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Abstract. Composite optimization problems, where the sum of a smooth and a merely
lower semicontinuous function has to be minimized, are often tackled numerically by means
of proximal gradient methods as soon as the lower semicontinuous part of the objective
function is of simple enough structure. The available convergence theory associated with
these methods (mostly) requires the derivative of the smooth part of the objective function
to be (globally) Lipschitz continuous, and this might be a restrictive assumption in some
practically relevant scenarios. In this paper, we readdress this classical topic and provide
convergence results for the classical (monotone) proximal gradient method and one of its
nonmonotone extensions which are applicable in the absence of (strong) Lipschitz assump-
tions. This is possible since, for the price of forgoing convergence rates, we omit the use of
descent-type lemmas in our analysis.

Keywords. Non-Lipschitz Optimization, Nonsmooth Optimization, Proximal Gradient
Method
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1 Introduction
In this paper, we address the classical problem of minimizing the sum of a smooth
function f and a nonsmooth function ϕ, also known under the name composite op-
timization. This setting received much attention throughout the last years due to
its inherent practical relevance in, e.g., machine learning, data compression, matrix
completion, and image processing, see e.g. [6, 13, 14,20,27,28].

A standard technique for the solution of composite optimization problems is the
proximal gradient method, introduced by Fukushima and Mine [21] and popularized
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e.g. by Combettes and Wajs in [18]. A particular instance of this method is the
celebrated iterative shrinkage/threshold algorithm (ISTA), see, e.g. [5]. A summary
of existing results for the case where the nonsmooth term ϕ is defined by a convex
function is given in the monograph by Beck [4].

The proximal gradient method can also be interpreted as a forward-backward
splitting method, see [12, 31] for its origins and [3] for a modern view, and is able
to handle problems where the nonsmooth term ϕ is given by a merely lower semi-
continuous function, see, e.g. the seminal works [1, 8]. These references also provide
convergence and rate-of-convergence results by using the popular descent lemma to-
gether with the celebrated Kurdyka–Łojasiewicz property.

To the best of our knowledge, however, the majority of available convergence re-
sults for proximal gradient methods assume that the smooth term f is continuously
differentiable with a globally Lipschitz continuous gradient (or they require local Lip-
schitzness together with a bounded level set which, again, implies the global Lipschitz
continuity on this level set). This requirement, which is the essential ingredient for
the classical descent lemma, is often satisfied for standard applications of the proxi-
mal gradient method in data science and image processing, where f appears to be a
quadratic function.

In this paper, we aim to get rid of this global Lipschitz condition. This is motivated
by the fact that the algorithmic application we have in mind does not satisfy this
Lipschitz property since the smooth term f corresponds to the augmented Lagrangian
function of a general nonlinear constrained optimization problem, which rarely has a
globally Lipschitz continuous gradient or a bounded level set. The proximal gradient
method will be used to solve the resulting subproblems which forces us to generalize
the convergence theory up to reasonable assumptions which are likely to hold in our
framework. We refer the interested reader to [15, 19, 23, 25] where such augmented
Lagrangian proximal methods are investigated.

Numerically, a nonmonotone version of the proximal gradient method is often pre-
ferred. Based on ideas by Grippo et al. [22] in the context of smooth unconstrained
optimization problems, Wright et al. [34] developed a nonmonotone proximal gradi-
ent method for composite optimization problems known under the name SpaRSA.
In their paper, the authors assume that the nonsmooth part ϕ of the objective func-
tion is convex. Almost simultaneously, the authors of [7] presented a nonmonotone
projected gradient method for the minimization of a differentiable function over a
convex set. Their findings can be interpreted as a special case of the results from [34]
where ϕ equals the indicator of a convex set. The ideas from [7,34] were subsequently
generalized in the papers [15, 16] where the proximal gradient method is used as a
subproblem solver within an augmented Lagrangian and penalization scheme, respec-
tively. However, the authors did not address the aforementioned problematic lack
of Lipschitzness in these papers which causes their convergence theory to be barely
applicable in their algorithmic framework. In [26, 33], the authors present nonmono-
tone extensions of ISTA which can handle merely lower semicontinuous terms in the
objective function. Again, for the convergence analysis, global Lipschitzness of the
smooth term’s derivative is assumed. Due to its practical importance, we therefore
aim to provide a convergence theory for the nonmonotone proximal gradient method
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without using any Lipschitz assumption.
In the seminal paper [2], the authors consider the composite optimization problem

with both terms being convex, but without a global Lipschitz assumption for the
gradient of the smooth part f . They get suitable rate-of-convergence results for
the iterates generated by a Bregman-type proximal gradient method using only a
local Lipschitz condition. In addition, however, they require that there is a constant
L > 0 such that Lh − f is convex, where h is a convex function which defines
the Bregman distance (in our setting, h equals the squared norm). Some examples
indicate that this convexity-type condition is satisfied in many practically relevant
situations. Subsequently, this approach was generalized to the nonconvex setting
in [9] using, once again, a local Lipschitz assumption only, as well as the slighty
stronger assumption (in order to deal with the nonconvexity) that there exist L > 0
and a convex function h such that both Lh − f and Lh + f are convex. Note that
the constant L plays a central role in the design of the corresponding proximal-type
methods. Particularly, it is used explicitly for the choice of stepsizes. Finally, the very
recent paper [17] proves global convergence results under a local Lipschitz assumption
(without the additional convexity-type condition), but assumes that the iterates and
stepsizes of the underlying proximal gradient method remain bounded.

To the best of our knowledge, this is the current state-of-the-art regarding the con-
vergence properties of proximal gradient methods. The aim of this paper is slightly
different, since we do not provide rate-of-convergence results, but conditions which
guarantee accumulation points to be suitable stationary points of the composite op-
timization problem. This is the essential feature of the proximal gradient method
which, for example, is exploited in [15,19,25] to develop augmented Lagrangian prox-
imal methods. We also stress that, in this particular situation, the above assumption
that Lh ± f is convex for some L > 0 is often violated unless we are dealing with
linear constraints only.

Our analysis does not require a global Lipschitz assumption and is not based on the
crucial descent lemma, contrasting [2, 9] mentioned above. The results show that we
can get stationary accumulation points only under a local Lipschitz assumption and,
depending on the properties of ϕ, sometimes even without any Lipschitz condition.
In any case, a convexity-type condition like Lh± f being convex for some constant L
is not required at all. Moreover, the implementation of our proximal gradient method
does not need any knowledge of the size of any Lipschitz-type constant.

Since the aim of this paper is to get a better understanding of the theoretical con-
vergence properties of both monotone and nonmonotone proximal gradient methods,
and since these methods have already been applied numerically to a large variety of
problems, we do not include any numerical results in this paper.

