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Abstract

We consider the general nonlinear optimization problem where the objective function
has an additional term defined by the ℓ0-quasi-norm in order to promote sparsity of a
solution. This problem is highly difficult due to its nonconvexity and discontinuity. We
generalize some recent work and present a whole class of reformulations of this problem
consisting of smooth nonlinear programs. This reformulated problem is shown to be
equivalent to the original ℓ0-sparse optimization problem both in terms of local and global
minima. The reformulation contains a complementarity constraint, and exploiting the
particular structure of this reformulated problem, we introduce several problem-tailored
constraint qualifications, first- and second-order optimality conditions and develop an
exact penalty-type method which is shown to work extremely well on a whole bunch of
different applications.

Keywords. Sparse optimization; global minima; local minima; strong stationarity; second-order con-
ditions; approximate KKT conditions; exact penalty function
Mathematical Science Classification. 65K05 90C26 90C30 90C46

1 Introduction

In this paper, we consider the sparse optimization problem of the form

min
x
f(x) + ρ ∥x∥0 , x ∈ X, (SPO)

where f : Rn → R is a smooth function, X ⊆ Rn a nonempty and closed set, ρ > 0 a given
scalar, and

∥x∥0 := number of nonzero components xi of x.

Note that ∥·∥0 is not a norm, though it is often referred to as the ℓ0-norm in the literature. We
call (SPO) also the sparsest optimization problem since we really want to solve this problem
with the ℓ0-norm, and do not approximate this expression by some weaker version like in the
standard approach, where the term ∥x∥0 gets approximated by ∥x∥1 or some other (nicer)
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function. In the first part of the paper, we deal with an abstract feasible set X, whereas later,
in the algorithmic part, we will assume that X is described suitably by some equality and
inequality constraints.

The solution of the sparsest optimization problem (SPO) is highly difficult due to the non-
convexity and discontinuity of the ℓ0-term in the objective function. According to [20], existing
solution methods for (SPO) can be divided into the following categories: (a) convex approxi-
mations, (b) nonconvex approximations, and (c) nonconvex exact reformulations.

The convex approximation schemes typically replace the ℓ0-norm by the ℓ1-norm. This is
the most standard approach which works very successfully in many applications. Furthermore,
it has the major advantage that the resulting optimization problem is convex provided that the
objective function f and the feasible set X are convex. The ℓ1-norm makes this problem non-
differentiable, nevertheless, there are plenty of methods which can be applied to this nonsmooth
convex problem, see, e.g., the excellent monograph [4] for many examples of this kind.

The class of nonconvex approximation schemes usually replaces the ℓ0-term in (SPO) by a
nonconvex penalty function. One possibility is to use the ℓp-quasi-norm for p ∈ (0, 1), see, e.g.,
[11, 12], which has nicer properties than the ℓ0-norm, e.g., it is continuous. However, despite
its nonconvexity, it also fails to be Lipschitz continuous. There exist several other nonconvex
penalty functions with the aim to approximate the l0-norm in a suitable way and to keep some
nicer smoothness assumptions like SCAD (= smoothly clipped absolute deviation) [14], MCP
(= minimax concave penalty) [35], PiE (= piecewise exponential) [28] or the transformed ℓ1
approach [36]. The penalty decomposition algorithm from [22] is another approximation scheme
for the solution of (SPO) and based on the quadratic (inexact) penalty function. Note that
many of these techniques are investigated only for particular classes of problems covered by
(SPO).

Here, we are particularly interested in the third class, the exact (nonconvex) reformulations
of the sparsest optimization problem. There exist exact reformulations of (SPO) as mixed-
integer programs, see [6] and the recent survey article [33] for further references. At least for
convex quadratic programs with an additional ℓ0-term, this allows to compute a global minimum
by suitable solvers if they get enough time. Another type of reformulation has been developed
on the back of DC-approaches (DC = difference of convex) in [20], where DC-functions were
used to approximate the ℓ0-norm, and in [16], where an exact reformulation of the ℓ0-norm was
featured (though mainly in the context of cardinality-constrained problems, see below). The
paper [15] considers an approach where the ℓ0-term is replaced by a suitable complementarity
constraint. Subsequently, the latter was shown to be equivalent to (SPO) both in terms of local
and global minima by the authors in [18].

The current work generalizes the recent contribution from [18] by introducing and investigat-
ing a whole class of reformulations of (SPO). The main idea presented here is somewhat related
to a similar technique for cardinality-constrained optimization problems discussed in [10, 9]
where the ℓ0-term in the objective function is replaced by a constraint of the form ∥x∥0 ≤ s for
some given s ∈ N. Note, however, that it is not possible to reformulate cardinality-constrained
problems into a sparsest optimization problem, see [33] for a counterexample.

The class of reformulations presented here is also related to optimization problems called
mathematical programs with equilibrium or switching constraints (MPEC and MPSC, for
short). The stationarity conditions developed here are mostly in the same vein. Globalization
approaches for these types of problems include, for instance, relaxation and (exact) penalty
methods, cf. [17, 30, 21]. Due to the special (almost separable) structure the equililibrium
(complementarity) or switching constraints arise in our class of reformulations, we are able to
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prove relatively strong results which go far beyond those which are known for general MPECs
or MPSCs.

The paper is organized as follows: Section 2 presents some background material from op-
timization and variational analysis. In Section 3, we introduce our class of reformulations of
problem (SPO) and show that both the local and global minima coincide with the global and
local minima of (SPO) (note that this is in contrast to the related reformulation of cardinality
constraints discussed in [10, 9] where the reformulated problem might have additional local
minima). We then introduce several problem-tailored constraint qualifications in Section 4 and
present the resulting first- and second-order conditions for problem (SPO). An approximate
stationarity concept will be discussed in Section 5. We then present our exact penalty method
in 6 and provide several (strong) exactness and convergence results. In Section 7, we then in-
vestigate the numerical behaviour of our methods applied to a variety of different applications,
which indicates that our method usually gets high-quality solutions, in many cases equal to the
global minimum (for those problems where the global minimum is known or computable). We
conclude with some final remarks in Section 8.

We close with some remarks on our notation in use: In the various parts of this paper, we
address via

I0(x) := {i |xi = 0}
the set of indices for which x vanishes. Furthermore, we write x◦y for the Hadamard-product of
x and y, i.e. the component wise multiplication of the two vectors. We abbreviate the canonical
unit vector by ei ∈ Rn, indicating that the single 1 is in the i-th position, and additionally
write e := (1, 1, ..., 1)T ∈ Rn. Since we will introduce sign constraints to our variables, we also
denote with Rn

+ the cone of vectors with only non-negative entries in Rn.

2 Mathematical Background

This section provides some background from mathematical optimization and variational analy-
sis, see, e.g., the monographs [5, 29] and [27, 32], respectively, for more details and corresponding
proofs.

Consider the optimization problem

min f(x) s.t. x ∈ X

with a continuously differentiable objective function f : Rn → R and a nonempty, closed set
X ⊆ Rn. For a feasible point x ∈ X, the (Bouligand) tangent cone or contingent cone of x
with respect to X is defined by

TX(x) :=
{
d ∈ Rn

∣∣∣∃{xk} →X x,∃{tk} ↓ 0 : d = lim
k→∞

xk − x

tk

}
,

where the notation xk →X x indicates a sequence {xk} converging to x such that xk ∈ X for
all k ∈ N. Furthermore, if the feasible set X has a representation of the form

X =
{
x ∈ Rn

∣∣ gi(x) ≤ 0 (i = 1, . . . ,m), hj(x) = 0 (j = 1, . . . , p)
}

for continuously differentiable functions gi, hj : Rn → R, the corresponding linearization cone
of x ∈ X is defined by

LX(x) :=
{
d ∈ Rn

∣∣∇gi(x)Td ≤ 0 (i ∈ Ig(x)), ∇hj(x)Td = 0 (j = 1, . . . , p)
}
,
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where
Ig(x) :=

{
i ∈ {1, . . . ,m}

∣∣ gi(x) = 0
}

denotes the set of active inequality constraints at the feasible point x. Note that the linearization
cone depends on the particular representation of X, whereas the tangent cone is a purely
geometric object, independent of any representation.

Given a nonempty cone C ⊆ Rn, we denote by

C◦ :=
{
v ∈ Rn

∣∣ vTd ≤ 0 for all d ∈ C
}

the polar cone of C. We then say that the Abadie constraint qualification (Abadie CQ or ACQ
for short) holds at x ∈ X if

TX(x) = LX(x)

holds (the inclusion TX(x) ⊆ LX(x) is automatically true, hence the opposite inclusion is the
central requirement). Moreover, the Guignard constraint qualification (Guignard CQ or simply
GCQ) is satisfied at x ∈ X if the corresponding polar cones coincide, i.e., if

TX(x)
◦ = LX(x)

◦

holds. Note that ACQ implies GCQ, whereas the converse is not true in general.
For a nonempty and closed set X ⊆ Rn, we call

ˆNX(x̄) := TX(x̄)
◦

the Fréchet normal cone of x̄ ∈ X. Furthermore,

NX(x̄) := Limsupx→X x̄
ˆNX(x)

:=
{
v ∈ Rn

∣∣ ∃{xk}, ∃{vk} : xk →X x̄, vk → v, vk ∈ ˆNX(x
k) ∀k ∈ N}

denotes the Mordukhovich normal cone or limiting normal cone of x̄ ∈ X. For the sake of
completeness, we set ˆNX(x̄) := NX(x̄) := ∅ for each point x̄ ̸∈ X. Note that we always have

the inclusion ˆNX(x̄) ⊆ NX(x̄), whereas for convex sets X, both normal cones coincide and are
equal to the usual normal cone from convex analysis, i.e., the equalities

ˆNX(x̄) = NX(x̄) = N conv
X (x̄) :=

{
v ∈ Rn

∣∣ vT (x− x̄) ≤ 0 ∀x ∈ X}

hold for convex X.
Next, let us write R := R∪{+∞} for the extended real line (excluding the value −∞). For

φ : Rn → R being proper, we call

epi(φ) :=
{
(x, α) ∈ Rn × R

∣∣φ(x) ≤ α
}

the epigraph of φ. Based on the previously introduced normal cones, we can define two corres-
ponding subdifferentials for the nonsmooth function φ, namely the Fréchet subdifferential of
x̄ ∈ dom(φ) := {x ∈ Rn |φ(x) <∞}, given by

∂̂φ(x̄) :=
{
s ∈ Rn

∣∣ (s,−1) ∈ ˆNepi(φ)

(
x̄, φ(x̄)

)}
and the Limiting or Mordukhovich subdifferential

∂φ(x̄) :=
{
s ∈ Rn

∣∣ (s,−1) ∈ Nepi(φ)

(
x̄, φ(x̄)

)}
.
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From the corresponding relation between the normal cones, we get the inclusion ∂̂φ(x̄) ⊆ ∂φ(x̄),
whereas both subdifferentials coincide and are equal to the standard subdifferential from convex
analysis, i.e.,

∂̂φ(x̄) = ∂φ(x̄) = ∂convφ(x̄) :=
{
s ∈ Rn

∣∣φ(x) ≥ φ(x̄) + sT (x− x̄) ∀x ∈ Rn
}

for φ being a convex function.
Using these subdifferentials, we introduce the following notion.

Definition 2.1. Consider the optimization problem

min ψ(x) s.t. x ∈ X (1)

for some proper and lower semicontinuous function ψ : Rn → R and a nonempty, closed set
X ⊆ Rn. We then call x̄ ∈ X

(a) an M-stationary point (Mordukhovich stationary point) of (1) if 0 ∈ ∂ψ(x̄) + NX(x̄);

(b) an S-stationary point (strongly stationary point) of (1) if 0 ∈ ∂̂ψ(x̄) + ˆNX(x̄).

Since the Fréchet normal cone is (in general) smaller than the limiting normal cone, S-station-
arity is a stronger stationary concept than M-stationarity.

We next restate a sum rule for the above two subdifferentials, see [27, Prop. 1.30] for a
proof.

