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Abstract. This paper presents a state-of-the-art survey for safeguarded aug-
mented Lagrangian methods for constrained optimization problems in Banach
spaces. The difference between the classical augmented Lagrangian method
and its safeguarded version lies in the update of the multiplier estimates. The
safeguarded method has significantly stronger global convergence properties
than the classical algorithm. Local and rate-of-convergence results are also
summarized. Some numerical results illustrate the practical behaviour of the
safeguarded augmented Lagrangian approach.
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1. Introduction

This paper is dedicated to a thorough discussion of the augmented Lagrangian
method (ALM) for constrained minimization problems of the form

(P) minirgize f(z) subject to G(zx) € K, (1.1)
S
where X,Y are real Banach spaces, f : X — R and G : X — Y are continuously

differentiable functions, and C' C X as well as K C Y are nonempty closed convex
sets. The feasible set of (P) will be denoted by

o:={xeC: Gx) e K}.
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To facilitate the application of the augmented Lagrangian technique, we assume
that ¢ : Y — H densely for some real Hilbert space H. This implies that we are
working in the Gel’fand triple framework

Y e g Sy, (1.2)

Furthermore, we assume that there is a closed convex set X C H such that
i~1(K) = K. This allows us to interpret the constraint G(z) € K equivalently as
G(zx) € K. Note that we will usually suppress the embedding for the sake of brevity.

It should be stressed that the above framework is extremely general, and the
resulting augmented Lagrangian method therefore covers a very broad spectrum
of applications. Moreover, many prominent problem classes can be recovered as
special cases of (P). Here, we apply the safeguarded augmented Lagrangian method
in order to solve (P).

Historically, the augmented Lagrangian technique was first developed for
nonlinear programs (in finite dimension). Indeed, the algorithm goes back to the
seminal works by Hestenes [33] and Powell [65], and in its early days it was commonly
referred to as the method of multipliers. The technique was further developed by
many authors in the later parts of the 20th century, including Rockafellar [68-70],
Bertsekas [9], and Conn, Gould, and Toint [21-23], who created the well-known
LANCELOT software package. The algorithm was rediscovered by Andreani, Birgin,
Martinez, and co-authors in [1,2,11,12], a series of publications which culminated
in the book [13] and the corresponding ALGENCAN software package.

In today’s nonlinear programming landscape, algorithms such as interior point
methods [29,31] or sequential quadratic programming [31,45] are often preferred to
methods of augmented Lagrangian type, mainly due to their fast local convergence
characteristics. In contrast, the augmented Lagrangian method possesses very
strong global convergence properties, and it has been found to work rather well on
degenerate problem classes such as problems with complementarity constraints [46].
A state-of-the-art local convergence analysis of the ALM for nonlinear programming
is given in [27]. More discussion on nonlinear programming in general, and on the
corresponding algorithms, can be found in [9,10,24,62], and in the encyclopedia
[28].

One of the main motivations for the generalization of augmented Lagrangian
methods to the level of generality represented by (P) is the advent of function space
optimization problems. Some early references in this context include [6,7,39-42,76],
and the book [30]. Most of these publications are restricted to very specific problem
settings such as convex optimization problems or finite-dimensional constraints. In
[8,43], an augmented Lagrangian-type penalty scheme was proposed, in combination
with a semismooth Newton method, for the solution of state-constrained optimal
control problems. The resulting method came to be known as Moreau—Yosida
regularization; it was further developed in [34,35], and it is today considered a
standard approach for state-constrained optimal control [37,44,75]. Some other
techniques for such problems include Lavrentiev regularization [36,59], interior
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point methods [56, 72], and the so-called virtual control approach [55], which is
related to the augmented Lagrangian technique [54].

The purpose of this paper is to collect the recent developments and to
summarize the convergence theory of the safeguarded method applied to Banach
space optimization problems in a uniform framework. To this end, we first recall
some background material and state some preliminary results in Section 2. We
then provide a self-contained motivation of the augmented Lagrangian method in
Section 3. A state-of-the-art summary of the global and local convergence properties
of the augmented ALM is then provided in Sections 4 and 5, respectively. Numerical
results for a variety of applications are given in Section 6. We then close the paper
with some final remarks in Section 7.

2. Background Material

This chapter summarizes several concepts and results from optimization theory,
Banach spaces and variational analysis which will be used later in our subsequent
convergence theory. Most results are known, so we refer to the existing literature;
occasionally, we provide a proof if either this proof is very short or we were not
able to find an explicit reference.

2.1. Cones

This section is dedicated to the study of some basic objects which are useful when
characterizing the geometric structure of sets in Banach spaces. Many aspects of
the geometry of sets can be characterized through so-called cones (see below), and
these play a major role in variational analysis, convex analysis, and optimization
theory. The material discussed here incorporates elements from multiple books,
e.g., [5,14,16].

Let S C X be a nonempty set. We say that S is a cone if S C S for all
a > 0. Given an arbitrary set S C X, we denote by

S :={pe X" :(p,s) <0 for every s € S}

the polar cone of S. Note that S° C X*. If X is a real Hilbert space, we treat S°
as a subset of X.

Definition 2.1 (Tangent and normal cones). Let C' C X be an arbitrary set and
x € C. Then we define

(a) the tangent cone To(x) as
To(z) :=={d € X : 3{a"} C C, tx | 0 such that 2" — 2 and (2% — 2)/t;, — d}.
(b) the normal cone Nc(x) as
Ne(z) ={pe€ X" :(,y—z) <0VyeC}.
For x ¢ C, both cones are defined as the empty set.
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If X is a real Hilbert space, we treat No(z) as a subset of X instead of X*.

The normal cone is always a closed set, and satisfies the polarity relation
Ne(z) = To(@)°

which is sometimes also taken as the definition of the normal cone and makes sense
also for possibly nonconvex sets C'. It should be noted, however, that there are a
variety of different normal cones for general sets (see, for instance, [60]). Therefore,
to avoid any ambiguity, we will reserve the symbol N¢ for the case where C is
convex.

The normal cone can be used to formulate a simple Fermat-type optimality
condition.

Theorem 2.2 (Necessary optimality condition, [16]). Let f: X — R be a continu-
ously differentiable mapping, and C C X a nonempty closed convex set. If T is a
local minimizer of f on C, then 0 € f'(Z) + N (Z).

The following is a famous decomposition theorem involving a closed convex
cone in a Hilbert space and its polar.

Lemma 2.3 (Moreau decomposition, [61]). Let H be a real Hilbert space and K C H
a nonempty closed convex cone. Then every y € H admits a unique decomposition
y =11 +y2 with K 3y Lys € K°. Indeed, y1 = P (y) and y» = Pko(y).

We now turn to another object which describes some aspects of the geometric
structure of convex sets.

Definition 2.4 (Recession cone). Let C' C X be a nonempty convex set. Then the
recession cone of C'is the set Coo :={z € X : 2+ C C C}.

The recession cone is always nonempty (since 0 € C,) and a convex cone.
Moreover, if C is closed, then so is Cy. If the set C' is a convex cone, then it is easy
to see that C,x = C. On the other hand, if C is not a cone, then the recession cone
can often be used as a substitute for C' in situations where a conical structure is
necessary. This is the case, for instance, in the context of (partial) order relations,
which closely correspond to convex cones, see Section 2.2.

The following result provides some information on the polar cone C3, :=

(Coo)®

Lemma 2.5. Let H be a real Hilbert space and C C H a nonempty convex set. Then
{y € H : sup,cc(w,y) < +oo} € C. In particular, Nc(y) € C, for ally € C.

Proof. Let y € H be a point with (w,y) < ¢ for some ¢ € R and all w € C. Let
x € Cys, and choose an arbitrary g € C. Then xzg+tx € C for all t > 0, and hence
(xo +tx,y) < c. This cannot hold for all ¢ > 0 if (z,y) > 0. Hence, (z,y) <0, and
yeCy. d

The set {y € H : sup,cc(w,y) < 400} in the statement of Lemma 2.5 is
often called the barrier cone of C'. Note that the inclusion stated in the lemma
can be strict. In particular, there are situations where the barrier cone is not
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closed, and this makes it a priori impossible for it to equal C', which is always a
closed cone by virtue of polarity. An example for this phenomenon can be found in
[5, Exercise 6.23].

2.2. Convex Functions and Concave Operators

Convex functions play a central role in optimization theory. Occasionally, we write
Of (x) for the subdifferential of a convex function f in z, but most of the time
the underlying mapping f will be differentiable. One of the most fundamental
examples of a convex function is the distance function de : X — R to a convex set
C C X. Note that the following result holds for an arbitrary Banach space X, not
necessarily a Hilbert space.

Lemma 2.6 (Distance function, [5,64]). Let C C X be a nonempty convex set. Then
the function dc : X = R, do(x) :=infycc ||z — y||x, is convez and nonexpansive.

It is easy to see that the square of a nonnegative convex function is again
convex. Thus, in the setting of Lemma 2.6, the squared distance function d2c is
also a convex function. If the space X is a real Hilbert space, then the squared
distance function enjoys a much stronger form of regularity.

Lemma 2.7 (|5, Cor. 12.31]). Let X be a real Hilbert space and C' C X a nonempty
closed convex set. Then the squared distance function dZ, is convex and continuously
differentiable on X with (d%) (z) = 2(x — Po(x)) for all z € X.

Recall that there exist several different continuity notions in infinite-
dimensional spaces, based on the topology used within theses space or whether
a (weak) sequential continuity or (weak) lower semicontinuity is considered. The
following well-known result states that several continuity properties coincide within
the class of convex functions.

Proposition 2.8 ([5, Thm. 9.1]). Let C C X be a closed convez set and f : C — R
a convex function. Then the following are equivalent: (i) [ is lower semicontinuous,
(i) f is weakly lower semicontinuous, and (iii) f is weakly sequentially lower
semicontinuous.

