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Switching-constrained optimization problems form a difficult class of math-
ematical programs since their feasible set is almost disconnected while stan-
dard constraint qualifications are likely to fail at several feasible points. That
is why the application of standard methods from nonlinear programming does
not seem to be promising in order to solve such problems. In this paper, we
adapt the relaxation method from Kanzow and Schwartz (SIAM J. Optim.,
23(2):770-798, 2013) for the numerical treatment of mathematical programs
with complementarity constraints to the setting of switching-constrained op-
timization. It is shown that the proposed method computes M-stationary
points under mild assumptions. Furthermore, we comment on other possible
relaxation approaches which can be used to tackle mathematical programs
with switching constraints. As it turns out, adapted versions of Scholtes’
global relaxation scheme as well as the relaxation scheme of Steffensen and
Ulbrich only find W-stationary points of switching-constrained optimization
problems in general. Some computational experiments visualize the perfor-
mance of the proposed relaxation method.
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1 Introduction

This paper is dedicated to so-called mathematical programs with switching constraints,
MPSCs for short. These are optimization problems of the form

f(x) — min
9i(z) <0, i.E M, (MPSC)
hj<l“) = 0, J € P,

Gl(m)Hl(:r) = 0, l e Q,

where M :={1,...,m}, P:={1,...,p}, Q:={1,...,q} are index sets and the functions
fs9i,hj, Gi, Hi: R™ — R are continuously differentiable for all . € M, j € P, and [ € Q.
For brevity, g: R® - R™ h: R" - RP, G: R" — RY, and H: R" — R? are the mappings
which possess the component functions g; (i € M), h; (j € P), G; (I € Q), and H,
(I € Q), respectively. The last g constraints in (MPSC) force G;(z) or H;(z) to be zero
for all [ € Q, which gives rise to the terminology “switching constraints”.

Switching structures appear frequently in the context of optimal control, see Clason
et al. [2017], Gugat [2008], Hante and Sager [2013], Liberzon [2003], Seidman [2013],
Wang and Yan [2015], Zuazua [2011], and the references therein, or as a reformulation
of so-called either-or constraints, see [Mehlitz, 2018, Section 7]. Naturally, (MPSC) is
related to other problem classes from disjunctive programiming such as mathematical pro-
grams with complementarity constraints, MPCCs for short, see Luo et al. [1996], Outrata
et al. [1998], or mathematical programs with vanishing constraints, MPVCs for short, see
Achtziger and Kanzow [2008], Hoheisel and Kanzow [2008]. Indeed, similarly to MPCCs
and MPVCs, standard constraint qualifications are likely to be violated at the feasible
points of (MPSC). Recently, stationarity conditions and constraint qualifications for
(MPSC) were introduced in Mehlitz [2018].

Here, we focus on the computational treatment of (MPSC). Clearly, standard methods
from nonlinear programming may run into difficulties when applied to (MPSC) due to
two reasons: first, the feasible set of (MPSC) is likely to be disconnected or at least
almost disconnected. Secondly, standard regularity conditions like the Mangasarian—
Fromovitz constraint qualification, MFCQ for short, are likely to fail at the feasible
points of (MPSC) under mild assumptions, see [Mehlitz, 2018, Lemma 4.1]. Similar
issues appear in the context of MPCCs and MPVCs where several different relaxation
schemes were introduced to overcome these shortcomings, see Hoheisel et al. [2012, 2013]
and the references therein. Basically, the idea is to relax the irreqular constraints using
a relaxation parameter such that the resulting surrogate problems are (regular) standard
nonlinear problems which can be tackled by common methods. The relaxation parameter
is then iteratively reduced to zero and, in each iteration, a Karush—-Kuhn—Tucker (KKT)
point of the surrogate problem is computed. Ideally, the resulting sequence possesses a
limit point and, under some problem-tailored constraint qualification, this point satisfies
a suitable stationarity condition. Furthermore, it is desirable that the relaxed problems
satisfy standard constraint qualifications in a neighborhood of the limit point under
reasonable assumptions.



In this paper, we show that the relaxation scheme from Kanzow and Schwartz [2013],
which was designed for the numerical investigation of MPCCs, can be adapted for the
computational treatment of (MPSC). Particularly, it will be shown that the modified
method can be used to find M-stationary points of (MPSC). By means of examples it
is demonstrated that other relaxation methods which are well known from the theory
of MPCCs only yield W-stationary points of (MPSC). We present the results of some
numerical experiments which show the performance of the proposed method.

The remaining part of the paper is structured as follows. In Section 2, we describe
the general notation used throughout the paper and recall some fundamental theory on
nonlinear programming and switching constraints. Section 3 is dedicated to the main
relaxation approach and contains various properties of the resulting algorithm as well as
convergence results. In Section 4, we describe how some common regularization methods
from MPCCs can be carried over to the switching-constrained setting, and discuss the
convergence properties of the resulting algorithms. Section 5 contains some numerical
applications, including either-or constraints, switching-constrained optimal control, and
semi-continuous optimization problems arising in portfolio optimization. We conclude
the paper with some final remarks in Section 6.

2 Notation and preliminaries

2.1 Basic notation

The subsequently introduced tools of variational analysis can be found in Rockafellar and
Wets [1998|.
For a nonempty set A C R, we call

A ={yeR"|Vxe A: z-y <0}

the polar cone of A. Here, x - y denotes the Euclidean inner product of the two vectors
z,y € R™ It is well known that A° is a nonempty, closed, convex cone. For any two
sets By, By C R", the polarization rule (By U B2)° = By N BS holds by definition. The
polar of a polyhedral cone can be characterized by means of, e.g., Motzkin’s theorem of
alternatives. Note that we interpret the relations < and > for vectors componentwise.

Lemma 2.1. For matrices C € R™*™ and D € RP*™ let I C R"™ be the polyhedral cone
K:={deR"|Cd<0,Dd=0}.
Then K° = {CTA+DTp| A€ R™ X\ >0, pc RP}.
Let A C R™ be a nonempty set and € A. Then the closed cone
Ta() == {d € R" | Hap}ren C AH7ptren C Ry 2 = 7, 7, = 0, (2 — Z) /7 — d}

is called tangent or Bouligand cone to A at z. Here, Ry := {r € R|r > 0} denotes the
set of all positive reals.



The union {v! ... v"}U{w!, ..., w®} of sets {v!,... v}, {w!,...,w*} C R™is called
positive-linearly dependent if there exist vectors a € R", a > 0, and g € R® which do not
vanish at the same time such that

T S
0= Zaivi —i—Zﬁjwj.
i=1 j=1

Otherwise, {vl,..., 0"} U{w?, ..., w} is called positive-linearly independent. Clearly, if
the set {v!,..., 0"} is empty, then the above definitions reduce to linear dependence and
independence, respectively. The following lemma will be useful in this paper; its proof is
similar to that of [Qi and Wei, 2000, Proposition 2.2] and therefore omitted.

Lemma 2.2. Let {v!,... o™}, {w!, ..., w®} C R™ be given sets whose union {v',... v"}U
{wl, ..., w®} is positive-linearly independent. Then there exists € > 0 such that, for all
vectors o', ..., 0", wl, ... 0% € {z € R"| ||z]|, < e}, the union {v' + 0, ... 0" + 0"} U

{wr + @, ..., w* + 0%} is positive-linearly independent.

For some vector z € R™ and an index set I C {1,...,n}, z1 € RHI denotes the vector
which results from z by deleting all z; with ¢ € {1,...,n} \ I. Finally, let us mention
that supp z := {i € {1,...,n} |z # 0} is called the support of the vector z € R".

2.2 Standard nonlinear programs

Here, we recall some fundamental constraint qualifications from standard nonlinear pro-
gramming, see, e.g., Bazaraa et al. [1993]. Therefore, we consider the nonlinear program

f(z) — min
gi(x) <0, 1 €M, (NLP)

h](ﬂf) =0, 7 eP,

i.e., we forget about the switching constraints in (MPSC) for a moment.
Let X C R™ denote the feasible set of (NLP) and fix some point & € X. Then

is called the index set of active inequality constraints at . Furthermore, the set

L‘X((f:) = {d e R"

Vgi(z)-d <0 iel%z)
d=0 jeP

is called the linearization cone to X at Z. Obviously, £¢(Z) is a polyhedral cone, and
thus closed and convex. It is well known that 75 (Z) C L () is always satisfied. The
converse inclusion generally only holds under some constraint qualification.

