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Abstract We are interested in solving non-smooth optimization problems in (pos-
sibly) infinite-dimensional Hilbert spaces. These problems have a special structure
min 𝑓 (𝑥) + 𝑔(𝑥), where 𝑓 is assumed to be differentiable, and 𝑔 is such that the
associated prox-operator can be computed efficiently. We prove well-posedness of
a spectral gradient method, and survey available convergence results. We study
special choices of 𝑔, including the 𝐿 𝑝-pseudo-norms with 𝑝 ∈ [0, 1). Numerical
experiments show the applicability of the method.

1 Introduction

We are interested in solving optimization problems of the type: Minimize

𝜙(𝑥) := 𝑓 (𝑥) + 𝑔(𝑥). (1)

Here, 𝑓 : 𝑋 → R is assumed to be Fréchet differentiable, where 𝑋 is a Hilbert space,
while 𝑔 : 𝑋 → R̄ := R ∪ {+∞} is a given function. Note that we do not assume
convexity or differentiability of 𝑔. Rather, we assume that the proximal operator to
𝑔 is available, i.e., for all 𝑥0 ∈ 𝑋 and 𝛾 > 0 the optimization problem

min
𝑥∈𝑋

1
2𝛾
∥𝑥 − 𝑥0∥2𝑋 + 𝑔(𝑥) (2)
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is solvable. For the numerical realization, it is important that the solution of this
problem can be computed efficiently. In this paper, we apply non-monotone proximal
gradient methods. Given a current iterate 𝑥𝑘 , the new iterate 𝑥𝑘+1 is computed as
solution of

min 𝑓 (𝑥𝑘) + ∇ 𝑓 (𝑥𝑘) (𝑥 − 𝑥𝑘) +
1

2𝛾𝑘
∥𝑥 − 𝑥𝑘 ∥2𝑋 + 𝑔(𝑥),

where the parameter 𝛾𝑘 is determined by a non-monotone line-search method. Here,
“non-monotone” refers to the property that the resulting sequence (𝜙(𝑥𝑘)) is not
necessarily monotonically decreasing. Rather, the iterates are required to satisfy

𝜙(𝑥𝑘+1) ≤ Φ𝑘 −
𝜎

2𝛾𝑘
∥𝑥𝑘+1 − 𝑥𝑘 ∥2𝑋,

where Φ𝑘 is a merit function satisfying 𝜙(𝑥𝑘) ≤ Φ𝑘 . The classical (monotone)
proximal gradient method is recovered by setting Φ𝑘 := 𝜙(𝑥𝑘). In the seminal work
[10], the choice

Φ𝑘 := max
𝑟∈0,...,𝑚

𝜙(𝑥𝑘−𝑟 )

was proposed. Another merit function was introduced in [26], which reads

Φ𝑘+1 := (1 − 𝑝)Φ𝑘 + 𝑝 · 𝜙(𝑥𝑘+1), 𝑝 ∈ (0, 1),

so thatΦ𝑘+1 is a weighted average of all previous function values 𝜙(𝑥0), . . . , 𝜙(𝑥𝑘+1).
Both methods were initially proposed for unconstrained optimization. Proximal gra-
dient methods with these choices of merit functions were analyzed in [8, 15]. Both
references work in the finite-dimensional setting. In this work, we follow [8], which
used the weighted approach of [26]. The advantage of this approach over the max-
based one [10, 15] is the validity of the following claim

∞∑︁
𝑘=0

1
𝛾𝑘
∥𝑥𝑘+1 − 𝑥𝑘 ∥2𝑋 < +∞,

which is of importance for some of the problems we are interested in, see Section 3
below.

In particular, we are interested in applying the proximal gradient method to
optimal control problems with non-smooth integral functionals. Therefore, we set
𝑋 := 𝐿2 (Ω), with Ω ⊂ R𝑑 . The function 𝑔 is induced by a possibly non-convex
function ℎ as

𝑔(𝑥) :=
∫
Ω

ℎ(𝑥(𝜔)) + 𝛼
2
|𝑥 |2𝑑𝜔,

where ℎ : R→ R̄ and 𝛼 ≥ 0. We discuss the choices ℎ(𝑥) = |𝑥 |0 (𝐿0-pseudo-norm),
ℎ(𝑥) = |𝑥 |𝑝 with 𝑝 ∈ (0, 1) (𝐿 𝑝-pseudo-norm), and ℎ(𝑥) = 𝐼Z (indicator function
of the integers) below in Section 3. All of them lead to non-smooth and non-convex
problems, which got reasonable attention in the recent past. Problems with 𝐿 𝑝-
pseudo-norms (𝑝 ∈ [0, 1)) were considered in [1, 11]. Monotone proximal gradient
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methods with a slightly different descent condition were analyzed in [19, 22]. Here,
one has to emphasize that the convergence analysis of such method is much more
challenging in infinite-dimensional spaces, as we cannot expect that the sequence
of iterates has a (strongly) converging subsequence. Nevertheless some convergence
results can be proven for these specific choices of ℎ, we refer to Section 3 below.
Optimal control problems with integer-valued controls were considered in, e.g.,
[7, 17, 19]. Other possible applications are problems with 𝐿0-constraints [23] or
switching constraints [6, 16].

While interesting in its own right, these proximal gradients can be used as build-
ing block in more complicated settings. In [9, 13] problems of the type min 𝜙(𝑥)
subject to 𝑐(𝑥) ∈ 𝐾 were considered. Here, 𝜙 is as above, 𝑐 : 𝑋 → 𝑌 is Fréchet
differentiable with values in another Hilbert space 𝑌 . In these works, an augmented
Lagrange method was analyzed, where the differentiable constraint 𝑐(𝑥) ∈ 𝐾 was
penalized. The arising subproblems were solved by the proximal gradient method.
The convergence theory was carried out in finite-dimensional spaces. Future research
could be dedicated to generalize these methods to the infinite-dimensional setting,
where for instance control problems with state constraints [21] or optimal control of
the obstacle problem could be interesting.

2 The proximal gradient method with non-monotone linesearch
in Hilbert spaces

Assumption 1 We assume the following properties of 𝑓 , 𝑔:

• 𝑋 is a real Hilbert space,
• 𝑓 : 𝑋 → R is continuously Fréchet differentiable with locally Lipschitz continu-

ous ∇ 𝑓 ,
• 𝑔 : 𝑋 → R̄ is proper, lower semicontinuous, and bounded from below by a

continuous affine function,
• 𝜙 := 𝑓 + 𝑔 is bounded from below.