The theory of convex functions is useful for a wide variety of application
problems. There are, however, certain practical scenarios where convexity properties
of nonlinear operators G : X — Y are necessary, with X and Y real Banach spaces.
More specifically, assume that we are dealing with an inclusion of the form

G(z) €e K, K CY aclosed convex set. (2.1)

Ideally, we would like to work with a generalized notion of convexity which takes
into account the mapping G and the geometry of the set K. To this end, assume
for the moment that the set K in (2.1) is a closed convex cone. Then K induces
the order relation

a<gb = b—-ackK, (2.2)
and K itself can be regarded as the nonnegative cone with respect to <p. Thus,
(2.1) can be rewritten as G(z) >k 0, which suggests that the appropriate convexity
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notion in this case is a generalized type of concavity with respect to the order
relation <p. This property takes on the form

G((1 -tz +ty) >k (1-1)G(z) +tG(y) forall z,y € X, t € [0,1].

The above property is usually called K -concavity, and it is in fact a special case of
the general concept which we define below. In the case where K is not a cone, the
recession cone K, turns out to be a useful substitute to define the order relation
(2.2).

Definition 2.9 (Concave operator). Let G : X — Y be an arbitrary mapping and
K CY a closed convex set with recession cone K.,. We say that G is K, -concave
if

G((1 -tz +ty) >k (1 -1)G(z) +tG(y) forall z,y € X, ¢t €[0,1],
where <f is the order relation defined by a <g b:<=b—a € K.

Let us now discuss the analytical consequences of generalized convexity (or
concavity) in the sense of Definition 2.9. The resulting properties can be deduced
by discussing situations in which the K-concavity of G yields the (ordinary)
convexity of a suitable composite mapping involving G.

We say that a mapping m : Y — R is K, -decreasing if it is monotonically
decreasing with respect to the order <p, i.e., if m(y1) < m(y2) whenever y; > ya.

Theorem 2.10. Let X,Y be real Banach spaces, K CY a nonempty closed convex
set, and G : X =Y a Ky -concave operator. Then:

(a) If m: Y — R is convex and K -decreasing, then m o G is convez.
(b) The function dg o G : X — R is convex.

(c) If X € K2, then x — (\,G(x)) is convexr.

(d) The set M :={x € X : G(z) € K} is conver.

Proof. Can be found in [49, Lemma 2.1]. O

2.3. Pseudomonotone Operators

We first recall the following notion of pseudomonotonicity in the sense of Brezis
[17].

Definition 2.11 (Pseudomonotonicity). We say that an operator F : X — X* is
pseudomonotone if, whenever
{z"YCc X, 2 ~2, and limsup <F(:ck),xk - x> <0,
k—o0
then
(F(x),z —y) <liminf <F(a:k),xk —y) forallye X.
k—o0

Despite its somewhat peculiar appearance, the notion of pseudomonotonicity
will play a fundamental role in the subsequent theory. Some sufficient conditions
for pseudomonotone operators are summarized in the following lemma. This result
illustrates that the class of pseudomonotone operators is quite large.
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Lemma 2.12 (Sufficient conditions for pseudomonotonicity). Let X be a real Ba-
nach space and T,U : X — X* given operators. Then:

(a) If T is monotone and continuous, then T is pseudomonotone.

(b) If, for every y € X, the mapping x — (T(x),x — y) is weakly sequentially Isc,
then T is pseudomonotone.

(¢) If T is completely continuous, then T is pseudomonotone.

(d) If T is continuous and dim(X) < +oo, then T is pseudomonotone.

(e) If T and U are pseudomonotone, then T + U is pseudomonotone.

Proof. (b) is obvious. The remaining assertions can be found in [77, Prop. 27.6]. O

It follows from the above observations that the concept of pseudomonotone
operators provides a unified approach to different classes of operators, including
monotone and completely continuous ones. Property (b) in the above lemma is
occasionally referred to as (Ky—)Fan-hemicontinuity.

2.4. KKT-type Conditions
We define the Lagrange function or Lagrangian of (P) as the mapping

L:XXY* SR, L)) = f(z) + (\Gx)). (2.3)

and denote by £’ the derivative of the Lagrangian with respect to  alone. Note that
we do not include the abstract constraint C' into the Lagrangian. The Lagrangian
can be used to formulate the KKT system of (P) in the following way.

Definition 2.13 (KKT point). A point (Z,\) € X x Y* is a KK T point of (P) if
—L'(z,\) € No(z) and ) € Ng(G()).

We say that z € X is a stationary point of (P) if (Z, A) is a KKT point for some
multiplier A € Y*, and denote by A(Z) the set of such multipliers.

For the KKT conditions to be necessary optimality conditions of (P), certain
constraint qualifications are required; they ensure that the feasible set is well-
behaved and that, roughly speaking, the reconstruction of its geometry from first-
order information is possible. One of the most fundamental constraint qualifications
in infinite dimensions is the following one.

Definition 2.14 (Robinson constraint qualification). Let « € X be a feasible point
for (P). We say that the Robinson constraint qualification (RCQ) holds in x if

0 € int[G(z) + G'(z)(C — ) — K].

The above condition was introduced by Robinson in [67] in the context
of certain stability properties of nonlinear inclusions. In the context of finite-
dimensional nonlinear programs, RCQ turns out to be equivalent to the well-known
Mangasarian-Fromovitz constraint qualification. Under RCQ, the following first-
order optimality condition holds.
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Theorem 2.15 (KKT conditions under RCQ, [14, Thm. 3.9]). Let & be a local
minimizer of (P) and assume that RCQ holds in . Then the set of Lagrange
multipliers A(Z) is nonempty, closed, convez, and bounded in Y*.

In order to verify feasibility of (weak) limit points in our global convergence
analysis, we will also need the following straightforward generalization of RCQ to
possibly infeasible points. To keep a clear distinction, we call the resulting condition
the extended Robinson constraint qualification, though its definition is essentially
the same as for RCQ itself.

Definition 2.16 (Extended Robinson constraint qualification). Let x € X be an ar-
bitrary, not necessarily feasible point. We say that the extended Robinson constraint
qualification (extended RCQ, ERCQ) holds in z if

0 € int[G(z) + G'(z)(C — z) — K].

An important property of ERCQ is that it guarantees that, whenever z is a
stationary point of a certain measure of infeasibility, then x is actually a feasible
point. We formulate this result in a slightly more general framework. The proof
can be found in [15, Lemma 5.2].

Proposition 2.17. Let i : Y — H densely for some real Hilbert space H, and let
K C H be a closed convex set with i~*(K) = K. Let & € X be a stationary point
of the problem mingcc dz(G(x)), and assume that ERCQ holds in T with respect
to the constraint system of (P). Then G(Z) € K.

Assume now that we have a point & which is “almost” a solution of (P). A
popular definition in this context is that of e-minimizers: given € > 0, we say
that & € ® is an e-minimizer of (P) if f(%) < f(z) + € for all z € ®. For such
approximate minimizers, it is indeed possible to obtain an inexact analogue of the
KKT conditions. This result is usually called Ekeland’s variational principle.

Proposition 2.18 (Ekeland’s variational principle, [14, Thm. 3.23]). Let = € ®
be an e-minimizer of (P), let § = e'/2 and assume that RCQ holds at every
x € Bs(Z) N ®. Then there exist another e-minimizer & of (P) and A € Y* such
that || — Z||x <6,

dist(—L'(&,)),No(8)) <6, and X € N (G(2)).

Many practical algorithms for constrained optimization iteratively construct a
primal-dual sequence {(z*, \¥)} which satisfies the KKT conditions in an asymptotic
sense. This motivates to analyze such “sequential” analogues of the KKT conditions
in more detail. The subsequent notion is also used by similar approaches in finite
dimensions, see [3,4,13].

Definition 2.19 (Asymptotic KKT sequence). We say that a sequence {(z*, \F)} C
C x Y* is an asymptotic KKT sequence for (P) if there exist null sequences
{e*} € X* and {r;,} C R such that, for all k,

ek — £'(a* \F) € No(2F)  and <)\k,y - G(:Ck)> <rpVye K. (2.4)
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Our main aim in this section is to give sufficient conditions which guarantee
that, if {(z¥, \¥)} is an asymptotic KKT sequence and 7 is a (possibly weak)
limit point of {z*}, then Z is a stationary point of (P). In this context, it is
worth mentioning that Definition 2.19 imposes no conditions on the attainment of
feasibility. This aspect is left unspecified for the sake of flexibility; indeed, we will
mainly be concerned with scenarios where # is some kind of limit point of {z*}
and we already know from a preliminary analysis that z is a feasible point.

Note that, while the conditions posed in Definition 2.19 seem reasonably weak,
it is possible to generalize the asymptotic KKT concept even further. In particular,
in our formulation, the second inequality in (2.4) is assumed to hold uniformly
on K. If K is unbounded, then it may be more natural to require some kind of
uniformness of the inequality on bounded subsets of K. In any case, however, the
augmented Lagrangian method which we will discuss later satisfies the uniform
bound from (2.4), and a more general analysis is therefore not necessary for our
purposes.

3. Motivation and Statement of the Algorithm

This section first recalls the original method of multipliers for equality constraints.
It then presents a self-contained and simple approach for its generalization to
abstract inequality constraints (in a Banach space setting). Finally, we give a
formal statement of the overall method for a general problem of the form (P) and
prove some preliminary properties of this method.

3.1. The Original Method of Multipliers

In its initial form, the method of multipliers is an algorithm for the solution of
equality-constrained minimization problems in finite dimensions. Here, we present
this original method in a slightly more general framework. Consider an equality-
constrained optimization problem of the form

mininclize f(z) subject to h(z) =0, (3.1)
zE

where f: X - R, C C X is a closed convex set, and h : X — H. We assume that
X is a real Banach space and H is a real Hilbert space. In the special case of the
original method of multipliers, we have X := R™, H := R™ with m,n € N, and
C:=X.