In the definition below, we recall several standard constraint qualifications which are
applicable to (NLP).



Definition 2.3. Let & € R™ be a feasible point of (NLP). Then T is said to satisfy the

(a) linear independence constraint qualification (LICQ) if the following wvectors are
linearly independent:

{Vgi(z) i € I°(z)} U{Vh;(z)|j € P} (1)

(b) Mangasarian-Fromovitz constraint qualification (MFCQ) if the vectors in (1) are
positive-linearly independent.

(¢) constant positive linear dependence condition (CPLD) if, for any sets I C I9(Z)
and J C P such that the gradients

{Vgi(z) i e I}U{Vh;(z)|j € J}

are positive-linearly dependent, there ezists a neighborhood U C R™ of T such that
the gradients
{Vgi(z)|i e I} U{Vh;(z)|j € J}

are linearly dependent for all x € U.
(d) Abadie constraint qualification (ACQ) if T4 (%) = L(Z).
(e) Guignard constraint qualification (GCQ) if T4 (%)° = L (2)°.

Note that the following relations hold between the constraint qualifications from Def-
inition 2.3:

LICQ — MFCQ — CPLD — ACQ — GCQ,

see [Hoheisel et al., 2013, Section 2.1] for some additional information.
It is well known that the validity of GCQ at some local minimizer z € R™ of (NLP)
implies that the KKT conditions

0=VF@) + > \NVg(@) + Y pVh;(),
i€19(z) JjeP
VieI9(Z): A\ >0

provide a necessary optimality condition. Thus, the same holds for the stronger constraint
qualifications ACQ, CPLD, MFCQ, and LICQ.

2.3 Mathematical programs with switching constraints

The statements of this section are taken from Mehlitz [2018]. Let X C R™ denote the
feasible set of (MPSC) and fix a point £ € X. Then the index sets

19(z) == {l € Q|G,(z) = 0, H|(x) # 0},
IH(:E) = {l €9 | Gl([’_ﬂ) 7& 0, Hl(f) = 0}7
IGH(z) .= {l € Q| Gy(&) = 0, Hy(z) = 0}



form a disjoint partition of Q. It is easily seen that MFCQ (and thus LICQ) cannot hold
for (MPSC) at z if I (z) # @. Taking a look at the associated linearization cone

Vgi(z)-d <0 i€el9x)
Vhi(z)-d =0 je€P
Lx(Z)=<¢deR" ,
x(@) VGi(z)-d =0 ke I%z)
VHL(Z)-d =0 keI?(z)

which is always convex, one can imagine that ACQ is likely to fail as well if ¢ (z) # @
since, in the latter situation, 7x(Z) might be nonconvex. Note that GCQ may hold for
(MPSC) even in the aforementioned context.

Due to the inherent lack of regularity, stationarity conditions for (MPSC) which are
weaker than the associated KK'T conditions were introduced.

Definition 2.4. A feasible point & € X of (MPSC) is called

(a) weakly stationary (W-stationary) if there exist multipliers \; (i € 19(Z)), p; (j €
P),w (1€ Q), and vy (1 € Q) which solve the following system:

0=Vf(z Z AiVgi(z) + Y piVhy(T)

i€l (z jep
+>1 MZVGZ z) + v VH(T)],
leQ

Vie I9(z): A >0,
vie " (z): =0,
Vi e I(z): v =0.

(b) Mordukhovich-stationary (M-stationary) if it is W-stationary and the associated
multipliers additionally satisfy

Vi e IGH( ): v = 0.

(c) strongly stationary (S-stationary) if it is W-stationary while the associated multi-
pliers additionally satisfy

Vie IH (@) jy=0Ay =0.

Clearly, the following implications hold:
S-stationarity = M-stationarity =— WH-stationarity.

Moreover, the KKT conditions of (MPSC) are equivalent to the S-stationarity condi-
tions from Definition 2.4. One may check Figure 1 for a geometric interpretation of the
Lagrange multipliers associated with the switching conditions from I (z).
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Figure 1: Geometric illustrations of weak, M-, and S-stationarity for an index [ € 199 ().

In order to ensure that one of these stationarity notions plays the role of a necessary
optimality condition for (MPSC), suitable problem-tailored constraint qualifications need
to be valid. For the definition of such conditions, the following so-called tightened non-
linear problem is of interest:

f(z) — min

gi(z) <0, ieM,
hj(z) =0, j€EP, (TNLP)
Gi(z) = 0, leI1%z) U1t (z),
Hy(z) = 0, le 1% (z) U9 (z).

Note that (TNLP) is a standard nonlinear program.

Definition 2.5. Let & € X be a feasible point of (MPSC). Then MPSC-LICQ (MPSC-
MFCQ) is said to hold for (MPSC) at & if LICQ (MFCQ) holds for (TNLP) at Z, i.e.,

if the vectors

{Vgi(z)|i € IP(2)} U |[{Vh(2)|j € P}
U{VGi(2) |1 € I9(z) U I ()}
U{VH(2) |l € I"(z) U 19" ()}

are linearly independent (positive-linearly independent).

It is obvious that MPSC-LICQ is stronger than MPSC-MFCQ. Furthermore, MPSC-
LICQ implies standard GCQ for (MPSC) at the reference point.

In this paper, we will use another MPSC-tailored constraint qualification called MPSC-
NNAMCQ, where NNAMCQ stands for the No Nonzero Abnormal Multiplier Constraint
Qualification which has been introduced to investigate optimization problems whose fea-
sible sets are preimages of closed but not necessarily convex sets under continuously
differentiable mappings, see |[Rockafellar and Wets, 1998, Section 6.D| and Ye and Ye
[1997]. Clearly, (MPSC) belongs to this problem class as well if one reformulates the
switching constraints as

(Gi(z), Hi(z)) € C, 1€ Q,



with C := {(a,b) € R?|ab = 0}.

Definition 2.6. Let & € X be a feasible point of (MPSC). Then MPSC-NNAMCQ is
said to hold for (MPSC) at & if the following condition is valid:

0= AiVgi(Z) + Y piVhy(T)
i€I9(z) jeP
+ Z [MVGl(i) + vy VH(Z)
leQ
Vie I9(x): A\ >0, — A=0,p=0,p=0,v=0.

VieI"(z): =0,
VieI%z): vy =0,
Vie I9H(z): =0

It is easy to check that MPSC-NNAMCQ is implied by MPSC-MFCQ. Note that a
local minimizer of (MPSC) where MPSC-LICQ holds is an S-stationary point. Fur-
thermore, one can easily check that the associated multipliers which solve the system
of S-stationarity are uniquely determined. Under MPSC-MFCQ (and, thus, MPSC-
NNAMCQ), a local minimizer of (MPSC) is, in general, only M-stationary. Finally, there
exist several problem-tailored constraint qualifications for (MPSC) which are weaker than
MPSC-MFCQ but also imply that local solutions are M-stationary, see Mehlitz [2018].

3 The relaxation scheme and its convergence properties

3.1 On the relaxation scheme

For our relaxation approach, we will make use of the function ¢: R? — R defined below:

ab if a+b>0,

V(a,b) € R?: a,b) :=
(a,5) pla.b) {—;(a2+b2) ifa+b<0.

The function ¢ was introduced in Kanzow and Schwartz [2013] to study a relaxation
method for the numerical solution of MPCCs. In the following lemma, which parallels
[Kanzow and Schwartz, 2013, Lemma 3.1|, some properties of ¢ are summarized.

Lemma 3.1. (a) The function ¢ is an NCP-function, i.e. it satisfies
Y(a,b) e R?:  p(a,b) =0 <= a>0Ab>0 Aab=0.

(b) The function ¢ is continuously differentiable and satisfies

b

a

ifa+b2>0,
Y(a,b) e R*:  Vy(a,b) = >

_Z> ifa+b<0.



For some parameter ¢t > 0 as well as indices s € S :={1,2,3,4} and | € Q, we define
functions ®7(-;t): R — R via
) (2;t) == p(Gi(w) — t, Hi(w) — 1), ®F (23t) == p(~Gi(x) — t, Hy(z) — 1),
O} (;t) == p(=Gi(z) —t, —Hy(x) —t),  ®}(w;t) := p(Gi(x) —t, —Hy(x) — t)

for any x € R™. Now, we are in position to introduce the surrogate problem of our
interest:

f(x) —

gi(z) <0 ieM

hj(z) =0 jepP (W)
Oi(x;t) <0 seS, leQ.