Definition 1 Let 𝑥 ∈ 𝑋 be such that 𝑔(𝑥) < ∞. We say that 𝑥 is M-stationary if

0 ∈ ∇ 𝑓 (𝑥) + 𝜕𝑔(𝑥),

where 𝜕𝑔 is the limiting (or Mordukhovich) subdifferential.

Clearly, a local minimum of 𝜙 is M-stationary. We will see that M-stationarity
plays an important role in the analysis of the proximal gradient method.

In this paper, we will use the following non-monotone proximal gradient method
as sketched in Algorithm 1. Here, we follow [8] and choose a merit function, which is
a weighted mean of the function values at previous iterates. Another popular choice
is to use the maximum value of a finite number of function values at previous iterates
[12, 13, 15], see also Remark 1 below.
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Algorithm 1 Non-monotone proximal gradient method [8, Algorithm 3.1]
1: Choose 𝜏 ∈ (0, 1) , 𝜎 ∈ (0, 1) , 0 < 𝛾min < 𝛾max, 𝑝 ∈ (0, 1) , 𝑥0 ∈ dom 𝑔
2: Set Φ0 := 𝜙 (𝑥0 )
3: for 𝑘 ← 0, 1 . . . do ⊲ Outer loop
4: Choose 𝛾𝑘,0 ∈ [𝛾min, 𝛾max ]
5: for 𝑖 ← 0, 1 . . . do ⊲ Inner loop
6: Set 𝛾𝑘,𝑖 ← 𝛾𝑘,0𝜏

𝑖

7: Compute 𝑥𝑘,𝑖 as solution of

min 𝑓 (𝑥𝑘 ) + ∇ 𝑓 (𝑥𝑘 ) (𝑥 − 𝑥𝑘 ) +
1

2𝛾𝑘,𝑖
∥𝑥 − 𝑥𝑘 ∥2𝑋 + 𝑔 (𝑥 )

8: if 𝑥𝑘,𝑖 satisfies termination criterion then
9: return

10: end if
11: if 𝜙 (𝑥𝑘,𝑖 ) ≤ Φ𝑘 − 𝜎

2𝛾𝑘,𝑖
∥𝑥𝑘,𝑖 − 𝑥𝑘 ∥2𝑋 then

12: 𝑥𝑘+1 ← 𝑥𝑘,𝑖
13: 𝛾𝑘 ← 𝛾𝑘,𝑖
14: Set Φ𝑘+1 ← (1 − 𝑝)Φ𝑘 + 𝑝 · 𝜙 (𝑥𝑘+1 )
15: break
16: end if
17: end for
18: end for

The initial step-size 𝛾𝑘,0 is not required to be constant during the iteration.
Hence, this method can use initial guesses provided by a Barzilai-Borwein approach
[2, 8, 9, 13].

By a simple inductive proof, one can show that step 14 implies

𝜙(𝑥𝑘) ≤ Φ𝑘 ,

so that the descent condition of Algorithm 1 is less restrictive than for the monotone
method, which chooses Φ𝑘 := 𝜙(𝑥𝑘).

As termination criterion, [8, 13] propose to use∇ 𝑓 (𝑥𝑘) + 1
𝛾𝑘,𝑖
(𝑥𝑘,𝑖 − 𝑥𝑘) − ∇ 𝑓 (𝑥𝑘,𝑖)


𝑋

≤ 𝜖

with some tolerance 𝜖 ≥ 0, as this quantity measures the violation of M-stationarity
for 𝑥𝑘,𝑖 .

Note that in the original publication [8], the Hilbert space 𝑋 was assumed to be
finite-dimensional. However, basic properties of the algorithm carry over directly to
the infinite-dimensional case without change of proof. Due to the assumptions, the
minimization problem in the inner loop is solvable. For well-posedness, we have the
following result.

Lemma 1 Let Assumption 1 be satisfied. Assume 𝑥𝑘 is not M-stationary. Then the
inner loop terminates in finitely many steps.
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Proof This is [8, Lemma 4.1], which does not rely on finite-dimensionality. The
proof uses the observation that Φ𝑘 ≥ 𝜙(𝑥𝑘), so that the condition in the linesearch
is easier to satisfy than for the monotone method, which uses Φ𝑘 := 𝜙(𝑥𝑘). Thus
finite termination follows from results for the monotone proximal gradient method
[15, Lemma 3.1]. □

As in [8], we have the following basic convergence theorem, which is typical for
proximal gradient methods.

Lemma 2 Let Assumption 1 be satisfied. The sequences (𝜙(𝑥𝑘)) and (Φ𝑘) converge
to some 𝜙∗ ≥ inf 𝜙, where (Φ𝑘) is monotonically decreasing. In addition,

∞∑︁
𝑘=0

1
𝛾𝑘
∥𝑥𝑘+1 − 𝑥𝑘 ∥2𝑋 < +∞,

and lim𝑘→∞ ∥𝑥𝑘+1 − 𝑥𝑘 ∥𝑋 → 0.

Proof This is [8, Lemmas 4.2, 4.3], which does not rely on finite-dimensionality.
The first claim is a consequence of the choice of Φ𝑘 , the third claim follows from a
telescoping sum argument, which is enabled by the special choice of Φ𝑘 . □

In order to be able to pass to the limit in the optimality conditions of the inner
problem, we need that

1
𝛾𝑘
∥𝑥𝑘+1 − 𝑥𝑘 ∥𝑋 → 0

at least along the subsequence under consideration. Due to our infinite-dimensional
setting, we cannot expect that the sequence of iterates has a strongly converging
subsequence. Instead, we will work with weakly converging subsequences. This
necessitates stronger assumptions on ∇ 𝑓 than Assumption 1.

Assumption 2 ∇ 𝑓 is completely continuous, i.e., 𝑧𝑘 ⇀ 𝑧 in 𝑋 implies ∇ 𝑓 (𝑧𝑘) →
∇ 𝑓 (𝑧) in 𝑋 .

