CORRIGENDUM: SEMIDEFINITE PROGRAMS: NEW SEARCH DIRECTIONS, SMOOTHING-TYPE METHODS, AND NUMERICAL RESULTS

CHRISTIAN KANZOW* AND CHRISTIAN NAGEL*

Abstract. We correct an error in Lemma 4.2 of [KANZOW AND NAGEL, Semidefinite programs: New search directions, smoothing-type methods, and numerical results, SIAM J. Optim 13, 2003, pp. 1–23]. With this correction, all results in that paper remain true.

 $\label{eq:conversion} \textbf{Key words. semidefinite programs, smoothing-type methods, Newton's method, global convergence, superlinear convergence$

AMS subject classifications. 90C22, 90C46

Let $L_A(X) := AX + XA$ be the Lyapunov operator associated to a given matrix $A \in \mathbb{R}^{n \times n}$. In Lemma 4.2 (c) of [1] we asserted that the composition $L_A \circ L_B$ is strongly monotone for two symmetric positive definite matrices $A, B \succ 0$. While the given proof holds if A and B commute, inequality (4.8) in [1], namely

$$\operatorname{tr}(X(BA + AB)X) \ge 0$$

does not hold in general for all $X \in \mathcal{S}^{n \times n}$: Setting

$$A := \begin{pmatrix} 10 & 5\\ 5 & 6 \end{pmatrix}, \quad B := \begin{pmatrix} 1 & 2\\ 2 & 6 \end{pmatrix}, \quad X := \begin{pmatrix} 15 & -7\\ -7 & 3 \end{pmatrix},$$

an easy calculation shows that $A, B \succ 0$ but $\operatorname{tr}(X(BA + AB)X) = -588 < 0$. Therefore, to prove part (c), (d) of Lemma 4.2 in [1], we have to add the assumption

$$BA + AB \succeq 0.$$

In Proposition 4.4 we used Lemma 4.2 (d) with A := E - S and B := E - X (where $E := (X^2 + S^2 + 2\tau^2 I)^{1/2}$ for some $\tau > 0$) in order to show that a certain linear mapping is bijective. We now have to prove that these matrices satisfy inequality (0.1). This will be done in the following Lemma.

LEMMA 0.1. Let $E := (X^2 + S^2 + 2\tau^2 I)^{1/2}$, A := E - S and B := E - X. Then $BA + AB \succeq 0$.

Proof. We have

$$BA + AB = (E - X)(E - S) + (E - S)(E - X)$$

= $E^2 - XE - ES + XS + E^2 - SE - EX + SX$
= $X^2 + S^2 + 2\tau^2 I - E(X + S) - (X + S)E + E^2 + XS + SX$
= $(X + S - E)^2 + 2\tau^2 I \succeq 0.$

This completes the proof. \Box

REFERENCES

^{*}Institute of Applied Mathematics and Statistics, University of Würzburg, Am Hubland, 97074 Würzburg, Germany (kanzow@mathematik.uni-wuerzburg.de, nagel@mathematik. uni-wuerzburg.de). This research was partially supported by the DFG (Deutsche Forschungsgemeinschaft).

 C. KANZOW AND C. NAGEL, Semidefinite programs: New search directions, smoothing-type methods, and numerical results, SIAM J. Optim.. 13 (2003), pp. 1–23.