The feasible set of (P(t)) will be denoted by X (¢). Figure 2 provides an illustration of
X (t).

H(z)

Figure 2: Geometric interpretation of the relaxed feasible set X (t).

Let x € X(t) be a feasible point of (P(¢)) for some fixed parameter ¢ > 0. Later on, it
will be beneficial to work with the index sets defined below:

LY (x) == {l € Q| Gi(w) = t, Hi(x) =1}, I5(x) == {l € Q| Gi(x) = —t, Hy(x) =},
Ig'l"(m) ={l e Q|G|(x) =t, H(x) > t}, Ig';(a:) ={l € Q|G|(x) = —t, Hi(x) > t},
I:'lo(ac) ={l € Q|Gi(z) > t, H(x) =1}, 1520(:1:) ={le€ Q|Gi(x) < —t, Hi(x) =t},
Is(x) == {l € Q|Gi(w) = ~t, Hi(x) = —t}, [)4(z) == {l € Q| Gi(x) = t, Hy(x) = —t},
Ifg(x) ={l € Q|Gi(z) = —t, Hi(z) < —t}, Igg(:ﬂ) ={le Q|G(z) =t, H(x) < —t},
It}?(x) ={l € Q|G(x) < —t, Hi(x) = —t}, I;rf(:n) ={l € Q|Gi(z) > t, H(zx) = —t}.

Note that all these sets are pairwise disjoint. The index sets I,?ff (x), Igf(w), and Ijlo(x)

subsume the three possible cases where the constraints @] (2;t) < 0 (I € Q) are active.

Similarly, the other index sets cover those indices where the constraints ®j(x;t) < 0

(Il € Q, s e {2,3,4}) are active. It follows that an index [ € Q which does not belong to

any of the above sets is inactive for (P(¢)) and can therefore be disregarded (locally).
In order to address any of the four quadrants separately, we will exploit

It (x) = 19 (2) U LT (@) U I (2), Ify() = I{5(x) U I3 (2) U I3 (x),



Iy(w) = I)5(2) UL (2) U I3 (), I4() = [4(x) U L)} (2) U I (x),

Le., for fixed s € S, I{ () collects all indices | € Q where the constraint ®f(x;t) < 0 is
active.
For brevity, we set

IOO U IOO

seS

[ (2) = If (2) U I3 () U I3 (2) U L) (=),

Itio(:c) = I;LP(x) U It_QO(x) U I;SO(x) U I&O(x).
Thus, we collect all indices in I°F(z) where Gy(z) € {—t,t} holds while |H;(z)| > t is
valid. Similarly, I;°(x) comprises all indices where H;(x) € {—t,t} and |Gy(x)| > t hold
true. The set I°(x) contains all those indices where G;(z), Hy(x) € {—t,t} is valid.

If z € X is feasible to (MPSC), z lies in a sufficiently small neighborhood of Z, and
t > 0 is sufficiently small, then the following inclusions follow from the continuity of all
appearing functions:
(@) U I (2) € I9(z) LIM (2),

2
102y U I (z) ¢ 1%(z) U I9M (3). @)
In the lemma below, we present explicit formulas for the gradients of ®7(-;t) with [ € Q
and s € §. They can be derived exploiting Lemma 3.1 as well as the chain rule.

Lemma 3.2. Forx €¢ R", t >0, and | € Q, the following formulas are valid:

V.0 (z;t) = {(Hl( r) —t)VG(z) + (G (CE() t)VH(x) if Gy(z) + Hy(x) i ;t,

Gi(z) — )VGy(z) — (Hy(z) — )VH(z) if Gi(z) + H(z) < 2t,
V.8 _ { (t — Hy(z))VG(z) — (Gi(x) + t)VH(z) if —Gi(z)+ H(x) > 2t,
A Gi(z) + VG (z) — (Hi(z) — )V H(z) if — Gylx) + Hy(x) < 2t,
V.83 :{ [(z) + OVGi(2) + (Gi(x) + O)VH(z)  if —Gi(z) — Hy(z) > 2t,
Gi(z) + t)VG(x) — (Hi(z) + t)VH(z) if —Gi(z) — Hi(x) < 2t,
T :{ (H(z) VGl(x)—i—(t—Gl(x))VHl(x) if Gi(z) — Hy(z) > 2t,
(Gi(z) —t)VGi(z) — (Hi(z) + t)VH(x) if Gi(z) — Hi(x) < 2t.

Particularly, we have

Gi(x) —t)VH(x) ifle LY (x),
Vie L (x): Vo) (25t) = § (Hi(z) —t)VGi(x) ifl € I{ (),
0 ifl e IOO 1(z),
—(Gi(z) +t)VH(z) iflel, O(x),
Vi € I}y (x): V@i (;t) = { (t — Hy(x))VGi(z)  ifle 10+(x)
0 ifl € Igg(a:),
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(Gi(z) +t)VH(z) iflel, 9(x),
vl e .783(33): V. @} (2;t) = ¢ (Hy(z) + t)VGi(z) ifl e 11?3 (x),

0 ifl e Igo (x),

(t = Gi(@)VH(x) il € L (=),
Vi€ Iy (x): Ve (;t) = § —(Hi(z) + )VGi(x) ifl € I} (x),

0 if 1 € I%(x).

As a corollary of the above lemma, we obtain an explicit formula for the linearization
cone associated with (P()).

Corollary 3.3. Fiz t > 0 and a feasible point x € X (t) of (P(t)). Then the following
formula is valid:

Vgi(z) - d <0 i€lx)
Vhj(z)-d < 0 jeP
VGi(x)-d <0 lellf(x) ULy ()
Lxp(x)=qdeR" VG(z)-d >0 lel)3(z)Ul)5(x)
VH(z)-d <0 I+O($)Uft2(x)
\ VH(z)-d > 0 le]tg(:c)Ufff(f)

The upcoming lemma justifies that (P(¢)) is indeed a relazation of (MPSC). Its proof
parallels the one of [Kanzow and Schwartz, 2013, Lemma 3.2].

Lemma 3.4. The following statements hold:
(P1) X(0) = X,
(PQ) 0<t <ty = X(tl) C X(tg),

(P3) Niso X (1) = X

Now, we are in position to characterize a conceptual method for the numerical solution
of (MPSC): First, a sequence {t;}ren C Ry of positive relaxation parameters is chosen
which converges to zero. Next, one solves the surrogate problem (P(f;)) via standard
methods. If one computes a (local) minimizer of one of these surrogate problems which
is feasible to (MPSC), then it is already a (local) minimizer of (MPSC). In general, it
will be only possible to compute KKT points of the surrogate problem. However, if such
a sequence of KKT points converges to some point £ € R"™, then this point must be
feasible to (MPSC) by construction. Furthermore, it will be shown in Section 3.2 that
whenever MPSC-NNAMCQ is valid at z, then it is an M-stationary point of (MPSC).

3.2 Convergence properties

In this section, we analyze the theoretical properties of our relaxation scheme. In order
to do so, we fix some standing assumptions below.

11



Assumption 3.5. Let {ty}ren C Ry be a sequence of positive relazation parameters
converging to zero. For each k € N, let x, € X(t;) be a KKT point of (P(t)). We
assume that {xy}ren converges to T € R™. Note that © € X holds by Lemma 3.4.

First, we will show that whenever MPSC-NNAMCQ is valid at z, then it is an M-
stationary point of (MPSC). Second, it will be demonstrated that MPSC-LICQ at Z
implies that GCQ holds for the surrogate problem (P (%)) at all feasible points from a
sufficiently small neighborhood of z and sufficiently small ¢ > 0. This property ensures
that local minima of the surrogate problem (P(¢)) which are located near z are in fact
KKT points. This way, it is shown that Assumption 3.5 is reasonable.

Theorem 3.6. Let Assumption 3.5 be valid. Suppose that MPSC-NNAMC(Q holds at T.
Then T is an M-stationary point of (MPSC).