The basic idea is to tackle (3.1) by combining elements of Lagrangian theory
with a penalty-type scheme. Recall that the Lagrangian of the problem takes on
the form L(z,\) = f(z) + (X, h(z)). By adding a positive multiple of ||h(z)[%;, we
penalize the violation of the equality constraint, thus ending up with the augmented
Lagrangian

Lo X) = [ (@) + (A (@) + Slh)]F- (3:2)

From an algorithmic perspective, we now proceed as follows. Given a penalty
parameter pj and a current estimate A* of the Lagrange multiplier, we compute
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k+1
k+1

x as a minimizer (or approximate minimizer) of (3.2) on C so that, ideally,
x is close to feasibility (if pg is large) and close to being a minimizer of the
Lagrangian £(-, \*). Let us assume, for the moment, that the functions f and h
are continuously differentiable, and that z**! is an exact minimizer of L, (-, M)
on C. Then the standard first-order optimality conditions yield the inclusion

No(@hH1) 3 =), (441, X5) = =/ (@5H) = W@ OF + prh(a*)).

This immediately suggests \*T! := \F 4 pph(2¥*1) as the new estimate of the
Lagrange multiplier, which is often called the Hestenes—Powell multiplier update.

After the above procedure is completed, the penalty parameter is updated
based on a heuristic test. The most common option is to keep py if the constraint
violation has decreased sufficiently, and to increase it otherwise. We thus end up
with the following overall algorithm.

Algorithm 3.1 (Original method of multipliers). Let (z°,\°) € X x H, py > 0, let
v>1,7€(0,1), and set k := 0.

Step 1. If (z*, \¥) satisfies a suitable termination criterion: STOP.

Step 2. Compute an approximate solution 2¥*1 of the problem

.o . . k
minimize Lo, (x, A7), (3.3)

Step 3. Update the vector of multipliers to A**1 := \F 4 pph(2F+1).
Step 4. If ||h(z**1) || g < 7||h(2*)|| & holds, set pry1 := pi. Otherwise, set ppy1 =

YPk-
Step 5. Set k <+ k+ 1 and go to Step 1.

3.2. Inequality Constraints and Slack Variables

Having established the classical multiplier method for equality-constrained problems,
we now outline how the algorithm can be extended to the inequality-constrained
case. To this end, we consider an optimization problem of the form (P), that is,

minirgize f(z) subject to G(z) € K,
e

where, as before, f: X - Rand G: X — Y are given mappings, and C C X and
K C Y nonempty closed convex sets. Moreover, H is a real Hilbert space with
i:Y < H densely, and K C H is a closed convex set with i~}(K) = K. In this
setting, we can restate (P) as the problem

(Py) minirgize f(z) subject to G(x) € K. (3.4)
zE

We can transform this problem into an equality-constrained problem by adding an
artificial variable s € IC, also called a slack variable. This results in the equality-
constrained problem

minimize f(z) subject to G(z) —s=0.

(z,s)€eCXK
In the context of the equality-constrained framework (3.1) from the previous section,
this essentially amounts to defining the mapping h : X xH — H, h(z, s) := G(z)—s.
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The new problem is now an equality-constrained optimization problem on the space
X x H, and its augmented Lagrangian in the sense of (3.2) is given by

Ly(@,5.0) = f(&) + (A hi, s)) + S b, ) [ (3.5)

In order to transform the augmented Lagrangian into a form where s is eliminated,
observe that we can rewrite L} as

L5(x,s )\)zf(x)—FHG(a:)—i—)\— 2 iy Ll
P ) ) 2 p H 2p

Taking into account the constraint s € K, we can now minimize this formula with

respect to s for each fixed x € X. Since s occurs only in the middle term, the result

involves, by definition, the squared distance function d3-.

(3.6)

Definition 3.2 (Augmented Lagrange function). For p > 0, the augmented Lagrange
function or augmented Lagrangian of (P) is the function

A A2
L,:XxH=R, Lyz,\):=f(z)+ ngK (G(w) + ) — Hgﬁ (3.7
P p
Before discussing some other observations and consequences of the slack vari-
able approach, we first give some general properties of the augmented Lagrangian.

Proposition 3.3. Let £, : X x H — R be the augmented Lagrangian (3.7). Then:

(a) L, is concave and continuously differentiable with respect to \.

(b) If f is convex and G is Koo-concave, then L, is convex with respect to x.
(c) If f and G are continuously differentiable, then L, is so with respect to x.
(d) If x € X is a feasible point, then L,(x,\) < f(z) for allz € X and A € H.

Proof. (a): The concavity follows from the fact that £,(z,-) is an infimum of affine
functions by (3.5), and the continuous differentiability follows from that of d,QC.

(b): This is a consequence of Theorem 2.10.

(¢): This follows again from the continuous differentiability of d..

(d): If G(z) € K, then di(G(x) + A/p) < ||Alla/p by the nonexpansiveness
of the distance function. Hence, £,(z,\) < f(z) + (p/2)[|1M|%/p* — M3/ (2p) =
f(o). O

Let us close this section by mentioning some byproducts of the slack variable
approach. For fixed A and p, the minimizing value of s in (3.6) is given by 3(z) :=
Pic(G(z) + A/ p). It follows that

A
hz,5(x)) = G(z) — Px (G(x) + p)' (3.8)
Recall that, in the original method of multipliers (Algorithm 3.1), the norm of
the equality constraint was used to determine whether the penalty parameter py
should be increased after a given iteration. The above calculations suggest that
(3.8) should be used to control py in the general case.
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Another byproduct of the slack variable technique is a natural candidate for
the Lagrange multiplier update. Assume that \¥ € H is a given estimate of the
Lagrange multiplier of (Pg), that p, > 0, and x**! is the next primal iterate
(typically, some kind of minimizer of £,, (-, A\¥)). Taking into account the update
rule in Algorithm 3.1, the next dual iterate is given by

/\k /\k
NAFL A peh(2P T 5(aFTY) = pp |G ) + — — P (G(:ﬁkH) + )}
Pk Pk
This formula will play a fundamental role in the subsequent algorithms. Note that
the above updating scheme can also be motivated (in the differentiable case) by
looking at the stationarity condition of £,, (-, A\F), evaluated in z**1.

3.3. The Algorithm

This section presents the main algorithmic framework for the remainder of this
paper. It is based on the method of multipliers from Section 3.1 and the slack
variable transformation from Section 3.2, but it differs from the original multiplier
method in one key aspect: the use of a safeguarded multiplier sequence. This will
be the main tool to obtain much sharper (global) convergence assertions than those
which are possible for the traditional algorithm.

Recall that we are dealing with a problem of the form (P), that we are working
in the Gel'fand triple framework (1.2), and that C C H is a nonempty closed convex
set with i~!(K) = K. The algorithm now proceeds by augmenting the constraint
G(z) € K in the space H. This means that, in a sense, we are not really attempting
to solve (P) but the transformed problem (Pg). Nevertheless, we will see that
many convergence properties of the augmented Lagrangian method can be stated
accurately in terms of (P) (using, for instance, constraint qualifications for that
problem).

For the precise specification of the method below, we will need a means of
controlling the penalty parameter p. Motivated by (3.8), it is natural to use the
function

V(z,\ p) = HG(Q:) — Py (G(x) + 2) (3.9)

HH 7
which can be seen as a composite measure of feasibility and complementarity at
the current iterates. Using this function, the augmented Lagrangian method can
be given as follows.

Algorithm 3.4 (ALM for constrained optimization). Let (z°,\°) € X x H, pg > 0,
let B C H be a nonempty bounded set, v > 1, 7 € (0,1), and set k := 0.

Step 1. If (z¥, \¥) satisfies a suitable termination criterion: STOP.

Step 2. Choose w¥ € B and compute an approximate solution z**! of the problem

L. k
mlgueréuzeljpk (x,w"). (3.10)
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Step 3. Update the vector of multipliers to

k k
Nt = o [G(x’“‘l) + Pxc (G(m’“‘l) + w)] . (3.11)
Pk Pk

Step 4. Let Vjyq := V(21 w", pi) and set

{pk, ifk=0or Vi1 <7V,
Pk+1 =

3.12
Ypr, otherwise. ( )

Step 5. Set k < k+ 1 and go to Step 1.

Some remarks are in order. First among them is the fact that we have not
specified what constitutes an “approximate solution” in Step 2. There are multiple
options in this regard. For instance, we could require that z**! is an (approximate)
global minimizer of £,, (-, w*). This is probably the simplest assumption from a
theoretical point of view, but it is effectively restricted to problems where some
form of convexity is present. On the other hand, we could also require that 2**1 is
some kind of approximate stationary point of (3.10). This is more realistic in the
nonconvex case, but it is also more intricate to deal with in theoretical terms. We
will analyze both these approaches individually in the subsequent sections.

In practical terms, the augmented subproblems are typically solved by applying
an appropriate generalized Newton method. The necessity for such methods stems
from the fact that the augmented Lagrangian is once but in general not twice
continuously differentiable with respect to x.

The second remark pertains to the sequence {w*}, which will occasionally
be referred to as the safequarded (Lagrange) multiplier sequence. The presence of
w® can be seen as the distinctive feature of the algorithm, and it separates the
method from traditional augmented Lagrangian schemes. Indeed, in Algorithm 3.4,
we use w® in certain places where conventional algorithms simply use A\*. The
main motivation is that w” is always a bounded sequence (it is specifically required
to be so0), and this is the main ingredient to obtain sharper global convergence
results. As a consequence, the above algorithm has strictly stronger convergence
properties than its traditional counterpart. An actual example demonstrating this
fact is somewhat involved and given in [47], see also the discussion at the end
of Section 4. Note that, despite the boundedness of {w*}, the sequence {\¥} in
Algorithm 3.4 can still be unbounded. The actual choice of w* allows for a certain
degree of freedom. For instance, we could always choose w* := 0, thus obtaining an
algorithm which is essentially a quadratic penalty method. In practice, it is usually
advantageous to keep w” as close as possible to ¥, for instance, by choosing the
set B as a simple but large bounded set, and taking

w® := Pp(\¥)
for all k. This choice has the advantage that, if the sequence {\*} is indeed bounded
and the set B is large enough, then we can expect to have w¥ = A for all k. On

the other hand, if {\*} is unbounded, then the safeguarding scheme will prevent
w” from escaping to infinity.
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Finally, let us remark that the penalty updating scheme in (3.12) makes
a distinction between the cases k¥ = 0 and k& > 1. This is because the value
Vy is formally undefined since we do not have w~! and p_;. In practice, it is
often beneficial to treat this initial step differently, for instance, by simply setting
w™! = wY, p_1 := po, and performing the penalty update in the same way as
for k£ > 1. In any case, the treatment of this initial step has no impact on the
convergence theory. The nature of the multiplier update allows us to state two

assertions which hold completely independently of 2%+, cf. [50].

