
dk + ∆k

for all k ∈ K sufficiently large, where the last expression uses the mean value theorem
with some ξk ∈ (xk, xk + τkd

k). Reordering these expressions, we obtain

0 < −(1− σ)∆k <
(
∇f(ξk)−∇f(xk)

)T
dk.

Using (13) we get (1− σ)ρ‖dk‖p−1 ≤ ‖∇f(ξk)−∇f(xk)‖ for all k ∈ K. Since xk →K x∗,
τk →K 0, and {dk}K is necessarily bounded (as a consequence of (13) with p > 1), it
follows that the right-hand side converges to zero. This implies dk →K 0.

Therefore, dk →K 0 holds in both cases. Since xk →K x∗, the definition of dk also
implies x̂k →K x∗. Using the continuity of the proximity operator, we therefore get

F (xk)→K x∗ − proxϕ
(
x∗ −∇f(x∗)

)
and, since {Hk} is bounded by assumption,

F k(x̂k)→K x∗ − proxϕ
(
x∗ −∇f(x∗)

)
.

Since ‖F k(x̂k)‖ ≤ η‖F (xk)‖ for all k ∈ K in view of (12) and η ∈ (0, 1), taking the limit
k →K ∞ therefore implies x∗ = proxϕ

(
x∗ −∇f(x∗)

)
, which is equivalent to x∗ being a

stationary point of ψ.

Remark 4.2. The proof of Theorem 4.1 also verifies {dk}KN
→ 0 if the sequence {ψ(xk)}

is bounded below and therefore convergent. In particular, this is satisfied whenever the
sequence {xk} has an accumulation point. ♦

Remark 4.3. Note that the proof of Theorem 4.1 only requires p > 1 and the first
condition from (12). The stronger or additional conditions are only needed in the local
convergence theory. ♦

4.2 Local Convergence

We now turn to the local convergence properties of Algorithm 3.1. To this end, we
assume that f is twice continuously differentiable and the sequence {Hk} is bounded and
satisfies the Dennis-Moré condition [13]

lim
k→∞

∥∥(Hk −∇2f(x∗)
)
(x̂k − xk)

∥∥
‖x̂k − xk‖

= 0.

11



Under suitable assumptions, we expect the method to be locally superlinearly or quadrat-
ically convergent. The main steps into this direction are summarized in the following
observations, which are partly taken from [39].

Proposition 4.4. Consider Algorithm 3.1 with {Hk} satisfying the Dennis-Moré condi-
tion and MI � Hk � mI for all k ∈ N0 with suitable M ≥ m > 0. Let x∗ be a stationary
point of ψ such that ∇2f(x∗) is positive definite. Then there exist constants ε > 0 as well
as C, κ1, κ2, µ > 0 such that, for any iterate xk ∈ Bε(x

∗), the following statements hold,
where x̂kex is the exact solution of the corresponding subproblem in (S.1) of Algorithm 3.1:

(a)
∥∥x̂k − x̂kex∥∥ ≤ Cηk‖F (xk)‖.

(b)
∥∥x̂kex − xk∥∥ ≤ κ1‖xk − x∗‖.

(c)
∥∥xk − x∗‖ ≤ κ2

∥∥F (xk)
∥∥.

(d)
∥∥x̂kex − x∗∥∥ ≤ 1

µ

(∥∥∇f(xk)−∇f(x∗)−∇2f(x∗)(xk − x∗)
∥∥

+
∥∥(Hk −∇2f(x∗)

)
(x̂kex − xk)

∥∥).

(e) The search direction dk = x̂k − xk from (S.1) satisfies the sufficient decrease
condition (13).

(f) The full stepsize tk = 1 satisfies the Armijo-type condition from (S.3).

Proof. First note that the assumed positive definiteness of ∇2f(x∗) implies, possibly by
changing the values of m,M , that

m‖d‖2 ≤ dT∇2f(x)d ≤M‖d‖2 ∀d ∈ Rn, ∀x ∈ Bε(x
∗). (14)

Throughout this proof, we assume that the given iterate xk belongs to this neighbourhood
Bε(x

∗). We now verify each of the six statements separately (using a possibly smaller
radius ε).

(a) First, note that the function ψk is strongly convex and, therefore, has a unique
minimizer. Thus, the exact solution of the subproblem exists and hence guarantees that
there is an inexact solution x̂k.

Since F k(x̂k) = x̂k − proxϕ
(
x̂k −∇fk(x̂k)

)
, we obtain from (3) that

F k(x̂k)−∇fk(x̂k) ∈ ∂ϕ(x̂k − F k(x̂k)).

The definition of ψk together with the subdifferential sum rule therefore implies

F k(x̂k) +∇fk
(
x̂k − F k(x̂k)

)
−∇fk(x̂k) ∈ ∂ψk

(
x̂k − F k(x̂k)

)
which is equivalent to

(I −Hk)F
k(x̂k) ∈ ∂ψk

(
x̂k − F k(x̂k)

)
. (15)
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Since ψk is strongly convex in Bε(x
∗) with modulus m > 0, its subdifferential is strongly

monotone in this neighbourhood with the same modulus. Hence, using (15) together
with 0 ∈ ∂ψk(x̂kex), we get〈

(I −Hk)F
k(x̂k), x̂k − F k(x̂k)− x̂kex

〉
≥ m

∥∥x̂k − F k(x̂k)− x̂kex
∥∥2.