Theorem 2.2. Let ψ := f + φ with φ : Rn → R proper and lower semicontinuous, f : Rn → R,
and x̄ ∈ dom(φ) be given. Then the following statements hold:

(a) If f is differentiable in x̄, then ∂̂ψ(x̄) = ∇f(x̄) + ∂̂φ(x̄) holds.

(b) If f is continuously differentiable in a neighbourhood of x̄, then ∂ψ(x̄) = ∇f(x̄) + ∂φ(x̄)
holds.

Now, consider the (constrained composite) optimization problem

min f(x) + φ(x) s.t. x ∈ X (2)

with f : Rn → R continuously differentiable, φ : Rn → R proper and lower semicontinuous, and
X ⊆ Rn nonempty and closed. Writing ψ := f + φ for the objective function, we obtain from
Theorem 2.2 that

∂̂ψ(x̄) = ∇f(x̄) + ∂̂φ(x̄) and ∂ψ(x̄) = ∇f(x̄) + ∂φ(x̄).

Consequently, using the notion from Definition 2.1, we see that a feasible point x̄ ∈ X is
M-stationary for (2) if

0 ∈ ∇f(x̄) + ∂φ(x̄) + NX(x̄)

holds, whereas it is S-stationary for (2) if we have

0 ∈ ∇f(x̄) + ∂̂φ(x̄) + ˆNX(x̄).

Note that φ(x) := ρ ∥x∥0 is a proper and lower semicontinuous function, hence our sparse
optimization problem (SPO) is a special instance of the formulation (2). The previous M- and
S-stationary conditions then require the corresponding subdifferentials of this function. The
answer is given in the following result, which follows from [19, 13] and lower semicontinuity of
the ℓ0-norm.
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Lemma 2.3. Consider the function φ(x) := ρ ∥x∥0 for some ρ > 0. Then

∂̂φ(x) = ∂φ(x) =
{
s ∈ Rn

∣∣ si = 0 for all i with xi ̸= 0
}

for all x ∈ Rn.

Hence the limiting and Fréchet subdifferentials of φ(x) = ρ ∥x∥0 coincide and are independent of
the particular value of the parameter ρ > 0. In order to apply the above M- and S-stationarity
conditions of problem (2) to our setting from (SPO), it remains to compute the corresponding

normal cones NX(x̄) and ˆNX(x̄). This will be done by using some (problem-tailored) constraint
qualifications, see Section 4.

3 Reformulation of Sparse Optimization Problem

In the previous work [18], we established an equivalence regarding local and (up to a scaling of
ρ) global minima between problem (SPO) and the following reformulation of (SPO) based on
an auxiliary variable y:

min
x,y

f(x) +
ρ

2
yT (y − 2e) s.t. x ∈ X, x ◦ y = 0, (3)

where e = (1, 1, ..., 1)T ∈ Rn. The aim of this section is to generalize this approach.
To this end, we introduce a penalty function pρ : Rn → R (usually depending on the param-

eter ρ > 0) given by

pρ(y) =
n∑

i=1

pρi (yi) (4)

with each pρi : R → R being such that it satisfies the following conditions:

(P.1) pρi is convex and attains a unique minimum (possibly depending on ρ) at some point
sρi > 0;

(P.2) pρi (0)− pρi (s
ρ
i ) = ρ;

(P.3) pρi is sufficiently smooth.

Assumption (P.1) simply states that pρi is a convex function which attains its unique minimum
in the open interval (0,∞). We denote this minimum by sρi > 0. Furthermore, we write

mρ
i := pρi (s

ρ
i ) and Mρ :=

n∑
i=1

mρ
i (5)

for the corresponding minimal function values of pρi and pρ, respectively. Condition (P.2) is a
scaling assumption that can always be guaranteed by multiplication of pρi with a suitable factor,
whereas condition (P.3) is a smoothness condition, with the degree of smoothness depending on
the particular situation which should be clear from the corresponding context. In particular, for
the reformulation of the sparse optimization problem (SPO) within this section, it will be enough
to have each pρi continuous (which is automatically satisfied by the convexity assumption). The
subsequent discussion of suitable constraint qualifications and stationarity concepts requires
each pρi to be continuously differentiable, whereas in the second-order theory, pρi needs to be
twice continuously differentiable.

In the following, we provide some examples of suitable functions pρi .
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Example 3.1. The following functions pρi : R → R satisfy conditions (P.1)–(P.3):

(a) The function pρi (yi) := ρyi(yi − 2) is convex (in fact, uniformly convex), satisfies all
smoothness requirements, and attains a unique minimum at sρi := 1 (which, in this case,
is independent of ρ).

(b) The function pρi (yi) =
1
2
(yi −

√
2ρ)2 also satifies all of the above requirements and can be

seen as a somewhat natural choice, since we want y∗i to attain some positive value sρi for
x∗i to vanish. This particular choice simply penalizes the deviation in y∗i from sρi =

√
2ρ,

where sρi was selected in accordance to (P.2).

(c) The shifted absolute-value function pρi (yi) := ρ|yi − 1| also satisfies (P.1)–(P.3), though
(P.3) only holds with continuity, which is sufficient for the considerations within this
section. Using a Huber-type smoothing (together with a suitable scaling so that (P.2)
holds), we can easily construct a continuously differentiable version of this function sat-
isfying (P.1)–(P.3).

It is clear that several other examples satisfying (P.1)–(P.3) can be constructed easily. In the
following, we assume that pρ is given by (4) with each term pρi satisfying conditions (P.1)–
(P.3), where only continuity is required in (P.3) within this section. We then consider the
reformulation

min
x,y

f(x) + pρ(y) s.t. x ∈ X, x ◦ y = 0 (SPOref)

of the sparse optimization problem (SPO) (the acronym ”SPOref” stands for ”SPO-reformula-
tion”). Note that, for the choice of pρi as in Example 3.1 (a), we reobtain the previous formulation
from (3) (except for the factor 1

2
which would destroy property (P.2)).

The aim of this section is to show that problem (SPOref) is indeed a reformulation of the
sparse optimization problem in the sense that it has the same local and global minima. For
this purpose, we begin with the following preliminary observation.

Lemma 3.2. Let pρ be given by (4) with each pρi satisfying properties (P.1)–(P.3), and let Mρ

be defined by (5). Then the following statements hold:

(a) The inequality ρ ∥x∥0 ≤ pρ(y)−Mρ holds for any feasible point (x, y) of (SPOref).

(b) Equality ρ ∥x∥0 = pρ(y) −Mρ holds for a feasible point (x, y) of (SPOref) if and only if
yi = sρi for all i ∈ I0(x).

(c) If (x∗, y∗) is a local minimum of (SPOref), we have y∗i = sρi for all i ∈ I0(x
∗).

Proof. (a) The claim follows from

ρ ∥x∥0 =
∑

i ̸∈I0(x)

ρ =
∑

i ̸∈I0(x)

(
pρi (0)− pρi (s

ρ
i )
)
=

∑
i ̸∈I0(x)

(
pρi (yi)− pρi (s

ρ
i )
)

≤
∑

i ̸∈I0(x)

(
pρi (yi)− pρi (s

ρ
i )
)
+

∑
i∈I0(x)

(
pρi (yi)− pρi (s

ρ
i )
)

=
n∑

i=1

(
pρi (yi)− pρi (s

ρ
i )
)
= pρ(y)−Mρ,
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where the first identity results from the definition of ∥x∥0 together with the one of the index
set I0(x), the second equation exploits the scaling property (P.2), the third equation comes
from the fact that we necessarily have yi = 0 for all i ̸∈ I0(x) due to the constraints x ◦ y = 0,
the inequality takes into account that pρi (yi)− pρi (s

ρ
i ) ≥ 0 due to the minimality of sρi , and the

remaining part is simply the definition of pρ and Mρ.

(b) Observe that the previous chain of equations and inequalities holds with equation if and
only if pρi (yi) = pρi (s

ρ
i ) for all i ∈ I0(x). Since the minimum sρi is unique by condition (P.1), this

holds if and only if yi = sρi for all i ∈ I0(x), hence statement (b) holds.

(c) This statement follows from the observation that, for any i ∈ I0(x
∗), the auxiliary variable

y∗i has to solve the problem
min
yi

pρi (yi)

(note that yi = 0 is fixed for each i ̸∈ I0(x
∗) due to the complementarity-type constraint

x ◦ y = 0, and that the objective function is separable in each yi).

Note that Lemma 3.2 together with the constraint x ◦ y = 0 implies that, for (x∗, y∗) being a
local minimum of (SPOref), we necessarily have

y∗i =

{
sρi , for i ∈ I0(x

∗),

0, otherwise.
(6)

In particular, y∗ is uniquely defined by x∗. Exploiting this observation, we are able to formulate
an equivalence result between the local minima of the two problems (SPO) and (SPOref).

Theorem 3.3. A feasible x∗ for (SPO) is a local minimum of (SPO) if and only if (x∗, y∗) with
y∗ given by (6) is a local minimum of (SPOref).

Proof. The proof is very similar to the corresponding one in our previous work [18], and is
presented here for the sake of completeness and because part of the proof will be used also in
the proof of the subsequent result

Let x∗ be local minimum of (SPO), and let y∗ be defined by (6). We then obtain

f(x∗) + pρ(y∗) = f(x∗) + ρ ∥x∗∥0 +Mρ ≤ f(x) + ρ ∥x∥0 +Mρ ≤ f(x) + pρ(y) (7)

for all feasible (x, y) with x sufficiently close to x∗, where the first equality results from
Lemma 3.2 (b), the subsequent inequality exploits the local minimality of x∗ for the program
(SPO), and the final inequality follows from Lemma 3.2 (a).

Conversely, let (x∗, y∗) be a local minimum of (SPOref). Recall that y∗ is then given by
(6), cf. Lemma 3.2 (c). Assume that x∗ is not a local minimum of (SPO). Then there exists a
sequence {xk} ⊆ X such that xk → x∗ and

f(xk) + ρ
∥∥xk∥∥

0
< f(x∗) + ρ ∥x∗∥0 ∀k ∈ N. (8)

Note that
∥∥xk∥∥

0
≥ ∥x∗∥0 holds for all k sufficiently large. Hence we either have a subsequence

{xk}K such that
∥∥xk∥∥

0
= ∥x∗∥0 for all k ∈ K, or ∥x∗∥0 + 1 ≤

∥∥xk∥∥
0
is true for almost all

8



k ∈ N. In the former case, it follows that (xk, y∗) is feasible for (SPOref), hence we obtain from
Lemma 3.2 (b) and the minimality of (x∗, y∗) for (SPOref) that

f(xk) + ρ
∥∥xk∥∥

0
+Mρ = f(xk) + ρ ∥x∗∥0 +Mρ

= f(xk) + pρ(y∗)

≥ f(x∗) + pρ(y∗)

= f(x∗) + ρ ∥x∗∥0 +Mρ,

which contradicts (8). Otherwise, we have ∥x∗∥0 + 1 ≤
∥∥xk∥∥

0
and, by continuity, also f(x∗) ≤

f(xk) + ρ for all k ∈ N sufficiently large, which, in turn, gives

f(xk) + ρ
∥∥xk∥∥

0
≥ f(xk) + ρ+ ρ ∥x∗∥0 ≥ f(x∗) + ρ ∥x∗∥0 .

Hence, also in this situation, we have a contradiction to (8).

Note that the full equivalence of the set of local minima is quite interesting, especially since
a similar result does not hold for a somewhat related reformulation of optimization problems
with cardinality constraints, see [9].

The next result states the equivalence between global minima of the two problems (SPO)
and (SPOref). This result, however, is less surprising than the previous one regarding local
minima (and holds, in particular, also for the previously mentioned cardinality-constrained
problems discussed in [9]).

Theorem 3.4. A feasible x∗ for (SPO) is a global minimum of (SPO) if and only if (x∗, y∗)
with y∗ given by (6) is a global minimum of (SPOref).