Similar assumptions were used, e.g., in [19, 22], where also some examples are
discussed. These assumptions are satisfied for standard classes of optimal control
problems. Note that Assumptions 1 and 2 imply sequentially weak continuity of 𝑓 ,
see Remark 3 at the end of this section.

Lemma 3 Let Assumptions 1 and 2 be satisfied. Let (𝑥𝑘) be a sequence generated
by Algorithm 1. Let (𝑥𝑘)𝑘∈𝐾 , 𝐾 ⊂ N, be a subsequence such that 𝑥𝑘 ⇀𝐾 𝑥∗. Then
𝛾−1
𝑘
∥𝑥𝑘+1 − 𝑥𝑘 ∥𝑋 →𝐾 0.

Proof The proof closely follows that of [8, Lemma 4.4] and [15, Proposition 3.2] It is
immediate that the claim follows from Lemma 2 if the sequence (𝛾𝑘)𝑘∈𝐾 is bounded
away from zero. Hence, it remains to consider the case lim inf𝑘∈𝐾 𝛾𝑘 = 0. By
choosing another subsequence if necessary, we can assume 𝛾𝑘 →𝐾 0 and 𝛾𝑘 < 𝛾min
for all 𝑘 ∈ 𝐾 . Then the inner loop is performed at least twice, and the step-size 𝛾𝑘/𝜏
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does not satisfy the decrease condition. Define �̂�𝑘 := 𝛾𝑘/𝜏, and denote by 𝑥𝑘+1 the
solution of the problem in step 7 to �̂�𝑘 . Using standard arguments (e.g., from penalty
methods), one can prove that ∥𝑥𝑘+1 − 𝑥𝑘 ∥𝑋 ≤ ∥𝑥𝑘+1 − 𝑥𝑘 ∥𝑋 for all 𝑘 ∈ 𝐾 . We will
prove ∥𝑥𝑘+1 − 𝑥𝑘+1∥𝑋 →𝐾 0 and 𝛾−1

𝑘
∥𝑥𝑘+1 − 𝑥𝑘 ∥𝑋 →𝐾 0.

Since 𝑥𝑘+1 solves the problem in step 7, we have

𝑓 (𝑥𝑘) + ∇ 𝑓 (𝑥𝑘) (𝑥𝑘+1 − 𝑥𝑘) +
1

2�̂�𝑘
∥𝑥𝑘+1 − 𝑥𝑘 ∥2𝑋 + 𝑔(𝑥𝑘+1) ≤ 𝑓 (𝑥𝑘) + 𝑔(𝑥𝑘) = 𝜙(𝑥𝑘).

(3)
Since ( 𝑓 (𝑥𝑘))𝑘∈𝐾 is convergent due to Remark 3, (𝜙(𝑥𝑘)) converges by Lemma 2,
and 𝑔 is bounded from below by an affine function, it follows that �̂�−1

𝑘
∥𝑥𝑘+1 − 𝑥𝑘 ∥2𝑋

is bounded, which implies 𝑥𝑘+1 − 𝑥𝑘 →𝐾 0.
By the mean-value theorem, there is 𝜉𝑘 on the line between 𝑥𝑘 and 𝑥𝑘+1 such that

𝑓 (𝑥𝑘+1) = 𝑓 (𝑥𝑘) + ∇ 𝑓 (𝜉𝑘) (𝑥𝑘+1 − 𝑥𝑘).

Using this in (3) implies

𝜙(𝑥𝑘+1) + (∇ 𝑓 (𝑥𝑘) − ∇ 𝑓 (𝜉𝑘)) (𝑥𝑘+1 − 𝑥𝑘) +
1

2�̂�𝑘
∥𝑥𝑘+1 − 𝑥𝑘 ∥2𝑋 ≤ 𝜙(𝑥𝑘).

Since 𝑥𝑘+1 violates the decrease condition of step 11, we have

𝜙(𝑥𝑘+1) > Φ𝑘 −
𝜎

2�̂�𝑘
∥𝑥𝑘+1 − 𝑥𝑘 ∥2𝑋 .

Combining the latter two inequalities results in

(∇ 𝑓 (𝑥𝑘) − ∇ 𝑓 (𝜉𝑘)) (𝑥𝑘+1 − 𝑥𝑘) +
1 − 𝜎
2�̂�𝑘

∥𝑥𝑘+1 − 𝑥𝑘 ∥2𝑋 ≤ 𝜙(𝑥𝑘) −Φ𝑘 ≤ 0,

where we used also Lemma 2. Applying Cauchy-Schwarz and �̂�𝑘 = 𝛾𝑘/𝜏, shows

(1 − 𝜎)𝜏
2𝛾𝑘

∥𝑥𝑘+1 − 𝑥𝑘 ∥𝑋 ≤ ∥∇ 𝑓 (𝑥𝑘) − ∇ 𝑓 (𝜉𝑘)∥𝑋 .

Since 𝑥𝑘 ⇀𝐾 𝑥
∗ and 𝑥𝑘+1−𝑥𝑘 →𝐾 0, it follows 𝜉𝑘 ⇀𝐾 𝑥

∗ and∇ 𝑓 (𝑥𝑘)−∇ 𝑓 (𝜉𝑘) →𝐾

0 by Assumption 2. Hence, 𝛾−1
𝑘
∥𝑥𝑘+1 − 𝑥𝑘 ∥𝑋 →𝐾 0, which implies 𝛾−1

𝑘
∥𝑥𝑘+1 −

𝑥𝑘 ∥𝑋 →𝐾 0 as ∥𝑥𝑘+1 − 𝑥𝑘 ∥𝑋 ≤ ∥𝑥𝑘+1 − 𝑥𝑘 ∥𝑋. □

As we cannot expect strong convergence of iterates, it is hard to prove M-
stationarity of weak limit points of (𝑥𝑘) in the general case. In particular, the as-
sumptions of the corresponding convergence results [8, 15] are not satisfied for the
integral functionals we have in mind.

Let us close this section with several remarks.

Remark 1 In [15] the merit function

Φ𝑘 := max
𝑟=0,...,𝑚𝑘

𝜙(𝑥𝑘−𝑟 )
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was used. The convergence properties of that choice are comparable to those of
Algorithm 1 in the finite-dimensional case [13, 15]. However it seems impossible to
prove the property

∞∑︁
𝑘=1

1
𝛾𝑘
∥𝑥𝑘 − 𝑥𝑘+1∥2𝑋 < +∞,

which is of some relevance for control problems with sparsity functionals [19, 22],
see also Theorem 3 below.