Proof. Since xy, is a KKT point of (P(#;)), there exist multipliers \¥ € R™, p¥ € RP, and
o, BF Ak §F € R? which solve the following system:

0=Vf(xp) + Z A;Vgi(xy) + Z P?th(afk)

€19 (zy) JjeP
+> [@fvz‘l’zl (@hi th) + BV ®F (2 1) + 9 VP (wr; tr) + 6 Vo] (215 tk)]7
leQ
Vi€ I9(xp): NF>0;Vie M\ I9(x): AF
Vie I | (zy): al >0;Vl € Q\Itkl(xk) af 0,
Vi e Itk o(zk): P> 0; Ve Q\ tk o () 5lk 0,
Viel, D alze): A >0Vl € Q\ I} te,3(Tk) v =0,
VieI) j(z): 6 >0Vl € Q\ I 4(xp): 6 =0.

Next, let us define new multipliers oz’é, o/fq, 68,5’;1,78,7]’3, 5@, (5’;{ € R? as stated below
for all l € O:

ko {Oéf(Hl(xk)—tk) Le Iyt (aw), _ {’“(Gl(ﬂﬂk)—tk) Le 10 (xr),
0

otherwise, otherwise,

Gl xk —tk) l e It;%(xk),

=)
mw
i

" {Bﬂtk—Hz(xk» L€ I, (an),

0 otherwise, otherwise,

ko ’ylk(Hl(xk) +itp) le Itok_,S(xk)’ I Gl (xg) +tx) L€ It_k?g(xk),
TG, = . YH, = .
0 otherwise, otherwise,
sk SF(—Hi(wy) —te) 1€ I y(ap), sk zk (tr — Gi(ar)) 1€ L0, (xn),
Gt - 0 otherwise, Bl otherwise.

Furthermore, we set ¥ := o+ BE +7E+6F and v* := of, + 8% +~5 +65,. By definition,
we have supp u* C It(]ki($k) as well as supp® C If;o(xk). Thus, for sufficiently large
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keN, (2) yields
supp pf c I19(z) U T9H (z), supp ¥ ¢ TH(z) U 1M (%).
Using Lemma 3.2,
0=Vfm)+ > NVgilar)+ > piVhj(zr)+ ) [usGl(xk) + PV H(z1)| (3)
i€l19(zy) JjeEP leQ

is obtained.
Next, it will be shown that the sequence {(A¥, p¥, ¥, ¥)}1en is bounded. Assuming
the contrary, we define

AR, pF u vh)
)\k7 ~k7 ~k’~k ( )
NP5 770 = 00, o i o Ty

Clearly, {(S\k,ﬁk,ﬂk, %)} ren is bounded and, thus, possesses a converging subsequence
(without relabeling) with nonvanishing limit (A, p,i,7). The continuity of g yields
supp A C I9(z). The above considerations yield

supp i € I9(Z) UTCH(z), suppi c IH(z) U ICH (3).

Choose | € I¢H () arbitrarily. If ji; # 0 holds true, then ﬂf # 0 must be valid for
sufficiently large k € N. By definition of puf, I € Itoki(ack) follows. Since I&i(wk) and
I?;O(xk) are disjoint, Vlk = 0 holds for sufficiently large k € N. This yields le = 0 for
sufficiently large k € N, i.e. 7 = 0 is obtained. This shows

vie I9H(z): [y =0.

Vk € N:

Dividing (3) by H()\k,pk,uk,yk)HQ, taking the limit £ — oo, respecting the continuous
differentiability of f, g, h, G, as well as H, and invoking the above arguments, we obtain

0= Y AVg(@)+ > p;Vhi(z -l-Z[MlVGl (%) + 1V H(z )}

ielI(z JEP leQ

Due to the fact that (X, j, i, 7) does not vanish, this is a contradiction to the validity of
MPSC-NNAMCQ. Thus, {(A¥, p*, u¥, v¥)}ren is bounded.

We assume w.l.o.g. that {(\*, p¥, ¥, %) ren converges to (A, p, p, ) (otherwise, we
choose an appropriate subsequence). Reprising the above arguments, we have

Vie I9(z): \y >0;Vie M\ IY(z): \; =0,
vl e 1% (z)

vl € 1%(z)
vie I (z): wuy =o0.

D=

Ly =

13



Taking the limit in (3) and respecting the continuous differentiability of all appearing
mappings, we obtain

0=VF@)+ Y NVa(@)+ Y pVhi(@) + > | mVGi(a) + nVH(E)|.
1€19(z) JjeEP leQ
This shows that z is an M-stationary point of (MPSC). O

In order to show that the validity of MPSC-LICQ at the limit point Z ensures that
GCQ holds at all feasible points of (P(¢)) sufficiently close to  where ¢ is sufficiently
small, we need to study the variational geometry of the sets X (¢) in some more detail.

Fix t > 0 and some point & € X (¢). For an arbitrary index set I C I?Y(Z), we consider
the subsequent program:

f(xz) — min
gi(z) <0, i €M,
hj(xz) = 0, JEP, -
—t < Gyz) < t, le I} (z)UI, Pl D)
—t < Hy(z) < t, le IF(z) U (1) \ 1),
F(x;t) <0, 1€ Q\I},(%), s€S.

The feasible set of (P(¢, 2,
of (P(t,7,1)) for arbitrary I C I?°(%). Furthermore, X (¢,
choice of I C I?%(%).

Lemma 3.7. For fizedt >0 and T € X (t), we have
Tx ) (T U Tx (3,1

IcI?°(z)

~—

) will be denoted by X (¢,Z,I). Clearly,  is a feasible point
t,z,I) C X(t) is valid for any

Proof. We show both inclusions separately.

“C” Fix an arbitrary direction d € Tx(4)(%). Then we find sequences {y; }reny C X(t) and
{7k }ken C Ry such that yp — &, 7% i 0 and (yx — T)/7x — d as k — oo. It is sufficient
to verify the existence of an index set I C IP9(%) such that {yx}ren N X (t, %, I) possesses
infinite cardinality since this already gives us d € Tx(, 5 1)(Z)-

Fix k € N sufficiently large and I € I?*(#). Then, due to continuity of Gy, Hj, as well
as @ and feasibility of g to (P(t)), we either have [ € I'F(y) and, thus, G;(yx) € {—t,t},
or —t < Gi(yx) < t. Similarly, we obtain —t < Hj(yx) < ¢ for all [ € Itio(fc). Due to
feasibility of yi to (P(¢)), we have —t < Gi(yx) <t or —t < H;(y) < t. Thus, setting

I =1°@)Nn{le Q| —t<Giy) < t},

yr € X(t,Z,Ix) is valid. Since there are only finitely many subsets of IOO(:TU) while
{yr}ren is infinite, there must exist I C I°(%) such that {yg}ren N X(¢,%,1) is of
infinite cardinality.

“2” By definition of the tangent cone, we easily obtain Tx (5 1)(Z) C Tx (%) for any

I C I?°(%). Taking the union over all subsets of I°(%) yields the desired 1nc1u810n O

14



Theorem 3.8. Let T € X be a feasible point of (MPSC) where MPSC-LICQ is satisfied.
Then there exist t > 0 and a neighborhood U C R™ of T such that GCQ holds for (P(t))
at all points from X (t) NU for all t € (0,1].

Proof. Due to the validity of MPSC-LICQ at  and the continuous differentiability of g,
h, G, and H, the gradients

{Vgi(z)|i € I?(z)} U{Vh;(z)|j € P}
U{VGi(z)|l € I(z) U ICH (7))}
U{VH(z)|l € I (z) U I®H (7))}

are linearly independent for all x which are chosen from a sufficiently small neighborhood
V of Z, see Lemma 2.2. Invoking (2), we can choose a neighborhood U C V of T and
t > 0 such that for any Z € X (t) N U, where t € (0,¢] holds, we have

I(x) c I(2),
Iz U1 (z) ¢ 1%(z) U 19M (),
10z u I (z) c 1%(z) u 191 ().

Particularly, for any such # € R" and I C I?°(%), the gradients

are linearly independent, i.e.,

{Vygi(z)|ie I?(x)} U{Vh;(2)|j € P}
U{VG(#)|l € I (z)U T}
U{VH (&)1 € I;°(&) U (I{° (@) \ 1)}

standard LICQ is valid for (P(¢,7,7)) at & for any set

I C I{°(%). This implies Tx(z0)(Z) = Lxzn(Z) for any I C I{°(Z). Exploiting

Lemma 3.