Proof. First assume that x∗ is a global minimum of (SPO). Then the chain of inequalities
from (7) holds for all (x, y) feasible for (SPOref), showing that (x∗, y∗) is a global minimum of
(SPOref).

Conversely, let (x∗, y∗) solve problem (SPOref) globally, and let x ∈ X be an arbitrary
feasible point of (SPO). We then define a vector y ∈ Rn similar to (6) so that (x, y) is feasible
for (SPOref). Using the optimality of (x∗, y∗) and exploiting Lemma 3.2 (b) twice, we then
obtain

f(x∗) + ρ ∥x∗∥0 +Mρ = f(x∗) + pρ(y∗) ≤ f(x) + pρ(y) = f(x) + ρ ∥x∥0 +Mρ.

Subtracting the constant Mρ from both sides shows that x∗ is a global minimum of problem
(SPO).

Altogether, the results from this section show that we can reformulate the nonsmooth and even
discontinuous sparse optimization problem (SPO) as a continuous problem without any loss of
information regarding local or global minima. The main difficulty of the reformulation (SPOref)
is, of course, the constraint x ◦ y = 0 which is not easy to deal with, in particular, it violates
most of the standard constraint qualifications like the Abadie CQ and, therefore, all constraint
qualifications which are stronger than Abadie. We are going to deal with this difficulty in our
subsequent sections by introducing some problem-tailored CQs and by considering a particular
method for the solution of problem (SPOref) which exploits the structure of the underlying
problem.
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4 Constraint Qualifications and Optimality Conditions

The aim of this section is to introduce some suitable (problem-tailored) constraint qualifcations
which are then used to obtain corresponding optimality conditions. Note that this requires
that the feasible set X has an explicit representation by equality and/or inequality constraints.
In view of our subsequent algorithmic approach for solving the reformulation (SPOref) of the
sparse optimization problem (SPO), we assume from now on that the feasible set is given by

X :=
{
x ∈ Rn

∣∣∣ g(x) ≤ 0, h(x) = 0, x ≥ 0
}

(9)

with some smooth functions g : Rn → Rm and h : Rn → Rp. Hence, in addition to some standard
constraints, we assume explicitly that the inequalities contain nonnegativity constraints, and
that these nonnegativity constraints are separated from the remaing inequalities g(x) ≤ 0. This
representation turns out to be very useful in our subsequent exact penalty approach.

In order to derive some problem-tailored constraint qualifications, we follow a standard
approach that is also used in the context of mathematical programs with equilibrium constraints,
see [23], or optimization problems with switching constraints, see [17, 26]. To this end, let x∗

be a local minimum of problem (SPO) with X defined by (9). This implies that x∗ is also a
local minimum of the tightend nonlinear program

min
x
f(x) s.t. g(x) ≤ 0, h(x) = 0, xi = 0, i ∈ I0(x

∗) (TNLP(x∗))

since, locally, the feasible set of (TNLP(x∗)) is a subset of X and x∗, by definition, is still
feasible for this problem. Note, however, that (TNLP(x∗)) depends on x∗ (via the index set
I0(x

∗)) and can therefore be used only as a theoretical tool. Here, we exploit this observation
to formulate the subsequent constraint qualifications.

Definition 4.1. Let x∗ ∈ X with X being defined by (9). We say that x∗ satisfies

(a) SP-LICQ (sparse LICQ) if the gradients

∇gi(x∗), i ∈ Ig(x
∗), ∇hj(x∗), j = 1, ..., p, ei, i ∈ I0(x

∗)

are linearly independent.

(b) SP-MFCQ (sparse MFCQ) if the gradients

∇gi(x∗), i ∈ Ig(x
∗), ∇hj(x∗), j = 1, ...,m, ei, i ∈ I0(x

∗),

are positively linearly independent.

(c) SP-RCPLD (sparse RCPLD) if there is a neighborhood U of x∗ such that, for any index
sets I1 ⊆ {1, ..., p}, I2 ⊆ I0(x

∗) with the gradients {∇hi(x∗)}I1 , {ei}i∈I2 forming a basis
of the subspace generated by all gradients ∇hi(x∗) (i = 1, . . . , p), ei (i ∈ I0(x

∗)), the
following holds for all x ∈ U .

1.
(
{∇hi(x)}pi=1, {ei}i∈I0(x∗)

)
is of constant rank for all x ∈ U

2. For every J ⊆ Ig(x
∗), if ({∇hi(x∗)}I1 , {ei}I2 , {∇gi(x∗)}J) is positive-linearly depen-

dent, then ({∇hi(x)}I1 , {ei}I2 , {∇gi(x)}J) is linearly dependent for every x ∈ U .
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Observe that SP-LICQ, SP-MFCQ and SP-RCPLD correspond to standard LICQ, standard
MFCQ and standard RCPLD for the tightened problem (TNLP(x∗)) (with RCPLD being a
constraint qualification introduced in [1]). Hence, it is clear how to formulate further constraint
qualifications based on this relation. In particular, standard theory on constraint qualifications
therefore show that each of the problem-tailored constraint qualifications from Definition 4.1
imply that (standard) Abadie CQ holds for the tightened problem (TNLP(x∗)). We now use
this observation in order to derive a suitable optimality condition for the sparse optimization
problem (SPO).

To this end, let x∗ be a local minimum of (SPO), and consider the corresponding tightened
problem (TNLP(x∗)). Assume further that any of the problem-tailored constraint qualifications
from Definition 4.1 hold. Let us denote by

XTNLP(x∗) the feasible set of (TNLP(x∗)),

and by

TXTNLP(x∗)(x
∗), LXTNLP(x∗)(x

∗), ˆNXTNLP(x∗)(x
∗), and NXTNLP(x∗)(x

∗)

the corresponding tangent cone, linearization cone, Fréchet normal cone, and limiting normal
cone of x∗ ∈ XTNLP(x∗). Since each of the SP-CQs from Definition 4.1 implies that the standard
Abadie and, hence, the standard Guignard CQ holds at x∗ ∈ XTNLP(x∗), we obtain

TXTNLP(x∗)(x
∗)◦ = LXTNLP(x∗)(x

∗)◦.

Now, the linearization cone LXTNLP(x∗)(x
∗) is a polyhedral convex cone, and standard results

from convex analysis imply that its polar is given by

LXTNLP(x∗)(x
∗)◦ =

{
d
∣∣∣ d =

∑
i∈Ig(x∗)

λi∇gi(x∗)+
p∑

j=1

µj∇hj(x∗)+
∑

i∈I0(x∗)

γiei, λi ≥ 0 (i ∈ I0(x
∗))

}
.

Since, by definition, we have

ˆNXTNLP(x∗)(x
∗) = TXTNLP(x∗)(x

∗)◦ = LXTNLP(x∗)(x
∗)◦,

this shows that

ˆNXTNLP(x∗)(x
∗) =

{
d
∣∣∣ d =

∑
i∈Ig(x∗)

λi∇gi(x∗) +
p∑

j=1

µj∇hj(x∗) +
∑

i∈I0(x∗)

γiei, λi ≥ 0 (i ∈ I0(x
∗))

}
.

Now, using the expression of the Fréchet normal cone for the tightened nonlinear program
(TNLP(x∗)), the notation of an S-stationary point from Section 2 for a general optimization
problem as in (2), and taking into account the formula for the Fréchet subdifferential of the
function φ(x) := ρ ∥x∥0 from Lemma 2.3, it follows that the local minimum x∗ satisfies the
following S-stationary conditions under any of the SP-CQs from Definition 4.1, where, for
simplicity of notation,

LSP (x, λ, µ) := f(x) + λTg(x) + µTh(x) (10)

denotes a mapping that we call the SP-Lagrangian of problem (SPO) with the feasible set X
given by (9) (note that this SP-Lagrangian neither includes the ℓ0-term of the original objective
function nor any term resulting from the nonnegativity constraints).
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Definition 4.2. Let x∗ ∈ X be feasible for the sparse optimization problem (SPO), where X is
given by (9). Then we call x∗ an S-stationary point of (SPO) if there exist multipliers λ∗ ∈ Rm

and µ∗ ∈ Rp such that

∇xi
LSP (x∗, λ∗, µ∗) = 0, i ̸∈ I0(x

∗),

h(x∗) = 0,

λ∗ ≥ 0, g(x∗) ≤ 0, λ∗ ◦ g(x∗) = 0.

Note that the previous derivation shows that S-stationarity is a necessary optimality condition
for a local minimum x∗ of problem (SPO) provided that a suitable (problem-tailored) constraint
qualification holds. In a similar way, one can also derive an M-stationary condition. However,
in this particular case, there is no difference between M- and S-stationarity due to the fact that
the Fréchet and limiting subdifferentials of the function φ(x) = ρ ∥x∥0 coincide, cf. Lemma 2.3.

Before providing another interpretation of S-stationary points, we consider a slightly differ-
ent reformulation of problem (SPO) with X given by (9). Since, by (6), any local minimum
(x∗, y∗) of the reformulated problem (SPOref) automatically satisfies y∗ ≥ 0, it follows that
(SPOref) and, hence, (SPO) itself is totally equivalent to the program

min
x,y

f(x) + pρ(y) s.t. g(x) ≤ 0, h(x) = 0, x ◦ y = 0, x ≥ 0, y ≥ 0 (SPOcp)

in terms of local and global minima. We call (SPOcp) the complementarity reformulation of
problem (SPO) (hence the acronym ”cp”) due to the complementarity constraints x ≥ 0, y ≥
0, xTy = 0. Note that (SPOcp) will be the basis of our algorithmic approach for the solution
of the sparse optimization problem (SPO).

Assuming that the function pρ is continuously differentiable, the two reformulations (SPOref)
and (SPOcp) are smooth optimization problems. Hence, we can write down the correspond-
ing KKT conditions. It turns out they are equivalent to the S-stationarity conditions from
Definition 4.2. This is summarized in the following result.

Theorem 4.3. Consider the sparse optimization problem (SPO) with feasible set X given by
(9). Furthermore, for a feasible point x∗ ∈ X, let y∗ denote the corresponding vector defined by
(6). Then the following statements are equivalent:

(a) x∗ is an S-stationary point of (SPO).

(b) The KKT conditions of (SPOref) are satisfied at (x∗, y∗).

(c) The KKT conditions of (SPOcp) are satisfied at (x∗, y∗).

We skip the proof of Theorem 4.3 since it is rather elementary. We only stress the following two
facts: Definition (6) of y∗ implies that the bi-active set of the solution pair (x∗, y∗) is empty,
i.e., there is no index i with (x∗i , y

∗
i ) = (0, 0). Furthermore, for x∗i = 0, we have that y∗i is equal

to the unique minimum sρi of the function pρi , hence [∇pρ(y∗)]i = 0 follows.
The following observation is simple, but quite interesting and important for our subsequent

theory, hence we state it explicitly in the following remark.

Remark 4.4. Let (x∗, y∗) be a stationary point of (SPOcp). We then claim that the bi-active
set

B(x∗, y∗) := {i | (x∗i , y∗i ) = (0, 0)}
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is automatically empty. In fact, from the stationarity conditions of (SPOcp), we, in particular,
obtain

∇pρi (y∗i ) + ηx∗i − νxi = 0 ∀i = 1, . . . ,m

for some corresponding multipliers η ∈ R and νx ≥ 0. If there were an index i with (x∗i , y
∗
i ) =

(0, 0), the term in the middle vanishes, and the first term is strictly negative by the convexity
of pρi together with the assumption that this function attains a unique minimum at the positive
number sρi . Hence, it follows that ∇p

ρ
i (y

∗
i )+ ηx

∗
i − νxi < 0, and this contradiction completes the

proof.

Theorem 4.3 shows that the given sparse optimization problem (SPO) and its two reformulations
(SPOref) and (SPOcp) are not only equivalent with respect to local and global minima, but
also in terms of their first-order optimality conditions.