Let us recall that we are mainly interested in conditions ensuring that accumu-
lation points of sequences produced by the proximal gradient method are stationary.
The main contributions of this paper show that this property holds (neglecting a few
technical conditions) for the monotone proximal gradient method if either the smooth
function f is continuously differentiable and the nonsmooth function ϕ is continuous
on its domain (e.g., this assumption holds for a constrained optimization problem
where ϕ corresponds to the indicator function of a nonempty and closed set), or if f
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is differentiable with a locally Lipschitz continuous derivative and ϕ is an arbitrary
lower semicontinuous function. Corresponding statements for the nonmonotone prox-
imal gradient method require stronger assumptions, basically the uniform continuity
of the objective function on a level set. That, however, is a standard assumption in
the literature dealing with nonmonotone stepsize rules.

The paper is organized as follows: In Section 2, we give a detailed statement of
the composite optimization problem and provide some necessary background material
from variational analysis. The convergence properties of the monotone and nonmono-
tone proximal gradient method are then discussed in Sections 3 and 4, respectively.
We close with some final remarks in Section 5.

2 Problem Setting and Preliminaries
We consider the composite optimization problem

min
x

ψ(x) := f(x) + ϕ(x), x ∈ X, (P)

where f : X → R is continuously differentiable, ϕ : X → R := R ∪ {∞} is lower
semicontinuous (possibly infinite-valued and nondifferentiable), and X denotes a Eu-
clidean space, i.e., a real and finite-dimensional Hilbert space. We assume that the
domain domϕ := {x ∈ X |ϕ(x) <∞} of ϕ is nonempty to rule out trivial situations.
In order to minimize the function ψ : X → R in (P), it seems reasonable to exploit
the composite structure of ψ, i.e., to rely on the differentiability of f on the one hand,
and on some beneficial structural properties of ϕ on the other one. This is the idea
behind splitting methods.

Throughout the paper, the Euclidean space X will be equipped with the inner
product ⟨·, ·⟩ : X × X → R and the associated norm ∥·∥. For some set A ⊂ X and
some point x ∈ X, we make use of A+x = x+A := {x+a | a ∈ A} for the purpose of
simplicity. For some sequence {xk} ⊂ X and x ∈ X, xk →ϕ x means that xk → x and
ϕ(xk) → ϕ(x). The continuous linear operator f ′(x) : X → R denotes the derivative
of f at x ∈ X, and we will make use of ∇f(x) := f ′(x)∗1 where f ′(x)∗ : R → X is
the adjoint of f ′(x). This way, ∇f is a mapping from X to X. Furthermore, we find
f ′(x)d = ⟨∇f(x), d⟩ for each d ∈ X.

The following concepts are standard in variational analysis, see e.g. [29, 32]. Let
us fix some point x ∈ domϕ. Then

∂̂ϕ(x) :=

{
η ∈ X

∣∣∣∣ lim inf
y→x

ϕ(y)− ϕ(x)− ⟨η, y − x⟩
∥y − x∥

≥ 0

}
is called the regular (or Fréchet) subdifferential of ϕ at x. Furthermore, the set

∂ϕ(x) :=
{
η ∈ X

∣∣∣∃{xk}, {ηk} ⊂ X : xk →ϕ x, η
k → η, ηk ∈ ∂̂ϕ(xk)∀k ∈ N

}
is well known as the limiting (or Mordukhovich) subdifferential of ϕ at x. Clearly, we
always have ∂̂ϕ(x) ⊂ ∂ϕ(x) by construction. Whenever ϕ is convex, equality holds,
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and both subdifferentials coincide with the subdifferential of convex analysis, i.e.,

∂̂ϕ(x) = ∂ϕ(x) = {η ∈ X | ∀y ∈ X : ϕ(y) ≥ ϕ(x) + ⟨η, y − x⟩}

holds in this situation. It can be seen right from the definition that whenever x∗ ∈
domϕ is a local minimizer of ϕ, then 0 ∈ ∂̂ϕ(x∗), which is referred to as Fermat’s
rule, see [29, Proposition 1.30(i)].

Given x ∈ domϕ, the limiting subdifferential has the important robustness prop-
erty{

η ∈ X
∣∣∃{xk}, {ηk} ⊂ X : xk →ϕ x, η

k → η, ηk ∈ ∂ϕ(xk)∀k ∈ N
}
⊂ ∂ϕ(x), (2.1)

see [29, Proposition 1.20]. Clearly, the converse inclusion ⊃ is also valid by definition
of the limiting subdifferential. Note that in situations where ϕ is discontinuous at x,
the requirement xk →ϕ x in the definition of the set on the left-hand side in (2.1) is
strictly necessary. In fact, the usual outer semicontinuity in the sense of set-valued
mappings, given by{

η ∈ X
∣∣ ∃{xk}, {ηk} ⊂ X : xk → x, ηk → η, ηk ∈ ∂ϕ(xk)∀k ∈ N

}
⊂ ∂ϕ(x), (2.2)

would be a much stronger condition in this situation and does not hold in general.
Whenever x ∈ domϕ is fixed, the sum rule

∂̂(f + ϕ)(x) = ∇f(x) + ∂̂ϕ(x) (2.3)

holds, see [29, Proposition 1.30(ii)]. Thus, due to Fermat’s rule, whenever x∗ ∈ domϕ

is a local minimizer of f + ϕ, we have 0 ∈ ∇f(x∗) + ∂̂ϕ(x∗). This condition is
potentially more restrictive than 0 ∈ ∇f(x∗) + ∂ϕ(x∗) which, naturally, also serves
as a necessary optimality condition for (P). However, the latter is more interesting
from an algorithmic point of view as it is well known from the literature on splitting
methods comprising nonconvex functions ϕ. If ϕ is convex, there is no difference
between those stationarity conditions.

Throughout the paper, a point x∗ ∈ domϕ satisfying 0 ∈ ∇f(x∗) + ∂ϕ(x∗) will
be called a Mordukhovich-stationary (M-stationary for short) point of (P) due to the
appearance of the limiting subdifferential. In the literature, the name limiting critical
point is used as well. We close this section with two special instances of problem (P)
and comment on the corresponding M-stationary conditions.

Remark 2.1. Consider the constrained optimization problem

min
x

f(x) subject to x ∈ C

for a continuously differentiable function f : X→ R and a nonempty and closed (not
necessarily convex) set C ⊂ X. This problem is equivalent to the unconstrained prob-
lem (P) by setting ϕ := δC , where δC : X → R denotes the indicator function of the
set C, vanishing on C and taking the value∞ on X\C, which is lower semicontinuous
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due to the assumptions regarding C. The corresponding M-stationarity condition is
given by

0 ∈ ∇f(x∗) + ∂δC(x
∗) = ∇f(x∗) +NC(x∗),

where NC(x∗) denotes the limiting (or Mordukhovich) normal cone, see [29, Proposi-
tion 1.19].