Remark 2 In [13], 𝑔was chosen to be the indicator function of a closed set 𝐷. There a
different termination criterion was used in the inner loop: The inner loop terminated
as soon as 𝜙(𝑥𝑘,𝑖) ≤ max𝑟=0,...,𝑚𝑘

𝜙(𝑥𝑘−𝑟 ) − 𝜎∇ 𝑓 (𝑥𝑘) (𝑥𝑘,𝑖 − 𝑥𝑘). This condition
implies that our termination criterion is fulfilled, see [13, eq. (A.5)].

Remark 3 Let us prove that Assumptions 1 and 2 imply sequentially weak continuity
of 𝑓 . Let 𝑥𝑘 ⇀ 𝑥 in 𝑋 . Due to Fréchet differentiability by Assumption 1, we
can use the mean-value theorem to write 𝑓 (𝑥𝑘) − 𝑓 (𝑥) = ∇ 𝑓 (𝜉𝑘) (𝑥𝑘 − 𝑥) with
𝜉𝑘 = 𝜆𝑘𝑥𝑘 + (1 − 𝜆𝑘)𝑥, 𝜆𝑘 ∈ [0, 1]. One can prove by a subsequence-subsequence
argument that 𝜉𝑘 ⇀ 𝑥. Then ∇ 𝑓 (𝜉𝑘) → ∇ 𝑓 (𝑥) and 𝑓 (𝑥𝑘) → 𝑓 (𝑥).

3 Application to non-smooth optimal control problems

In this section, we will work with 𝑋 := 𝐿2 (Ω), where Ω ⊂ R𝑑 is an open and
bounded set supplied with the Lebesgue measure. We are interested in setting

𝑔(𝑥) :=
∫
Ω

ℎ(𝑥(𝜔)) + 𝛼
2
|𝑥 |2𝑑𝜔, (4)

where ℎ : R → R is lower-semicontinuous and possibly non-convex, and 𝛼 > 0.
Since we want to use the Pontryagin maximum principle, we work with the Lebesgue
measure on R𝑑 . In addition, we require that Assumption 1 is satisfied. Note that for
non-convex ℎ, the functional 𝑔 is not weakly lower semicontinuous, and the existence
of minima of 𝑓 + 𝑔 cannot be proven in general. Let us emphasize that 𝛼 > 0 does
not imply existence of minimizers, so it does not act as a classical regularization
term.

Let now 𝑥 be a local minimum of

min
𝑥
𝑓 (𝑥) + 𝑔(𝑥).

Under additional assumptions on 𝑓 , one can prove that the Pontryagin maximum
principle is satisfied [19], which reads in our case: for all 𝑥 ∈ R it holds

𝑥(𝜔) ∈ argmin𝑥∈R ∇ 𝑓 (𝑥) (𝜔) · 𝑥 + ℎ(𝑥) +
𝛼

2
|𝑥 |2 (5)
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for almost all 𝜔 ∈ Ω. Since ℎ is non-convex in general, the global minimum of the
function to be minimized in (5) might be non-unique, hence the condition is written
as an inclusion. If 𝛼 > 0 and ℎ is bounded from below by an affine function then the
minimization problem in (5) is always solvable.

Let now (𝑥𝑘) be a sequence generated by Algorithm 1. Then 𝑥𝑘+1 satisfies the
Pontryagin maximum principle for the inner problem of step 7, which reads

𝑥𝑘+1 (𝜔) ∈ argmin∇ 𝑓 (𝑥𝑘) (𝜔) · 𝑥 +
1

2𝛾𝑘
(𝑥 − 𝑥𝑘 (𝜔))2 + ℎ(𝑥) +

𝛼

2
|𝑥 |2

for almost all𝜔 ∈ Ω. This can be proven using the celebrated Lebesgue differentiation
theorem, see also [19].

We will now reformulate these conditions in terms of inclusions. Define the set
𝐻PMP (𝛼) ⊂ R2 by:

(𝑥, 𝑞) ∈ 𝐻PMP (𝛼) ⇔ 𝑥 ∈ argmin 𝑞 · 𝑥 + ℎ(𝑥) + 𝛼
2
|𝑥 |2. (6)

If ℎ is bounded from below by an affine function and 𝛼 > 0 then 𝐻PMP (𝛼) is non-
empty. If 𝛼 > 0 then 𝐻PMP (𝛼) can be characterized as: (𝑥, 𝑞) ∈ 𝐻PMP (𝛼) if and only
if 𝑥 ∈ prox𝛼−1𝑔 (−𝛼−1𝑞). Then 𝑥 ∈ 𝑋 satisfies the Pontryagin maximum principle if
and only if

(𝑥, ∇ 𝑓 (𝑥)) (𝜔) ∈ 𝐻PMP (𝛼)

for almost all 𝜔 ∈ Ω. Using the definition of 𝐻PMP again, we see that the iterates of
Algorithm 1 satisfy

(𝑥𝑘+1, ∇ 𝑓 (𝑥𝑘) − 𝛾−1
𝑘 𝑥𝑘) (𝜔) ∈ 𝐻PMP (𝛼 + 𝛾−1) (7)

In the sequel, we will analyze several choices of ℎ. We will prove that under
suitable assumptions on ∇ 𝑓 , M-stationary points are fixed points of the iteration,
In the light of Lemma 1 this implies that the inner loop always terminates, as the
termination criterion of step 11 is satisfied if 𝑥𝑘,𝑖 = 𝑥𝑘 , see Lemma 2. Motivated by
this observation, let us define the following notion of stationarity, see also [3].

Definition 2 Let 𝑥 ∈ 𝐿2 (Ω) be given such that 𝑥 ∈ dom(𝑔). Let 𝛾 > 0. Then 𝑥 is
called 𝛾-stationary if and only if

𝑥 ∈ argmin𝑦∈𝑋 ∇ 𝑓 (𝑥) (𝑦 − 𝑥) +
1

2𝛾
∥𝑦 − 𝑥∥2𝑋 + 𝑔(𝑦).