7, we obtain

U Lx 30 (T)

ICI?O(z)

Computing the polar cone on both sides yields

Define

IcI®(z)
T5(t,2, 1) = I (2) UL, (2) U [In (I9(2) U 13(2))],
I (& 1) = I (&) U5 () U [In (I5(F) U IP%(2))],
Th(t, &, 1) = LY (&) UL (&) U [(I°(@) \ I) N (I (2) U I)5(3))],
Tyt &, 1) =13 (&) UL (&) U [(1°(@) \ 1) N (I3(2) U I)3(2))]
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and observe that these sets characterize the indices | € Q where the constraints G;(z) < t,
G|(z) > —t, H|(z) < t, and H;(Z) > —t, respectively, are active in (P(¢,z,1)). We
therefore obtain

Vgi(Z)-d <0 i€e€l9)
Vhj(Z)-d =0 jeP
Lxtzn(T)={deR” zgl(%)'d =0 leIé:(t,J::,I)
(Z)-d >0 leZ;(tz,l)
VH(%)-d <0 l€Zh(tz1)
L VH|(Z)-d >0 leIy(tzlI)

Exploiting Lemma 2.1, the polar of this cone is easily computed:

= Y AVa@ + > pVhi@) ]

icI9(z) jeP

+Z[,U4VG1 () + v VH|(2)
leQ
VieI9(Z): N\ >0
Lxz0n(T)° =qne€R" >0 ifleZi(t,3,1), . (6)
Vie Q: <0 ifleZ;(t,z,I),
=0 otherwise,
>0 ifleZj(tal),
Vie Q: vy <0 ifleZy(tzI),

=0 otherwise

W

Observing that (P(t)) is a standard nonlinear problem, Tx ) (Z) C Lx)(Z) and, thus,
Lx)(T)° C Txu)(7)° are inherent. It remains to show TX(t (7)° C Lx)(Z)°. Thus,
choose n € Tx(; (ai')O arbitrarily. Then, in particular, (5) yields

M€ Lx(tz,0)(T)° N Lxtz,1000)) (@)

Exploiting the representation (6), we find A\;, \; > 0 (i € I9(2)), p,p' € RP, p, i/ € R,
as well as v,/ € R? which satisfy

Z AiVgi(T) + Z piVh;i(Z) + Z [MVGI (T) + VlVHl(f)}

i€19(x) jeP leQ
= 3 ANVa@ + Y V@) + Y [u;val(f;) + yl’VHl(j)]
i€I9(3) jep leQ

and
>0 ifle (@)Ul (),
g <0 ifle Y (8) U5 (F),

=0 otherwise,
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0 ifleIO+( )uz§4() 1M (&) U IY(Z),
<0 itle 1% (&) UL (3) U I%(E) U I0(3),
0 otherwise,

0 ifleﬁo( )u[w( YU IR (F) U I99(7),
0 if eI 3(&) UL (&) uI(E) U I (Z),
=0 otherwise,

1fl€]t+1( )Ult2( z),

v 4 <0 lfleft,g() IIO( )s

=0 otherwise

Y

for all [ € Q. Thus, we obtain

0= Y (A= X)Va(@)+ > (pj — p})Vh;(&)

i€19(z) jeP

+2 [(m — m)VGUZT) + (v — V{)VHZ(:Z:)] :
leQ

Observing supp(u — i) C I20(&) U I'E () as well as supp(v — /) C IOO( YUT(z) and
using (4), we obtain \; = X, (i € I9(2)), p=p/, p = i/, as well as v = /. Particularly,

Z NiVGi(E) + D i Vhi(E) + D [V Gi(E) + YV Hi(3)].

iel9(z JEP leQ

is obtained where supp u C I?i(~) and suppv’ C I jE0( ) hold true. Finally, we exploit
Corollary 3.3 in order to see 1 € Lx()(Z)°. This shows the validity of the inclusion
Tx)(Z)° C Lx)(7)° and, thereby, GCQ holds true for (P(t)) at &. Since ¢ € (0,] and
Z € X(t) NU were arbitrarily chosen, the proof is completed. O

4 Remarks on other possible relaxation schemes

In this section, we discuss three more relaxation approaches for the numerical treatment
of (MPSC) which are inspired by the rich theory on MPCCs. Particularly, the relaxation
schemes of Scholtes [2001], Steffensen and Ulbrich [2010], as well as Kadrani et al. [2009],
are adapted to the setting of switching-constrained optimization.

4.1 The relaxation scheme of Scholtes

For some parameter ¢t > 0, let us consider the surrogate problem

f(z) — min

gi(z) <0, ieM,

hy(z) — 0, iep. (Ps(t))
—t < Gl(x)Hl(x) <1, le Q.



This idea is inspired by Scholtes’ global relaxation method which was designed for the
computational treatment of MPCCs, see Scholtes [2001] and [Hoheisel et al., 2013, Sec-
tion 3.1]. The feasible set of (Pg(t)) is denoted by Xg(t) and visualized in Figure 3. Note
that the family {Xs(¢)}:>0 possesses the same properties as the family {X(¢)}:>0 de-
scribed in Lemma 3.4. Thus, Scholtes’ relaxation is reasonable for switching-constrained
problems as well. In contrast to (P(¢)), where we need four inequality constraints in order
to replace one original switching constraint, one only needs two inequality constraints in
(Pg(t)) for the same purpose. This is a significant advantage of (Pg(t)) over the surrogate

(P(2)).

Hy(x)

Figure 3: Geometric interpretation of the relaxed feasible set Xg(¢).

It is well known from [Hoheisel et al., 2013, Theorem 3.1] that Scholtes’ relaxation
approach finds Clarke-stationary points of MPCCs under an MPCC-tailored version of
MFCQ. Note that, in the context of MPCCs, Clarke-stationarity is stronger than weak
stationarity but weaker than Mordukhovich-stationarity. Below, we want to generalize
the result from Hoheisel et al. [2013] to the problem (MPSC).

For the fixed parameter ¢ > 0 and a feasible point x € Xg(t) of (Ps(t)), we introduce
the index sets

If (x) == {l € Q| Gi(2) Hy(z) = t},
It_(x) = {l €9 | Gl(x)Hl(x) = —t}.

In the upcoming theorem, we provide a convergence result of Scholtes’ relaxation scheme
for the problem (MPSC).

Theorem 4.1. Let {t;}ren C Ry be a sequence of positive relazation parameters con-
verging to zero. For each k € N, let xy, € Xg(tx) be a KKT point of (Ps(ty)). Assume
that the sequence {xy}ren converges to a point & € X where MPSC-MFCQ holds. Then
Z is a W-stationary point of (MPSC).

Proof. Noting that xy, is a KKT point of (Pg(;)), we find multipliers \¥ € R™, p* € RP,
and &F € R? which satisfy the following conditions:

0=Vir)+ Y NVgiex)+ D pyVhi(ek)

1€19(zk) JjeP
+ Zflk [Hl(a;k)VGl(xk) + Gl(xk)VHl(wk) ,
leQ
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Vi€ I9(xy): AF >0, Vi e M\ I9(xy): A =0,
Vie I (z): €F >0,
Vie I (zk): & <0,

For any k € N and [ € Q, let us define artificial multipliers ,uf , I/lk € R as stated below:
o [d@) 1e1f @U@, [l e M@ uI)
"o e 1 (z), "o 1€ IG(z).

Thus, we obtain

0=Vi(m)+ Y. XValw)+ Y pVhiae) + Y | ufVGi(r) + v VH(x)
i€I9(zy,) jeP l€Q

+ Z fl Hi(z,) VG (k) Z fl Gi(zr)VH ().
lelH (z) lelIG(z)

(7)

Next, we are going to show that the sequence {(\*, p*, ¥, V¥ ¢¥)} ey is bounded where
we used I := I9(z) U I (Z) for brevity. We assume on the contrary that this is not the
case and define

()\k> pk7 #k’, Vka 51;)

VE e N: (N pF pk ok éh) = .
O PRI 7580 3= 0w i om0,

Clearly, {(\F, g%, ¥, 0¥, é’f)}keN is bounded and, thus, converges w.l.0.g. to a nonvanish-
ing vector (5\, b, i, 0, € 1) (otherwise, a suitable subsequence is chosen). The continuity
of g ensures that I9(xy) C I9(Z) is valid for sufficiently large & € N. Dividing (7)
by H()\k,,ok,,uk, Vk,glf)H2 and taking the limit k& — oo while respecting the continuous
differentiability of all involved functions, we come up with

Z AiVgi(E)+ Y piVh(z +Z[MVGZ z)+uVH|(z )},

ielI(z JEP leQ

Now, the validity of MPSC-MFCQ yields A=0,p=0,4a=0,and 7 = 0. Hence,
flo # 0 holds for at least one index Iy € I. Let us assume Iy € I (z). Then we have
yl flIZGlo (x), which leads to

0

k k
v & G (T
= lim lo = lim ZO Gio ()

hvoo [|(NF, i R R[], koo [[(AR, o,k vk, €1,

= éloGlo (E) 7& 0.

vy, =

0
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This, however, is a contradiction since  vanishes due to the above arguments. Sim-
ilarly, the case lg € I“(Z) leads to a contradiction. As a consequence, the sequence
{(ONF, pk, w* vk €8) ey is bounded.