Remark 2.2. Consider the more general constrained optimization problem

min
x

f(x) + φ(x) subject to x ∈ C

with f : X → R and C ⊂ X as in Remark 2.1, and φ : X → R being another lower
semicontinuous function (which might represent a regularization, penalty, or sparsity-
promoting term, for example). Setting ϕ := φ + δC , we obtain once again an opti-
mization problem of the form (P). The corresponding M-stationarity condition is
given by

0 ∈ ∇f(x∗) + ∂ϕ(x∗) = ∇f(x∗) + ∂(φ+ δC)(x
∗).

Unfortunately, the sum rule

∂(φ+ δC)(x
∗) ⊂ ∂φ(x∗) + ∂δC(x

∗) = ∂φ(x∗) +NC(x∗)

does not hold in general. However, for locally Lipschitz functions φ, for example, it
applies, see [29, Theorems 1.22, 2.19]. Note that the resulting stationarity condition

0 ∈ ∇f(x∗) + ∂φ(x∗) +NC(x∗)

might be slightly weaker than M-stationarity as introduced above. Related discussions
can be found in [24, Section 3].

3 Monotone Proximal Gradient Method
We first investigate a monotone version of the proximal gradient method applied to
the composite optimization problem (P) with f being continuously differentiable and
ϕ being lower semicontinuous. Recall that the corresponding M-stationarity condition
is given by

0 ∈ ∇f(x) + ∂ϕ(x).

Our aim is to find, at least approximately, an M-stationary point of (P). The following
algorithm is the classical proximal gradient method for this class of problems. Since
we will also consider a nonmonotone variant of this algorithm in the following section,
we call this the monotone proximal gradient method.

Algorithm 3.1 (Monotone Proximal Gradient Method).
Require: τ > 1, 0 < γmin ≤ γmax <∞, δ ∈ (0, 1), x0 ∈ domϕ
1: Set k := 0.
2: while A suitable termination criterion is violated at iteration k do
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3: Choose γ0k ∈ [γmin, γmax].
4: For i = 0, 1, 2, . . ., compute a solution xk,i of

min
x

f(xk) + ⟨∇f(xk), x− xk⟩+ γk,i
2
∥x− xk∥2 + ϕ(x), x ∈ X (3.1)

with γk,i := τ iγ0k, until the acceptance criterion

ψ(xk,i) ≤ ψ(xk)− δγk,i
2
∥xk,i − xk∥2 (3.2)

holds.
5: Denote by ik := i the terminal value, and set γk := γk,ik and xk+1 := xk,ik .
6: Set k ← k + 1.
7: end while
8: return xk

The convergence theory requires some technical assumptions.

Assumption 3.2. (a) The function ψ is bounded from below on domϕ.

(b) The function ϕ is bounded from below by an affine function.

Assumption 3.2 (a) is a reasonable condition regarding the given composite op-
timization problem, whereas Assumption 3.2 (b) is essentially a statement relevant
for the subproblems from (3.1). In particular, Assumption 3.2 (b) implies that the
quadratic objective function of the subproblems (3.1) are, for fixed k, i ∈ N, coercive,
and therefore always attain a solution xk,i (which, however, may not be unique).

The subsequent convergence theory assumes implicitly that Algorithm 3.1 gener-
ates an infinite sequence.

We first establish that the stepsize rule in Step 4 of Algorithm 3.1 is always finite.

Lemma 3.3. Consider a fixed iteration k of Algorithm 3.1, assume that xk is not
an M-stationary point of (P), and suppose that Assumption 3.2 (b) holds. Then the
inner loop in Step 4 of Algorithm 3.1 is finite, i.e., we have γk = γk,ik for some finite
index ik ∈ {0, 1, 2, . . .}.

Proof. Suppose that the inner loop of Algorithm 3.1 does not terminate after a finite
number of steps in iteration k. Recall that xk,i is a solution of (3.1). Therefore, we
get

⟨∇f(xk), xk,i − xk⟩+ γk,i
2
∥xk,i − xk∥2 + ϕ(xk,i) ≤ ϕ(xk). (3.3)

Noting that γk,i →∞ for i→∞ and using Assumption 3.2 (b), we obtain xk,i → xk

for i→∞. Taking the limit i→∞ therefore yields

ϕ(xk) ≤ lim inf
i→∞

ϕ(xk,i) ≤ lim sup
i→∞

ϕ(xk,i) ≤ ϕ(xk),

where the first estimate follows from the lower semicontinuity of ϕ and the final
inequality is a consequence of (3.3). Therefore, we have

ϕ(xk,i)→ ϕ(xk) for i→∞. (3.4)
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We claim that
lim inf
i→∞

γk,i∥xk,i − xk∥ > 0. (3.5)

Assume, by contradiction, that there is a subsequence il →∞ such that

lim inf
l→∞

γk,il∥xk,il − xk∥ = 0. (3.6)

Since xk,il is optimal for (3.1), Fermat’s rule and the sum rule (2.3) yield

0 ∈ ∇f(xk) + γk,il(x
k,il − xk) + ∂̂ϕ(xk,il) (3.7)

for all l ∈ N. Taking the limit l→∞ while using (3.4) and (3.6), we obtain

0 ∈ ∇f(xk) + ∂ϕ(xk),

which means that xk is already an M-stationary point of (P). This contradiction
shows that (3.5) holds. Hence, there is a constant c > 0 such that

γk,i∥xk,i − xk∥ ≥ c

holds for all large enough i ∈ N. In particular, this implies

(1− δ)γk,i
2
∥xk,i − xk∥2 ≥ 1− δ

2
c∥xk,i − xk∥ ≥ o

(
∥xk,i − xk∥

)
(3.8)

for all sufficiently large i ∈ N. Furthermore, (3.3) shows that

⟨∇f(xk), xk,i − xk⟩+ ϕ
(
xk,i

)
− ϕ(xk) ≤ −γk,i

2
∥xk,i − xk∥2. (3.9)

Using a Taylor expansion of the function f and exploiting (3.8), (3.9), we obtain

ψ(xk,i)− ψ(xk) = f(xk,i) + ϕ(xk,i)− f(xk)− ϕ(xk)
= ⟨∇f(xk), xk,i − xk⟩+ ϕ(xk,i)− ϕ(xk) + o

(
∥xk,i − xk∥

)
≤ −γk,i

2
∥xk,i − xk∥2 + o

(
∥xk,i − xk∥

)
≤ −δγk,i

2
∥xk,i − xk∥2

for all i ∈ N sufficiently large. This, however, means that the acceptance criterion
(3.2) is valid for sufficiently large i ∈ N, contradicting our assumption. This completes
the proof.