In addition, we have the following simple consequences:

Lemma 4 Let 𝑥 ∈ 𝑋 with 𝑥 ∈ dom 𝑔 be given. Then it holds:

1. If 𝑥 is 𝛾-stationary for some 𝛾 > 0 then it is M-stationary and 𝛾′-stationary for
all 𝛾′ ∈ (0, 𝛾).

2. If 𝑥 is 𝛾-stationary for all 𝛾 > 0 then it satisfies the Pontryagin maximum
principle.
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If 𝑥𝑘 is a 𝛾-stationary iterate of Algorithm 1 for some 𝛾 > 0, then 𝑥𝑘,𝑖 can be
chosen equal to 𝑥𝑘 if 𝛾𝑘,𝑖 ≤ 𝛾. Moreover, if 𝑔 is convex then 𝛾-stationarity implies
global optimality. In addition, we can express 𝛾-stationarity in terms of 𝐻PMP as
follows: 𝑥 is 𝛾-stationary if and only if

(𝑥, ∇ 𝑓 (𝑥) − 𝛾−1𝑥) (𝜔) ∈ 𝐻PMP (𝛼 + 𝛾−1). (8)

3.1 𝑳0-cost

First, we investigate the choice

ℎ(𝑥) := |𝑥 |0 :=

{
0 if 𝑥 = 0
1 if 𝑥 ≠ 0.

(9)

This choice of ℎ penalizes the size of the support of 𝑥, i.e., the measure of {𝜔 :
𝑥(𝜔) ≠ 0}. Hence solutions are expected to have small support, which is important
for some control applications [11, 14].

Let us investigate the notion of 𝑀-stationarity for this problem. The limiting
subdifferential of ℎ was computed in [18, Theorem 3.7].

Lemma 5 The limiting subdifferential of 𝑥 ↦→ ℎ(𝑥) :=
∫
Ω
|𝑥(𝜔) |0𝑑𝜔 is given by

𝜕ℎ(𝑥) = {𝜂 ∈ 𝐿2 (Ω) : 𝜂(𝜔) = 0 f.a.a. 𝜔 with 𝑥(𝜔) ≠ 0}.

Using the chain rule for the limiting subdifferential yields

𝜕𝑔(𝑥) = 𝛼𝑥 + 𝜕ℎ(𝑥).

We can write M-stationarity as an inclusion as follows: 𝑥 is M-stationary if and only
if −(∇ 𝑓 (𝑥) + 𝛼𝑥) ∈ 𝜕ℎ(𝑥), or, equivalently,

(𝑥, ∇ 𝑓 (𝑥)) (𝜔) ∈ 𝐻𝑀 := {(𝑥, 𝑞) : 𝑥 · (𝛼𝑥 + 𝑞) = 0}.

Interestingly, the limiting subdifferential gives no information on ∇ 𝑓 (𝑥) (𝜔) for
points 𝜔 ∈ Ω where 𝑥(𝜔) = 0. This is not the case for the Pontryagin maximum
principle and not for 𝛾-stationarity. Let us compute the set𝐻PMP (𝛼) as defined in (6).
By elementary computations [11, Section 2.2][22, Lemma 3.5], we find for 𝛼 > 0

𝐻PMP (𝛼) :=

{
(𝑥, 𝑞) : 𝛼𝑥 + 𝑞 = 0, |𝑥 | ≥

√︂
2
𝛼

}
∪

{
(0, 𝑞) : |𝑞 | ≤

√
2𝛼

}
. (10)

Note that 𝐻PMP (0) = {(0, 0)}. As argued above, see (8), 𝑥 is 𝛾-stationary if and only
if

(𝑥, ∇ 𝑓 (𝑥) − 𝛾−1𝑥) (𝜔) ∈ 𝐻PMP (𝛼 + 𝛾−1),
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which can be rewritten as

(𝑥, ∇ 𝑓 (𝑥)) (𝜔) ∈ 𝐻𝛾 :={
(𝑥, 𝑞) : 𝛼𝑥 + 𝑞 = 0, |𝑥 | ≥

√︄
2

𝛼 + 𝛾−1

}
∪

{
(0, 𝑞) : |𝑞 | ≤

√︃
2(𝛼 + 𝛾−1)

}
,

see also [22, Lemma 3.19]. Note that Lemma 4 implies𝐻PMP =
⋂
𝛾>0 𝐻𝛾 ,𝐻𝛾 ⊆ 𝐻𝛾′

for 0 < 𝛾′ < 𝛾, and
𝐻PMP (𝛼) ⊊ 𝐻𝛾 ⊊ 𝐻𝑀

for 𝛾 > 0 and 𝛼 ≥ 0. The graphs of these mappings can be seen in Figure 1.

Fig. 1 Graphs of the set-valued maps 𝐻PMP, 𝐻𝛾 , 𝐻𝑀 (from left to right) for 𝛼 = 1, 𝛾 = 5
(Section 3.1)

Lemma 6 Let 𝑔 and ℎ be given by (4) and (9). Let 𝑥𝑘 ∈ 𝑋 be an iterate of Algo-
rithm 1 such that ∇ 𝑓 (𝑥𝑘) ∈ 𝐿∞ (Ω). Suppose that 𝑥𝑘 is M-stationary, i.e., it satisfies
−(∇ 𝑓 (𝑥𝑘) + 𝛼𝑥𝑘) ∈ 𝜕ℎ(𝑥𝑘). Then there is 𝛾 > 0 such that 𝑥𝑘 is 𝛾-optimal.

Proof Since 𝑥𝑘 is an iterate of Algorithm 1, it satisfies the Pontryagin maximum
principle for the inner problem (7), which is equivalent to

(𝑥𝑘 , ∇ 𝑓 (𝑥𝑘−1) − 𝛾−1
𝑘−1𝑥𝑘−1) (𝜔) ∈ 𝐻PMP (𝛼 + 𝛾−1)

see also [19]. In particular, 𝑥𝑘 (𝜔) ≠ 0 implies |𝑥𝑘 (𝜔) | ≥ 𝑠 > 0 by (10), where
𝑠 :=

√︃
2

𝛼+𝛾−1
𝑘−1

. By M-stationarity, 𝑥𝑘 (𝜔) ≠ 0 implies 𝛼𝑥𝑘 (𝜔) + ∇ 𝑓 (𝑥𝑘) (𝜔) = 0.
Now set

𝛾 := min

(
𝛾𝑘−1,

2
∥∇ 𝑓 (𝑥𝑘)∥2𝐿∞ (Ω)

)
.