Thus, we may assume w.l.o.g. that this sequence converges to (\, p, u,v,&r). Again,
we take the limit in (7) and obtain

0=Vi@)+ Y ANV(a)+ D pVhi@) + > [mVGi(E) + nVHi()],
)

€l9(z JjeP leQ
Viel9(z): \y >0,Vie M\ IY(z): \; =0,
VieI"(z): =0,

VielI%): =0
which shows that & is a W-stationary point of (MPSC). O

Noting that no suitable definition of Clarke-stationarity (in particular, a reasonable
stationarity concept which is stronger than W- but weaker than M-stationarity) seems
to be available for (MPSC), Theorem 4.1 does not seem to be too surprising at all. The
following example shows that we cannot expect any stronger results in general. Thus,
the qualitative properties of Scholtes’ relaxation method are substantially weaker than
those of the relaxation scheme proposed in Section 3.1.

Example 4.2. Let us consider the switching-constrained optimization problem

(x1—1)* + (22— 1)* - min

r1x9 = 0.

The globally optimal solutions of this program are given by (1,0) as well as (0,1), and
these points are S-stationary. Furthermore, there exists a W-stationary point at & = (0,0)
which is no local minimizer.

One can easily check that the associated problem (Pg(t)) possesses a KKT point at
(Vt,\/t) for any t € (0,1]. Taking the limit t | 0, this point tends to T which is, as
we already mentioned above, only W-stationary for the switching-constrained problem of
interest. Clearly, MPSC-LICQ is valid at T.

Although the theoretical properties of Scholtes’ relaxation approach do not seem to be
promising in light of (MPSC), we check the applicability of the approach. More precisely,
we analyze the restrictiveness of the assumption that a sequence of KK'T points associated
with (Pg(t)) can be chosen.

In order to guarantee that locally optimal solutions of the nonlinear relaxed surrogate
problems (Pg(t)) which are located closely to the limit point from Theorem 4.1 are KKT
points, a constraint qualification needs to be satisfied. Adapting [Hoheisel et al., 2013,
Theorem 3.2] to the switching-constrained situation, it is possible to show that whenever
MPSC-MFCQ is valid at a feasible point z € X of (MPSC), then standard MFCQ is
valid for (Pg(#)) in a neighborhood of z.
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Theorem 4.3. Let T € X be a feasible point of (MPSC) where MPSC-MFCQ is satisfied.
Then there exists a neighborhood U C R™ of T such that MFCQ holds for (Ps(t)) at all
points from Xg(t) NU for all t > 0.

Proof. Due to the validity of MPSC-MFCQ at Z, the union
{Vgi(z)|i e I?(z)} U [{th(i‘) |7 € PYU{VGi(z) |l € I9(z) U I (2)}
U{VH(z)|l e I" (@)U IGH(@)}]

is positive-linearly independent. Invoking Lemma 2.2, there is a neighborhood U of &
such that the vectors

{Vgi(z)|ie ()} U [{th(fﬂ) 7 € PYU{VGi(x) |l € I9(z) UI°"(z)}

U{VH (@) |1 € I (z) U1 (@)}

are positive-linearly independent for any choice of x € U.
Now, fix t > 0 as well as z € Xg(t) N U and set I#(z) := I,"(z) U I; (z). Note that
t > 0 guarantees I, (z) N I, (v) = @. Clearly, we have

Vie I (z): Gi(z) #0  Hj(z) =0,
Vi e I19z): Gi(z)~0  Hyz)#0

if U is sufficiently small. Exploiting Lemma 2.2 once more while recalling that G and H
are continuously differentiable, we obtain that the vectors

{Vgi(z)|i € (@)} U |{Vh;(x)[j € P}

U{H(x)VGi(x) + Gi(x)VH,(x) |l € I°(x) N I}(z)}
U{H(2)VGi() + Gi(2)VH(z) |l € I7(z) N [}2)}  (8)
U{VGy(a) |1 € T (z) N I} ()}

U{VH (@) |1 € 197 (2) N I} (@)}

are positive-linearly independent if the neighborhood U is chosen small enough.
Suppose that there are vectors A € R™, p € RP, and & € RY which satisfy

> AiVgilx)+ > piVhy(x +Z£l[Hl IWVGi(x) + Gi(z)VH(z)|,

i€l9(x) JjEP leQ
VieI9(z): i >0,Vie M\ IY(z): \; =0,
Viel(x): &>0,
Viel, (z): § <0,
Vie Q\ I} (x): & =0.
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In order to show the validity of MFCQ for (Ps(t)) at 2, A =0, p =0, and £ = 0 have to
be deduced. We get

0= Z )\lvgl(l‘) + ijth(x)

i€19(z) jEP

+ > & [Hl(l')VGl(l') + Gz(fﬂ)VHz(fﬂ)} :
le(IG (z)UIH (z))NI2(z)

+ ) GG@VH(@)+ Y GHi()VGi(2).

leIGH (z)NI2(x) leIGH (z)NI2(x)

Noting that A; > 0 holds for all ¢ € I9(x) while I9(z) C I9(z) holds whenever U is
chosen sufficiently small, we obtain A =0, p =0, & = 0 (I € (I%(z) U I (2)) N I}(z)),
§G(z) =0 (1 € ICH(z)NI2(x)), and &Hy(x) =0 (I € IGH ()N I3 (x)) from the positive-
linear independence of the vectors in (8). Since we have Gi(z) # 0 and H;(z) # 0 for all
l € I}(z) from t > 0, & = 0 follows for all | € I?(z) since 19(z) U ITH (z) U I (2) = Q
is valid. This yields £ = 0. Thus, MFCQ holds for (Pg(?)) at x. O

4.2 The relaxation scheme of Steffensen and Ulbrich

Here, we adapt the relaxation scheme from Steffensen and Ulbrich [2010] for the numerical
treatment of (MPSC). For any ¢ > 0, let us introduce ¢(-;¢): R — R by means of

|z if |z| > t,

VZER: (zt) = {t@(z/t) if 2] <t,

where : [—-1,1] — R is a twice continuously differentiable function with the following

properties:
(a) 6(1)=46(-1) =1, (b) ¢(-1)=—-1and (1) =
(c) 0"(-1)=0"(1) =0, (d) 0"(z) >0forall z € (—1,1).

A typical example for a function 6 with the above properties is given by
Vze [-1,1]: 0(2) = Zsin(5z+3F) +1, 9)

see [Steffensen and Ulbrich, 2010, Section 3]. Noting that the function ¢(-;¢) is smooth
for any choice of t > 0, it can be used to regularize the feasible set of (MPSC). A suitable
surrogate problem is given by

f(z) — min
gi(x) <0, 1€M,
hj(z) = 0, jeP,
Gi(z) + Hi(x) — ¢(Gi(x) — Hy(x);t) <0, le o, (Psu(?))
Gi(z) — Hi(z) — ¢(Gi(x) + Hy(x);t) < 0, leQ,
—Gi(z) + Hi(z) — ¢(=Gi(z) — Hi(z);t) < 0, leQ,
—Gi(z) — Hi(z) — ¢(=Gi(z) + Hi(z);t) < 0, leQ.
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Its feasible set will be denoted by Xgy(f) and is visualized in Figure 4. Adapting the
proof of [Steffensen and Ulbrich, 2010, Lemma 3.3|, the family { Xsy(¢)}¢+>0 possesses the
properties (P2) and (P3) from Lemma 3.4. This justifies that (Psy(t)) is a relaxation of
(MPSC). Note that we need to introduce four inequality constraints to replace one of
the original switching constraints.

Figure 4: Geometric interpretation of the relaxed feasible set Xsu ().