We next demonstrate that also the corresponding second-order conditions coincide. To this
end, we assume that all functions are twice continuously differentiable. Furthermore, let LSP

be the SP-Lagrangian of (SPO). We then define the SP-critical cone

C SP (x∗, λ∗) =
{
d
∣∣∇hj(x∗)Td = 0, j = 1, . . . , p,

∇gi(x∗)Td = 0, i ∈ Ig(x
∗), λ∗i > 0,

∇gi(x∗)Td ≤ 0, i ∈ Ig(x
∗), λ∗i = 0,

di = 0, i ∈ I0(x
∗)
}

at some S-stationary point x∗ with corresponding multipliers (λ∗, µ∗).

Definition 4.5. Given an S-stationary point x∗ with multipliers (λ∗, µ∗), and using the notion of
the SP-Lagrangian and the SP-critical cone as before, we say that the triple (x∗, λ∗, µ∗) satisfies
the

(a) SP-SOSC (sparse second-order sufficiency condition) if

dT∇2
xxL

SP (x∗, λ∗, µ∗)d > 0 ∀d ∈ C SP (x∗, λ∗) \ {0}

(b) SP-SONC (sparse second-order necessary condition) if

dT∇2
xxL

SP (x∗, λ∗, µ∗)d ≥ 0 ∀d ∈ C SP (x∗, λ∗)

holds.

These second-order conditions turn out to be equivalent to the standard second-order condi-
tions of the two reformulations (SPOref) and (SPOcp). This observation is summarized in the
following result.

Theorem 4.6. Let x∗ be an S-stationary point with multipliers (λ∗, µ∗), and let y∗ be given by
(6). Assume that pρ is twice continuously differentiable. Then the following statements are
equivalent.

(a) SP-SONC holds at x∗ for (SPO).

(b) SONC holds at (x∗, y∗) for (SPOref).
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(c) SONC holds at (x∗, y∗) for (SPOcp).

The same equivalences also hold for SP-SOSC and SOSC provided that the (diagonal) matrix
∇pρ(y∗) is positive definite.

Note that, due to the separable structure of the function pρ, the Jacobian ∇pρ(y∗) is indeed
a diagonal matrix. Due to the assumed convexity of each function pρi , this diagonal matrix is
automatically positive semidefinite. For the equivalence of the second-order sufficiency condi-
tions, however, we require the slightly stronger assumption that this matrix is positive definite.
Note that this holds automatically if pρi is strongly convex around y∗, an assumption that is
satisfied for all instances from Example 3.1.

We skip the details of the proof, but provide at least some hints. The equivalence of
statements (b) and (c) is based on the following two facts: (i) the Hessian of the correspond-
ing two Lagrangians coincide since the Lagrangian of (SPOcp) contains only one more linear
term which disappears in the second-order derivatives, (ii) the criticial cones of the two sets
{(x, y) |x ≥ 0, x ◦ y = 0} and {(x, y) |x ≥ 0, y ≥ 0, x ◦ y = 0} coincide at (x, y) = (x∗, y∗) since
the biactive set is empty, cf. Remark 4.4 (otherwise, this statement would be wrong).

Furthermore, a simple calculation shows that the Hessian of the Lagrangian of either
(SPOref) or (SPOcp) is given by

H =

(
∇2

xxL
SP (x∗, λ∗, µ∗) diag(γ)
diag(γ) ∇2

yyp
ρ(y∗)

)
for some multiplier γ. This implies(

dx
dy

)T

H

(
dx
dy

)
= dTx∇2

xxL
SP (x∗, λ∗, µ∗)dx + 2dTy∇2

yyp
ρ(y∗)dy +

n∑
i=1

γi (dx)i (dy)i .

Observe that dTy∇2
yyp

ρ(y)dy ≥ 0 holds due to the convexity of the (separable) function pρ, and
that (dx)i (dy)i = 0 for all i and all vectors (dx, dy) from the critical cone of either (SPOref) or
(SPOcp). Taking these observations into account, the equivalence of statement (a) to assertions
(b) or (c) is easy to verify.

Note that, in general, we prefer to deal with the above two sparse second-order conditions
since they are defined directly in terms of the sparse optimization problem (SPO), hence they
are independent of the auxiliary variable y and the function pρ introduced in order to obtain
the desired reformulations.

5 Approximate S-Stationarity

This section considers a sequential optimality condition which is the counterpart of the approxi-
mate KKT conditions (AKKT conditions for short) originally introduced for standard nonlinear
programs of the form

min
x

f(x) s.t. g(x) ≤ 0, h(x) = 0 (11)

by [2] (with the name cone continuity property), see also [7]: A feasible point x∗ of (11) is called
an AKKT point if there are sequences {xk} ⊂ Rn, λk ⊂ Rm

+ , and µ
k ⊂ Rp such that

xk → x∗, ∇xL(x
k, λk, µk) → 0, min

{
− gi(x

k), λki
}
→ 0 ∀i = 1, . . . ,m,
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where L denotes the (ordinary) Lagrangian of (11).
The notion of an AKKT point has been generalized in different ways to optimization prob-

lems having a special and/or difficult structure, often coined approximate M-stationarity (AM-
stationarity) since it is based on a sequential version of the M-stationary optimality conditions,
see, e.g., [25] for a corresponding discussion in a very general setting.

In the following, we introduce a sequential optimality condition for the sparse optimization
problem (SPO) which is based on the notion of an S-stationary point from Definition 4.2 and,
therefore, takes into account the particular structure of this problem.

Definition 5.1. Consider the sparse optimization problem (SPO) with feasible set X being defined
by (9). We then call a feasible point x∗ ∈ X an approximate S-stationary point (AS-stationary
point, for short) if there exist sequences {xk} ⊂ Rn, {λk} ⊂ Rm

+ , and {µk} ⊂ Rp such that

xk → x∗, ∇xi
LSP (xk, λk, µk) → 0 ∀i /∈ I0(x

∗), min{−gi(xk), λki } → 0 ∀i = 1, ...,m,

where LSP denotes, once again, the SP-Lagrangian from (10).

Similar to existing results on AKKT- and AM-stationary points, we can also derive several
useful properties for our notion of an AS-stationary point in the context of sparse optimization
problems. The first result in this context shows that any local minimum is automatically an AS-
stationary point. Note that this statement holds without assuming any constraint qualification.

Theorem 5.2. Let x∗ be a local minimum of the sparse optimization problem (SPO) with X
given by (9). Then x∗ is an AS-stationary point of (SPO).

Proof. First recall that the local minimum x∗ of (SPO) is also a local minimum of the cor-
responding tightened nonlinear program from (TNLP(x∗)). Therefore, standard results on
AKKT points imply that there exists sequences xk → x∗ as well as {λk} ⊂ Rm

+ , {µk} ⊂ Rp,
and {γk} ⊂ R|I0(x∗)| satisfiying

∇xL
SP (xk, λk, µk) +

∑
i∈I0(x∗)

γki ei → 0 and min{−gi(xk), λki } → 0 ∀i = 1, . . . ,m.

Hence, for all i /∈ I0(x
∗), this implies ∇xi

LSP (xk, λk, µk) → 0, and the claim follows.

Theorem 5.2 shows that AS-stationarity is a necessary optimality condition. Of course, this
does not automatically imply that AS-stationarity is a suitable (strong) optimality condition.
In fact, it is known that, for certain classes of optimization problems like cardinality-constrained
problems, the standard AKKT-conditions hold at every feasible point, cf. [31]. The following
example shows that this unfortunate situation does not hold in our setting with AS-stationarity.

Example 5.3. Consider the (sparse) optimization problem

min
x

n∑
i=1

xi + ρ ∥x∥0 s.t. ∥x∥22 ≤ 1, x ≥ 0.

The origin x = 0 is the only local and global minimum of this problem and, hence, also an
AS-stationary point in view of Theorem 5.2. We claim that it is also the only AS-stationary
point. In fact, suppose there exists an AS-stationary point x∗ with x∗i > 0 for at least one
component i. Since x∗ is an AS-stationary point, there exist suitable sequences {xk} → x∗ and
{λk} ∈ [0,∞) such that, in particular, for the component i, we have 1 + 2λkxki → 0, which is
impossible for all k sufficiently large since λk ≥ 0 and xki → x∗i > 0. Hence, x = 0 is the only
AS-stationary point. Notice that the origin is also S-stationary in this example.
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We next want to provide conditions under which an AS-stationary point is already S-stationary.
The following example shows that this implication does not hold in general.

Example 5.4. Consider the (sparse) optimization problem

min
x

x1 + ρ ∥x∥0 , s.t.
1

2
∥x− e∥22 = 0, x ≥ 0.

The only feasible point and therefore local and global minimum is x∗ = e. Theorem 5.2 implies
that x∗ is AS-stationary. This can also be verified directly using Definition 5.1 and the sequences
xk = (1− 1

k
, 1, ..., 1), µk = k, for which we obtain the desired limit

1
0
...
0

+ k ·


1− 1

k
− 1

0
...
0

 = 0

(note that the sequence {µk} is unbounded). We claim, however, that x∗ is not an S-stationary
point. This is clear since otherwise we would have

0 = ∇x1L
SP (x∗, µ∗) = 1 + µ(x∗1 − 1) = 1

for some multiplier µ ∈ R, which is impossible.

For an AS-stationary point to be S-stationary, we therefore require a suitable constraint quali-
fication. The following is the natural counterpart of what is usually called AKKT-regularity or
AM-regularity in the context of standard nonlinear programs or certain structured optimization
problems, see [3, 2, 7] as well as [25] and references therein.

Definition 5.5. Consider the sparse optimization problem (SPO) with feasible set X being defined
by (9). Furthermore, let x∗ ∈ X be any given feasible point. We say that x∗ satisfies the AS-
regularity condition if the cone

K(x) :=
{
d
∣∣∣ dj = [ p∑

i=1

µi∇hi(x) +
∑

i∈Ig(x∗)

λi∇gi(x)
]
j
, µi ∈ R, λi ≥ 0, j /∈ I0(x

∗)
}

is outer semicontinuous at x∗, i.e., Limsupx→x∗K(x) ⊆ K(x∗), where

Limsupx→x∗K(x) :=
{
d
∣∣ ∃{xk} → x∗,∃dk → d : dk ∈ K(xk) ∀k ∈ N

}
denotes the upper or outer limit of the set-valued mapping K(·).

Note that, in the previous definition of K(x), the index set I0(x
∗) is fixed at x∗. Moreover, we

note that no condition is required for the components dj with j ∈ I0(x
∗).

The following result shows that, in a certain sense, AS-regularity is a necessary and sufficient
condition for an AS-stationary point to be S-stationary. In particular, this means that AS-
regularity is a constraint qualification.

Theorem 5.6. Let x∗ be feasible for (SPO) with feasible set X defined in (9). Then the following
statements hold:
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1. If x∗ is an AS-stationary point of (SPO) satisfying AS-regularity, then x∗ is an S-
stationary point of (SPO).

2. Conversely, if for every continuously differentiable objective function f , the implication

x∗ is an AS-stationary point of (SPO) =⇒ x∗ is an S-stationary point of (SPO)

holds, then x∗ is AS-regular.

Proof. (a): Since x∗ is an AS-stationary point, there exist sequences {xk} ⊂ Rn, {λk} ⊂
Rm, and {µk} ⊂ Rp such that xk → x∗, ∇xi

LSP (xk, λk, µk) → 0 for all i ̸∈ I0(x
∗), and

min{−gi(xk), λki } → 0 for all i = 1, . . . ,m. The latter condition implies that we may assume
without loss of generality that λki = 0 for all i ̸∈ Ig(x

∗) and all k ∈ N, cf. [7, Thm. 3.2] for a
formal proof. Then, writing

wk :=
∑

i∈Ig(x∗)

λki gi(x
k) +

p∑
j=1

µk
j∇hj(xk)

we see that wk ∈ K(xk) for all k ∈ N, and that ξki := [∇f(xk) + wk]i → 0 for all i ̸∈ I0(x
∗).