Applying the Cauchy-Schwarz inequality, this implies∥∥x̂k − F k(x̂k)− x̂kex
∥∥ ≤ 1

m

∥∥(I −Hk)F
k(x̂k)

∥∥ ≤ 1

m
(1 +M)‖F k(x̂k)‖.

Using the inexactness criterion (12), we finally get, with C := (1 +M +m)/m,

‖x̂k − x̂kex‖ ≤ ‖x̂k − F k(x̂k)− x̂kex‖+ ‖F k(x̂k)‖

≤ 1

m
(1 +M)‖F k(x̂k)‖+ ‖F k(x̂k)‖ ≤ Cηk‖F (xk)‖.

(b) Let G(x,H) := x−proxHϕ
(
x−H−1∇f(x)

)
. By Lemma 2.1, G is Lipschitz continuous

for x ∈ Bε(x
∗) and H ∈ Sn++ with mI � H � MI and G(x∗, H) = 0 for all such H by

Lemma 2.4. Thus, there exists κ1 > 0 (not depending on Hk) such that

‖x̂kex − xk‖ = ‖G(xk, Hk)‖ = ‖G(xk, Hk)−G(x∗, Hk)‖ ≤ κ1‖xk − x∗‖.

(c) Reducing ε > 0 if necessary, the twice continuous differentiability of f implies that
we can choose a convex neighbourhood Bε(x

∗) of x∗ such that

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖ (16)

for all x, y ∈ Bε(x
∗) with some Lipschitz constant L > 0. Since (14) implies the strong

convexity of f in Bε(x
∗), it follows that ∇f is strongly monotone in Bε(x

∗) with

m‖x− y‖2 ≤
〈
∇f(x)−∇f(y), x− y

〉
(17)

for all x, y ∈ Bε(x
∗). Now, let xk ∈ Bε(x

∗) be arbitrary and set uk := F (xk), i.e.
xk − uk = proxϕ

(
xk − ∇f(xk)

)
. Since x∗ is a stationary point of ψ, we have x∗ =

proxϕ
(
x∗−∇f(x∗)

)
. Recall that the proximity operator is firmly nonexpansive, meaning

that
‖ proxϕ(a)− proxϕ(b)‖2 ≤

〈
proxϕ(a)− proxϕ(b), a− b

〉
for all a, b ∈ dom(ϕ). Setting a := xk −∇f(xk), b := x∗ −∇f(x∗), we therefore obtain

‖xk − uk − x∗‖2 ≤
〈
xk − uk − x∗, xk −∇f(xk)− x∗ +∇f(x∗)

〉
.

After some algebraic manipulations and cancellation, this can be rewritten as〈
xk − x∗,∇f(xk)−∇f(x∗)

〉
≤
〈
uk, (xk − x∗) + (∇f(xk)−∇f(x∗)

〉
− ‖uk‖2.

Applying (16) and (17) together with the Cauchy-Schwarz inequality, we obtain

m‖xk − x∗‖2 ≤ ‖uk‖
(
‖xk − x∗‖+ ‖∇f(xk)−∇f(x∗)‖

)
≤ (1 + L)‖uk‖ ‖xk − x∗‖.
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Therefore, ‖xk − x∗‖ ≤ 1+L
m
‖F (xk)‖.

(d) The inequality holds trivially for x̂kex = x∗. Thus, assume x̂kex 6= x∗. Using stationarity
of x∗ and x̂kex, we have 0 ∈ ∇f(x∗) + ∂ϕ(x∗) and 0 ∈ ∇f(xk) +Hk(x̂

k
ex − xk) + ∂ϕ(x̂kex).

By the monotonicity of the subdifferential of ϕ, we get

0 ≤
〈
∇f(xk)−∇f(x∗) +Hk(x̂

k
ex − xk), x∗ − x̂kex

〉
=
〈
∇f(xk)−∇f(x∗)−∇2f(x∗)(xk − x∗), x∗ − x̂kex

〉
+
〈
∇2f(x∗)(x̂kex − x∗), x∗ − x̂kex

〉
+
〈(
∇2f(x∗)−Hk

)
(xk − x̂kex), x∗ − x̂kex

〉
≤
∥∥∇f(xk)−∇f(x∗)−∇2f(x∗)(xk − x∗)

∥∥ · ∥∥x∗ − x̂kex∥∥−m∥∥x̂kex − x∗∥∥2
+
∥∥(∇2f(x∗)−Hk

)
(xk − x̂kex)

∥∥ · ∥∥x∗ − x̂kex∥∥.
Rearranging terms yields∥∥x̂kex−x∗∥∥ ≤ 1

µ

(
‖∇f(xk)−∇f(x∗)−∇2f(x∗)(xk−x∗)‖+

∥∥(∇2f(x∗)−Hk

)
(xk− x̂kex)

∥∥)
with µ = m.