It has been mentioned in Hoheisel et al. [2013] that the relaxation scheme of Steffensen
and Ulbrich computes Clarke-stationary points of MPCCs under an MPCC-tailored ver-
sion of CPLD, see [Hoheisel et al., 2013, Section 3.4] as well. Recalling some arguments
from Section 4.1, the adapted method may only find W-stationary points of (MPSC) in
general. The upcoming example confirms this conjecture.

Example 4.4. Let us consider the switching-constrained optimization problem

T1Ty — L1 — Tg — min
B4zl -1<0, (10)

1Ty = 0.

Obviously, the globally optimal solutions of this problem are given by (1,0) as well as
(0,1), and these points are S-stationary. Furthermore, there is a W-stationary point at
z = (0,0) which is no local minimizer. The global mazimizers (—1,0) and (0, —1) do not
satisfy any of the introduced stationarity concepts.

Let us consider the associated family of nonlinear problems (Psy(t)) fort € (0, 1] where
the function 0 is chosen as in (9). It can easily be checked that x(t) == ((1—2), L(1—2))

is a KKT point of (Pgy(t)). Note that x(t) — & ast ] 0, and that MPSC-LICQ holds in
Z. However, T is only a W-stationary point of the switching-constrained problem (10).

4.3 The relaxation scheme of Kadrani, Dussault, and Benchakroun

Finally, we want to take a closer look at the relaxation approach which was suggested
by Kadrani et al. [2009] for the treatment of MPCCs. For any ¢ > 0, let us consider the
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optimization problem

f(x) — min
gi(z) <0, i €M,
hj(xz) = 0, jeP,
(Gi(z) —t)(Hi(z) —t) <0, leQ, (Pxps(t))
(=Gi(z) —t)(Hi(z) —t) <0, leQ,
(Gi(z) +t)(Hi(z) +t) <0, leQ,
(Gi(x) = t)(=H(z) —t) <0, leQ,

whose feasible set will be denoted by Xkpg(t). The family {Xxpn(t)}i>0 only satisfies
property (P1) from Lemma 3.4 while (P2) and (P3) are violated in general. Thus, the
surrogate problem (Pxpg(?)) does not induce a relaxation technique for (MPSC) in the
narrower sense. Figure 5 depicts that Xgpp(t) is almost disconnected, i.e., it is close
to crumbling into four disjoint sets for any ¢ > 0. This may cause serious problems
when standard techniques are used to solve the associated surrogate problem (Pxpp(t)).
Moreover, four inequality constraints are necessary to replace one switching constraint

from (MPSC) in (Pxpg(t)).

Hy(z)

Gi(v)

Figure 5: Geometric interpretation of the relaxed feasible set Xkpp(t).

On the other hand, it is clear from [Hoheisel et al., 2013, Section 3.3] that the regular-
ization approach of Kadrani, Dussault, and Benchakroun computes M-stationary points
of MPCCs under an MPCC-tailored version of CPLD at the limit point. Furthermore,
if an MPCC-tailored LICQ holds at the limit point, then standard GCQ holds for the
surrogate problems in a neighborhood of the point for sufficiently small relaxation pa-
rameters. These results are closely related to those for the relaxation approach from
Kanzow and Schwartz [2013] which we generalized to (MPSC) in Sections 3.1 and 3.2.

Although we abstain from a detailed analysis of the regularization method which is
induced by the surrogate problem (Pypp(t)) due to the aforementioned shortcomings,
the above arguments motivate the formulation of the following two conjectures.

Conjecture 4.5. Let {t;}ren C Ry be a sequence of positive reqularization parameters
converging to zero. For each k € N, let x, € Xkpp(tx) be a KKT point of (Pxpgp(ty)).
Assume that the sequence {xy }ren converges to a point & € X where MPSC-MFCQ) holds.
Then T is an M-stationary point of (MPSC).
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Conjecture 4.6. Let & € X be a feasible point of (MPSC) where MPSC-LICQ is satis-
fied. Then there exist t > 0 and a neighborhood U C R™ of T such that GCQ holds for
(Prpp(t)) at all points from Xgpp(t) NU for all t € (0,1].

5 Numerical results

This section is dedicated to a detailed analysis and comparison of various numerical
methods for (MPSC). To obtain a meaningful comparison, we apply the relaxation
scheme from Section 3 as well as a collection of other algorithms (see below) to multiple
classes of MPSCs which possess significant practical relevance. The particular examples
we analyze are:

e an either-or constrained problem with known local and global solutions

e a switching-constrained optimal control problem involving the non-stationary heat
equation in two dimensions

e optimization problems involving semi-continuous variables, in particular special
instances of portfolio optimization

For each of the examples, we first provide an overview of the corresponding problem
structure, and then give some numerical results. To facilitate a quantitative comparison
of the used algorithms, we use performance profiles (see Dolan and Moré [2002]) based
on the computed function values.

5.1 Implementation

The numerical experiments in this section were all done in MATLAB R2018a. The
particular algorithms we use for our computations are the following:

KS: the adapted Kanzow—Schwartz relaxation scheme from this paper
FMC: the fmincon function from the MATLAB Optimization Toolbox

SNOPT: the SNOPT nonlinear programming solver from Gill et al. [2002], called
through the TOMLAB programming environment

IPOPT: the IPOPT interior-point algorithm from Wéchter and Biegler [2006]

The overall implementation is done in MATLAB, and each algorithm is called with user-
supplied gradients of the objective functions and constraints. The stopping tolerance for
all algorithms is set to 10™* (although it should be noted that the methods use different
stopping criteria, i.e., they impose the accuracy in different ways). For the KS algorithm,
the relaxation parameters are chosen as tj, := 0.01%, and the method is also terminated as
soon as t;, drops below 10~%. Finally, to solve the relaxed subproblems in the relaxation
method, we employ the SNOPT algorithm with an accuracy of 1076,
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Judging by past experience with MPCCs, the SNOPT algorithm can be expected to ri-
val the relaxation scheme in terms of robustness. To accurately measure the performance
of the solvers, it is important to note that MPSCs can, in general, admit a substantial
amount of local minimizers. Therefore, the robustness is best measured by comparing the
obtained function values (using different methods and starting points) with the globally
optimal function value—if the latter is known; otherwise, a suitable approximate is used.
To avoid placing too much emphasis on the accuracy of the final output (which does not
make sense since the algorithms use completely different stopping criteria), we use the
quantity

(11)

Qs(2) f(x) — fmin + 9, if z is feasible within tolerance,
x) =
00, otherwise

as the base metric for the performance profiles, where z is the final iterate of the given
algorithmic run, fuin the (approximate) global minimal value of the underlying problem,
and 0 > 0 is an additional parameter which reduces the sensitivity of the values to
numerical accuracy. We have found that an appropriate choice of d can significantly
improve the meaningfulness of the results.

5.2 Numerical examples

The following pages contain three examples of MPSCs. In Section 5.2.1, we deal with
an either-or constrained problem, which can be reformulated as an MPSC, see Mehlitz
[2018]. Section 5.2.2 is dedicated to a switching-constrained optimal control problem
based on the framework from Clason et al. [2017]. Finally, in Section 5.2.3, we deal
with a class of optimization problems with semi-continuous variables, which can again
be reformulated as MPSCs. This section contains a particular example from portfolio
optimization which originates from Frangioni and Gentile [2007].

5.2.1 An either-or constrained example
Let us consider the optimization problem
(z1 — 8)% + (x2 + 3)* — min
1 —229+4 <0V 1 —2 <0, (E2)
23 —dxo <0V (21 —3) %+ (22— 1)2 =10 < 0.

Here, V denotes the logical “or”. The feasible set of this program is visualized in Figure 6.
It is easily seen that (E2) possesses the unique global minimizer & = (2, —2) and another
local minimizer & = (4,4). Arguing as in [Mehlitz, 2018, Section 7|, we can transform (E2)
into a switching-constrained optimization problem by introducing additional variables:

(z1 — 8)% + (z2 + 3)* — min

21,22, 23, %4 S 07 (12)
(l‘l —2x9+ 4 — 21)(.%'1 -2 — ZQ) = 0,
(x% — 4xo — 23)((x1 — 3)2 + (9 — 1)2 —10—2z4) = 0.
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Figure 6: The either-or constrained problem from Section 5.2.1: feasible set, some level
sets, and local minimizers (left), performance profile (right).