Lemma 3.5. We have \¥ € K2 for all k. Moreover, there is a null sequence
{ri} C Ry such that (\*,y — G(z*)) <1y, for ally € K and k € N.

Remark 3.6 (Cone constraints). If the set K is a closed convex cone, then the

multiplier update (3.11) in Algorithm simplifies to A*1 = Pco (w* + pr.G(2F1)).
This follows immediately from the Moreau decomposition, cf. Lemma 2.3.

Remark 3.7 (Dual interpretation). The dual update of the classical augmented
Lagrangian is known to be equivalent to the proximal-point iteration applied to the
dual optimization problem. A similar interpretation is possible for the safeguarded
augmented Lagrangian where the dual update can be seen as a shifted Tikhonov
regularization method, see [48] for more details.

Remark 3.8 (Nonlinear programs). Consider the nonlinear program
min f(z) s.t. h(z) =0, g(x) <0

with continuously differentiable functions f, g;,h; : R™ — R for all components
i=1,...,mand j =1,...,p. This nonlinear program can be viewed as a special
case of our general framework (P) by taking (e.g.)

X =R",C=R",G := (Z),K = {0} x (—o00,0]™.

In this case, writing A =: (u,n) for the multipliers of the equality and inequality
constraints, the squared distance function is given by

dx- (G(x) + Z) = zp: (hj(x) + %)2 + zm:maxz{O,gi(x) + %}

Plugging this into the definition of the augmented Lagrangian, an elementary
calculation shows that this function simplifies to

£yl 1.0) = £@) + S+ 5h(@) + 53 [max® {00+ poi(a)} = 2],
=1

which is the usual augmented Lagrangian for nonlinear programs with equality and
inequality constraints.

Remark 3.9 (Simplified augmented Lagrangian). In each iteration, Algorithm 3.4
minimizes the augmented Lagrangian with respect to z, for fixed w”. Since this



Safeguarded Augmented Lagrangian Methods in Banach Spaces 15

minimization procedure does not depend on the last term of our augmented
Lagrangian, we would obtain the same sequence using the simplified Lagrangian

A
fla) + Lz (G(a;) + )
2 p
In fact, this is precisely the augmented Lagrangian used in [52]. On the other
hand, this simplification changes the dual point of view completely and also gives
a different function for finite-dimensional nonlinear programs, cf. Remarks 3.7 and
3.8.

Remark 3.10 (Moreau-Yosida regularization). Algorithm 3.4 allows to take {w*}
as the null sequence. This choice corresponds to the classical quadratic penalty
approach and is better known under the name Moreau-Yosida regularization in
the current context, cf. [34, 35]. The multiplier update in the Moreau-Yosida
regularization usually allows a shift. In any case, the subsequent convergence theory
also covers this (shifted) Moreau-Yosida regularization.

4. Global Convergence Theory

In this section, we present the global convergence characteristics of Algorithm 3.4.
To this end, we first establish a result regarding the existence of solutions of
the penalized subproblems in Section 4.1. The next two sections consider the
convergence to global minimizers and stationary points, respectively, depending on
the degree by which we solve the penalized subproblems. The results are taken from
the recent paper [15] and can be viewed as improvements from those presented in
[52] where suitable feasibility and stationarity results were shown for strong limit
points.

4.1. Existence of Penalized Solutions

In most situations, the augmented Lagrangian £,(-,w) is bounded from below on
C. This is satisfied, in particular, if f itself is already bounded from below on
C, or if, roughly speaking, the penalty parameter is sufficiently large to make £,
coercive on the infeasible set. In any case, if £,(-,w) is bounded from below on
C, then the augmented subproblems necessarily admit approximate minimizers.
In the following, & € C is called an e-minimizer of a function L : X — R on C'if
L(z) < L(x)+eforalzeC.

Proposition 4.1. Let w € H, p > 0, and assume that the augmented Lagrangian
L,(-,w) is bounded from below on C. Then the following assertions hold:
(a) For any e > 0, there is an e-minimizer x. € C of L,(-,w) on C.
(b) If the functions f and G are continuously differentiable, then we can choose
Te so that it additionally satisfies dist(—E,’D(a:E, w), No(x:)) < e'/2.

Proof. The first assertion follows from the lower boundedness assumption. The
second property is a consequence of Ekeland’s variational principle. O
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We now discuss the existence of exact minimizers. The main proof technique
is the direct method of the calculus of variations. For this, we need an appropriate
kind of lower semicontinuity of the augmented Lagrangian. The following lemma
provides two sufficient conditions for this property.

Lemma 4.2. Assume that [ is weakly sequentially lsc and G is either (i) continuous
and Koo-concave, or (i) weakly sequentially continuous. Then, for each p > 0 and
w € H, the augmented Lagrangian L,(-,w) is weakly sequentially lsc on X.

Proof. Let w € H and p > 0. It suffices to verify the weak sequential lower
semicontinuity of the function h(x) := dz(G(z) + w/p). Observe that di is weakly
sequentially lsc by Proposition 2.8. Hence, under (ii), we immediately obtain the
same for h.

Consider now (i). In that case, the function h is convex (by Theorem 2.10)
and continuous, thus again weakly sequentially lsc by Proposition 2.8. (|

The weak sequential lower semicontinuity of the augmented Lagrangian yields
the existence of penalized solutions if we assume either the weak compactness of
the set C or an appropriate growth condition. We say that a function J : X — R
is coercive if J(z*) — +o0o whenever {z¥} C X and ||z*||x — +o0.

Corollary 4.3. Let w € H, p > 0, and let one of the conditions in Lemma 4.2 be
satisfied. If either (i) C is weakly compact, or (i) X is reflexive and L,(-,w) is
coercive, then the problem mingec L,(x,w) admits a global minimizer.

Clearly, a sufficient condition for the coercivity of the augmented Lagrangian
is that of the objective function f. Even if this property does not hold, then it is
common for £,(-,w) to be coercive if, roughly speaking, the objective function is
coercive on the feasible set ® and not too badly behaved outside of it. In that case,
the penalty term in (3.7) yields the coercivity of £,(-,w) on the complement of ®.

4.2. Convergence to Global Minimizers

In this section, we analyze the convergence properties of Algorithm 3.4 under the
assumption that we can solve the subproblems in an (essentially) global sense.
This is of course a rather restrictive requirement and can, in general, only be
expected under certain convexity assumptions. However, the resulting theory is
still appealing due to its simplicity. Indeed, the results below merely require some
rather mild form of continuity (no differentiability), and can easily be extended to
the case where the function f is extended-valued, i.e., it is allowed to take on the
value +oc0.

Assumption 4.4 (Global minimization). We assume that f and di o G are weakly
sequentially Isc on C and that z* € C for all k. Moreover, for every x € C, there is
a null sequence {¢;} C R such that £,, (zFT1 w*) < L, (z,w") + g1 for all k.

Recall that, for convex functions, weak sequential lower semicontinuity is
implied by ordinary continuity. Thus, if f is a continuous convex function, then f
is weakly sequentially Isc.
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A similar comment applies to the weak sequential lower semicontinuity of
the function dx o G. Indeed, there are two rather general situations in which
this condition is satisfied: if G is weakly sequentially continuous, then dyx o G is
weakly sequentially lsc since dx is so by Proposition 2.8. On the other hand, if
G is continuous and K,.-concave in the sense of Definition 2.9, then di o G is a
continuous convex function (by Theorem 2.10) and thus again weakly sequentially
Isc. Let us also remark that, if G is continuous and affine, then both the above
cases apply.

Finally, another salient feature of Assumption 4.4 is the dependence of the
sequence {ej} on the comparison point « € C'. The motivation behind this is that,
if (P) is a smooth convex problem and the point x**! is “nearly stationary” in the
sense that dist(—£), (", w*), No(z**1)) < 6 for some (small) 6 > 0, then, by
convexity, we obtain an estimate of the form

Loy, (z, wk) > Ly, (xk—Ha wk) + Llpk (xk—Ha wk)(x - xk_‘—l)
> L, (2" wh) = 8l — x| x.

This suggests that we should allow the sequence {e;} in Assumption 4.4 to depend
on the point z. In any case, the stated assumption is satisfied automatically if z%+1
is a global )4 1-minimizer of £,, (-, w*) for some null sequence {e}}.

We now turn to the convergence analysis of Algorithm 3.4 under Assump-
tion 4.4. The theory is divided into separate analyses of feasibility and optimality.
Since the augmented Lagrangian method is, at its heart, a penalty-type algorithm,
the attainment of feasibility is particularly important for the success of the algo-
rithm. A closer look at the definition of the augmented Lagrangian suggests that, if
p is large, then the minimization of £, essentially reduces to that of the infeasibility
measure dz(G(x)). Hence, we can expect (weak) limit points of the sequence {z*}
to be minimizers of this auxiliary function, which means that, roughly speaking,
these points are “as feasible as possible”. A precise statement of this assertion can
be found in the following lemma.

Lemma 4.5. Let {z*} be generated by Algorithm 3.4, let Assumption 4.4 hold, and
let T be a weak limit point of {x*}. Then T is a global minimizer of the function
dic oG on C. In particular, if the feasible set of (P) is nonempty, then T is feasible.

Let us now turn to the optimality part.

Theorem 4.6. Let {x*} be generated by Algorithm 3.4, let Assumption 4.4 hold, and
assume that the feasible set of (P) is nonempty. Then limsup,_, . f(x**1) < f(x)

for every x € ®. Moreover, every weak limit point of {z*} is a global solution of
(P).