(e) Let ∆k,N be the ∆-function corresponding to the search direction dkN := x̂k − xk,
i.e. ∆k,N := ∇f(xk)TdkN + ϕ(xk + dkN) − ϕ(xk). Then the second condition in (12) is
equivalent to

(1− ζ)∆k,N ≤ −
1

2
(dkN)THkd

k
N ,

which yields
∆k,N ≤ −c̃‖dkN‖2 for c̃ := m/(2(1− ζ)). (18)

Since x∗ is a stationary point of ψ, hence F (x∗) = 0, it follows from the continuity of F
and the results in parts (a) and (b) that we can reduce the neighbourhood ε > 0 further
to obtain

‖x̂k − x̂kex‖ ≤
1

2

(ρ
c̃

)1/(2−p)
, ‖x̂kex − xk‖ ≤

1

2

(ρ
c̃

)1/(2−p)
.

Combining these inequalities yields ‖dkN‖ = ‖x̂k − xk‖ ≤ (ρ/c̃)1/(2−p) . We therefore get

∆k,N ≤ −c̃‖dkN‖2 = −c̃‖dkN‖p‖dkN‖2−p ≤ −ρ‖dkN‖p.

Therefore, the sufficient descent condition (13) is fulfilled and the search direction dk = dkN
is obtained by the inexact proximal Newton-type method.

(f) Taylor expansion yields

f(x̂k)− f(xk) = ∇f(xk)T (x̂k − xk) +
1

2
(x̂k − xk)T∇2f(xk)(x̂k − xk)

+
1

2
(x̂k − xk)T

(
∇2f(ξk)−∇2f(xk)

)
(x̂k − xk)
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for some ξk ∈ (xk, x̂k). Hence, we get

ψ(x̂k)− ψ(xk) + ψk(x
k)− ψk(x̂k)

= f(x̂k)− f(xk)−∇f(xk)T (x̂k − xk)− 1

2
(x̂k − xk)THk(x̂

k − xk)

≤ 1

2

∥∥∇2f(ξk)−∇2f(xk)
∥∥ · ‖x̂k − xk‖2 +

1

2

∥∥∇2f(xk)−∇2f(x∗)
∥∥ · ‖x̂k − xk‖2

+
1

2

∥∥(Hk −∇2f(x∗)
)
(x̂k − xk)

∥∥ · ‖x̂k − xk‖.
By the Dennis-Moré criterion this is o(‖x̂k − xk‖2) for xk → x∗. As before, it follows
from the continuity of F and the results in parts (a) and (b) that ‖x̂k − xk‖ → 0. Thus,
we can reduce the neighbourhood ε > 0 further to obtain (using (12))

ψ(x̂k)− ψ(xk) =
(
ψ(x̂k)− ψ(xk) + ψk(x

k)− ψk(x̂k)
)

+ ψk(x̂
k)− ψk(xk)

≤ (ζ − σ)c̃‖x̂k − xk‖2 + ζ∆k

= (ζ − σ)c̃‖x̂k − xk‖2 + σ∆k + (ζ − σ)∆k

≤ (ζ − σ)c̃‖x̂k − xk‖2 + σ∆k − (ζ − σ)c̃‖x̂k − xk‖2 = σ∆k,

where the last inequality follows from (18) (note that ∆k = ∆k,N in the current situation).
This proves that in this case the full step length is attained.

A suitable combination of the previous results leads to the following (global and) local
convergence result for Algorithm 3.1.

Theorem 4.5. Consider Algorithm 3.1 and assume that the sequence {Hk} satisfies the
assumptions from Proposition 4.4. Let x∗ be an accumulation point of a sequence {xk}
generated by Algorithm 3.1 such that ∇2f(x∗) is positive definite. Then the following
statements hold:

(a) The whole sequence {xk} converges to x∗, and x∗ is a strict local minimum of ψ.

(b) For all sufficiently large k, the search direction is attained by the inexact proximal
Newton-type direction.

(c) For all sufficiently large k, the full step size tk = 1 is accepted.

(d) If η ≤ η for some η > 0, the sequence {xk} converges linearly to x∗.

(e) If {ηk} → 0, the sequence {xk} converges superlinearly to x∗.

Proof. In view of Theorem 4.1, every accumulation point of the sequence {xk} is a
stationary point of ψ. Hence we can apply Proposition 4.4. Furthermore, the assumed
positive definiteness of ∇2f(x∗) implies that ψ is locally strongly convex and, therefore,
has x∗ as the only stationary point in a suitable neighbourhood. Hence x∗ is necessarily
the only accumulation point of the sequence {xk} in this neighbourhood. In order to
verify statement (a), we therefore have to verify only the condition {‖xk+1 − xk‖}K → 0
for any subsequence {xk}K → x∗, cf. [27, Lemma 4.10].
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Hence let {xk}K denote an arbitrary subsequence converging to x∗. Since ‖xk+1−xk‖ =
tk‖dk‖ ≤ ‖dk‖ for all k ∈ N, it suffices to show {‖dk‖}K → 0 for K ⊂ KG and K ⊂ KN .
If K ⊂ KG, this follows from the continuity of the solution operator in the proximal
gradient method, see Lemma 2.1. On the other hand, if K ⊂ KN , the statement is
already noted in Remark 4.2. Thus, we proved part (a). Statements (b) and (c) follow
from Proposition 4.4.