Let us note that the above proof actually shows that the inner loop from Step 4
of Algorithm 3.1 is either finite, or we have γk,il∥xk,il − xk∥ → 0 along a subsequence
il →∞. Rewriting (3.7) by means of

∇f(xk,il)−∇f(xk) + γk,il(x
k − xk,il) ∈ ∇f(xk,il) + ∂̂ϕ(xk,il) (3.10)
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and recalling that ∇f : X→ X is continuous motivates to also use

∥∇f(xk,i)−∇f(xk) + γk,i(x
k − xk,i)∥ ≤ τabs

for some τabs > 0 as a termination criterion of the inner loop since this encodes, in
some sense, approximate M-stationarity of xk,i for (P) (note that taking the limit
l → ∞ in (3.10) would recover the limiting subdifferential of ϕ at xk since we have
xk,il →ϕ x

k by (3.4)).
A critical step for the convergence theory of Algorithm 3.1 is provided by the

following result.

Proposition 3.4. Let Assumption 3.2 hold. Then each sequence {xk} generated by
Algorithm 3.1 satisfies ∥xk+1 − xk∥ → 0.

Proof. First recall that the sequence {xk} is well-defined by Lemma 3.3. Using the
acceptance criterion (3.2), we get

ψ(xk+1) ≤ ψ(xk)− δγk
2
∥xk+1 − xk∥2 ≤ ψ(xk) (3.11)

for all k ∈ N. Hence, the sequence {ψ(xk)} is monotonically decreasing. Since ψ is
bounded from below on domϕ by Assumption 3.2 (a) and {xk} ⊂ domϕ, it follows
that this sequence is convergent. Therefore, (3.11) implies

γk∥xk+1 − xk∥2 → 0 for k →∞.

Hence the assertion follows from the fact that, by construction, we have γk ≥ γmin > 0
for all k ∈ N.

A refined analysis gives the following result.

Proposition 3.5. Let Assumption 3.2 hold, let {xk} be a sequence generated by Al-
gorithm 3.1, and let {xk}K be a subsequence converging to some point x∗. Then
γk∥xk+1 − xk∥ →K 0 holds.

Proof. If the subsequence {γk}K is bounded, the statement follows immediately from
Proposition 3.4. The remaining part of this proof therefore assumes that this sub-
sequence is unbounded. Without loss of generality, we may assume that γk →K ∞
and that the acceptance criterion (3.2) is violated in the first iteration of the inner
loop for each k ∈ K. Then, for γ̂k := γk/τ , k ∈ K, we also have γ̂k →K ∞, but the
corresponding vector x̂k := xk,ik−1 does not satisfy the stepsize condition from (3.2),
i.e., we have

ψ(x̂k) > ψ(xk)− δ γ̂k
2
∥x̂k − xk∥2 ∀k ∈ K. (3.12)

On the other hand, since x̂k solves the corresponding subproblem (3.1) with γ̂k =
γk,ik−1, we have

⟨∇f(xk), x̂k − xk⟩+ γ̂k
2
∥x̂k − xk∥2 + ϕ(x̂k)− ϕ(xk) ≤ 0. (3.13)
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We claim that this, in particular, implies x̂k →K x∗. In fact, using (3.13), the Cauchy-
Schwarz inequality, and the monotonicity of {ψ(xk)}, we obtain

γ̂k
2
∥x̂k − xk∥2 ≤ ∥∇f(xk)∥∥x̂k − xk∥+ ϕ(xk)− ϕ(x̂k)

= ∥∇f(xk)∥∥x̂k − xk∥+ ψ(xk)− f(xk)− ϕ(x̂k)
≤ ∥∇f(xk)∥∥x̂k − xk∥+ ψ(x0)− f(xk)− ϕ(x̂k).

Since f is continuously differentiable and −ϕ is bounded from above by an affine
function in view of Assumption 3.2 (b), this implies ∥x̂k − xk∥ →K 0. In fact, if
{∥x̂k − xk∥}K would be unbounded, then the left-hand side would grow more rapidly
than the right-hand side, and if {∥x̂k − xk∥}K would be bounded, but staying away,
at least on a subsequence, from zero by a positive number, the right-hand side would
be bounded, whereas the left-hand side would be unbounded on the corresponding
subsequence.

Now, by the mean-value theorem, there exists ξk on the line segment connecting
xk with x̂k such that

ψ(x̂k)− ψ(xk) = f(x̂k) + ϕ(x̂k)− f(xk)− ϕ(xk)
= ⟨∇f(ξk), x̂k − xk⟩+ ϕ(x̂k)− ϕ(xk).

(3.14)

Substituting the expression ϕ(x̂k)− ϕ(xk) from (3.14) into (3.13) yields

⟨∇f(xk)−∇f(ξk), x̂k − xk⟩+ γ̂k
2
∥x̂k − xk∥2 + ψ(x̂k)− ψ(xk) ≤ 0.

Exploiting (3.12), we therefore obtain

γ̂k
2
∥x̂k − xk∥2 ≤ −⟨∇f(xk)−∇f(ξk), x̂k − xk⟩+ ψ(xk)− ψ(x̂k)

≤ ∥∇f(xk)−∇f(ξk)∥∥x̂k − xk∥+ δ
γ̂k
2
∥x̂k − xk∥2,

which can be rewritten as

(1− δ) γ̂k
2
∥x̂k − xk∥ ≤ ∥∇f(xk)−∇f(ξk)∥ (3.15)

(note that x̂k ̸= xk in view of (3.12)). Since xk →K x∗ (by assumption) and x̂k →K x∗

(by the previous part of this proof), we also get ξk →K x∗. Using δ ∈ (0, 1) and the
continuous differentiability of f , it follows from (3.15) that γ̂k∥x̂k − xk∥ →K 0.

Finally, exploiting the fact that xk+1 and x̂k are solutions of the subproblems (3.1)
with parameters γk and γ̂k, respectively, we find

⟨∇f(xk), xk+1 − xk⟩+ γk
2
∥xk+1 − xk∥2 + ϕ(xk+1)

≤ ⟨∇f(xk), x̂k − xk⟩+ γk
2
∥x̂k − xk∥2 + ϕ(x̂k),

⟨∇f(xk), x̂k − xk⟩+ γ̂k
2
∥x̂k − xk∥2 + ϕ(x̂k)

≤ ⟨∇f(xk), xk+1 − xk⟩+ γ̂k
2
∥xk+1 − xk∥2 + ϕ(xk+1).
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Adding these two inequalities and noting that γk = τ γ̂k > γ̂k yields ∥xk+1 − xk∥ ≤
∥x̂k − xk∥ and, therefore,

γk∥xk+1 − xk∥ = τ γ̂k∥xk+1 − xk∥ ≤ τ γ̂k∥x̂k − xk∥ →K 0.

This completes the proof.

The above technique of proof implies a boundedness result for the sequence {γk}K
if ∇f satisfies a local Lipschitz property around the associated accumulation point of
iterates. This observation is stated explicitly in the following result.