Define ξki := 0 for the remaining components i ∈ I0(x
k) and set vk := ξk − ∇f(xk). We

then obtain vk ∈ K(xk) for all k ∈ N since, for the relevant components i ̸∈ I0(x
∗), we have

vki = ξki − [∇f(xk)]i = wk
i . The assumed AS-regularity of x∗ then implies

−∇f(x∗) = lim
k→∞

vk ∈ Limsupx→x∗K(x) ⊆ K(x∗),

which shows that x∗ is S-stationary.

(b): Take w∗ ∈ Limsupx→x∗K(x) arbitrarily. Then there is {(xk, wk)} → (x∗, w∗) with wk ∈
K(xk) for all k ∈ N. Hence, there exist sequences {λk} ⊂ R|Ig(x∗)|

+ and {µk} ⊂ Rp such that

wk
i =

∑
j∈Ig(x∗)

λkj∇gj(xk)i +
p∑

j=1

µk
j∇hj(xk)i ∀i ̸∈ I0(x

∗).

Define the function f(x) :=
∑n

i=1−xiw∗
i and choose λki := 0, for i /∈ Ig(x

∗). Then clearly
∇f(xk)i+wk

i → 0, and x∗ is an AS-stationary point. By assumption, x∗ is already S-stationary,
which is equivalent to w∗ = −∇f(x∗) ∈ K(x∗).

Having identified AS-regularity as a constraint qualifcation, the question is how this property is
related to other SP-CQs. Among those given in Definition 4.1, the weakest one is SP-RCPLD.
The following result shows that this condition still implies AS-regularity.

Theorem 5.7. Let x∗ be feasible for (SPO) with feasible set X defined by (9). Assume SP-
RCPLD is satisfied at x∗. Then AS-regularity holds at x∗.

Proof. By construction, SP-RCPLD implies standard RCPLD of for the tightened program
(TNLP(x∗)) at x∗. It is known from [2] that RCPLD yields AKKT-regularity for this program.
This, however, is exactly our AS-regularity condition.
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6 An Exact Penalty Algorithm

Throughout this section, we assume that all functions f, g, and h involved in the sparse opti-
mization problem are at least continuously differentiable. Then (SPOcp) represents a smooth
reformulation of the nonsmooth problem (SPO). Consequently, the reformulation (SPOcp) al-
lows the application of a variety of different methods known from smooth optimization in order
to solve the given sparse problem (SPO).

On the other hand, a suitable choice for solving (SPOcp) requires some care. For example,
taking into account the almost separable structure of (SPOcp) in terms of the two variables x
and y, it is very tempting to apply an alternating minimization approach to this problem which
uses a separate minimization with respect to the variables x and y. This approach has the
major advantage that the resulting subproblems are (usually) very easy to solve. However, this
technique then terminates after the first cylce with an S-stationary point and, afterwards, does
not make any further progress. This is unfortunate since the corresponding objective function
value is typically very poor. In fact, this method often gets stuck at a local minimum with
a relatively large function value, so that the method terminates with a point that is far away
from being globally optimal.

In view of our experience, and in order to obtain good candidates for a global minimum,
it is advantageous to apply a technique which might be feasible or approximately feasible with
respect to the standard constraints g(x) ≤ 0 and h(x) = 0, but with the complementarity
term not approaching zero too fast, because this leaves some freedom in reducing the remaining
objective function.

The aim of this section is therefore to present an exact penalty approach for the solution of
the sparse optimization problem with feasible set X given by (9). Our exact penalty method is
based on the reformulation (SPOcp) and penalizes the (difficult) complementarity term only,
whereas the remaining restrictions stay as constraints in the penalized problem. Using the
standard ℓ1-penalty function, the penalized objective function then reads

f(x) + pρ(y) + α
∣∣xTy∣∣ = f(x) + pρ(y) + α ∥x ◦ y∥1 .

The ℓ1-term usually leads to a nonsmoothness of this penalty approach, which is the major
drawback of this technique. In our particular situation, however, we have sign contraints on x
and y, cf. the reformulated problem (SPOcp) once again. Hence, we may remove the absolute
value and obtain the following (smooth!) penalized version of (SPOref):

min
x,y

f(x) + pρ(y) + αxTy s.t. g(x) ≤ 0, h(x) = 0, x ≥ 0, y ≥ 0. (Pen(α))

This motivates the following exact penalty-type algorithm.

Algorithm 6.1. (Exact Penalty Method for Sparse Optimization)

1. Choose a non-negative sequence εk ↘ 0 and parameters α0 > 0, β > 1, and δ ≥ 0.

2. For k = 0, 1, 2, ..., compute (xk+1, yk+1, λk+1, µk+1, νk+1
x , νk+1

y ) ∈ Rn
+ × Rn

+ × Rp
+ × Rm ×
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Rn
+ × Rn

+ such that

∥∇xL
SP (xk+1, µk+1, λk+1)−

n∑
i=1

(νk+1
x )iei + αky

k+1∥ ≤ εk

∥∇pρ(yk+1)−
n∑

i=1

(νk+1
y )iei + αkx

k+1∥ ≤ εk

min |{−gi(xk+1), λk+1
i }| ≤ εk, i = 1, ..., p

∥h(xk+1)∥ ≤ εk,

min{xk+1
i , (νk+1

x )i} ≤ εk, i = 1, ..., n

min{yk+1
i , (νk+1

y )i} ≤ εk, i = 1, ..., n

3. If

εk ≤ δ and
n∑

i=1

xk+1
i yk+1

i ≤ δ

then STOP. Otherwise set αk+1 = αk · β and go to 2.

The main computational burden, of course, is in step 2. Note that we do not require to solve
the penalized subproblems exactly. The tests within step 2 only check whether we have an
approximate KKT point of the penalized problem (Pen(α)), with εk denoting the measure of
inexactness, and with λk+1, µk+1, νk+1

x , and νk+1
y being the Lagrange multipliers associated to

the constraints g(x) ≤ 0, h(x) = 0, x ≥ 0, and y ≥ 0, respectively. This general framework
allows plenty of methods in order to deal with the penalized subproblems, which is an important
feature of the overall method since a suitable choice depends on the particular problem under
consideration. In addition, we note that some methods might deal with the nonnegativity
constraints x ≥ 0, y ≥ 0 explicitly, so that these methods do not generate corresponding
multiplier estimates νk+1

x , νk+1
y . In this situation, we can simply delete the two final tests in

step 2, and replace the first two by the related (multiplier-free) tests

∥P[0,∞)

(
xk+1 − (∇xL

SP (xk+1, µk+1, λk+1) + αky
k+1)

)
− xk+1∥ ≤ εk,

∥P[0,∞)

(
yk+1 − (∇pρ(yk+1) + αkx

k+1)
)
− yk+1∥ ≤ εk.

The subsequent theory remains true with this kind of test, too. Our analysis, however, concen-
trates on the inexactness measure from step 2.

The final step 3 represents the stopping criterion for the outer iteration. Based on the
termination parameter δ ≥ 0, we simply check whether we are (approximately) feasible both
with respect to the standard constraints and with respect to the penalized complementarity
constraints. For the (theoretical) choice δ = 0, it follows immediately that we terminate with
a feasible point. The following result shows that, in this case, we even have an S-stationary
point.

Lemma 6.2. Let δ = 0 and assume that Algorithm 6.1 terminates after a finite number of steps
in a point (x∗, y∗). Then (x∗, y∗) is a KKT point of (SPOref), and x∗ is S-stationary.

Proof. Let λ∗, µ∗, ν∗x, ν
∗
y be the associated multipliers of the iterate (x∗, y∗). We first show that

x∗ is S-stationary. Since δ = 0 by assumption, we also have from step 3 that εk = 0 for
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the corresponding iteration k. Therefore, step 2 immediately implies that x∗ is feasible for
the sparse optimization problem (SPO), and (x∗, λ∗) satisfies the complementarity conditions.
Now, consider an index i with x∗i ̸= 0. Then steps 2 and 3 yield y∗i = 0 and (ν∗x)i = 0. Using step
2 again, this yields ∇xi

LSP (x∗, λ∗, µ∗) = 0. By definition, this shows that x∗ is an S-stationary
point.

Next, consider an index i with x∗i = 0. Then we have ∇pρi (y∗i ) − (ν∗y)i = 0 from step 2,
which implies ∇pρi (y∗i ) ≥ 0 and hence y∗i ≥ sρi > 0 by convexity of pρi and uniqueness of sρi . As a
result (ν∗y)i = 0 and y∗i = sρi . Consequently, the vector y

∗ satisfies the relation (6). Theorem 4.3
therefore shows that (x∗, y∗) is a KKT point of (SPOref).

We next want to show an exactness result for our penalty approach. In principle, there are
two directions one is interested in, namely that a stationary point of the penalized problem
(Pen(α)) yields a stationary point of the sparse optimization problem (SPO), and vice versa.
Exactness results usually concentrate on the opposite direction only. In fact, this direction is
usually the easier one and, for our particular setting, contained in the following result.

Theorem 6.3. Let (x∗, y∗) be a stationary point of (SPOcp). Then there exists an α∗ > 0 such
that (x∗, y∗) is a stationary point of (Pen(α)) for all α ≥ α∗.

Proof. By stationarity of (x∗, y∗) for (SPOcp), we obtain, after a simple transformation, that

0 =

(
∇f(x∗) + h′(x∗)Tµ∗ + g′(x∗)Tλ∗ +

∑
I0(x∗) α

x
i ei

∇pρ(y∗) +
∑

I0(y∗)
αy
i ei

)
(12)

holds for some multipliers µ∗, λ∗, αx, αy with sign constraints only w.r.t. to λ∗, and further
y∗i = sρi if and only if i ∈ I0(x

∗). On the other hand, the point (x∗, y∗) is stationary for
(Pen(α)) if there exists multipliers µ, λ ≥ 0, νx ≥ 0, and νy ≥ 0 such that

0 =

(
∇f(x∗) + h′(x∗)Tµ+ g′(x∗)Tλ−

∑
I0(x∗) ν

x
i ei + α

∑
I0(x∗) s

ρ
i ei

∇pρ(y∗)−
∑

I0(y∗)
νyi ei + α

∑
I0(y∗)

x∗i ei

)
(13)

holds. Now, setting µ = µ∗, λ = λ∗, νxi = αsρi − αx
i (i ∈ I0(x

∗)) and νyi = αx∗i − αy
i (i ∈ I0(y

∗))
for an arbitrary α > 0, we see that (13) is a direct consequence of (12). Moreover, for

α ≥ α∗ := max

{
|αx

i |
sρi

(i ∈ I0(x
∗)),

|αy
i |
x∗i

(i ∈ I0(y
∗))

}
,

we also have νxi ≥ 0 (i ∈ I0(x
∗)) and νyi ≥ 0 (i ∈ I0(y

∗)). It follows that (x∗, y∗) is a stationary
point of (Pen(α)) for all α ≥ α∗.

Note that Theorem 6.3 does not require any constraint qualification. Typical exactness results
of this kind need an MFCQ-type assumption which, here, is not necessary for two reasons:
First, the (potentially simple) standard constraints are still in the constraints of the penalized
problem, and second, the penalized (difficult) complementarity constraint has a very simple
structure such that no constraint qualification is needed to verify the exactness statement
from Theorem 6.3. In fact, this complementarity constraint alone satisfies automatically any
constraint qualification.

Before presenting an exactness result for the other direction, we first consider a simple
example.
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Example 6.4. Consider the one-dimensional sparse optimization problem

min
x

−x+ ∥x∥0 s.t. x ≥ 0

(note that we take ρ = 1 only for the sake of simplicity). Then x∗ := 0 is both a local minimum
and an S-stationary point. Using the function pρi from Example 3.1 (b), the corresponding
penalized problem (Pen(α)) reads

min
x,y

−x+ 1

2
(y −

√
2)2 + αxy s.t. x ≥ 0, y ≥ 0

with an arbitrary α > 0. Then, for any α ≥ 1/
√
2,

(x, y) :=
1

α

(√
2− 1

α
, 1

)
are stationary points of problem (Pen(α)), but none of these points satisfy the complementarity
conditions. On the other hand, observe that, for α → ∞, the corresponding sequence of
stationary points converges to (x∗, y∗) = (0, 0), hence the complementarity condition x∗y∗ = 0
is satisfied in the limit. Note, however, that this limit point does not satisfy the relation (6)
which, in particular, guarantees that the bi-active set is empty.