For the remaining part choose ε > 0 such that Proposition 4.4 holds for xk ∈ Bε(x
∗)

and ∇f is Lipschitz continuous with constant L > 0 in Bε(x
∗). Let k0 be sufficiently

large such that all iterates xk for k ≥ k0 are in this neighbourhood. Note that

‖F (xk)‖ = ‖xk − proxϕ(xk −∇f(xk))‖
= ‖xk − proxϕ(xk −∇f(xk))− x∗ + proxϕ(x∗ −∇f(x∗))‖
≤ 2‖xk − x∗‖+ ‖∇f(xk)−∇f(x∗)‖ ≤ (2 + L)‖xk − x∗‖,

where the inequality uses the nonexpansivity of the proximity operator, cf. [11, Lemma
2.4] By Proposition 4.4 (a) and (d), we get

‖xk+1 − x∗‖ = ‖x̂k − x∗‖ ≤ ‖x̂k − x̂kex‖+ ‖x̂kex − x∗‖

≤ Cηk‖F (xk)‖+
1

µ
‖∇f(xk)−∇f(x∗)−∇2f(x∗)(x∗ − xk)‖

+
1

µ

∥∥(Hk −∇2f(x∗)
)
(x̂kex − xk)

∥∥.
The twice continuous differentiability of f yields that the second term is o(‖xk − x∗‖).
The Dennis-Moré condition implies that the third term is o(‖xk − x∗‖). Thus, the above
yields parts (d) for η < 1/(C(L+ 2)). Finally, under the assumptions of part (e), also
the first term is o(‖xk − x∗‖), which completes the proof.

Note that one can also verify local quadratic convergence under slightly stronger assump-
tion as in Theorem 4.5 (e), in particular, using a stronger version of the Dennis-Moré
condition. The details are left to the reader.

5 Numerical Results

In this section we report some numerical results for solving problem (1) and show
the competitiveness compared to several state-of-the-art methods. All methods are
implemented in Matlab.

In the following, GPN denotes the globalized (inexact) proximal Newton method,
whereas QGPN denotes a globalized (inexact) proximal quasi-Newton method, where the
exact Hessian is replaced by a limited memory BFGS-update.
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5.1 Logistic Regression with `1-Penalty

In this example, we consider the logistic regression problem

min
y,v

1

m

m∑
i=1

log
(

1 + exp
(
− bi(aTi y + v)

))
+ λ‖y‖1, (19)

where ai ∈ Rn (i = 1, . . . ,m) are given feature vectors and bi ∈ {±1} the corresponding
labels, λ > 0, y ∈ Rn, v ∈ R. Usually, we have m � n. Logistic regression is used to
separate data by a hyperplane, see [19] for further information.

With φ : R→ R, φ(u) := log
(
1 + exp(−u)

)
, x := (yT , v)T and A ∈ Rm×(n+1), where

the i-th row of A is (bia
T
i , bi) for i = 1, . . . ,m, we can write (19) equivalently as

min
x
ψ(x) :=

1

m

m∑
i=1

φ
(
(Ax)i

)
+ λ‖x{1,...,n}‖1. (20)

The function φ is convex, but not strictly convex, and its derivative is globally Lipschitz
continuous. Thus, this holds also for the smooth part of ψ.

5.1.1 Algorithmic Details

Subproblem solvers. The crucial part of the implementation is the solution of the
subproblem (12). We use two methods for this aim, which are described below: The fast
iterative shrinkage thresholding algorithm (FISTA) [5] and the globalized semismooth
Newton method (SNF) [26].

Since the inexact termination criterion (12) is not practicable without significant
additional computation costs, we minimize (10) using the standard termination criterion
for these solvers with a low maximal number of iterations. The tolerance is adapted in
each step such that the subproblems are solved more exactly when the current iterate is
near the solution.

FISTA by Beck and Teboulle [5] is an accelerated first order method for the solution
of problems of type (1), where f is convex and has a Lipschitz continuous gradient. In
every step a problem of type (5) is solved for Hk = LkI, where Lk is an approximation
to the Lipschitz constant of ∇f , which is updated by backtracking. After that, a step
size is computed and the next iterate is a convex combination of the old iterate and the
computed solution. For the approximation of the Lipschitz constant of fk, we start with
L0 := 1 and use the increasing factor η := 2. For every subproblem, we perform at most
80 iterations. The globalized proximal Newton-type method with this subproblem solver
is denoted by GPN-F.

SNF by Milzarek and Ulbrich [26] is a semismooth Newton method with filter
globalization. Since the subproblems in this example are convex, we use the convex
variant of the method. The semismooth Newton method is essentially applied to the
equation F (x) = 0 with F (x) defined in (11). After computing a search direction, a filter
decides if the update is applied or a proximal gradient step is performed. All constants
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are chosen as in [26] and we run the method with at most 10 iterations. We denote the
globalized proximal Newton method with SNF subproblem solver by GPN-S.

Choice of parameters. We use the parameters p = 2.1 and ρ = 10−8 for the acceptance
criterion (13). The line search is performed with β = 0.1 and σ = 10−4. The constant ck
for the proximal gradient step is initialized with c0 = 1/6, and in each step adapted to
reach the Lipschitz constant of the gradient of f .