Corollary 3.6. Let Assumption 3.2 hold, let {xk} be a sequence generated by Al-
gorithm 3.1, let {xk}K be a subsequence converging to some point x∗, and assume
that ∇f : X → X is locally Lipschitz continuous around x∗. Then the corresponding
subsequence {γk}K is bounded.

Proof. We may argue as in the proof of Proposition 3.5. Hence, on the contrary,
assume that γk →K ∞. For each k ∈ K, define γ̂k and x̂k as in that proof, and let
L > 0 denote the local Lipschitz constant of ∇f around x∗. Recall that xk →K x∗ (by
assumption) and x̂k →K x∗ (from the proof of Proposition 3.5). Exploiting (3.15),
we therefore obtain

(1− δ) γ̂k
2
∥x̂k − xk∥ ≤ L∥x̂k − ξk∥ ≤ L∥x̂k − xk∥

for all k ∈ K sufficiently large, using the fact that ξk is on the line segment between xk
and x̂k. Since γ̂k →K ∞ and x̂k ̸= xk, see once again (3.12), this gives a contradiction.
Hence, {γk}K stays bounded.

The following is the main convergence result for Algorithm 3.1 which requires a
slightly stronger smoothness assumption on either f or ϕ.

Theorem 3.7. Assume that Assumption 3.2 holds while either ϕ is continuous on
domϕ or ∇f : X→ X is locally Lipschitz continuous. Then each accumulation point
x∗ of a sequence {xk} generated by Algorithm 3.1 is an M-stationary point of (P).

Proof. Let {xk}K be a subsequence converging to x∗. In view of Proposition 3.4, it
follows that also the subsequence {xk+1}K converges to x∗. Furthermore, Proposi-
tion 3.5 yields γk∥xk+1− xk∥ →K 0. The minimizing property of xk+1, Fermat’s rule,
and the sum rule (2.3) imply that

0 ∈ ∇f(xk) + γk(x
k+1 − xk) + ∂̂ϕ(xk+1) (3.16)

holds for each k ∈ K. Hence, if we can show ϕ(xk+1)→K ϕ(x∗), we can take the limit
k →K ∞ in (3.16) to obtain the desired statement 0 ∈ ∇f(x∗) + ∂ϕ(x∗).

Due to (3.11), we find ψ(xk+1) ≤ ψ(x0) for each k ∈ K. Taking the limit k →K ∞
while respecting the lower semicontinuity of ϕ gives ψ(x∗) ≤ ψ(x0), and due to x0 ∈
domϕ, we find x∗ ∈ domϕ. Thus, the condition ϕ(xk+1)→K ϕ(x∗) obviously holds if
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ϕ is continuous on its domain since all iterates xk generated by Algorithm 3.1 as well
as x∗ belong to domϕ.

Hence, it remains to consider the situation where ϕ is only lower semicontinuous,
but ∇f is locally Lipschitz continuous. From xk+1 →K x∗ and the lower semiconti-
nuity of ϕ, we find

ϕ(x∗) ≤ lim inf
k∈K

ϕ(xk+1) ≤ lim sup
k∈K

ϕ(xk+1).

It therefore suffices to show that lim supk∈K ϕ(x
k+1) ≤ ϕ(x∗) holds. Since xk+1 solves

the subproblem (3.1) with parameter γk, we obtain

⟨∇f(xk), xk+1 − xk⟩+ γk
2
∥xk+1 − xk∥2 + ϕ(xk+1)

≤ ⟨∇f(xk), x∗ − xk⟩+ γk
2
∥x∗ − xk∥2 + ϕ(x∗)

for each k ∈ K. We now take the upper limit over K on both sides. Using the
continuity of ∇f , the convergences xk+1 − xk →K 0 as well as γk∥xk+1 − xk∥2 →K 0
(see Propositions 3.4 and 3.5), and taking into account that γk∥xk − x∗∥2 →K 0 due
to the boundedness of the subsequence {γk}K in this situation, see Corollary 3.6, we
obtain lim supk∈K ϕ(x

k+1) ≤ ϕ(x∗). Altogether, we therefore get ϕ(xk+1) →K ϕ(x∗),
and this completes the proof.

Note that ϕ being continuous on domϕ is an assumption which holds, e.g., if ϕ
is the indicator function of a closed set, see Remark 2.1. Therefore, Theorem 3.7
provides a global convergence result for constrained optimization problems with an
arbitrary continuously differentiable objective function over any closed (not necessar-
ily convex) feasible set. Moreover, the previous convergence result also holds for a
general lower semicontinuous function ϕ provided that ∇f is locally Lipschitz contin-
uous. This includes, for example, sparse optimization problems in X ∈ {Rn,Rn×m}
involving the so-called ℓ0-quasi-norm, which counts the number of nonzero entries of
the input vector, as a penalty term or optimization problems in X := Rn×m compris-
ing rank penalties. Note that we still do not require the global Lipschitz continuity
of ∇f . However, it is an open question whether the previous convergence result also
holds for the general setting where f is only continuously differentiable and ϕ is just
lower semicontinuous.

Remark 3.8. Let {xk} be a sequence generated by Algorithm 3.1. In iteration k ∈
N, xk+1 satisfies the necessary optimality condition (3.16) of the subproblem (3.1).
Hence, from the next iteration’s point of view, we obtain

γk−1(x
k−1 − xk) +∇f(xk)−∇f(xk−1) ∈ ∇f(xk) + ∂̂ϕ(xk)

for each k ∈ N with k ≥ 1. This justifies evaluation of the termination criterion∥∥γk−1(x
k−1 − xk) +∇f(xk)−∇f(xk−1)

∥∥ ≤ τabs (3.17)

for some τabs > 0 since this means that xk is, in some sense, approximately M-
stationary for (P). Observe that, along a subsequence {xk}K satisfying xk−1 →K x∗
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for some x∗, Propositions 3.4 and 3.5 yield xk →K x∗ and γk−1(x
k − xk−1) →K 0

under appropriate assumptions, which means that (3.17) is satisfied for large enough
k ∈ K due to continuity of ∇f : X→ X, see the discussion after Lemma 3.3 as well.

Recall that the existence of accumulation points is guaranteed by the coercivity
of the function ψ. A simple criterion for the convergence of the entire sequence {xk}
is provided by the following comment.

Remark 3.9. Let {xk} be any sequence generated by Algorithm 3.1 such that x∗ is
an isolated accumulation point of this sequence. Then the entire sequence converges
to x∗. This follows immediately from [30, Lemma 4.10] and the property of the
proximal gradient method stated in Proposition 3.4. The accumulation point x∗ is
isolated, in particular, if f is twice continuously differentiable with ∇2f(x∗) being
positive definite and ϕ is convex. In this situation, x∗ is a strict local minimum of
ψ and therefore the only stationary point of ψ is a neighborhood of x∗. Since, by
Theorem 3.7, every accumulation point is stationary, it follows that x∗ is necessarily
an isolated stationary point in this situation and, thus, convergence of the whole
sequence {xk} to x∗ follows.