Note that the local minimizers of (E2) can be found among the local minimizers of (12)
choosing suitable values for the variable z, see [Mehlitz, 2018, Section 7.1].

The algorithms in question are each tested with the starting points in the set {0, 1}9,
which makes for a total of 64 starting points. The resulting performance profile can
also be found in Figure 6; it is based on the metric (11) with § := 1. Clearly, the KS
relaxation method is the most robust of the four algorithms, finding the best function
values (among the tested algorithms) in more than 80% of the test runs.

5.2.2 Switching-constrained optimal control

Here, we intend to solve a switching-constrained optimal control problem with the pro-
posed relaxation method. The underlying example is taken from [Clason et al., 2017,
Section 5.2].

Let I := (0,T), with T := 10 the final time, Q := (—1,1)?, and let T be the boundary
of . Furthermore, we define Q,, := (—1,0] x (—=1,1) as well as Q, := (0,1) x (—1,1).
Let us consider the optimal control of the non-stationary heat equation with zero initial
and Neumann boundary conditions given below:

Oy(t,w) — Apy(t,w) — %XQU (w)u(t) — %XQU (who(t) =0  ae.onlxQ,
n(w) - Vyy(t,w) =0 ae.onlxD, (13)
0

a.e. on €.

Here, x4: 2 — R denotes the characteristic function of a measurable set A C  which
equals 1 on A and vanishes otherwise. Let yq € L?(I; H(Q2)) be the solution of the state
equation associated with the desirable control functions ug,vq € L?(I) given by

Vtel: ug(t) :=20sin*(2nt/T), wvq(t) := 10 cos*(1.47t/T).
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All feasible controls u,v € H'(I) shall satisfy the switching requirement
u(t)v(t) =0 a.e.on I. (14)

Note that uq and vq violate this switching condition. We aim to find the minimum of
the objective function defined by

I (y,u,v) = % ly — de2L2(1;L2(Q)) +35 <||U||2Lz(1) + ||U||i2(1)>

(15)

+5 <H&:UH%2(1) + Hatvﬂim))
with respect to (y,u,v) € L*(I; H' () x H'(I) x H'(I) such that (u,v) satisfy the
switching requirement (14) while y solves the associated state equation (13). We chose
a :=107% and B := 107 for our experiments.

For the numerical solution of the problem, the domain €2 is tessellated using the func-
tion generateMesh from the MATLAB PDE toolbox and a discretization tolerance of
h :=10"'. The time interval I is subdivided into equidistant intervals of size 7 := 107!,
Both the spatial and temporal discretizations use standard piecewise linear (continuous)
finite elements, which leads to a conforming approximation of the H'-norm in (15).

After discretization, the problem turns into a finite-dimensional MPSC comprising the
variables i, ¥ € R'0!, a quadratic objective function, and the switching constraints ;7; =
0foralli=1,...,101. These correspond to the simple constraint mappings G(u, v) := @
and H(i,7) := U. Note that the feasible set can be seen as the union of 2'9! convex
“branches” (obtained by setting either #; = 0 or ¥; = 0 for each ¢ = 1,...,101). Hence,
the problem can be expected to admit a substantial amount of local minimizers, and it
is unrealistic to expect algorithmic implementations to find the global minimizer, even
when tested with a large number of initial points. To facilitate a quantitative comparison
of our numerical algorithms (as in the previous section), we use the following heuristic
to obtain an upper estimate of the optimal value: using a coarser time discretization
(with 7 = 0.4), we compute the ezact global minimizer of the resulting problem by
minimizing the objective over each of the branches induced by the switching constraints.
The corresponding global minimizer is then lifted to the finer time grid (with 7 = 0.1)
by linear interpolation, and the resulting point is used as an initial guess for all the used
algorithms. The resulting estimate of the optimal value is 0.2997, and the associated
controls are depicted in Figure 7.

For the numerical tests, we generated 1000 starting points with coordinates chosen
randomly in the interval [0,10]. The performance profile was constructed by using the
metric (11) with 6 := 0, and it too can be found in Figure 7.

As in the previous example, the relaxation method turns out to be the most robust of
the tested algorithms, finding lower function values in around 70% of the test runs. When
analyzing the results in more detail, it turns out that, as expected, the algorithms found
an exorbitant amount of distinct points (possibly local minimizers). Interestingly, how-
ever, the associated function values actually lie quite close to each other. This explains
the x-axis scaling in the performance profile plot.
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Figure 7: Performance profile and (possible) global minimizer for the switching-
constrained optimal control problem from Section 5.2.2.

5.2.3 Semi-continuous variables

In many optimization scenarios, it is desirable that a nonnegative decision variable is
either exactly zero or contained in some interval whose lower bound is strictly positive.
This is the case, for instance, in production planning, portfolio optimization, compressed
sensing in signal processing, and subset selection in regression. More details can be found
in Burdakov et al. [2016], Sun et al. [2013], and the references therein.

Given a decision variable z € R™ and bounds ¢, u € R™, ¢ < u, a requirement of the
above form can be reformulated as the either-or type constraints

xi:Oine[&,ui], 1=1,...,n. (16)

In this context, the variable x is often called semi-continuous since it is required to lie in
some continuous interval, except for the outlier case when it is equal to zero. (One might
also be inclined to call x a semi-discrete variable, but we have not seen this terminology
elsewhere in the literature.)

Constraint systems of the form (16) can be reformulated as switching constraints by
using slack variables. Indeed, there are two ways of doing so: On the one hand, we
could introduce two nonnegative slack variables to transform the box constraints in (16)
into equality constraints; this procedure eventually yields an MPSC with 2n switching
constraints. On the other hand, assuming that u; > 0 holds for all i = 1,...,n (which is
the case in nearly all relevant applications), we can simply treat the requirement z; < u;
as a standard inequality constraint which should be fulfilled at all times. Clearly, if
x; = 0 is valid, then the inequality z; < u; holds automatically, so that we can rewrite
(16) as

r; < U4, 1=1,....,n,
z; =0V x; > ¥, 1=1,....,n
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Using a single slack vector y € R™, we can now rewrite this system as

X

IV A

xi(xi—&—yi)zo, i:1,...,n.

In the notation of our general framework (MPSC), this corresponds to the switching
mappings
G(z,y) ==z and H(z,y)=z—{—y.

The inequality constraints < w and y > 0 can be implemented as components of the
mapping ¢g (which may contain other constraints depending on the particular problem).
Note that the above reformulation approach only results in n switching constraints.
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Figure 8: Performance profile for the portfolio optimization problem from Section 5.2.3.

We now present a concrete example of portfolio optimization based on the test examples
in Frangioni and Gentile [2007]. The problems in this reference have the form

z' Qr — min

el x 1,

plaz > p, 1

:BZ':()\/J?Z'E[&',ui], 1=1,....n,

with randomly generated Q € R™™ ™, u,¢,u € R" and p € R. Here, e € R" represents
the all-ones vector. More details can be found in Frangioni and Gentile [2007] and
on their webpage http://www.di.unipi.it/optimize/Data/MV.html. The particular
examples we chose are the 30 instances with size 200. The corresponding problems (17)
are reformulated as MPSCs by means of the aforementioned procedure, and the resulting
problems are then attacked by the four test algorithms in question. Figure 8 depicts the
resulting performance profile based on the metric (11) with ¢ := 0.

For this particular problem class, it turns out that the performance advantage of the
relaxation method is particularly large when compared to its non-relaxed counterparts.
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In 28 out of 30 examples, the KS algorithm finds the best function value among the
tested methods; in addition, it also seems to find feasible points much more reliably than
the other algorithms.

6 Final remarks

In this paper, we have presented a relaxation method for the solution of mathematical
programs with switching constraints (MPSCs). Our theoretical analysis yields strong con-
vergence properties for the method; in particular, the algorithm computes M-stationary
points of MPSCs under a problem-tailored constraint qualification (MPSC-NNAMCQ)
which is weaker than MPSC-MFCQ. The numerical experiments include a wide array
of practically relevant problems and demonstrate the computational efficiency of the
proposed algorithm.

In addition, we have conducted a dedicated analysis for other relaxation schemes which
are known in the MPCC literature and can be carried over to the setting of switching
constraints. In particular, adapted versions of the relaxation schemes of Scholtes as well
as Steffensen and Ulbrich are shown to converge to weakly stationary points only, even
if fairly strong regularity properties such as MPSC-LICQ are satisfied.
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