Variant with Quasi-Newton-Update. In addition to the globalized proximal Newton
method, we implemented a variant of the algorithm, where the exact Hessian in the
quadratic approximation (10) is replaced by a limited memory BFGS-update with a
memory of 10. The implementation follows [8]. Like before, we denote these methods by
QGPN-F and QGPN-S, respectively.

5.1.2 State-of-the-art Methods

We check the above described variants of GPN against each other, but also compare them
with several state-of-the-art methods, which are listed below.

PG. The proximal gradient method is described in Algorithm 2.2. It is a first order
method to solve problem (1). We set β = 0.1, σ = 10−4 and Hk = ckI, where ck is
updated as before.

FISTA [5]. The fast iterative shrinkage thresholding algorithm is an accelerated variant
of the proximal gradient method. Details were already given in Section 5.1.1.

SpaRSA [38]. SpaRSA (Sparse reconstruction by separable approximation) is another
accelerated first order method to solve problem (1). The main difference to FISTA is the
update of the factor ck, which is done by a Barzilai-Borwein approach.

SNF [26]. The semismooth Newton method with filter globalization is described in
5.1.1. Similar to the subproblem solver, we apply the convex version of the method.

5.1.3 Numerical Comparison

We follow the example in [6] and generate test problems with n = 104 features and
m = 106 training sets. Each feature vector ai has approximately 10 nonzero entries, which
are generated independently from a standard normal distribution. We choose ytrue ∈ Rn

with 100 nonzero entries and vtrue ∈ R, which are independently generated from standard
normal distribution and define the labels as bi = sign

(
aTi y

true + vtrue + vi
)
, where the vi

(i = 1, . . . ,m) are also chosen independently from a normal distribution with variance
0.1. The regularization parameter λ is set to 0.1λmax, where λmax is the smallest value
such that y∗ = 0 is a solution of (19). The derivation of this value can be found in [19].
For all methods, we start with the initial value x0 = 0.

Due to the differences of the methods, the standard termination criteria of them are
not a suitable choice to compare the performance. Thus, we compute the approximate
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Figure 1: Performance profiles showing the runtime for 100 random test examples as described
in Section 5.1.3. Figure (a) shows a range from 1 to 30 times the best method, whereas Figure
(b) is scaled from 1 to 5 times the best method.

minimizer ψ∗ of (19) using GPN-F with very high accuracy. We terminate each of the
algorithms above when the value ψ(xk) in the current iterate xk satisfies

ψ(xk)− ψ∗

|ψ∗|
≤ tol (21)

for tol = 10−6. To accomplish comparability, we look at the runtime of 100 test
examples and document the results using the performance profiles introduced by Dolan
and Moré [14]. The results are shown in Figure 1, the averaged values for some counters
are given in Table 1.

Comparison of GPN-variants. We start with a comparison of the variants of the
globalized proximal Newton-type methods, namely GPN-F, GPN-S, QGPN-F, and QGPN-S.
We see that the semismooth Newton subproblem solver performs much better than the
FISTA solver. One reason for this is that we can terminate the subproblem solvers
in (Q)GPN-S after only 10 iterations to get reasonable results, whereas test runs show
that (Q)GPN-F performs best with a maximum of 80 iterations in each subproblem.
Nevertheless, note that every iteration of SNF itself needs to solve a linear system by
the CG method, but both, FISTA and SNF, need to evaluate the product ∇2f(xk)z for
some z ∈ Rn in every iteration, which is the most expensive part of the algorithm since
it involves two multiplications with A or AT .

Furthermore, the performance of the variants with limited memory BFGS-update for
the Hessian of the smooth part is significantly better than the use of the exact Hessian,
although we need more outer and inner iterations to reach the termination accuracy.
Again, this is due to the number of Hessian-vector-multiplications, which appear in
QGPN only once in every iteration to compute the function value and the BFGS-update,
whereas in GPN they are needed in every inner iteration.
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Both arguments together verify why QGPN-S is the best variant tested, whereas the
performance of GPN-F is not competitive.

We see in Table 1 that almost all solutions of the subproblems satisfy the descent
condition (13) and, since the number of function evaluations is approximately the number
of outer iterations, almost all search directions are applied with full step length. Thus,
for this example, the globalization is not necessary, neither in theory nor in the numerical
examples.

Comparison to other methods. Since FISTA and the proximal gradient method are
first order methods, it is not surprising that they need considerable more iterations to
reach the termination tolerance. Thus, with the same arguments as above, they are not
competitive due to the huge number of matrix-vector-products involving the matrices A
or AT , although they do not need to evaluate the Hessians. The third first order method,
SpaRSA, is far better, because the number of iterations and therefore the number of
matrix-vector-products is much smaller, but it is still not able to compete with the second
order methods.

The semismooth Newton method with filter globalization is the only second order
method we compare our method to. As before, we see a correlation between the runtime
and the number of matrix-vector-products with one of the matrices A or AT . As this
number is higher than the one of QGPN, the runtime is still larger than the one of
QGPN-S for most of the examples.