The following result contains an exactness statement for the other direction. This result may
be viewed as a generalization of a related theorem given in [30] in the context of mathematical
programs with equilibrium contraints (MPECs), though our assumptions are weaker.

Theorem 6.5. Let (x∗, y∗) be a stationary point of (SPOcp) such that SP-MFCQ holds at x∗.
Then there exists an α∗ > 0 and a neighborhood U of (x∗, y∗) such that for all α ≥ α∗, every
stationary point of (Pen(α)) in U is a stationary point of (SPOcp).

Proof. Assume, by contradiction, that there is a sequence αk → ∞ and a sequence {(xk, yk)}
such that (xk, yk) → (x∗, y∗), where (xk, yk) is stationary for (Pen(α)) with α = αk, but not
stationary for (SPOcp). Recall that stationarity of (xk, yk) for (Pen(α)) with α = αk implies
the existence of multipliers (µk, λk, νkx , ν

k
y ) such that

0 =

(
∇f(xk) + h′(xk)Tµk +

∑
i∈Ig(xk) λ

k
i∇gi(xk) + αky

k −
∑

i∈I0(xk)(ν
k
x)iei

∇pρ(yk) + αkx
k −

∑
i∈I0(yk)(ν

k
y )iei

)
, (14)

where xk ∈ X and yk ≥ 0. We divide the proof into several steps.

(a) Since (x∗, y∗) is a stationary point of (SPOcp), we recall from Remark 4.4 that the biactive
set B(x∗, y∗) = {i | (x∗i , y∗i ) = (0, 0)} is empty. We stress that this observation plays a central
role for the subsequent proof.

(b) Since xk → x∗, the continuity of g implies that Ig(x
k) ⊆ Ig(x

∗) for all k sufficiently large.
Because λki = 0 for all i ̸∈ Ig(x

k), we may therefore replace the index set Ig(x
k) in (14) with

the constant set Ig(x
∗) for all k large enough. Hence, we have both

∇f(xk) + h′(xk)Tµk +
∑

i∈Ig(x∗)

λki∇gi(xk) + αky
k −

∑
i∈I0(xk)

(νkx)iei = 0 (15)
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and
∇pρ(yk) + αkx

k −
∑

i∈I0(yk)

(νky )iei = 0 (16)

for all k sufficiently large.

(c) We claim that yki = 0 holds for all i ∈ I0(y
∗) and all k sufficiently large. To this end, assume

there is an index i ∈ I0(y
∗) and a subsequence {yki }K such that 0 < yki →K y∗i = 0. It then

follows that (νky )i = 0 for all k ∈ K. Hence (16) implies

0 = ∇pρ(yki ) + αkx
k
i ∀k ∈ K.

On the other hand, the right-hand side tends to +∞ for k →K ∞ since yki →K y∗i and
the continuity of ∇pρ implies the convergence of the first term, whereas the second term is
unbounded since αk →K ∞ and xki → x∗i with x∗i > 0 due to (a).

(d) We claim that[
∇f(xk) + h′(xk)Tµk +

∑
i∈Ig(x∗)

λki∇gi(xk)
]
i

= 0 ∀i ∈ I0(y
∗) (17)

for all k sufficiently large. This follows from (15) together with the fact that yki = 0 for all
i ∈ I0(y

∗) and k sufficiently large by part (c), and since I0(x
k) ⊆ I0(x

∗) with I0(x
∗)∩ I0(y∗) = ∅

by part (a).

(e) In view of (a) and (17), we can find scalars γki ∈ R for i ∈ I0(x
∗) such that

∇f(xk) + h′(xk)Tµk +
∑

i∈Ig(x∗)

λki∇gi(xk) +
∑

i∈I0(x∗)

γki ei = 0

holds for all k large enough. Due to the assumed SP-MFCQ condition, a standard argument
then shows that the sequence of multipliers

{(
λki (i ∈ Ig(x

∗)), µk, γki (i ∈ I0(x
∗))

)}
remains

bounded.

(f) We also claim that xki = 0 for all i ∈ I0(x
∗) and all k sufficiently large. Assume, by

contradiction, that there is a subsequence {xki }K with 0 < xki →K x∗i . Then (νkx)i = 0 holds for
all k ∈ K. Consequently, we obtain from (15) that

0 = ∇xi
LSP (xk, λk, µk) + αky

k
i .

Now, the first term on the right-hand side remains bounded by continuity of ∇xi
LSP as well as

the fact that xk → x∗ and the boundedness of the multiplier sequences {λk} and {µk}, cf. part
(e). On the other hand, the second term converges to +∞ since αk → ∞ and yki →K y∗i > 0
for i ∈ I0(x

∗), see part (a).

(g) In view of parts (c) and (f), we, in particular, have xki y
k
i = 0 for all i = 1, . . . , n and all k

sufficiently large. This shows that (xk, yk) is, at least, feasible for (SPOcp). Furthermore, since
(xk, yk) → (x∗, y∗) and B(x∗, y∗) = ∅ by part (a), we also have B(xk, yk) = ∅ for all k large
enough. We can therefore define the multipliers

(αx
i )

k := αky
k
i − (νkx)i (i ∈ I0(x

k)) and (αy
i )

k := αkx
k
i − (νky )i (i ∈ I0(y

k)),
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so that the stationary conditions of the penalized problem yield

0 =

(
∇f(xk) + h′(xk)Tµk +

∑
i∈Ig(xk) λ

k
i∇gi(xk) +

∑
I0(xk)(α

x
i )

kei
∇pρ(yk) +

∑
I0(yk)

(αy
i )

kei

)
for all k sufficiently large, cf. (14). Altogether, this implies that (xk, yk) is a stationary point
of (SPOref) for all k sufficiently large, and this contradiction completes the proof

Observe that part (d) of the previous proof already shows that xk, for all k sufficiently large,
is an S-stationary point of (SPO), and that this holds without any constraint qualification. The
SP-MFCQ assumption is mainly used to show that the pair (xk, yk) is eventually feasible for
(SPOcp), i.e., satisfies the complementarity condition x ◦ y = 0.

Note further that Example 6.4 does not contradict the statement of Theorem 6.5. Though
SP-MFCQ holds for this example in x∗ = 0, the sequence of stationary points of the corre-
sponding penalized problems converges to (0, 0), which is not a stationary point (SPOcp), as
assumed in Theorem 6.5.

The following result provides a relation between the second-order condition of the penalized
problem (Pen(α)) and SP-SOSC for the sparse optimization problem.

Theorem 6.6. Let (x∗, y∗) be stationary for (Pen(α)) and feasible for (SPOcp). Assume that pρ

is twice continuously differentiable and that standard SOSC holds at (Pen(α)). Then SP-SOSC
holds at x∗.

Proof. An elementary calculation shows that standard SOSC for (Pen(α)) is given by(
dx
dy

)T (
∇2

xxL
SP (x∗, µ∗, λ∗) αI
αI ∇2

yyp
ρ(y)

)(
dx
dy

)
> 0

⇐⇒ (dx)T∇2
xxL

SP (x∗, µ∗, λ∗)dx+ 2α(dx)Tdy + (dy)T∇2
yyp

ρ(y)dy > 0, (18)

for all (dx, dy) ̸= (0, 0) such that

dxi = 0, (i ∈ I0(x
∗), νxi > 0),

dxi ≥ 0, (i ∈ I0(x
∗), νxi = 0),

∇hi(x∗)Tdx = 0, (i = 1, ...,m), (19)

∇gi(x∗)Tdx = 0, (i ∈ Ig(x
∗), λ∗i > 0), (20)

∇gi(x∗)Tdx ≤ 0, (i ∈ Ig(x
∗), λ∗i = 0), (21)

dyi = 0, (i ∈ I0(y
∗), νyi > 0),

dyi ≥ 0, (i ∈ I0(y
∗), νyi = 0),

where νxi , ν
y
i and λ∗i are the Lagrangian multipliers associated to the sign constraints on x and

y and to the inequality constraints governed by g, respectively. Now, choose dy = 0 and dx
such that dxi = 0 for all i ∈ I0(x

∗) and conditions (19), (20) and (21) hold. The claim then
follows directly from (18).

A difficulty with (exact) penalty approaches for general optimization problems is that accu-
mulation points are not guaranteed to be feasible. In our setting, this feasibility issue arises for
the complementarity constraints only, and it turns out that, due to the particular structure of
our reformulated problem, these complementarity conditions are satisfied even if Algorithm 6.1
does not terminate after finitely many iterations.
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Theorem 6.7. Let δ = 0, and let {(xk, yk)} be an infinite sequence generated by Algorithm 6.1
such that xk+1 →K x∗ on some subsequence K. Then there is a subset K ′ ⊆ K such that
yk+1 →K′ y∗ and x∗i y

∗
i = 0 holds for all i = 1, ..., n.

Proof. We first show that the corresponding subsequence {yk+1}K remains bounded. By con-
tradiction, assume that there is an index i such that {yk+1

i } is unbounded. Due to the non-
negativity constraint, we may therefore assume, without loss of generality, that yk+1

i →K ∞.
In particular, we then have yk+1

i ≥ 2 · sρi for infinitely many k ∈ K. The convexity of pρi then
implies

∇pρi (yk+1
i ) ≥ ∇pρi (2s

ρ
i ) =: c > ∇pρi (s

ρ
i ) = 0.

In particular, we then have
∇pρi (yk+1

i ) + αkx
k+1
i ≥ c

and therefore (νk+1
y )i ≥ c/2 for infinitely many k ∈ K due to the second termination check in

step 2. On the other hand, by the final condition in step 2, we have

min{yk+1
i , (νk+1

y )i} → 0,

and this contradiction shows that {yk+1}K is indeed a bounded sequence.
Consequently, there is a subset K ′ ⊆ K such that {yk+1}K′ converges to some point y∗.

We claim that x∗i y
∗
i = 0 holds for this limit for all i = 1, . . . , n. For x∗i = 0, there is nothing

to prove. Hence consider an index i with x∗i > 0. Then clearly αkx
k+1
i →K ∞. Since pρi is

convex by assumption, its derivative ∇pρi is monotone. Taking into account the sign restriction
yk+1
i ≥ 0, we therefore obtain

∇pρi (yk+1
i ) ≥ ∇pρi (0).

This implies
∇pρi (yk+1

i ) + αkx
k+1
i →K′ ∞,

and the second termination check in step 2 of Algorithm 6.1 therefore yields

(νk+1
y )i →K′ ∞.

Hence, the sixth condition in step 2 immediately gives yk+1
i →K′ 0 = y∗i , and this completes

the proof.

The above theorem shows that every accumulation point of Algorithm 6.1 is indeed (approx-
imately) feasible for (SPOref). Note that this is not as surprising as it seems in the beginning.
In fact, when looking at the original problem SPO, the feasible set is given by X and depends
on the variables x alone. Moving to an auxiliary variable y should not increase the difficulty to
find feasible points for the reformulation.

In general, we cannot guarantee to obtain approximate stationary points if the algorithm
does not terminate after a finite number of iterations. We may, however, choose αk and εk in
dependence to recover such a result.

Theorem 6.8. Let δ = 0, and let {(xk, yk)} be an infinite sequence generated by Algorithm 6.1
such that xk+1 →K x∗ on a subsequence K. Then the following statements hold:

(a) If yk+1
i αk →K 0 for all i /∈ I0(x

∗), then x∗ is an AS-stationary point.