4 Nonmonotone Proximal Gradient Method
The method to be presented here is a nonmonotone version of the proximal gradient
method from the previous section. The kind of nonmonotonicity used here was intro-
duced by Grippo et al. [22] for a class of smooth unconstrained optimization problems
and then discussed, in the framework of composite optimization problems, by Wright
et al. [34] as well as in some subsequent papers. We first state the precise algorithm
and investigate its convergence properties. The relation to the existing convergence
results is postponed until the end of this section.

Algorithm 4.1 (Nonmonotone Proximal Gradient Method).
Require: τ > 0, 0 < γmin ≤ γmax <∞, m ∈ N, δ ∈ (0, 1), x0 ∈ domϕ
1: Set k := 0.
2: while A suitable termination criterion is violated at iteration k do
3: Set mk := min{k,m} and choose γ0k ∈ [γmin, γmax].
4: For i = 0, 1, 2, . . ., compute a solution xk,i of

min
x

f(xk) + ⟨∇f(xk), x− xk⟩+ γk,i
2
∥x− xk∥2 + ϕ(x), x ∈ X (4.1)

with γk,i := τ iγ0k, until the acceptance criterion

ψ(xk,i) ≤ max
j=0,1,...,mk

ψ(xk−j)− δγk,i
2
∥xk,i − xk∥2 (4.2)

holds.
5: Denote by ik := i the terminal value, and set γk := γk,ik and xk+1 := xk,ik .
6: Set k ← k + 1.
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7: end while
8: return xk

The only difference between Algorithm 3.1 and Algorithm 4.1 is in the stepsize
rule. More precisely, Algorithm 4.1 may be viewed as a generalization of Algorithm 3.1
since the particular choice m = 0 recovers Algorithm 3.1. Numerically, in many
examples, the choice m > 0 leads to better results and is therefore preferred in
practice. On the other hand, for m > 0, we usually get a nonmonotone behavior of
the function values {ψ(xk)} which complicates the theory significantly. In addition,
the nonmontone proximal gradient method also requires stronger assumptions in order
to prove a suitable convergence result.

In particular, in addition to the requirements from Assumption 3.2, we need the
following additional conditions on the data functions in order to proceed.

Assumption 4.2. (a) The function ψ is uniformly continuous on the sublevel set
Lψ(x0) := {x ∈ X |ψ(x) ≤ ψ(x0)}.

(b) The function ϕ is continuous on domϕ.

Note that we always have Lψ(x0) ⊂ domϕ by the continuity of f . Furthermore,
whenever ψ is coercive, Assumption 4.2 (b) already implies Assumption 4.2 (a) since
Lψ(x0) would be a compact subset of domϕ in this situation, and continuous functions
are uniformly continuous on compact sets. Observe that coercivity of ψ is an inherent
property in many practically relevant settings. We further note that, in general,
Assumption 4.2 (a) does not imply Assumption 4.2 (b), and the latter is a necessary
requirement since, in our convergence theory, we will also evaluate the function ϕ in
some points resulting from an auxiliary sequence {x̂k} which may not belong to the
level set Lψ(x0).

For the convergence theory, we assume implicitly that Algorithm 4.1 generates
an infinite sequence {xk}. We first note that the stepsize rule in the inner loop of
Algorithm 4.1 is always finite. Since

ψ(xk) ≤ max
j=0,1,...,mk

ψ(xk−j)

this observation follows immediately from Lemma 3.3.
Throughout the section, for each k ∈ N, let l(k) ∈ {k −mk, . . . , k} be an index

such that
ψ(xl(k)) = max

j=0,1,...,mk

ψ(xk−j)

is valid. We already mentioned that {ψ(xk)} may possess a nonmonotone behavior.
However, as the following lemma shows, {ψ(xl(k))} is monotonically decreasing.

Lemma 4.3. Let Assumption 3.2 (b) hold and let {xk} be a sequence generated by
Algorithm 4.1. Then {ψ(xl(k))} is monotonically decreasing.

Proof. The nonmonotone stepsize rule from (4.2) can be rewritten as

ψ(xk+1) ≤ ψ(xl(k))− δγk
2
∥xk+1 − xk∥2. (4.3)
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Using mk+1 ≤ mk + 1, we find

ψ(xl(k+1)) = max
j=0,1,...,mk+1

ψ(xk+1−j)

≤ max
j=0,1,...,mk+1

ψ(xk+1−j)

= max

{
max

j=0,1,...,mk

ψ(xk−j), ψ(xk+1)

}
= max

{
ψ(xl(k)), ψ(xk+1)

}
= ψ(xl(k)),

where the last equality follows from (4.3). This shows the claim.

As a corollary of the above result, we obtain that the iterates of Algorithm 4.1
belong to the level set Lψ(x0).

Corollary 4.4. Let Assumption 3.2 (b) hold and let {xk} be a sequence generated by
Algorithm 4.1. Then {xk}, {xl(k)} ⊂ Lψ(x0) holds.

Proof. Noting that l(0) = 0 holds by construction, Lemma 4.3 and (4.3) yield the
estimate ψ(xk+1) ≤ ψ(xl(k)) ≤ ψ(xl(0)) = ψ(x0) for each k ∈ N which shows the
claim.

The counterpart of Proposition 3.4 is significantly more difficult to prove in the
nonmonotone setting. In fact, it is this central result which requires the uniform
continuity of the objective function ψ from Assumption 4.2 (a). Though its proof is
essentially the one from [34], we present all details since they turn out to be of some
importance for the discussion at the end of this section.

Proposition 4.5. Let Assumption 3.2 and Assumption 4.2 (a) hold. Then each
sequence {xk} generated by Algorithm 4.1 satisfies ∥xk+1 − xk∥ → 0.

Proof. Since ψ is bounded from below due to Assumption 3.2 (a), Lemma 4.3 implies

lim
k→∞

ψ(xl(k)) = ψ∗ (4.4)

for some finite ψ∗ ∈ R. From Corollary 4.4, we find {xl(k)} ⊂ Lψ(x0). Applying (4.3)
with k replaced by l(k) − n − 1 for some n ∈ N gives ψ(xl(k)−n) ≤ ψ(xl(l(k)−n−1)) ≤
ψ(x0), i.e., {xl(k)−n} ⊂ Lψ(x0) (here, we assume implicitly that k is large enough such
that no negative indices l(k)− n− 1 occur). More precisely, for n = 0, we have

ψ(xl(k))− ψ(xl(l(k)−1)) ≤ −δ
γl(k)−1

2
∥xl(k) − xl(k)−1∥2 ≤ 0.