In contrast to our method, we did not implement SNF with a limited memory BFGS-
update. The low number of matrix-vector-products given in Table 1 recommends that
this would not yield a significantly better performance.

Comparing FISTA with GPN-F and QGPN-F, where FISTA is used to solve the
subproblems, we see that GPN-F is not competitive for the mentioned reasons, whereas
QGPN-F is far better than FISTA on its own. A similar observation is true for the
comparison of SNF with GPN-S and QGPN-S, where the GPN method is still the slowest
method but not significantly. Thus, the globalized proximal Newton-type method
with limited memory BFGS-update for the Hessian accelerates the performance of the
underlying subproblem solver.

5.2 Student’s t-Regression with `1-Penalty

In many applications of inverse problems, the aim is to find a sparse solution x∗ ∈ Rn of
the problem Ax = b with A ∈ Rm×n and b ∈ Rm. Often, b is not known exactly but only
a perturbed vector b̂. A widespread solution is to consider the penalized problem

min
x

1

2
‖Ax− b̂‖22 + λ‖x‖1

for some λ > 0. This works well if we have Gaussian errors in the entries of b̂. Particularly,
the influence of large errors is large. In problems, where the influence of large errors
should be weighted less, but the influence of errors in a specific domain should be weighted
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method iter Newton- sub- function proximity matrix-vector
iter iter eval eval products

GPN-F 11.7 11.7 994 12.7 1 016 3 923

GPN-S 16.9 16.9 33.4 18.0 50.8 296.0

QGPN-F 29.1 29.1 2 015 30.2 2 471 58.3

QGPN-S 21.6 21.6 36.2 22.7 58.9 43.3

FISTA 1 269 - 1 466 4 005 1 466 6 544

SpaRSA 133 - 221 223 222 446

PG 1 520 - - 3 131 1 520 4 642

SNF 15.2 14.0 31.2 15.7 15.4 90.5

Table 1: Averaged values of 100 runs for the example in Section 5.1 with tolerance 10−6.
Abbreviations: iter (total number of (outer) iterations), Newton-iter (number of Newton-
iterations – only for GPN-variants and SNF), sub-iter (number of inner iterations), function eval
(number of evaluations of the function f or its gradient), proximity eval (number of evaluations
of the proximity operator), matrix-vector-products (number of evaluations of products A · x or
AT · x).

more, it is reasonable to replace the quadratic loss by the student loss. We obtain the
problem

min
x
ψ(x) :=

m∑
i=1

φ
(
(Ax− b)i

)
+ λ‖x‖1 =

m∑
i=1

log

(
1 +

(Ax− b)2i
ν

)
+ λ‖x‖1, (22)

with φ : R→ R, φ(u) = log
(

1 + u2

ν

)
for some ν > 0. For more information on student’s

t-distribution, we refer to [1, 26] and references therein. It is easy to see that the
derivative of φ is still Lipschitz continuous and φ is coercive, but not convex. Thus, many
state-of-the-art methods are not applicable to this problem.

5.2.1 Algorithmic Details

Subproblem solvers. As seen in Section 5.1, the SNF subproblem solver performed
much better than the FISTA subproblem solver. Thus, we use again the semismooth
Newton method with filter globalization [26] for the solution of the subproblems, apply
at most 10 inner iterations per outer iteration and adapt the tolerance to get more exact
solutions, if the current iterate is close to the solution of the main problem. We denote
this method by GPN.

Since the problem in this section is nonconvex, the subproblems might be not bounded
from below. To circumvent this problem, we also implemented a variant with regularized
Hessians. As the second derivative of φ is easy to compute and the Hessian of the
objective function is of the form ATDA for some diagonal matrix D ∈ Rm×m, we replace
all diagonal entries di of D by the maximum of di and a small positive constant. The
subproblem solver remains unchanged and we denote this regularized method by GPN+.
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Choice of parameters. As above, we set p = 2.1, ρ = 10−8, β = 0.1, and σ = 10−4.
In this case, we start with c0 = 100 and again adapt ck to approximate the Lipschitz
constant of the gradient of the smooth part in (22).

Quasi-Newton-Update. In the second of the following test examples we use again a
variant of the globalized proximal Newton method, where the Hessian of f is replaced by
a limited memory BFGS-update with a memory of 10. We denote the method by QGPN.

5.2.2 State-of-the-art methods

Since problem (22) is nonconvex, most of the methods in Section 5.1 do not apply in
this case. We therefore compare our algorithm to the following methods.

PG. The proximal gradient method as described in Algorithm 2.2 has no convexity
requirement. Again, we set β = 0.1, σ = 10−4, and Hk = ckI, where ck is initialized with
c0 = 100 and adapted to reach a Lipschitz constant of ∇f .

SNF [26]. The semismooth Newton method with filter globalization, as described in
5.1.1, has also a nonconvex variant with additional descent conditions, which are checked
for the semismooth Newton update. We choose all constants as described in [26].

5.2.3 Numerical Comparison

As mentioned above, we test two sets of examples. We start with the test setting described
in [26]. Let n = 5122 and m = n/8 = 32768. The matrix A ∈ Rm×n takes m random
cosine measurements, i.e. for a random subset I ⊂ {1, . . . , n} with m elements, we set
Ax = (dct(c))I , where dct is the discrete cosine transform.