If the problem is convex with strongly convex objective, then it is possible to
considerably strengthen the results of the previous theorem. Recall that, in this
case, the weak sequential lower semicontinuity of f from Assumption 4.4 is implied
by (ordinary) continuity. Recall also that a sufficient condition for the convexity
of the feasible set ® is the K, ,-concavity of G. Moreover, if G is K..-concave,
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then the distance function di o G is convex, and thus the weak sequential lower
semicontinuity from Assumption 4.4 is implied by (ordinary) continuity of G.

Corollary 4.7. Let {x*} be generated by Algorithm 3.4 and let Assumption 4.4 hold.
Assume that X is reflexive, f is strongly convex on C, and the feasible set of (P) is
nonempty and convex. Then {x*} converges strongly to the unique solution of (P).

4.3. Stationarity of Limit Points

The theory on global minimization in the preceding section is certainly appealing
from a theoretical point of view. However, the practical relevance of the corre-
sponding results is essentially limited to problems where some form of convexity
is present. It therefore seems natural to conduct a dedicated analysis for the
augmented Lagrangian method which, instead of global minimization, takes into
account suitable stationary concepts.

The present section is dedicated to precisely this approach. To that end,
we assume that the functions defining the optimization problem are continuously
differentiable and that we are able to compute local minimizers or stationary points
of the subproblems (3.10) which occur in the algorithm. Recall that the first-order
optimality conditions of these problems are given by

—L), (z,w") € No ().

Similarly to the previous section, we will allow for certain inexactness terms.
A natural way of doing this is by considering the inexact first-order optimality
condition

ghtl — £,’,)k (z,w") € Ne(z),

where €1 € X* is an error term. For k — oo, the degree of inexactness should
vanish in the sense that ¥ — 0. Hence, we arrive at the following assumption.

Assumption 4.8 (Convergence to KKT points). We assume that

(i) f and G are continuously differentiable on X,

(ii) the derivative f’ is bounded and pseudomonotone,

(iii) G and G’ are completely continuous on C, and

(iv) 2"t € C and eF*! — L) (21, wh) € Neo(2FH1) for all k, where ¥ — 0.

Recall that £, is continuously differentiable by Proposition 3.3. The derivative

L, (with respect to z) is given by

E E
£yt = ) + G |60+ = (G + )| )
Pk Pk
In particular, it holds that £/, (F 1 wk) = £/ (k1 \FHL).
As in the previous section, we treat the questions of feasibility and optimality
in a separate manner. For the feasibility part, we relate the augmented Lagrangian
to the infeasibility measure d3 o G.
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Lemma 4.9. Let {z*} be generated by Algorithm 3.4 under Assumption 4.8, and
let T be a weak limit point of {x*}. Then T is a stationary point of the problem
mingec dz-(G(z)).

The above lemma indicates that weak limit points of the sequence {z*} have
a strong tendency to be feasible points. Apart from the heuristic appeal of the
result, there are several nontrivial cases where Lemma 4.9 automatically implies
the feasibility of the limit point Z. Here, two cases in particular deserve a special
mention: first, let us assume that the mapping G is K,-concave in the sense of
Definition 2.9 (for instance, G could be affine). In this case, the function dz o G is
convex by Theorem 2.10, and it follows that Z is a global minimizer of this function.
Hence, if the feasible set ® is nonempty, then z € ®. The second interesting case
arises if the point T satisfies the extended Robinson constraint qualification from
Definition 2.16. In this case, the feasibility of Z follows from Proposition 2.17.

We now analyze the optimality properties of limit points. The main result in
this direction is the following.

Theorem 4.10. Let {(z*, \¥)} be generated by Algorithm 3.4 under Assumption 4.8,
let 1 —~; & for some index set I C N, and let T satisfy ERCQ with respect to
the constraint system of (P). Then T is a stationary point of (P), the sequence
{NFH1) et is bounded in Y*, and each of its weak-* limit points belongs to A(T).

Observe that the sequence {\¥} is only bounded in Y* and not necessarily in
H. If the extended RCQ holds with respect to the transformed constraint G(z) € K
(instead of the original condition G(x) € K), then the result remains true with Y*
replaced by H. However, this assumption is too restrictive for many applications,
in particular those where (P) is regular (in the constraint qualification sense) with
respect to the original space Y, but not with respect to the larger space H.

Remark 4.11. If we know from the specific problem structure or from some other
convergence result (e.g., Corollary 4.7) that the sequence {x*} or one of its subse-
quences is strongly convergent, then we can dispense with the pseudomonotonicity
and complete continuity assumptions. In this case, the assertions of Lemma 4.9
and Theorem 4.10 remain true under Assumption 4.8 (i) and (iv) only.

We now return to the general case and provide two additional results which
can be useful to obtain convergence in certain special cases. First, let us consider
the case of convex constraints. The resulting theorem requires neither the complete
continuity of G or G’ nor any constraint qualification.

Proposition 4.12. Let {x*} be generated by Algorithm 3.4, let Assumption 4.8 (i),
(ii), (iv) hold, let G be Koo-concave on C, and assume that ® is nonempty. Then
every weak limit point T of {x*} satisfies € ® and f'(z)d > 0 for all d € To(Z).

Proof. Let ¢! —; z for some subset I C N. The feasibility of z follows from
Lemma 4.9 and the discussion below. For the optimality, let y € ® be any feasible
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point. Then (£, ("1, wk),y — zb+1) > (eF+1, y — 2*1) by Assumption 4.8 and,
using £, (a1 wktl) = £/(zFT1 A1) we obtain

<€k+17y _ mk+1> S <fl(1,k+1) + G/(karl)*/\kJrl,y _ Ik+1>
— <fl(xk+1)’y _ Ik+1> + (/\k+1,G/(xk+1)(y _ xk+1))
< (f1@ )y — 2+ (WL G(y) - GEtY),

where we used the fact that x — (A**! G(z)) is convex by Theorem 2.10 and
Lemma 3.5. Using again Lemma 3.5, we now obtain (f/(z¥*1), y—xF+1) > (ek+1 ¢
2*1) + 74y with a null sequence {r;} C R. Since # € ®, we obtain in particular
that lim infy,_, oo (f'(2¥), Z—2*) > 0. The pseudomonotonicity of f’ therefore implies
that

(f'(@),y — z) > limsup (f'(z"),y —2") >0 Vyed,

k—o0

and the proof is complete. O

Another special case arises if C = X and the operator G’(Z) is surjective,
where 7 is again a weak limit point of the sequence {z*}. If we already know (e.g., by
Proposition 4.12) that Z is a stationary point of (P), then it is possible to prove the
weak-* convergence of a subsequence of {\*} under weaker assumptions than those
in Theorem 4.10. Indeed, it is possible to obtain a convergence result for asymptotic
KKT sequences under only the convergence G'(z*) — G(x), with no convergence of
the values G(z*). We will see later that this is crucial for obtaining convergence for
Bratu’s obstacle problem, see Section 6.2, where G: H}(Q) — H}(Q), G(z) := 2—1),
with ¢ € H}(2). In particular, G is obviously not completely continuous, but for
oF — 7 it holds G’(2*) — G’(Z). We need the following auxiliary results. The first
theorem is a slightly more general version of the Banach open mapping theorem.

Theorem 4.13 (Uniform open mapping theorem). Let XY be real Banach spaces
and A € L(X,Y) a surjective linear operator. Then there exists r > 0 such that
BY C A(B{") and, whenever T € L(X,Y) and § := ||[T — Al p(x,y) < 7, then
BY 5 CT(BY).

Proof. The first assertion is the Banach open mapping theorem. For the proof of
the second assertion, we refer the reader to [25, Thm. 1.2] or [26, Thm. 5D.2|. O

The second theorem states a convergence result for asymptotic KKT sequences
under only the convergence G’(z*) — G'(z), with no convergence of the values
G(x*). We state this result in a slightly more general framework.

Proposition 4.14. Let {z*} C X, {T};} € L(X,Y), and {\*} C Y* be sequences
such that F(z®) + Ty \F —* 0. Assume that z% — % for some € X, F(aF) —*
F(z), Ty — T for someT € L(X,Y), and that T is surjective. Then {\F} converges
weak-* in Y™ to the unique solution of F(Z)+T*A = 0.

Proof. We first show that {\*} is weak-* convergent. Let § € Y be an arbitrary
point. It suffices to show that (\¥,) is convergent. Let 7 > 0 be as in the uniform
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version of the Banach open mapping theorem (Theorem 4.13), so that BY C T(B;Y).
Assume, without loss of generality, that § € BY, and let 1 € BiX be a point such
that Tw = §. Set 0% := [Tk — T|lz(x,v), and let k be sufficiently large so that
8k < 7. Then ||§ — Tyw|ly < 6 and, by Theorem 4.13, there are points d* € X

such that Tpd* = § — T and

")l x <

19— Tedlly _ ok

r— 0k =0k
= + d*. Then w* — @ and Tw* = ¢ by definition. Hence,

0 (F(a") + TpAF, wh) = (F(2), ) + o(1) + (AF, §).
Thus, we obtain (\*, §) — —(F(Z),). Since § € Y was arbitrary, this implies that
{A\*} is weak-* convergent in Y*.

Let A denote the weak-* limit of {\*}. Using F(«*) + T3 A* —* 0, it follows

that F(Z) + T*X = 0, and A is unique since T* is injective. O

Define wk :

Proposition 4.15. Let {2*} be generated by Algorithm 3.4 and let x*+1 —; T for
some I CN and z € X. Assume that T is a stationary point of (P), that C = X,
1! is weak-* sequentially continuous, G' is completely continuous, and that G'(Z)
is surjective. Then {\**1}rcr converges weak-* to the unique element in A(Z).

Proof. Recall that £ (zFt1,wF) = £'(zF+1, A*1). Combining Assumption 4.4
and Lemma 3.5 we obtain the asymptotic conditions (for k > 1).

eb — L% \F) e No(2¥) and (\F,y — G(z¥) < Wy € K.
Hence, the result follows from Proposition 4.14. O

In the context of optimality properties, it is worthwhile to briefly discuss the
case of bounded penalty parameters. This is particularly interesting because any
assertion made under this assumption is a necessary condition for the boundedness
of {pr}. It turns out that no constraint qualifications are needed in the bounded
case, and the algorithm produces a Lagrange multiplier in H.