Taking the limit k → ∞ in the previous inequality and using (4.4), we therefore
obtain

lim
k→∞

γl(k)−1∥xl(k) − xl(k)−1∥2 = 0.
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Since γk ≥ γmin > 0 for all k ∈ N, we get

lim
k→∞

dl(k)−1 = 0, (4.5)

where dk := xk+1 − xk for all k ∈ N. Using (4.4) and (4.5), it follows that

ψ∗ = lim
k→∞

ψ(xl(k)) = lim
k→∞

ψ
(
xl(k)−1 + dl(k)−1

)
= lim

k→∞
ψ(xl(k)−1), (4.6)

where the last equality takes into account the uniform continuity of ψ from Assump-
tion 4.2 (a) and (4.5).

We will now prove, by induction, that the limits

lim
k→∞

dl(k)−j = 0, lim
k→∞

ψ(xl(k)−j) = ψ∗ (4.7)

hold for all j ∈ N with j ≥ 1. We already know from (4.5) and (4.6) that (4.7) holds
for j = 1. Suppose that (4.7) holds for some j ≥ 1. We need to show that it holds
for j + 1. Using (4.3) with k replaced by l(k)− j − 1, we have

ψ(xl(k)−j) ≤ ψ(xl(l(k)−j−1))− δ
γl(k)−j−1

2
∥dl(k)−j−1∥2

(again, we assume implicitly that k is large enough such that l(k)− j − 1 is nonneg-
ative). Rearranging this expression and using γk ≥ γmin for all k yields

∥dl(k)−j−1∥2 ≤ 2

γminδ

(
ψ(xl(l(k)−j−1))− ψ(xl(k)−j)

)
.

Taking k →∞, using (4.4), as well as the induction hypothesis, it follows that

lim
k→∞

dl(k)−j−1 = 0, (4.8)

which proves the induction step for the first limit in (4.7). The second limit then
follows from

lim
k→∞

ψ
(
xl(k)−(j+1)

)
= lim

k→∞
ψ
(
xl(k)−(j+1) + dl(k)−j−1)

)
= lim

k→∞
ψ
(
xl(k)−j

)
= ψ∗,

where the first equation exploits (4.8) together with the uniform continuity of ψ from
Assumption 4.2 (a) and {xl(k)−j}, {xl(k)−(j+1)} ⊂ Lψ(x0), whereas the final equation
is the induction hypothesis.

In the last step of our proof, we now show that limk→∞ dk = 0 holds. Suppose
that this is not true. Then there is a (suitably shifted, for notational simplicity)
subsequence {dk−m−1}k∈K and a constant c > 0 such that

∥dk−m−1∥ ≥ c ∀k ∈ K. (4.9)

Now, for each k ∈ K, the corresponding index l(k) is one of the indices k−m, k−m+
1, . . . , k. Hence, we can write k−m−1 = l(k)−jk for some index jk ∈ {1, 2, . . . ,m+1}.
Since there are only finitely many possible indices jk, we may assume without loss
of generality that jk = j holds for some fixed index j ∈ {1, . . . ,m + 1}. Then (4.7)
implies

lim
k→K∞

dk−m−1 = lim
k→K∞

dl(k)−j = 0.

This contradicts (4.9) and therefore completes the proof.

16



Theorem 4.6. Assume that Assumptions 3.2 and 4.2 hold and let {xk} be a sequence
generated by Algorithm 4.1. Suppose that x∗ is an accumulation point of {xk} such
that xk →K x∗ holds along a subsequence k →K ∞. Then x∗ is an M-stationary point
of (P), and γk(xk+1 − xk)→K 0 is valid.

Proof. Since {xk}K is a subsequence converging to x∗, it follows from Proposition 4.5
that also the subsequence {xk+1}K converges to x∗. We note that x∗ ∈ domϕ follows
from Corollary 4.4 by closedness of Lψ(x0). The minimizing property of xk+1 for (4.1)
together with Fermat’s rule and the sum rule from (2.3) imply that the necessary
optimality condition (3.16) holds for each k ∈ K. We claim that the subsequence
{γk}K is bounded. Assume, by contradiction, that this is not true. Without loss of
generality, let us assume that γk →K ∞ and that the acceptance criterion (4.2) is
violated in the first iteration of the inner loop for each k ∈ K. Setting γ̂k := γk/τ for
each k ∈ K, {γ̂k}K also tends to infinity, but the corresponding vectors x̂k := xk,ik−1,
k ∈ K, do not satisfy the stepsize condition from (4.2), i.e., we have

ψ(x̂k) > max
j=0,1,...,mk

ψ(xk−j)− δ γ̂k
2
∥x̂k − xk∥2 ∀k ∈ K. (4.10)

On the other hand, since x̂k = xk,ik−1 solves the corresponding subproblem (3.1) with
γ̂k = γk,ik−1, we have

⟨∇f(xk), x̂k − xk⟩+ γ̂k
2
∥x̂k − xk∥2 + ϕ(x̂k) ≤ ϕ(xk) (4.11)

for each k ∈ K. Due to γ̂k →K ∞ and since ϕ is bounded from below by an
affine function due to Assumption 3.2 (b) while ϕ is continuous on its domain by
Assumption 4.2 (b) (which yields boundedness of the right-hand side of (4.11)), this
implies x̂k − xk →K 0. Consequently, we have x̂k →K x∗ as well.

Now, if γ̂k∥x̂k−xk∥ →K′ 0 holds along a subsequence k →K′ ∞ such that K ′ ⊂ K,
then, due to

0 ∈ ∇f(xk) + γ̂k(x̂
k − xk) + ∂̂ϕ(x̂k),

which holds for each k ∈ K ′ by means of Fermat’s rule and the sum rule (2.3), we
immediately see that x∗ is an M-stationary point of (P) by taking the limit k →K′ ∞
and exploiting the continuity of ϕ on domϕ from Assumption 4.2 (b). Thus, for the
remainder of the proof, we may assume that there is a constant c > 0 such that

γ̂k∥x̂k − xk∥ ≥ c

holds for each k ∈ K. Further, we then also get

(1− δ) γ̂k
2
∥x̂k − xk∥2 ≥ 1− δ

2
c∥x̂k − xk∥ ≥ o

(
∥x̂k − xk∥

)
for all k ∈ K sufficiently large. Rearranging (4.11) gives us

⟨∇f(xk), x̂k − xk⟩+ ϕ(x̂k)− ϕ(xk) ≤ − γ̂
k

2
∥x̂k − xk∥2
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for each k ∈ K. From the mean-value theorem, we obtain some ξk on the line segment
between x̂k and xk such that

ψ(x̂k)− max
j=0,1,...,mk

ψ(xk−j)

≤ ψ(x̂k)− ψ(xk)
= ⟨∇f(ξk), x̂k − xk⟩+ ϕ(x̂k)− ϕ(xk)
= ⟨∇f(xk), x̂k − xk⟩+ ϕ(x̂k)− ϕ(xk) + ⟨∇f(ξk)−∇f(xk), x̂k − xk⟩

≤ − γ̂
k

2
∥x̂k − xk∥2 + o(∥x̂k − xk∥)

≤ −δ γ̂
k

2
∥x̂k − xk∥2

for all k ∈ K sufficiently large. This contradiction to (4.10) shows that the sequence
{γk}K is bounded.