(b) If εkαk → 0, then yk+1
i αk → 0 for all i /∈ I0(x

∗).
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Proof. (a) First recall that {xk+1}K → x∗ by assumption, and that min
{
−gi(xk+1), λk+1

i )} →K

0 follows from the third test in Algorithm 6.1. Hence, it remains to show that

∇xi
LSP (xk+1, λk+1, µk+1) →K 0 (i /∈ I0(x

∗)) (22)

holds. Therefore, consider an arbitrary index i /∈ I0(x
∗), so that x∗i > 0. Then it follows from

the fifth test in step 2 that {(νk+1
x )i} →K 0. Together with the assumption yk+1

i αk →K 0, we
see that (22) follows from the first test in step 2.

(b) Consider an index i /∈ I0(x
∗), so that x∗i > 0. We then have αkx

k+1
i →K ∞. Then the

second condition in step 2 of Algorithm 6.1 implies (νk+1
y )i →K ∞ since ∇pρi takes its (finite)

minimum at 0. Multiplying condition 6 by αk yields

min{αky
k+1
i , αk(ν

k+1
y )i︸ ︷︷ ︸

→∞

} ≤ αkεk → 0

and hence αky
k+1
i → 0. This completes the proof.

Statement (a) of Theorem 6.8 provides a condition under which an arbitrary limit point
of the sequence {xk} is an AS-stationary point and, hence, an S-stationary point under any
of the SP-type constraint qualifications discussed in Section 5. Statement (b) then gives a
sufficient condition under which the assumption from part (a) holds. Note that this sufficient
condition can be realized. In fact, in iteration k, we have a penalty parameter αk, and then
choose a termination parameter εk such that εk = o(1/αk) holds. From a practical point of
view, however, this means that we might have to choose εk small, possibly even at a relatively
early stage of the entire method, hence it is not clear whether such a choice is always desirable.

7 Numerical Experiments

The aim of this section is to present a variety of applications where our exact penalty approach
can be applied to. We recall that all these applications are extremely difficult due to the ℓ0-term
(in the original formulation of the sparse optimization problem), nevertheless, the numerical
results indicate that we find very good candidates for a solution of the underlying problem,
quite often even the global minimum.

7.1 Sparse Portfolio Optimization

7.1.1 Preliminaries

The sparse portfolio optimization can be stated in the form

min
x

xTQx+ ρ ∥x∥0 s.t. eTx = 1, µTx ≥ s, 0 ≤ x ≤ u, (23)

with a positive (semi-) definite covariance matrix Q, µ ∈ Rn the mean of n possible assets,
s > 0 the minimum amount of (expected) return, e = (1, 1, ..., 1)T , and ui an upper bound
for the variable xi which represents the percentage of our total investment into asset i. Hence,
the economic interpretation of the portfolio model (23) is, basically, as follows: The customer
is willing to spend a certain amount of money in a few (due to the ℓ0-term) possible assets in
such a way that he minimizes the risk (represented by the objective function) and has at least a
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minimum return. Note that adding an ℓ1-term instead of an ℓ0-term does not yield any sparsity
due to the constraints of this problem.

Note that (23) can also be written as a mixed integer quadratic program. In fact, using an
auxiliary variable z, problem (23) is equivalent (in terms of global solutions) to

min
(x,z)

xTQx+ ρeT z, s.t. eTx = 1, µTx ≥ s, u ◦ z ≥ x ≥ 0, z ∈ {0, 1}n, (24)

cf. [6]. Since there exists commercially available software to tackle these types of problems like
CPLEX or Gurobi, it is, in principle, possible to find the global minimum. This, in turn, allows
to compare the quality of solutions obtained by our exact penalty technique.

It is useful to point out that the constraints in (23) are all polyhedral. This directly implies
for the SP-RCPLD and therefore AS-regularity to hold.

Application of our technique yields the corresponding penalized problem (Pen(α))

min
x,y

xTQx+ pρ(y) + αxTy s.t. eTx = 1, µTx ≥ s, 0 ≤ x ≤ u, 0 ≤ y. (25)

If we follow Example 3.1 (b) and choose pρ(y) := 1/2
∥∥y −√

2ρe
∥∥2

2
, we may rewrite (25) in the

form

min
x,y

(
x
y

)T

Q̂

(
x
y

)
−

√
2ρeTy s.t. eTx = 1, µTx ≥ s, 0 ≤ x ≤ u, 0 ≤ y, (26)

where

Q̂ =
1

2

(
2Q αI
αI I

)
.

Note that this is a quadratic program with a positive definite Matrix Q̂ as long as α <
√
2λmin,

where λmin := min{λ ∈ σ(Q)} denotes the minimum eigenvalue of the matrix Q. Hence, for this
choice of α, solutions of (25) are unique and easy to compute, but not necessarily feasible for
(SPOref). However, this motivates an initial choice α0 =

√
2λmin · c, c ∈ (0, 1) for the penalty

parameter. In our set of test instances, all λmin happened to be strictly positive. We further
stress that, in case of a positive definite matrix Q, it is easy to see from equation (18) that, at
a feasible point (x∗, y∗), SOSC is satisfied for (SPOref).

7.1.2 Numerical Test

For our numerical tests, we have chosen an instance of problems provided by Frangioni and
Gentile1, with the constraints (1−yi)li ≤ xi ≤ (1−yi)ui, corresponding to xi = 0 or xi ∈ [li, ui],
relaxed to

0 ≤ xi ≤ (1− yi)ui.

We first applied the branch-and-bound type algorithm by Gurobi2 to the mixed-integer refor-
mulation (24) to approximate a global minimum. In accordance to the previous subsection, we

then took pρ(y) = 1/2
∥∥y −√

2pe
∥∥2

2
, ρ = 1, and computed via Python λmin and x0 as solution

to the quadratic programm (26) for an α just below
√
2λmin with a call to the corresponding

Gurobi-module. This process took up 21 seconds of CPU-time for all of the 90 test instances.

1http://groups.di.unipi.it/optimize/Data/MV.html
2https://www.gurobi.com/solutions/gurobi-optimizer/

26

http://groups.di.unipi.it/optimize/Data/MV.html
https://www.gurobi.com/solutions/gurobi-optimizer/


(a) Portfolio results by Gurobi and the penalty approach with a Huber-type pρ and β = 1.1

(b) Portfolio results by Gurobi and the penalty approach with a smooth pρ and β = 5.

(c) Portfolio results by Gurobi and the penalty approach with a smooth pρ and β = 2.

(d) Portfolio results by Gurobi and the penalty approach with a smooth pρ and β = 1.1.

Figure 1: Overview of the sparse portfolio tests.

Afterwards we used our exact penalty approach by computing a solution of (25) via Algencan
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under Fortran, with the initial choice of x0 as described above, and

y0 :=
√
2λmin, α0 :=

√
2λmin/0.95, β ∈ {1.1, 2, 5}.

Under Algencan, the subproblems in step two of Algorithm 6.1 were solved to an accuracy
of 10−6 with specifically a tolerance of 10−8 in feasibility. The execution was halted once the
solution (x, y) provided by Algencan would fulfill the condition

xTy ≤ 10−6.

With decreasing choices of β we are able to recover the global solution given by Gurobi
(compare plots in Figures 1b - 1d). In fact, the results are already very promising for the penalty
updating factors β = 10 and, especially, β = 5, and for β = 1.1, the optimal function values
computed by our exact penalty scheme coincides with the optimal function values provided
by Gurobi for all 90 instances. Regarding the CPU-time for β = 1.1, the total time for the
computation of the 30 instances with dimension 200 was around 4.1 seconds, for dimension 300
at 17.5 seconds, and for dimension 400 at 25 seconds.

In a second run, we replaced pρ(y) via a piecewise Huber-type function in the sense that

pρi (y) = ξ ·


ε(y −

√
2ρ− ε) + 1

2
ε2, y > ρ+ ε,

1
2
(yi −

√
2ρ)2, y ∈ [ρ− ε, ρ+ ε],

−ε(y −
√
2ρ+ ε) + 1

2
ε2, y < ρ− ε,

ξ =
ρ

ε
√
2ρ− 1

2
ε2

and set ρ = 1, ε = 0.1. The call to Algencan yields the results in Figure 1a.
As we can see, we did overall not recover the global solution in this case, however the

computation was in fact shortened to 2.76 seconds for dimension 200, 7.95 seconds for dimension
300 and 12.73 seconds for dimension 400.

7.2 Sign-constrained Basis Pursuit

7.2.1 Preliminaries

In general, the aim is to find a sparse vector x that approximately satisfies

Ax ≈ b.

In problem settings as, for instance, mass spectromety as described in [34], it is also necessary
to introduce the sign constraints x ≥ 0. We therefore arrive at the formulation

min
x

∥x∥0 s.t. ∥Ax− b∥22 ≤ ε, x ≥ 0, (27)

to which the penalty formulation with the choice of pρ(y) = 1/2
∥∥y −√

2ρe
∥∥2

2
is given by

min
x

pρ(y) + αxTy s.t. ∥Ax− b∥22 ≤ ε, x ≥ 0, y ≥ 0. (28)

Observe that (27) is a sparse optimization problem of the form f(x) + ∥x∥0 with f ≡ 0.
These kind of problems are particularly challenging since a simple inspection shows that every
feasible point is already a local minimum, which, of course, is also reflected by our stationarity
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conditions. Nevertheless, we hope that an accumulation point (x∗, y∗) of a sequence (xk, yk)
produced by the exact penalty approach is feasible and has a convincing sparsity pattern.

We will construct these problems by choosing a matrix A and a suitable sparse vector x0 ≥ 0
such that

b = Ax0 + r, ε = ∥r∥22 · (1 + δ)

with a random vector r and a small δ > 0. By continuity, the interior of the set given by the
constraints in (28) is nonempty. Hence, the Slater-CQ is fulfilled and the penalized formulation
always admits Lagrangian multipliers. Furthermore, let x∗ be given such that I0(x

0) = I0(x
∗).

Consider then the TNLP for problem (27) around a feasible point x∗:

min
x

0 s.t. ∥Ax− b∥22 ≤ ε, xi = 0, i ∈ I0(x
∗).

Clearly, the point x0 is also feasible for the above problem and, furthermore, strictly satisfies the
inequality constraints. Hence, the Slater-CQ is also satisfied for the TNLP and as an inference
x∗ is an S-stationary point.

7.2.2 Numerical Tests

We tested 200 instances in which we initialized A as a random {0, ..., 99}128×512 matrix and
chose an original signal x, with xi identically distributed on the interval [0, 1]. Afterwards, a
support of size 16 was taken at random, so that

∥x∥0 = 16.

The vector b := Ax was distorted by a Gaussian noise r ∈ R128 of mean 0 and variance 0.5. We
chose ε such that

ε > 1.1 · max
i=1,...,200

(0.5 · ∥ri∥2)
2,

where ri denotes the error vector for instance i. Furthermore, x0 was initialized as the zero
vector, ρ = 1, y0 = e, α0 = 1.0 and β = 1.1. Stopping parameters for Algencan where chosen
as before, with the tolerance for approximate stationarity of 10−6 and for feasibility of 10−8.
The corresponding numerical results are presented in Figure 2. Note, in particular, that the
sparsity level generated by our method is, for all instances, at least as good as the initial guess
x̄, and even better for a number of test problems.

7.3 Logistic Regression

7.3.1 Problem Definition

Assume one is interested to train a decision-making algorithm based on probabilities, where we
have m data points (zi, ti), with zi ∈ Rn, ti ∈ {1,−1}n, and are looking for a model p with
parameters a = (a1, ..., an) such that

p(a; zi) ≈ ti ∀i = 1, . . . ,m.

As a common approach, one chooses the sigmoid function

p(a; zi) =
1

1 + exp(−aT zi)
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Figure 2: Measurement of the recovery ∥x− xs∥ and comparison of the sparsity between the
original vector x and sparsity of the solution xs.

in order to find a suitable and sparse parameter vector a by solving the optimization problem

min
a

1

m

m∑
i=1

log(1 + exp(−yizTi a)) + ρ ∥a∥0 s.t. − r ≤ a ≤ r

for some large r to guarantee the solvability of the problem. Note that, here we are lacking the
sign constraints on a. To deal with this problem, we separate a into its positive and negative
parts in the sense that

a = a+ − a−, a+ ≥ 0, a− ≥ 0,

so that our newly found optimization problem is of the form

min
a+, a−

f(a+ − a−) + ρ
∥∥(a+, a−)∥∥

0
, r ≥ a+ ≥ 0, r ≥ a− ≥ 0.