Then

𝑠 ≥

√︄
2

𝛼 + 𝛾−1 , ∥∇ 𝑓 (𝑥𝑘)∥𝐿∞ (Ω) ≤
√︃

2(𝛼 + 𝛾−1),

which implies (𝑥, ∇ 𝑓 (𝑥)) (𝜔) ∈ 𝐻𝛾 for almost all 𝜔. □
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Theorem 3 Let Assumption 1 be satisfied. Let 𝑔 and ℎ be given by (4) and (9) with
𝛼 > 0. Suppose that ∇ 𝑓 is completely continuous from 𝐿2 (Ω) to 𝐿𝑞 (Ω) with 𝑞 > 2,
i.e., 𝑧𝑘 ⇀ 𝑧 in 𝑋 implies ∇ 𝑓 (𝑧𝑘) → ∇ 𝑓 (𝑧) in 𝐿𝑞 (Ω).

Let (𝑥𝑘) be a sequence generated by Algorithm 1 together with the sequence of pa-
rameters (𝛾𝑘). Suppose (𝛾𝑘) is bounded. Let (𝑥𝑘 , 𝛾𝑘)𝑘∈𝐾 , 𝐾 ⊂ N, be a subsequence
such that 𝑥𝑘 ⇀𝐾 𝑥

∗ and 𝛾𝑘 →𝐾 𝛾 > 0.
Then 𝑥𝑘 →𝐾 𝑥

∗ in 𝐿𝑟 (Ω) for all 𝑟 < 2, and 𝑥∗ is 𝛾-optimal.

Note that we assume that the whole sequence (𝛾𝑘) is bounded, although only
converging subsequences are considered. This assumption is fulfilled, if we assume
that ∇ 𝑓 is Lipschitz continuous on the set {𝑥𝑘 : 𝑘 ∈ N}, see [8, Corollary 4.5].

Proof (of Theorem 3) The proof follows along the lines of the proof of [22, Theorem
3.24]. Here, one has to replace the result of [22, Theorem 3.13] by that of Lemma 3
in the following way: Since (𝛾𝑘) is bounded by assumption, there is 𝑀 > 0 such
that 𝛾𝑘 ≤ 𝑀 , or equivalently, 1

𝛾𝑘
≥ 1

𝑀
for all 𝑘 ∈ N. Then Lemma 3 implies∑∞

𝑘=1 ∥𝑥𝑘+1 − 𝑥𝑘 ∥2𝑋 < ∞. Now the proof continues as in the proof of [22, Theorem
3.24]. □

The assumption of this convergence theorem are those of [22], where a monotone
proximal gradient method was investigated using a different decrease condition. In
the context of optimal control problems the condition of complete continuity of ∇ 𝑓
is not a severe restriction, see the examples discussed in [19, 22, 23].

3.2 𝑳𝒑-cost, 𝒑 ∈ (0, 1)

Now let us investigate the choice

ℎ(𝑥) := |𝑥 |𝑝 , (11)

where 𝑝 ∈ (0, 1), which is another method to promote solutions with small support
[11]. The function ℎ is lower semicontinuous and non-convex, so that the resulting
integral functional 𝑔 is lower semicontinuous but not weakly lower semicontinuous
on 𝑋 = 𝐿2 (Ω).

The limiting subdifferential of ℎ was computed in [18, Theorem 4.6].

Lemma 7 The limiting subdifferential of 𝑥 ↦→ ℎ(𝑥) :=
∫
Ω
|𝑥(𝜔) |𝑝𝑑𝜔 is given by

𝜕ℎ(𝑥) = {𝜂 ∈ 𝐿2 (Ω) : 𝜂(𝜔) = 𝑝 |𝑥(𝜔) |𝑝−2𝑥(𝜔) f.a.a. 𝜔 with 𝑥(𝜔) ≠ 0}.

As in the previous section, we can express the different stationarity conditions
using inclusions. First, we see that 𝑥 is M-stationary if and only if

(𝑥, ∇ 𝑓 (𝑥)) (𝜔) ∈ 𝐻𝑀 := {(𝑥, 𝑞) : 𝑥 · (𝛼𝑥 + 𝑝 |𝑥 |𝑝−2𝑥 + 𝑞) = 0}



12 Christian Kanzow, Daniel Wachsmuth

for almost all 𝜔 ∈ Ω. The point 𝑥 satisfies the Pontryagin maximum principle if and
only if [19, Section 5.1]

(𝑥, ∇ 𝑓 (𝑥)) (𝜔) ∈ 𝐻PMP (𝛼) :={
(𝑥, 𝑞) : 𝑥 ≠ 0, 𝛼𝑥 + 𝑝 |𝑥 |𝑝−2𝑥 + 𝑞 = 0, |𝑥 | ≥ 𝑥0 (𝛼)

}
∪ {(0, 𝑞) : |𝑞 | ≤ 𝑞0 (𝛼)} . (12)

Here, 𝑞0 (𝛼) > 0 and 𝑥0 (𝛼) > 0 are such that the minimization problem

min
𝑥∈R
−𝑞0 (𝛼) · 𝑥 + ℎ(𝑥)

has two global minima 𝑥 = 0 and 𝑥 = 𝑥0 (𝛼). They are given by

𝑥0 (𝛼) :=
(

2(1 − 𝑝)
𝛼

) 1
2−𝑝

, 𝑞0 (𝛼) := 𝛼𝑥0 (𝛼) + 𝑝𝑥0 (𝛼) 𝑝−1.

A point 𝑥 is 𝛾-stationary, see (8), if and only if (𝑥, ∇ 𝑓 (𝑥) − 𝛾−1𝑥) (𝜔) ∈ 𝐻PMP (𝛼 +
𝛾−1) for almost all 𝜔. This can be equivalently written as

(𝑥, ∇ 𝑓 (𝑥)) (𝜔) ∈ 𝐻𝛾 :={
(𝑥, 𝑞) : 𝑥 ≠ 0, 𝛼𝑥 + 𝑝 |𝑥 |𝑝−2𝑥 + 𝑞 = 0, |𝑥 | ≥ 𝑥0 (𝛼 + 𝛾−1)

}
∪

{
(0, 𝑞) : |𝑞 | ≤ 𝑞0 (𝛼 + 𝛾−1)

}
.