Finally, the continuity of ϕ from Assumption 4.2 (b) gives ϕ(xk+1)→K ϕ(x∗) due
to xk+1 →K x∗. Thus, recalling xk →K x∗ and the boundedness of {γk}K , we find
γk(x

k+1 − xk)→K 0, and taking the limit k →K ∞ in (3.16) gives us M-stationarity
of x∗ for (P).

Remark 4.7. (a) Note that Assumptions 3.2 and 4.2 do not comprise any Lipschitz
conditions on ∇f .

(b) The results in this section recover the findings from [23, Section 4] and [25,
Section 3] which were obtained in the special situation where ϕ is the indicator
function associated with a closed set, see Remark 2.1 as well.

(c) Based on Theorem 4.6, (3.17) also provides a reasonable termination criterion
for Algorithm 4.1, see Remark 3.8 as well.

(d) In view of Proposition 4.5, it follows in the same way as in Remark 3.9 that
the entire sequence {xk} generated by Algorithm 4.1 converges if there exists
an isolated accumulation point.

The uniform continuity of ψ which is demanded in Assumption 4.2 (a) is obvi-
ously a much stronger assumption than the one used in the previous section for the
monotone proximal gradient method. In particular, this assumption rules out appli-
cations where ϕ is given by the ℓ0-quasi-norm. Nevertheless, the theory still covers
the situation where the role of ϕ is played by an ℓp-type penalty function for p ∈ (0, 1)
over X ∈ {Rn,Rn×m} which is known to promote sparse solutions. More precisely,
this choice is popular in sparse optimization if the more common ℓ1-norm does not
provide satisfactory sparsity results, and the application of the ℓ0-quasi-norm seems
too difficult, see [6,14,15,19,27,28] for some applications and numerical results based
on the ℓp-quasi-norm or closely related expressions. We would like to note that uni-
form continuity is a standard assumption in the context of nonmonotone stepsize
rules involving acceptance criteria of type (4.2), see [22, page 710].

We close this section with a discussion on existing convergence results for non-
monotone proximal gradient methods. To the best of our knowledge, the first one
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can be found in [34]. The authors prove convergence under the assumptions that f is
differentiable with a globally Lipschitz continuous gradient and ϕ being real-valued
and convex, see [34, Section II.G]. Implicitly, however, they also exploit the uniform
continuity of ψ = f + ϕ in their proof of [34, Lemma 4], a result like Proposition 4.5,
without stating this assumption explicitly. Taking this into account, our Assump-
tion 4.2 (a) is actually weaker than the requirements used in [34], so that the results
of this section can be viewed as a generalization of the convergence theory from [34].

Furthermore, [15, Section 3.1] and [16, Appendix A] consider a nonmonotone
proximal gradient method which is slightly different from Algorithm 4.1 since the
acceptance criterion (4.2) is replaced by the slightly simpler condition

ψ(xk,i) ≤ max
j=0,1,...,mk

ψ(xk−j)− δ

2
∥xk,i − xk∥2.

In [16, Theorem 4.1], the authors obtain convergence to M-stationary points when-
ever ψ is bounded from below as well as uniformly continuous on the level set Lψ(x0),
f possesses a Lipschitzian derivative on some enlargement of Lψ(x0), and ϕ is con-
tinuous. Clearly, our convergence analysis of Algorithm 4.1 does not exploit any
Lipschitzianity of ∇f , so our assumptions are weaker than those ones used in [16].
In [15, Theorem 3.3], the authors claim that the results from [16] even hold when
the continuity assumption on ϕ is dropped. The proof of [15, Theorem 3.3], however,
relies on the outer semicontinuity property (2.2) of the limiting subdifferential, which
does not hold for general discontinuous functions ϕ, so this result is not reliable.

Finally, let us mention that the two references [26,33] also consider nonmonotone
(and accelerated) proximal gradient methods. These methods are not directly compa-
rable to our algorithm since they are based on a different kind of nonmonotonicity. In
any case, although the analysis in both papers works for merely lower semicontinuous
functions ϕ, the provided convergence theory requires ∇f to be globally Lipschitz
continuous.

5 Conclusions
In this paper, we demonstrated how the convergence analysis for monotone and non-
monotone proximal gradient methods can be carried out in the absence of (global)
Lipschitz continuity of the derivative associated with the smooth function. Our re-
sults, thus, open up these algorithms to be reasonable candidates for subproblem
solvers within an augmented Lagrangian framework for the numerical treatment of
constrained optimization problems with lower semicontinuous objective functions, see
e.g. [15] where this approach has been suggested but suffers from an incomplete anal-
ysis, and [19,23,25] where this approach has been corrected and extended.

Let us mention some remaining open problems regarding the investigated proxi-
mal gradient methods. First, it might be interesting to find minimum requirements
which ensure global convergence of Algorithms 3.1 and 4.1. We already mentioned
in Section 3 that it is an open question whether the convergence analysis for Algo-
rithm 3.1 can be generalized to the setting where f is only continuously differentiable
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while ϕ is just lower semicontinuous. Second, we did not investigate if the Kurdyka–
Łojasiewicz property could be efficiently incorporated into the convergence analysis
in order to get stronger results even in the absence of strong Lipschitz assumptions on
the derivative of f . Third, our analysis has shown that Algorithms 3.1 and 4.1 com-
pute M-stationary points of (P) in general. In the setting of Remark 2.2, i.e., where
constrained programs with a merely lower semicontinuous objective function are con-
sidered, the introduced concept of M-stationarity is, to some extent, implicit since
it comprises an unknown subdifferential. In general, the latter can be approximated
from above in terms of initial problem data only in situations where a qualification
condition is valid. The resulting stationarity condition may be referred to as ex-
plicit M-stationarity. It seems to be a relevant topic of future research to investigate
whether Algorithms 3.1 and 4.1 can be modified such that they compute explicitly
M-stationary points in this rather general setting. Fourth, it might be interesting to
investigate whether other types of nonmonotonicity, different from the one used in Al-
gorithm 4.1, can be exploited in order to get rid of the uniform continuity requirement
from Assumption 4.2 (a).

Finally, we note that there exist several generalizations of proximal gradient meth-
ods using, e.g., inertial terms and Bregman distances, see e.g. [2, 9–11] and the ref-
erences therein. The corresponding convergence theory is also based on a global
Lipschitz assumption for the gradient of the smooth term or additional convexity
assumptions which allow the application of a descent-type lemma. It might be in-
teresting to see whether our technique of proof can be adapted to these generalized
proximal gradient methods in order to weaken the postulated assumptions.
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