CORRIGENDUM: SEMIDEFINITE PROGRAMS: NEW SEARCH DIRECTIONS, SMOOTHING-TYPE METHODS, AND NUMERICAL RESULTS

CHRISTIAN KANZOW* AND CHRISTIAN NAGEL*

Abstract

We correct an error in Lemma 4.2 of [Kanzow and Nagel, Semidefinite programs: New search directions, smoothing-type methods, and numerical results, SIAM J. Optim 13, 2003, pp. 1-23]. With this correction, all results in that paper remain true.

Key words. semidefinite programs, smoothing-type methods, Newton's method, global convergence, superlinear convergence

AMS subject classifications. 90 C 22 , 90 C 46
Let $L_{A}(X):=A X+X A$ be the Lyapunov operator associated to a given matrix $A \in \mathbb{R}^{n \times n}$. In Lemma 4.2 (c) of [1] we asserted that the composition $L_{A} \circ L_{B}$ is strongly monotone for two symmetric positive definite matrices $A, B \succ 0$. While the given proof holds if A and B commute, inequality (4.8) in [1], namely

$$
\operatorname{tr}(X(B A+A B) X) \geq 0
$$

does not hold in general for all $X \in \mathcal{S}^{n \times n}$: Setting

$$
A:=\left(\begin{array}{cc}
10 & 5 \\
5 & 6
\end{array}\right), \quad B:=\left(\begin{array}{cc}
1 & 2 \\
2 & 6
\end{array}\right), \quad X:=\left(\begin{array}{cc}
15 & -7 \\
-7 & 3
\end{array}\right)
$$

an easy calculation shows that $A, B \succ 0$ but $\operatorname{tr}(X(B A+A B) X)=-588<0$. Therefore, to prove part (c), (d) of Lemma 4.2 in [1], we have to add the assumption

$$
\begin{equation*}
B A+A B \succeq 0 \tag{0.1}
\end{equation*}
$$

In Proposition 4.4 we used Lemma 4.2 (d) with $A:=E-S$ and $B:=E-X$ (where $E:=\left(X^{2}+S^{2}+2 \tau^{2} I\right)^{1 / 2}$ for some $\left.\tau>0\right)$ in order to show that a certain linear mapping is bijective. We now have to prove that these matrices satisfy inequality (0.1). This will be done in the following Lemma.

Lemma 0.1. Let $E:=\left(X^{2}+S^{2}+2 \tau^{2} I\right)^{1 / 2}, A:=E-S$ and $B:=E-X$. Then $B A+A B \succeq 0$.

Proof. We have

$$
\begin{aligned}
B A+A B & =(E-X)(E-S)+(E-S)(E-X) \\
& =E^{2}-X E-E S+X S+E^{2}-S E-E X+S X \\
& =X^{2}+S^{2}+2 \tau^{2} I-E(X+S)-(X+S) E+E^{2}+X S+S X \\
& =(X+S-E)^{2}+2 \tau^{2} I \succeq 0
\end{aligned}
$$

This completes the proof.

REFERENCES

[^0][1] C. Kanzow and C. Nagel, Semidefinite programs: New search directions, smoothing-type methods, and numerical results, SIAM J. Optim.. 13 (2003), pp. 1-23.

[^0]: *Institute of Applied Mathematics and Statistics, University of Würzburg, Am Hubland, 97074 Würzburg, Germany (kanzow@mathematik.uni-wuerzburg.de, nagel@mathematik. uni-wuerzburg.de). This research was partially supported by the DFG (Deutsche Forschungsgemeinschaft).