The graphs of these mappings can be seen in Figure 2.

Fig. 2 Graphs of the set-valued maps 𝐻PMP, 𝐻𝛾 , 𝐻𝑀 (from left to right) for 𝛼 = 1, 𝑝 = 0.5,
𝛾 = 0.5 (Section 3.2)

Again, we have for 𝛾 > 0

𝐻PMP ⊊ 𝐻𝛾 ⊊ 𝐻𝑀 .

Let us prove that 𝑀-stationary iterates are also 𝛾-optimal.
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Lemma 8 Let 𝑔 and ℎ be given by (4) and (9). Let 𝑥𝑘 ∈ 𝑋 be an iterate of Algo-
rithm 1 such that ∇ 𝑓 (𝑥𝑘) ∈ 𝐿∞ (Ω). Suppose that 𝑥𝑘 is M-stationary, i.e., it satisfies
−(∇ 𝑓 (𝑥𝑘) + 𝛼𝑥𝑘) ∈ 𝜕ℎ(𝑥𝑘). Then there is 𝛾 > 0 such that 𝑥𝑘 is 𝛾-optimal.

Proof The proof is identical to that of Lemma 6. Since 𝑞0 (𝛼+𝛾−1) → ∞ for 𝛾 ↘ 0,
there is �̃� > 0 such that ∥∇ 𝑓 (𝑥𝑘)∥𝐿∞ (Ω) ≤ 𝑞0 (𝛼 + �̃�−1). Then 𝛾 := min(𝛾𝑘−1, �̃�)
satisfies the claim. □

In contrast to the case 𝑝 = 0, we do not have a convergence result like Theorem 3.
Weak limit points of iterates of the monotone proximal gradient method satisfy a
condition that is weaker than 𝛾-stationarity, and that does not imply M-stationarity,
see [19]. This is due to the convexifying effect of weak convergence and to the
non-convexity of the images of the set-valued map

𝑞 ↦→
{
𝑥 : 𝑥 > 0, 𝛼𝑥 + 𝑝 |𝑥 |𝑝−2𝑥 + 𝑞 = 0, |𝑥 | ≥ 𝑥𝛾

}
,

for small 𝛾. The graph of this mapping is a subset of 𝐻𝛾 , and its convex hull plays
a role in the inclusion satisfied by weak limit points, see [19, Theorem 4.20]. We
expect that a similar convergence result is true for the non-monotone method.

3.3 Integer-valued controls

As last example, we look at

ℎ(𝑥) = 𝐼Z (𝑥) :=

{
0 if 𝑥 ∈ Z
+∞ if 𝑥 ∉ Z

, (13)

which is the indicator function of the integers. If 𝑔(𝑥) < +∞ then 𝑥(𝜔) ∈ Z for
almost all 𝜔, Again, we will need 𝛼 > 0.

Let us first compute the limiting subdifferential of ℎ.

Lemma 9 Let 𝑟 ∈ [1,∞). Define ℎ : 𝐿𝑟 (Ω) → R̄ by

ℎ(𝑥) :=
∫
Ω

𝐼Z (𝑥(𝜔))𝑑𝜔

Let 𝑥 ∈ 𝐿𝑟 (Ω) with ℎ(𝑥) < +∞. Then the following claims hold:

1. If 𝑟 ∈ (1,∞) then the limiting subdifferential satisfies

𝜕ℎ(𝑥) = 𝐿𝑟 ′ (Ω) = 𝐿𝑟 (Ω)∗,

where 𝑟 ′ is such that 1
𝑟
+ 1
𝑟 ′ = 1.

2. In case 𝑟 = 1, we have
𝜕ℎ(𝑥) = {0}.
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Proof Let us denote the Fréchet subdifferential of 𝑗 by 𝜕 𝑗 . Let 𝑟 > 1. We show that
𝐿∞ (Ω) ⊂ 𝜕ℎ(𝑥). Let 𝜂 ∈ 𝐿∞ (Ω). Let 𝑦 ∈ 𝐿𝑟 (Ω) with ℎ(𝑦) = 0 be given. Since 𝑦
and 𝑥 are integer-valued almost everywhere, it follows

∥𝑥 − 𝑦∥𝑟
𝐿𝑟 (Ω) ≥ 1𝑟−1∥𝑥 − 𝑦∥𝐿1 (Ω) .

Then ∫
Ω

|𝜂(𝑦 − 𝑥) |𝑑𝜔 ≤ ∥𝜂∥𝐿∞ (Ω) ∥𝑦 − 𝑥∥𝐿1 (Ω) ≤ ∥𝜂∥𝐿∞ (Ω) ∥𝑦 − 𝑥∥𝑟𝐿𝑟 (Ω) ,

which implies

lim
∥𝑦−𝑥 ∥𝐿𝑟 (Ω)→0

ℎ(𝑦) − ℎ(𝑥) −
∫
Ω
𝜂(𝑦 − 𝑥)𝑑𝜔

∥𝑦 − 𝑥∥𝐿𝑟 (Ω)
= 0,

and hence 𝜂 ∈ 𝜕ℎ(𝑥). Since 𝐿∞ (Ω) is dense in 𝐿𝑟
′ (Ω), it follows that 𝜕ℎ(𝑥) =

𝐿𝑟
′ (Ω).
Now consider the case 𝑟 = 1. As ℎ(𝑦) ≥ 0 for all 𝑦 ∈ 𝐿𝑟 (Ω), it follows 0 ∈ 𝜕ℎ(𝑥).