Corollary 4.16. Let {(z*,\F)} be generated by Algorithm 3.4, let Assumption 4.8
hold, and let T be a weak limit point of {x*}. If {px} remains bounded, then {\*}
has a bounded subsequence in H, and T satisfies the KKT conditions of (P) with a
multiplier in H.

The above result implies that {p;} can only remain bounded if (P) admits a
multiplier in H.

We close this section by noting that the nice global convergence properties
of the safeguarded augmented Lagrangian method do not hold for the classical
augmented Lagrangian approach which is the main reason for the modification of
the updating rule of the multipliers. In fact, a counterexample in [47] shows that the
classical method may generate limit points which have no meaning from the point of
view of satisfying a suitable stationarity measure, whereas the safeguarded method
has the desired behaviour. The counterexample provided in [47] is one-dimensional
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and convex in the sense that its objective function is convex (even linear) and the
feasible set is also convex, though represented by a nonconvex function. The authors
are not aware of a “fully” convex counterexample where the objective function and
the inequality constraints are all convex, and the equality constraints are linear.
This leads to the following open problem.

Open Problem 4.17. Are the global convergence properties of the classical aug-
mented Lagrangian method identical (or very similar) to the safeguarded Lagrangian
method for fully convex problems?

5. Local Convergence

Here we discuss the local convergence properties of Algorithm 3.4. We first discuss
in Section 5.1 the existence of local minima and the (strong!) convergence of
such minima. These properties are based on a second-order sufficiency condition,
whereas constraint qualifications are not required. This is interesting since it
allows applications of our results to problems with a complicated structure of
the feasible set. Additional conditions are necessary, however, in order to verify
rate-of-convergence results, see Section 5.2. The results from this section are taken
from the recent papers [15,49].

5.1. Existence of Local Minima und Strong Convergence

Before we formulate the second-order sufficiency condition, we note that, as with
constraint qualifications and KKT conditions, second-order conditions for (P) can
be formulated either with respect to Y or H. In this section, to avoid unnecessary
notational overhead, we will simply formulate the second-order condition and its
consequences with respect to Y. The results below all remain true when Y is
replaced by H (note that the choice Y := H is even admissible in our framework).

Let (Z,A) € X x Y* be a KKT point of (P). Throughout this section, we
assume that f and G are twice continuously differentiable in a neighborhood of z.
Then consider, for n > 0, the extended critical cone

5 i b, F@asldlx,
)= {0 T (G e <ala | O

Note that C, depends on Z only. The following is the general form of a second-order
sufficient condition which we will use throughout this section.

Definition 5.1 (Second-order sufficient condition). We say that the second-order
sufficient condition (SOSC) holds in a KKT point (Z,\) € X x Y* of (P) if there
are 7, ¢ > 0 such that

£z, 0)(d,d) > |||} for all d € C, (7).

As mentioned before, the extended critical cone and SOSC can also be
formulated with respect to K and H for KKT pairs (z,7) € X x H.
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The above should be considered the “basic” second order condition which
can be stated without any assumptions on the specific structure of (P). For many
problem classes, it is possible to state more refined second-order conditions which
are either equivalent to Definition 5.1 or turn out to have similar implications.
Some information in this direction can be found, for instance, in [14, Section 3.3].

It turns out that SOSC implies the existence of local minimizers of the
penalized subproblems in Algorithm 3.4 as well as strong convergence of the
corresponding iterates. Our approach is motivated by a recent analysis in [27]
for finite-dimensional nonlinear programming. Here, we extend the corresponding
results to our general setting from (P) and show the existence of minimizers using
only the proximity of 2 to Z, whereas no assumption regarding the proximity of
the multipliers A* is required.

As a first step in the local convergence analysis, we consider a local minimizer
of (P) and ask whether the augmented Lagrangian admits local minimizers near this
point. As we shall see, the answer to this question is closely linked to the fulfillment
of second-order sufficient conditions (SOSC) of the form given in Definition 5.1.
When using the second-order condition, special care needs to be taken because the
embedding Y — H allows us to interpret the constraint in (P) either in Y or in H.
We have already seen that this makes a strong difference for constraint qualifications,
and the situation for SOSC is quite similar. The second-order condition in H, for
instance, requires the existence of Lagrange multipliers in H, which in itself is
already a restriction. Nevertheless, this is in a sense the more “natural” second-
order condition for the augmented Lagrangian method since the augmentation is
performed in H. Thus, for the most part of this section (with the exception of
Proposition 5.4), we will make the following assumption.

Assumption 5.2 (Local convergence). There is a KKT point (Z,)) € X x H of (P)
which satisfies the SOSC from Definition 5.1 with respect to the space H.

This assumption yields the following local existence and (strong) convergence
result.

Theorem 5.3. Let Assumption 5.2 hold and let B C H be a bounded set. Then
there are p,&,1r > 0 such that, for allw € B, p > p, and € € (0,&), there is a point
r=2x,.(w) € C with ||z — Z||x <r and the following properties:

(i) x is an e-minimizer of L,(-,w) on B,(z) N C,
(it) = satisfies dist(—L)(z, w), Ne(z)) < e'/?, and
(i11) © =x,.(w) = T uniformly on B as p — oo and € — 0.

If X is reflexive and the augmented Lagrangian £,(-, w) is weakly sequentially
Isc, then the assertions of the above theorem remain valid if we replace the e-
minimizers by exact minimizers. In this case, we obtain points = x,(w) which
satisfy (i) and (ii) with ¢ := 0 and which converge to Z uniformly on B as p — oo.
Sufficient conditions for the weak sequential lower semicontinuity of £, (-, w) were
given in Lemma 4.2.
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If the mapping G is completely continuous, then it is possible to prove a
similar result under the second-order sufficient condition with respect to the space
Y. This result is a generalization of a theorem from [53].

Proposition 5.4. Let (z,\) € X x Y* be a KKT point of (P) which satisfies SOSC
with respect to the space Y, and B C H a bounded set. Assume that

(i) the space X is reflexive,

(i1) [ is weakly sequentially lsc on X, and
(i) G is completely continuous from X into Y.

Then there are p,r > 0 such that, for every w € B and p > p, the problem
mingec £,(z, w) admits a local minimizer x = z,(w) in B () NC, and z, — T
uniformly on B as p — co.

5.2. Rate of Convergence

We are now in a position to discuss the convergence of Algorithm 3.4 from a
quantitative point of view. Throughout this section, we assume that the space X
is a real Hilbert space, that there is a local minimizer Z € X of (P) with a unique
Lagrange multiplier A € H, and that the following local error bound condition

10z, ) < ||z —Z||x + [|A = M|z < c20(z, \) (5.2)

holds for all (z,A\) € X x H with x near T and O(z, \) sufficiently small, where ©
is the residual

O(z,A) = ||z — Po(z — L'(z, M) | x + [|G(x) — Pe(G(x) + Mlla-

The regularity assumptions mentioned above may seem rather stringent in view
of the Gel’fand triple framework Y < H < Y™*. Indeed, a sufficient condition
for the local error bound is a combination of the second-order sufficient condition
and the strict Robinson condition (SRC), both with respect to the space H. This
effectively rules out certain applications where the embedding Y < H is too weak,
but the underlying issue is that we simply cannot expect the results in this section
to hold if the constraint system of (P) is only regular with respect to the space
Y. This is also evidenced by the fact that the rate-of-convergence analysis will
enable us to prove the boundedness of the penalty sequence {py}, and this actually
implies the existence of a Lagrange multiplier in H under certain assumptions, see
Corollary 4.16 and the discussion after Corollary 5.8 below.

Despite these restrictions, the theory we develop here is still applicable to a fair
amount of nontrivial problems such as control-constrained optimal control, elliptic
parameter estimation problems, and of course optimization in finite dimensions.

Assumption 5.5 (Rate of convergence). We assume that

(i) X is a real Hilbert space with f and G continuously differentiable on X,

(i) (Z,A\) € X x H is a KKT point of (P) which satisfies the error bound (5.2),

(iii) the primal-dual sequence {(z*, \¥)} converges strongly to (z,)\) in X x H,

(iv) the safeguarded multiplier sequence satisfies w* := A* for k sufficiently large,
and
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(v) 2t e C and eF! — L (2% wk) € No(aF1) for all k, where eF — 0.

Two assumptions which may require some elaboration are (iii) and (iv).
Note that we already know, by Theorem 5.3, that the augmented Lagrangian
admits approximate local minimizers and stationary points in a neighborhood
of Z. We shall now see that, if the algorithm chooses these local minimizers
(or any other points sufficiently close to Z), then we automatically obtain the
convergence (z¥, \¥) — (Z, \) in X x H. In this case, the sequence {\*} is necessarily
bounded in H, so it is reasonable to assume that the safeguarded multipliers are
eventually chosen as w® = A*. The following result can therefore be considered as
(retrospective) justification for Assumption 5.5.

Proposition 5.6. Let Assumption 5.5 (i), (ii), (v) hold, and let RCQ hold in T
with respect to the space H. Then there exists v > 0 such that, if zF € B,(z) for
sufficiently large k, then ©(z*F, \F) — 0 and (2%, \F) — (%, \) strongly in X x H.

We will now state convergence rates for the primal-dual sequence {(z*, \¥)}.

Theorem 5.7. Let Assumption 5.5 hold and assume that e¥+1 = o(6},). Then:

(a) For every q € (0,1), there exists py > 0 such that, if p > py for sufficiently
large k, then (%, \F) — (7, \) Q-linearly in X x H with rate q.
(b) If pr, — oo, then (z¥,\F) — (z, ) Q-superlinearly in X x H.