We generate a true sparse vector xtrue ∈ Rn with k = bn/40c = 6553 nonzero
entries, whose indices are chosen randomly. The nonzero components are computed via
xtruei = η1(i)10η2(i) with η1(i) ∈ {±1} is a random sign and η2(i) is chosen independently
from a uniform distribution in [0, 1]. The image b ∈ Rm is generated by adding Student’s
t-noise with degree of freedom 4 and rescaled by 0.1 to Axtrue. We set ν = 0.25 and
set λ = 0.1λmax, where λmax is the critical value, for which the zero vector is already a
critical point of (22). Using Fermat’s rule for the generalized Jacobian of (22), we obtain
by a short calculation λmax = 2 ‖

∑m
i=1 bi/(ν + b2i ) · ai‖∞, where aTi is the i-th row of A.

We start with the initial point x0 = AT b and, again, terminate each of the algorithms
above, when the value ψ(xk) in the current iterate xk satisfies (21) for tol = 10−6, where
ψ∗ is computed by GPN with a very high accuracy. It is important to mention that all
stationary points of problem (22), if there is more than one, have the same function
value. Thus, this termination criterion makes sense although the problem is nonconvex.

For this example, we do not use QGPN since test runs have shown that QGPN is
significantly slower than GPN here. The reason is that, in contrast to the example in
5.1.3, the computation of matrix-vector-products involving the matrix A are cheaper
than the product with the BFGS-matrix, as the discrete cosine transform is a predefined
Matlab-function.
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Figure 2: Performance profiles showing the runtime for 100 random test examples described in
Section 5.2. Figures (a) and (b) correspond to Examples 1 and 2, respectively.

method iter Newton- sub- function proximity matrix-vector
iter iter eval eval products

GPN 11.5 11.4 57.4 13.6 76.2 1 475

GPN+ 11.6 11.5 58.0 13.7 77.2 1 530

PG 460 - - 956 460 1 417

SNF 51.0 21.0 231 96.4 66.0 532

Table 2: Averaged values of 100 runs for the first example in Section 5.2 with tolerance 10−6.
The columns have the same meaning as in Table 1.

To accomplish comparability, we look at the runtime of 100 test examples and
document the performance using the performance profiles introduced by Dolan and
Moré [14]. The results are shown in Figure 2 (a), the averaged values for some counters
are given in Table 2.

The first observation is that there is no significant difference between the globalized
proximal Newton method GPN and the regularized version GPN+. In both methods,
almost all updates are performed by proximal Newton steps. Thus, in the following we
refer only to GPN.

The proximal gradient method is in all examples significantly slower than the second
order methods. As mentioned above, this is not due to the number of matrix-vector-
products, which has the same magnitude as the one for GPN. In contrast, the numbers
of function evaluations and evaluations of the proximity operator are much higher.

To demonstrate the performance of the limited memory BFGS proximal Newton-type
method QGPN, we construct a second test example with higher computation costs for
the matrix-vector-products with the matrices A or AT . In the above test setting, we
change n,m and use A as defined in Section 5.1, this is n = 104, m = 106, and A ∈ Rm×n

with approximately 10 nonzero entries in every row. Everything else remains unchained.
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method iter Newton- sub- function proximity matrix-vector
iter iter eval eval products

GPN 49.2 49.2 246 83.3 330 2 169

GPN+ 29.6 29.6 148 68.1 184 3 547

QGPN 125 125 837 211 994 336

PG 156 - - 572 156 728

SNF DNC DNC DNC DNC DNC DNC

Table 3: Averaged values of 100 runs for the second example in Section 5.2. The columns have
the same meaning as in Table 1. The abbreviation DNC stands for: did not converge within 1
000 iterations.

As there was no significant difference in the performance of GPN and GPN+, we apply
GPN, QGPN, SNF and the proximal gradient method PG to this setting. The results are
shown in Figure 2 (b) and Table 3.

First, we observe that SNF did not converge at all within 1 000 iterations for this
problem class. A look at the function value shows that it increases in every step.
Since SNF is not a descent method regarding the function value and there is no result
guaranteeing the convergence in the nonconvex case, this is not unreasonable.

Comparing the remaining methods, we find that the results confirm the observations
of the example in Section 5.1. The performance of QGPN is far the best, whereas GPN is
not competitive, though it is not as bad as for the `1-regularized logistic regression.

5.3 Logistic Regression with Overlapping Group Penalty

The main advantage of the globalized proximal Newton method over semismooth Newton
methods is that it is also able to solve problems of type (1), where the nonsmooth
function ϕ is not the `1-norm and there is no known formula to compute the proximity
operator to this function. An example is the group penalty function

ϕ(x) = λ
s∑
j=1

µj‖xGj
‖2,

where µj > 0 are positive weights, λ > 0 and Gj ⊂ {1, . . . , n} are nonempty sets. When
the sets Gj (j = 1, . . . , s) form a partition of {1, . . . , n} or are at least pairwise disjoint,
the proximity operator can be computed explicitly. Here we are interested in the case of
overlapping groups, i.e. the sets Gj are not pairwise disjoint. In this case, no explicit
formula for the proximity operator is known.