In general, this approach comes with some drawbacks as the split is not unique and increases
the number of local minima. Consider for instance the problem

min
x

x2 + ∥x∥0 , x ∈ R.

Then, clearly, x∗ = 0 is the only local and global minimum. If, however, we introduce the split,
we obtain the formulation

min
x+, x−

(x+ − x−)2 +
∥∥(x+, x−)∥∥

0
, x+ ≥ 0, x− ≥ 0,

with (x+, x−) = (0, 0) still being the unique global minimum, but with each (x+, x−) = λ · (1, 1)
being a local minimum for each λ ∈ R.

Unfortunately, this is not the only problem as we naturally increase the number of variables
and, thus, also the required computational power. Nevertheless, the following subsection shows
that this approach still works quite well in practice.

7.3.2 Numerical Tests

Since there were no constraints in place, computation where carried out via an implementation
of a spectral gradient type method [8] under Python. We first tested our approach with the
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Figure 3: ROC-Curve for the gisette and the colon data set.

widely known colon-cancer data set3 with 2000 features and 62 data samples. We initiated a
training set by choosing 42 data samples, consisting of 14 positive and 28 negative labels. As
starting parameters we chose the penalty function pρi (yi) = 1/2(yi −

√
2ρ)2 and set (x0, y0) =

(0,
√
2ρe) as the initial guess, where ρ = 0.1 · 1

m
. Furthermore, we set α0 = 0.1, β = 10.

The spectral gradient step was executed for 104 iterations or to a precision of 10−5, where we
accepted the end result once complementarity between xk and yk was reached to a precision of
10−6. The accuracy measured to around 75% as integral of the ROC-curve, where ∥x∥0 = 7
from 2000 possible entries, whereas cpu time accrued to 2.35 seconds. In fact, our solution
vector predicted 0 and 1 label to machine precision so that no matter a given threshold we
would always correctly guess exactly 15 out of 20 possible instances in the validation set.

Second we chose as test example the gisette data set from the NIPS 2003 challenge4. The
gisette data sets comes with specific training and validation data. Again, the initial guess
was made with (x0, y0) = (0,

√
2ρe), where we used the same penalty function as before and

set ρ = 1/m. The remaining parameters where chosen as α0 = 1, β = 10. The spectral
gradient step was executed for 104 iterations or to a precision of 10−2, where we accepted 10−2

as tolerance for the complementarity constraints. The accuracy measured to around 99.45 %
as integral of the ROC-curve, where ∥x∥0 = 551 of 5000 possible entries, whereas cpu time
accrued to 2.75 minutes. If we accept 0.5 as the threshold to which we predict a 1 or 0 if a
value larger or less than 0.5 was observed, we would correctly guess in 97.2% of instances in
the validation set.

7.4 Support Vector Machines

7.4.1 Problem Definition

The support vector machine problem may be stated as

min
c,γ

1

2m
∥c∥22 + ρ ∥max{0, e− z ◦ (Ac− γ)}∥0

with some matrix A ∈ Rm×n, and a z ∈ {−1, 1}m signaling that the i-th sample aTi given as
i-th row of A belongs to the class zi. By introducing an auxiliary variable u, we may rewrite

3https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
4https://archive.ics.uci.edu/
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Dataset features train test acc-pnl acc-libsvm cpu-pnl cpu-libsvm
arcene 10000 100 100 82% 83% 10.5 sec 0.4 sec
jcnn 22 49990 91701 91.8 % 92.1 % 105.7 sec 11.1 sec
a9a 123 23373 8141 84.9% 85% 145sec 15 sec

binary 47236 20242 677399 96.3% 96.3 % 14.7 sec 90 sec
kddb 1129522 19264097 748401 94.4% - 161.8 sec -

Table 1: Accuracy and CPU-time for the SVM tests.

this problem into

min
c,γ,u

1

2m
∥c∥22 + ρ ∥u∥0 , u ≥ 0, u ≥ e− z ◦ (Ac− γ). (29)

The corresponding penalized problem is given by

min
c,γ,u

1

2m
∥c∥22 + pρ(y) + αyTu, s.t. u ≥ 0, u ≥ e− z ◦ (Ac− γ). (30)

These subproblems are then solved by an augmented Lagrangian approach.

7.4.2 Numerical Tests

We applied our method to a few selected datasets from the source5. The choice of the penalty
function was again pρi (yi) = 1/2(yi −

√
2ρ)2. The additional scaling by factor 1/m in the target

function was introduced to avoid large values during the gradient method which occured with
large sample-size. We met the matching choice of ρ = 1/m, α0 = 1/m and set β = 10. The
value of δ in 6.1 was reduced to 10−2. We compared our results (denoted by ’pnl’) to the
libsvm solver available as python module6. The table 1 suggests that our penalty approach is
of particular interest once the size of features and training variables becomes exceedingly large.
In the last case, the call to the svm_train function within the libsvm package did not yield any
result.

7.5 Dictionary Learning

7.5.1 Problem Definition

The dictionary learning problem can be understood as an extension to the basis pursuit denois-
ing type of problem, where also the basis is searched for. Let Z ∈ Rn×m be given. We look for
D ∈ Rl×n, C ∈ Rl×m which minimize

min
D,C

1

2

∥∥Z −DTC
∥∥2

F
+ ρ ∥C∥0 , s.t.

∥∥DT
j

∥∥2

2
≤ 1 ∀j = 1, ..., l,

where DT
j denote the rows in D, ∥·∥F is the Frobenius norm and we define

∥C∥0 :=
n,m∑
i,j=1

∥Ci,j∥0 .

5https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
6https://pypi.org/project/libsvm/
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As with the logistic regression example seen before, there are no sign constraints with C. We
again pass to the shift

C = C+ − C−, C+ ≥ 0, C− ≥ 0.

Note that there are no constraints with respect to C, the variable we want to be sparse.
Furthermore, the feasible set X is, in particular, closed and convex and as such has a unique
projection, which is, in this case, also easy to compute. Let

F (C+, C−, D) =
1

2

∥∥Z −DT (C+ − C−)
∥∥2

F
.

We therefore require in step 2 of algorithm 6.1∥∥PX(D
k+1 −∇DF (C

k+1
+ , Ck+1

− , Dk+1))−Dk+1
∥∥ ≤ εk.

By passing to the limit every accumulation point is already stationary with respect to compo-
nent D. It seems natural to simply apply a projected spectral gradient method to this type of
problem. Notice that, in particular, the derivative with respect to C and D is given by

∇C±F (C+, C−, D) = ±
(
DDTC −DZ

)
, ∇DF (C+, C−, D) = CCTD − CZT .

For the choice (C+, C−, D) = (0, 0, 0) the above expressions both vanish and we clearly have
an S-stationary point. We therefore initalized (C0

+, C
0
−, D

0) as a random matrix Rl×2m+n with
entries taken from a standard normal distribution, projected onto X.

7.5.2 Numerical Tests

We conducted our numerical tests similar as in [24]. In 100 instances with n = 10, l = 20, m =
30 we generated Z = CTD from primary matrices C and D, where C only had three nonzero
entries at random positions per column, where the values where taken from a standard normal
distribution and where D was chosen as a random standard normal matrix with normalized
rows. We again chose the penalty function pρi (yi) = 1/2(yi −

√
2ρ)2 and set ρ = 0.1, α0 = 0.1,

β = 10. The spectral gradient method was run for 104 iterations with a tolerance of 10−3.
Complementarity between C± and Y± was accepted to a tolerance of 10−6. We detail the
achieved values as well as the required cpu time in the chart (4a). We measure the results
against a proximal gradient type method applied to the same test set (4b) (note the different
scaling of the axes regarding the objective function values). The proximal gradient method was
mirrored from aformentioned source [24] using the averaging stepsize as detailed there. While
computation time with the proximal gradient is lower compared to our exact penalty approach,
we are able to significantly improve upon the reached target value.

The second test regarding dictionary-learning-type problems was done with the MNIST7

data set. We have chosen the first 100 images and used and tried to find a sparse representation
Yi ≈ CT

i Di for each of the images Yi. As Yi was represented by a 28 by 28 matrix, we let
Ci, Di ∈ Rl×28 for l = 6, 8, 10, 12, 14 and survey the interesting characteristics in the Table 5a
as an average over the 100 test runs. To get an idea for the quality of the achieved decomposition,
we compare for i = 1, ..., 18 the original image Yi to the result CT

i Di specifically for dimension
l = 10 in figure (5b).

7Y. LeCun and C. Cortes. Mnist handwritten digit database. AT&T Labs [Online]. Available: https:

//yann.lecun.com/exdb/mnist, 2010
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(a) Computation time and achieved target
value via the exact penalty approach.

(b) Computation time and achieved target
value via a proximal gradient type method.

Figure 4: A comparison of the penalty and proixmal gradient method applied to the Dictionary
Learning problem

dim f + .1 ∥·∥0 ∥·∥0 time
l = 6 1.2 23.3 16.7
l = 8 0.6 21.8 16.3
l = 10 0.3 19.9 14.3
l = 12 0.2 17.6 12.1
l = 14 0.09 16.3 10

(a) Comparison of the MNIST Dataset
for 100 instances.

(b) Comparison of the original images (odd columns)
to the recovered images (even columns)

Figure 5: The penalty method applied to MNIST in order to find sparse representation of images.

8 Final Remarks

This paper introduces a class of reformulations of the ℓ0-sparse optimization problem and devel-
ops suitable constraint qualifications as well as corresponding first- and second-order optimality
conditions. The results are then used to apply an exact penalty-type method for the solution of
the ℓ0-sparse optimization problem which is particularly useful if the contraints include nonneg-
ativity conditions on the variables. Otherwise, one has to use a split of the free variables which
might introduce additional local minima. Though the corresponding numerical results are still
very promising, in this situation, it might be more favourable to apply another technique based
on our reformulation which can be applied also in the case where there exist free variables. One
natural possibility is the augmented Lagrangian method, and a closer look at this technique
will therefore be part of our future research.
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[10] M. Červinka, C. Kanzow, and A. Schwartz. Constraint qualifications and optimality condi-
tions for optimization problems with cardinality constraints. Mathematical Programming,
160(1):353–377, 2016. doi:10.1007/s10107-016-0986-6.

[11] X. Chen, L. Guo, Z. Lu, and J. J. Ye. An augmented Lagrangian method for non-Lipschitz
nonconvex programming. SIAM Journal on Numerical Analysis, 55(1):168–193, 2017.
doi:10.1137/15M1052834.

[12] A. De Marchi, X. Jia, C. Kanzow, and P. Mehlitz. Constrained composite optimization
and augmented lagrangian methods. Mathematical Programming, 201(1–2):863–896, Feb.
2023. doi:10.1007/s10107-022-01922-4.

[13] M. Durea and R. Strugariu. An Introduction to Nonlinear Optimization Theory. De
Gruyter, Dec. 2014. doi:10.2478/9783110426045.

35

http://dx.doi.org/10.1137/15M1008488
http://dx.doi.org/10.1287/moor.2017.0879
http://dx.doi.org/10.1137/1.9781611973365
http://dx.doi.org/10.1137/s1052623497330963
http://dx.doi.org/10.1137/140978077
http://dx.doi.org/10.1007/s10107-016-0986-6
http://dx.doi.org/10.1137/15M1052834
http://dx.doi.org/10.1007/s10107-022-01922-4
http://dx.doi.org/10.2478/9783110426045


[14] J. Fan and R. Li. Variable selection via nonconcave penalized likelihood and its oracle
properties. Journal of the American statistical Association, 96(456):1348–1360, 2001.

[15] M. Feng, J. E. Mitchell, J.-S. Pang, X. Shen, and A. Wächter. Complementarity formula-
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