The assumption e¥*1 = 0(6}) in the above theorem says that, roughly speaking,
the degree of inexactness should be small enough to not affect the rate of convergence.
Note that we are comparing £**! to the optimality measure 6 of the previous
iterates (x*, \¥). Hence, it is easy to ensure this condition in practice, for instance,
by always computing the next iterate z¥*! with a precision ||e¥*!||x < 2.0} for
some fixed null sequence zj.

Corollary 5.8. Let Assumption 5.5 hold and assume that the subproblems occurring
in Algorithm 3.4 are solved exactly, i.e., that € = 0 for all k. Then {py} remains
bounded.

The boundedness of {pi} obviously rules out the Q-superlinear convergence
of Theorem 5.7 (b). However, the former is usually considered more significant in
practice since it prevents the subproblems from becoming excessively ill-conditioned.

Remark 5.9. If inexact solutions are allowed for the augmented Lagrangian sub-
problems, then the boundedness of {py} requires a slightly modified updating rule
for the penalty parameter since the one used in Algorithm 3.4 does not take into
account the current measure of optimality. Indeed, if we replace the function V'
from (3.9) by
V(@A p) = V(@A p) + ||lz — Pe(z — L' (2, 1) x,

then it is possible to show that {pj} remains bounded under the assumptions of
Theorem 5.7. A proof for the case C = X can be found in [49], and the extension
to the general case is straightforward (see also [11,13]).
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Remark 5.10. In the case of finite-dimensional nonlinear programming, it is possible
to obtain similar rate of convergence results to those above under the second-order
sufficient condition only. In this case, one obtains that (z*, \¥) — (Z, \) Q-linearly
for some A € A(Z) which is not necessarily equal to A. This result can be found in
[27]. The reason why this is possible is that, for nonlinear programming, the set K
is polyhedral and, therefore, the second-order condition implies a local primal-dual
error bound without any constraint qualification.

Remark 5.11. A specification of the previous results in the Banach space set-
ting to nonlinear semi-definite programs, second-order cone programs and related
problems is given in [51]. Though these results were essentially obtained from
the general theory, the resulting convergence conditions may still be viewed as
generalizations of previous results known for semi-definite programs etc., cf. [73].
Though these problems are finite-dimensional, they have a non-polyhedral feasi-
ble set, hence SOSC-type conditions alone were not enough in order to establish
rate-of-convergence results.

6. Numerical Results

Since the safeguarded augmented Lagrangian method discussed in this paper is
identical to the one from the recent paper [15] and since that paper already presents
numerical results on a variety of different optimization problems, there is, formally,
no need to provide additional material here. For illustrative reasons, however, we
report some numerical results also in this paper using some other test examples.
The implementation of our numerical examples has been done with FEniCS [57]
using the DOLFIN [58] Python interface.

6.1. State-Constrained Optimal Control Problems

PDE-constrained optimal control problems describe a rather popular class of
optimization problems. For our numerical test we adapted a linear elliptic example
with known solution from [71] to the semilinear setting, see also [53].

Let Q := (—1,2)2. We aim at minimizing the objective function f: L?(Q) — R

1 «
Fw) = 31150~ yall3sca) + Gllel By (6.1)
subject to the pointwise inequality constraints
Su <1 in Q.

Here o > 0 is a positive parameter and y,; € L?(Q2), 1 € C(Q) are given functions.
The solution operator S: L*(2) — H(Q) N C(Q) maps the control u to the
state y := Swu, which is the uniquely determined weak solution of the underlying
semilinear partial differential equation

“Ay+y =u+f inQ,
y=20 on 012,
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where f € L?(Q). In this setting, the operator S is completely continuous [19,
Theorem 2.1] and Fréchet differentiable [19, Theorem 2.4]. We set

X :=IL*Q), C:=L*Q), Y:=C), Gu):=Su—7vy, K:=CQ)_
H:=1%(Q), K:=L*Q)_

where C(Q)_ denotes the closed convex cone of non-positive continuous functions
and L?(2)_ the non-positive functions in L?(Q2). Applying standard arguments we
obtain that problem (6.1) admits at least one solution, see for instance [38]. Let @
denote a local solution and let us assume that there exists @ € L?({) such that the
linearized Slater condition

Gu)+ G (w)(a—u) eint (C(Q)_) < Su+S@)(a—u)<yp—-ocinQ, c>0

is satisfied. Since the interior of C'(Q)_ is non-empty, the linearized Slater condition
is, for feasible points, equivalent to the Robinson constraint qualification [14, Lemma
2.99] and we obtain existence of a multiplier A € C (ﬁ)i Hence, A is an element of
the space of regular Borel measures C(€2)" = M(Q) [19, Theorem 3.1]. Introducing
the state y = Su and the adjoint state p € W,*(Q), s € (1,2) it is well-known
that first-order necessary optimality conditions for the original problem (6.1) are
given by

—Aj+y° =u+f inQ, —AP+57 =G —ya+ A inQ,
y=0 on 042, p=0 on 09,

p+au=0, (6.2)

- — % _
AeC(Q)_, (Ny— g>M(§)7C(§) =0.

The low regularity of A complicates the direct numerical solution of the optimal

control problem. However, by augmenting the objective function we eliminate the

state constraints from the set of explicit constraints. Due to our choice of K we

obtain di-(-) = ||(~)+Hi2(ﬂ), where (-), := max(0, ). Following Algorithm 3.4 we

have to solve a sequence of unconstrained subproblems of the type

k

win 7 + 2611 (56 = 0+ ) e (63)

u Pk / 4
Since these problems are control-constrained only, it is straightforward to show
existence of solutions and derive the corresponding optimality conditions [74,
Theorem 4.20]. However, due to the nonlinearity of the solution operator S, the
functional f is not convex. Accordingly, we can only expect to compute stationary
points of the augmented subproblems which are not necessarily local or global
minimizers. In order to apply our convergence results from Section 4.3, we need to
verify Assumption 4.8.

e The mapping G': X — L(X,Y) is completely continuous. In the present
setting, since X = L2?(Q) is reflexive and G'(u) € L(X,Y) is completely
continuous for all u, this is equivalent to the following property: whenever



28 C. Kanzow, V. Karl, D. Steck and D. Wachsmuth

uF = and h* — h in X, then G(u*)h* — G(u)h strongly in Y. A proof of
this statement (for the Neumann case) can be found in [53, Lem. 4.7].

e The mapping f': X — X* is bounded and pseudomonotone. Note that
f(w) == 8" (u)(S(u) — ya) + au for all u € X. The operators S and S’ are
completely continuous, hence bounded (since X is reflexive). This implies the
boundedness of f/. The pseudomonotonicity follows from the fact that the
first term in f’ is completely continuous and the second term is monotone
and continuous, see Lemma 2.12.

In this scenario, it follows from Theorem 4.10 that every weak limit point u* of
the sequence {u*} is a stationary point of the problem. Moreover, the corresponding
subsequence of multipliers {\*} converges weak-* in M () to a Lagrange multiplier
in u*.

For the sake of completeness let us state the optimality system of (6.3) that
has to be solved in every iteration of Algorithm 3.4. Let @* denote a local solution
of the subproblem (6.3) and §* € H(Q) N C(Q) the corresonding state y* := Su*.
Then, there exists an adjoint state p* € Hg(£2) such that the following system is
satisfied:

i
y* =0 on 99, PP =0 on 092,

P +au” =0, (6.4)
A= (" + pr(F" =)+

In this system, the approximation of the multiplier A\* enjoys a much stronger
regularity. In fact it is an L?(2)-function, which allows us to apply efficient solution
algorithms. We use the notation r := r(z1,z2) := \/x% + 33% with 21,29 € Q to set

FLf o oinQ, {—Apk+5yk4pk:yk—yd+)\k in Q,

T2 7"3 r
) = e (o =2+ T4 7). 0=z (- 5)
a(r) i= 5 —xocallogr +1% — %), alr) = a(r) ~ 55D
plr) 1= —a(r), £ = Fr) ~ i,
(1) = do(r),

where gj4(r) and f(r) are given auxiliary functions

2
Then, it can be show, that (7,4, p, ) is a KKT point of (6.1). We used the
parameters

a:=1, \°:=0, po:=1, Wnax := 10°, v:=10, 7:= 0.2,

- 1 - 1
ga(r) :=g(r) — ?Xrgl(‘l -9, f(r):= —8—”)(,,{1(4 — 9 4 4r? — 413).

and initialized our starting-points equal to zero. To obtain a sequence of safeguarded
multipliers {w"} we chose w* := min(A\¥, wyay). We solved the arising subproblem
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with a semismooth Newton method up to the precision 10~6. We stop the algorithm
as soon as || min{\¥, ¢ — y¥}||oc < 1076 was satisfied. The computed results can
be seen in Figure 1 and Figure 2 for 256 gridpoints per dimension.

018 7000
016
014

i b «m |
- .

008

FIGURE 1. (Example 1) Left: Computed discrete optimal state yj,
(transparent) with state constraint . Right: Lagrange Multiplier
Kh-

The L?(Q)-error of the computed solution (y, uy,) to the constructed solution
(y,u) in dependence of the degrees of freedom is shown on the right hand side of
Figure 2. Table 1 shows the iteration numbers of outer and inner iterations as well
as the final value of the penalty parameter p,,.x with respect to the number of grid
points per dimension.
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10t 102 10% 10* 10° 106
degrees of freedom

FIGURE 2. (Example 1) Left: Computed control uy. Right: Errors
|[un — t[|z2(0) and [|lyn — §l[r2(q) vs. dofs.
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n| 16 32 64 128 256

outer it. | 10 9 10 11 12
inner it. | 21 23 27 33 38
Pmax | 10> 105 107 107 108

TaBLE 1. (Example 1) Iteration numbers.

6.2. Bratu’s Obstacle Problem

Bratu’s obstacle problem is a non-quadratic, nonconvex problem, which is an
efficient tool to model nonlinear diffusion phenomena. Let 2 C R? be a bounded
domain. Bratu’s obstacle problem is given by the minimization problem

min  J(u) := HVuHQLz(Q) - a/ exp(—u(z)) dz s.t. u >, (6.5)
Q

ueH(Q)

where a > 0 is a positive parameter and ¢ € H}(Q) denotes the given, fixed
obstacle. To satisfy our general framework we set

X =Y :=H;(Q), C:=HjQ), Gu):=u—v, K:=H)Q);,
H:=1%(Q), K:=L*Q),.