Like in Section 5.1 we consider a logistic regression problem

min
x

1

m

m∑
i=1

φ
(
(Ax)i

)
+ λ

s∑
j=1

µj‖xGj
‖2, (23)

where A ∈ Rm×n contains the information on feature vectors and corresponding labels
and φ : R→ R is defined by φ(u) := log

(
1 + exp(−u)

)
. A group penalty makes sense in
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many applications here, since some features are related to others. For more information
on logistic regression with group penalty, we refer to [24].

5.3.1 Algorithmic Details

Subproblem solver. As there is no formula to compute the proximity operator of ϕ, the
subproblem solvers of the previous sections are not directly applicable. We can write ϕ as
ϕ̃ ◦B, where B is a linear mapping and ϕ̃ is a group penalty without overlapping. Thus,
we can compute the proximity operator of ϕ̃. Both, the proximal Newton subproblem as
well as the proximity operator, can be written as

min
x

1

2
xTQx+ cTx+ ϕ̃(Bx)

with a positive definite matrix Q ∈ Rn×n and c ∈ Rn. We solve both problems with fixed
point methods described by Chen et al. in [10]. For the computation of the proximity
operator, we use the fixed point algorithm based on the proximity operator (FP2O) and
for solving the proximal Newton subproblem the primal-dual fixed point algorithm based
on the proximity operator (PDFP2O).

For both methods, we use a stopping tolerance of 10−9 and apply at most 10 iterations
for each problem. For the method we also need the largest eigenvalue of BBT , which can
be shown to be equal to the largest integer k such that there exists an index i ∈ {1, . . . , n}
that is contained in k groups Gj.

Choice of parameters. As before, we set the parameters to p = 2.1, ρ = 10−8, β = 0.1,
and σ = 10−4. Here, we start with c0 = 1 and again adapt ck to approximate the
Lipschitz constant of the gradient of the smooth part in (23).

Other methods. We make a comparison between our method with the above mentioned
subproblem-solvers, FISTA [5] with the parameters as in 5.1.1. For the computation of
the proximity operators, we also use FP2O. Furthermore, we apply PDFP2O directly to
problem (23).

5.3.2 Numerical Comparison

We follow an example in [2] and generate A ∈ Rn×m with n = 1000, m = 700 from a
uniform distribution and normalize the columns of A. The groups Gj are

{1, . . . , 5}, {5, . . . , 9}, {9 . . . , 13}, {13, . . . , 17}, {17, . . . , 21},
{4, 22, . . . , 30}, {8, 31, . . . , 40}, {12, 41, . . . , 50}, {16, 51, . . . , 60}, {20, 61, . . . , 70},
{71, . . . , 80}, {81, . . . , 90}, . . . , {991, . . . 1000}.

The first five groups contain five consecutive numbers and the last element of one group
is, at the same time, the first element of the next group. Each of the next five groups
contain one element of one of the first groups. The remaining groups have no overlap
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Figure 3: Performance profile showing the runtime for 100 random test examples from
Section 5.3 with tolerance 10−6.

method iter Newton- sub- matrix-vector
iter iter products

GPN 9.5 9.5 95.1 221

PDFP2O 76.9 - - 156

FISTA 23.4 - 234 119

Table 4: Averaged values of 100 runs for the example in Section 5.3 using the tolerance 10−6

and three different methods.

and contain always 10 elements. The coefficients µj are chosen to be 1/
√
|Gj|, where

|Gj| is the number of indices in that group.
The parameter λ is again chosen as 0.1λmax, where λmax is the critical value such

that 0 is a solution of (23) for all λ ≥ λmax. Let aTi be the rows of A. Then a short
computation shows λmax =

√
5/(2m) ‖

∑m
i=1 ai‖2. As before, we start with the initial

value x0 = 0.
We terminate each of the algorithm as soon as the current iterate satisfies (21) for

tol = 10−6, where ψ∗ is the function value computed by GPN using a very high accuracy.
Again, we document the results using the performance profiles on the runtime of 100 test
examples. The results are shown in Figure 3, the averaged values for some counters are
given in Table 4.

We see that there are about 15% of the examples, where FISTA performs better than
GPN, but in most examples GPN shows by far the best performance. This can be seen
by looking at the number of inner iterations of both methods. In this case, the costs of
inner iterations is almost equal for both methods. Since the average number of inner
iterations in FISTA is more then twice as big as the one of GPN, this illustrates the
difference in performance.
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6 Conclusion

We introduced a globalization of the proximal Newton-type method to solve structured
optimization problems consisting of a smooth and a convex function. For this purpose
the proximal Newton-type method was combined with a proximal gradient method using
a novel descent criterion. We also gave an inexactness approach and the possibility to
replace the Hessian of the smooth part by quasi-Newton matrices. We proved global
convergence in the convex and nonconvex case and, under suitable conditions, local
superlinear convergence.

The numerical part shows that the proposed method is competitive for convex and
nonconvex problems, especially when the computation of the Hessian is expensive and we
can use limited memory quasi-Newton updates. Furthermore, when there is no efficient
way to compute the proximity operator for the nonsmooth function, the globalized
proximal Newton-type method outperforms the methods compared to.
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