Due to [52, Lemma 7.1] we know that J is well-defined, continuously Fréchet
differentiable and weakly sequentially lower semicontinuous from Hg(Q) into R. Due
to the constraint v > 1, the functional J is coercive on the feasible set. By standard
arguments we obtain existence of a solution @ € X. Moreover, the surjectivity of the
derivative G'(u) = Idx from X to Y implies the Robinson constraint qualification
and, hence, the existence of a unique Lagrange multiplier A € H}(Q)* = H=1(Q).
The corresponding KKT system is given by

J(@)+A=0
(A1 — V) a-1(@),mi @) =0, A€ (Ho(Q)4)

By definition of the polar cone we obtain that (X,u)H_l(Q%Hé(Q) < 0 for all

[e]

u € HY(Q) with u > 0. Since the objective function J is not convex, one can only
expect to compute stationary points of the augmented subproblems

in J(uk Pk k w* 2
min (u )+§|| u —1/J+p7 _||L2(Q)
which are not necessarily local or global solutions.

Lemma 6.1. If Q C R?, then the derivative J': H}(Q) — H~1(Q) is bounded and
pseudomonotone.

Proof. We split the objective function J(u) := Jy(u) — J2(u), where

Ji(u) = ||Vu||2L2(Q), Jo( oz/ exp(— dex.
Q
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The proof of [52, Lemma 7.1] shows that the integral term .J5 in the definition of J
is weakly sequentially continuous, uniformly differentiable on bounded subsets of
H}(Q), and J} is bounded on bounded subsets of H}(Q). It follows that J’ is also
a bounded operator. Since Jy is completely continuous and uniformly differentiable
on bounded subsets of X it follows that Jj is completely continuous [63] and in
particular pseudomontone. The monotonicity of —A yields that J] is monotone
(and continuous). Thus, J’ is pseudomonotone (Lemma 2.12). O

Due to Lemma 6.1 it follows from Proposition 4.12 that every weak limit
point u* of the sequence {u*} is a stationary point of the problem. Moreover, the
corresponding subsequence of multipliers A* converges weak-* in H () to the
unique Lagrange multiplier in u* (Proposition 4.15).

In particular, for a := 0, problem (6.5) is reduced to the very well known
obstacle problem. Opposed to Bratu’s problem this problems is linear quadratic
with a (strongly) convex objective function. The strong convexity of J not only
implies uniqueness of the solution of the obstacle problem and its corresponding
subproblem, it also implies that the primal sequence {u*} converges strongly to u
in X (Corollary 4.7) and the dual sequence {\*} converges weak-* in H~1(Q2) by
Theorem 4.10 (see Remark 4.11) or Proposition 4.15.

In order to test our example we chose the domain 2 := (0, 1)2. We implemented
the Bratu problem for the obstacle

3
P(xy,20) = Zqi exp (—500 ((931 — zi)2 + (zg — Zi)z)) -1,
i=1

where ¢ := (60, 80,60), z := (0.25,0.5,0.75). We chose the parameters
a:=2, \:=0, po:=1, wnin := —10°, v:=10, 7:=0.1,

and initialized our starting-points equal to zero. We obtain a sequence of safeguarded
multipliers {w*} by choosing w* := max(\*, wpi,). We solve the unconstrained
subproblems with a semismooth Newton method with the precision 1076 and stop
the algorithm as soon as || max{\¥, ¢ — u*}||o < 1076 is satisfied. The computed
results can be seen for 128 gridpoints per dimension in Figure 3 below. Further,
some iteration numbers are given in Table 2.

09 os oy e

FIGURE 3. (Example 2) Left: Computed discrete optimal solution
up, (transparent) with constraint ¢. Right: Lagrange multiplier pp,.



32 C. Kanzow, V. Karl, D. Steck and D. Wachsmuth

n| 16 32 64 128 256
outerit.| 9 9 12 12 13
innerit. | 14 17 25 32 34

pmax | 104 105 101 100 1010

TABLE 2. (Example 2) Iteration numbers.

6.3. C(Q)-Minimization
We consider an optimal control problem with an objective functional containing an
C(£2) norm term, namely
o 1 2 o
minimize —|ly — = + =|lu , 6.6
yEH (NC(Q), ueL2() 2y = valle@ + g llullzae (6.6)

where the state y has to satisfy the semilinear partial differential equation
—Ay+exply) =u+f inQ
dy =0 on 01,

where dy denotes the normal derivative of y on Q2 and f a function in L?(().
Functionals including an C(2) norm term are not differentiable and therefore
difficult to handle. We introduce the control-to-state mapping S: L*(Q) — H1(Q)N
C(€2), which maps the control u on the associated, uniquely determined, state
S :u — y [18, Theorem 3.1|. The original problem is now substituted by an
equivalent problem with a differentiable function given by
1 o
ZERgleirle(Q) fu,2):= 522 + §\|u||2LQ(Q) subject to  |Su—yq| <z.  (6.7)
Clearly, problem (6.7) is related to state-constrained optimal control problems.
However, now z is a free variable. Consequently, we aim at finding the smallest
z € R and u € L?(Q) such that the pointwise inequality constraints are satisfied
and the objective function f is minimized. Problems of this type have already been
investigated in [32,66]. Moreover, in [20] pointwise constraints on the state variable
on a specified subdomain of €2 under piecewise constant controls were investigated.
To satisfy our general framework we set = := (u,2) € L*(Q) x R, and

X =L*Q) xR, C:=L*Q) xR, Y:=0) xCHQ),
K:=CQ)_xC@Q),, H:=LQ) xR, K:=L*(Q)_xL*(Q);

as well as
([ Su—yq—=2
Glz) = (Su —ya+ z) '

This leads us again to a minimization problem of the type min, f(z) such
that G(x) € K. Like in Example 1, the solution operator S [18], and hence G,
is completely continuous and continuously Fréchet differentiable [74, Theorem
4.17]. Thus, we obtain by standard arguments the existence of an optimal solution
(y,u) € HY () x L?(Q) of (6.6). Hence, defining 2 := 19— yallo(m) we can conclude
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that (u, z) is a solution of (6.7). Let z := (u, z) € (L?(2) xR) denote a local solution.
Then it is easy to see that the Robinson constraint qualification is satisfied. Indeed,
the first line of the inclusion

0 € int [G(a, 2) + G'(a, %) (LQH(%Q_) ; “) ~ (K- x K+)]

can be written as
0 € int {(Sa —yqg—2) + S (@) (L*(Q) —a) — (R — %) — K_}

which is fulfilled as R+ K_ = C(f2). Then, there exist Lagrange multipliers A, Ao €
CQ)" = M(Q). Moreover, it is easy to see that A; + Xy € 8 (%H . Hé@)) (ST —ya),
where 0 denotes the convex subdifferential. It remains to verify Assumption
4.8. Following the same argumentation as in Example 1, we can deduce that
S'(u) € L(L*(Q),C(Q)) is completely continuous and, thus, G’ : X — L(X,Y)
is completely continuous. Further, the mapping f': X — X*, f'(z) = (au, 2)T is
bounded and by Lemma 2.12 pseudomonotone.

According to Algorithm 3.4, we have to solve the following unconstrained subprob-
lem in every iteration of the algorithm

Pk wy
minimize f(u®, %) + Z£|| (Suk —ya— 2"+ — 1720
uk 2k 2 Pk +

2 k
p w
Px /) _

Reintroducing the state y = Su and the adjoint state p € H'(Q2), we obtain
the corresponding optimality system by standard arguments

—AFF e =@+ f inQ ~AFF + e P =2+ M) i Q,
97" =0 on 9, op*F =0 on 99,
au” +p" =0, (6.8)

zh/A’H/A’;:o,
Q Q
where

A= (w4 (B —ya = )4, Ay = (w2 pR (5" - ya + 25))-
To test our example we took €2 := (0,1)2, set our starting-points equal to zero and
chose the parameters
a:=10"% AXN:=0, wna:=10"%, 4:=10, 7:=0.1.
Further, we chose y4 := 0 and f := 8sin(wx;) sin(mze) — 4, where (21, z2) € Q. We
solved the optimality system (6.8) with a semismooth Newton method with the
precision 1076 and stop the algorithm as soon as

[l min{AT, =Su® +ya + 2 }Hloo + || max{A3, —Su* + ya — 2*}{|oc <107
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is satisfied. Figure 4 and 5 depict the computed results for n = 128 gridpoints per
dimension. The corresponding optimal value of z has been computed as zZ = 6.7-1073.
Some iteration numbers are shown in Table 3.

n| 16 32 64 128
outer it. | 8 7 8 8
inner it. | 17 19 26 26

Pmax | 104 10° 105 106

TABLE 3. (Example 3) Iteration numbers.

° =~ e .

L

08

FIGURE 4. (Example 3) Computed discrete optimal state yy (left)
with optimal control uy, (right).

FIGURE 5. (Example 3) Computed discrete Lagrange multipliers
pha and pp 0.

7. Final Remarks

The previous survey shows that the safeguarded augmented Lagrangian approach
has a very strong global and local convergence theory which allows its application
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to a wide variety of different applications. The numerical results in this and
some related papers by the authors indicate that the approach also works quite
successfully from a numerical point of view. Nevertheless, there are plenty of
possible modifications which might be interesting to investigate. For example, in
finite dimensions, the augmented Lagrangian approach converges under much weaker
assumptions than the Robinson CQ, but these weaker assumptions currently do not
exist in Banach spaces simply because there is not counterpart of the corresponding
constraint qualifications in infinite dimensions. Another interesting generalization
might be a relaxation of the second order sufficiency condition which currently is
assumed to hold at a KKT point, but the existence of such a KKT point might be
too strong an assumption for some difficult classes of optimization problems like
mathematical programs of with complementarity constraints.
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