Take 𝜂 ∈ 𝐿∞ (Ω) \ {0}. Then there is 𝜎 > 0 and 𝐴 ⊂ Ω of positive measure such
that |𝜂 | ≥ 𝜎 > 0 almost everywhere on 𝐴. Now chose 𝐵𝑘 ⊂ 𝐴 such that |𝐵𝑘 | → 0.
Define 𝑥𝑘 := 𝑥 + 𝜒𝐵𝑘

sign(𝜂). Note that 𝑥𝑘 ∈ 𝐿1 (Ω), 𝑥𝑘 → 𝑥 in 𝐿1 (Ω), 𝑥𝑘 (𝜔) ∈ Z
for almost all 𝑡, and hence ℎ(𝑥𝑘) = 0. In addition,∫

Ω

𝜂(𝑥𝑘 − 𝑥)𝑑𝜔 =

∫
𝐵𝑘

|𝜂 |𝑑𝜔 ≥ 𝜎 |𝐵𝑘 | = 𝜎∥𝑥𝑘 − 𝑥∥𝐿1 (Ω)

This implies

lim inf
∥𝑦−𝑥 ∥

𝐿1 (Ω)→0

ℎ(𝑦) − ℎ(𝑥) −
∫
Ω
𝜂(𝑦 − 𝑥)𝑑𝜔

∥𝑦 − 𝑥∥𝐿1 (Ω)
≤ −𝜎 < 0,

and 𝜂 ∉ 𝜕ℎ(𝑥). This shows 𝜕ℎ(𝑥) = {0}. By [5, Theorem 3.2], we get 𝜕ℎ(𝑥) = 𝜕ℎ(𝑥),
which is the claim. □

Hence, M-stationarity does not give any information, as all 𝑥 ∈ dom 𝑔 and hence
all iterates of Algorithm 1 are M-stationary. With the notation of the previous
sections, we have 𝐻𝑀 = Z × R.

The Pontryagin maximum principle can be rephrased as: 𝑥 satisfies the maximum
principle if and only if

(𝑥, ∇ 𝑓 (𝑥)) (𝜔) ∈ 𝐻PMP (𝛼) :=
{
(𝑥, 𝑞) : 𝑥 ∈ round

(
− 1
𝛼
𝑞

)}
,

where round(𝑥) is the set of nearest integers to 𝑥 ∈ R, i.e., round(0.5) = {0, 1}.
Similarly to the computations in the previous section, we can characterize a 𝛾-
stationary point 𝑥 by the inclusion
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(𝑥, ∇ 𝑓 (𝑥) − 𝛾−1𝑥) (𝜔) ∈
{
(𝑥, 𝑞) : 𝑥 ∈ round

(
− 1
𝛼 + 𝛾−1 (𝑞 − 𝛾

−1𝑥)
)}
,

which is equivalent to

(𝑥, ∇ 𝑓 (𝑥)) (𝜔) ∈ 𝐻𝛾 :=
{
(𝑥, 𝑞) : 𝑥 ∈ Z, 𝛼

𝛼 + 𝛾−1

����𝑥 − 1
𝛼
𝑞

���� ≤ 1
2

}
.

Hence, every iterate 𝑥𝑘 of Algorithm 1 with 𝑥𝑘 ,∇ 𝑓 (𝑥𝑘) ∈ 𝐿∞ (Ω) is 𝛾-optimal if

𝛼

(���𝑥𝑘 (𝜔) − 𝛼−1∇ 𝑓 (𝑥𝑘) (𝜔)
��� − 1

2

)
≤ 1

2𝛾

for almost all 𝜔, i.e., if 𝛾 > 0 is small enough. In addition, following [19] one can
prove that if (𝛾𝑘) is bounded then the iterates (𝑥𝑘) converge strongly in 𝐿1 (Ω):

Lemma 10 Let Assumption 1 be satisfied. Let 𝑔 and ℎ be given by (4) and (13) with
𝛼 > 0. Let (𝑥𝑘) be a sequence generated by Algorithm 1 together with the sequence
of parameters (𝛾𝑘). Suppose (𝛾𝑘) is bounded. Then 𝑥𝑘 →𝐾 𝑥

∗ in 𝐿1 (Ω).

Proof Let 𝑀 > 0 such that 𝛾𝑘 ≤ 𝑀 for all 𝑘 . Due to Lemma 2, we have

1
𝑀

∞∑︁
𝑘=0
∥𝑥𝑘+1 − 𝑥𝑘 ∥2𝑋 ≤

∞∑︁
𝑘=0

1
𝛾𝑘
∥𝑥𝑘+1 − 𝑥𝑘 ∥2𝑋 < +∞,

The iterates (𝑥𝑘) are integer valued, which implies |𝑥𝑘+1 (𝜔) − 𝑥𝑘 (𝜔) | ∈ Z for almost
all 𝜔, and ∥𝑥𝑘+1 − 𝑥𝑘 ∥𝐿1 (Ω) ≤ ∥𝑥𝑘+1 − 𝑥𝑘 ∥2𝐿2 (Ω) . Using this in the above inequality,
we obtain

∑∞
𝑘=0 ∥𝑥𝑘+1 − 𝑥𝑘 ∥𝐿1 (Ω) < ∞. Hence (𝑥𝑘) is a Cauchy-sequence in 𝐿1 (Ω),

and thus converging. □

4 Numerical experiments

We conducted some numerical experiments for the following problem:

min
1
2
∥𝑦 − 𝑦𝑑 ∥2𝐿2 (Ω) +

𝛼

2
∥𝑢∥𝐿2 (Ω)

where 𝑦 ∈ 𝐻1
0 (Ω) is the weak solution of the partial differential equation (pde)

−Δ𝑦 = 𝑢 in Ω

and 𝑢 is integer-valued, i.e.,

𝑢(𝜔) ∈ Z for almost all 𝜔 ∈ Ω.
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Here, Ω ⊂ R𝑑 is a bounded domain, 𝑦𝑑 ∈ 𝐿2 (Ω) is a given desired state, and 𝛼 > 0.
For the computations, we use Ω = (0, 1)2 and 𝛼 = 10−3.

The partial differential equation has a unique weak solution 𝑦𝑢 ∈ 𝐻1
0 (Ω) for all

𝑢 ∈ 𝐿2 (Ω), so with the choices 𝑓 (𝑢) := 1
2 ∥𝑦 − 𝑦𝑑 ∥𝐿2 (Ω) and 𝑔(𝑢) := 𝛼

2 ∥𝑢∥𝐿2 (Ω) +∫
Ω
𝐼Z (𝑢(𝜔))𝑑𝜔 this problem fits into the problem class considered in Section 3.3. It

is well-known [21] that ∇ 𝑓 (𝑢) can be computed as ∇ 𝑓 (𝑢) = 𝑝, where the so-called
adjoint state 𝑝 ∈ 𝐻1

0 (Ω) is the unique weak solution of

−Δ𝑝 = 𝑦 − 𝑦𝑑 .

Hence, the computation of 𝑓 (𝑢) requires one pde solve, while the joint computation
of ( 𝑓 (𝑢),∇ 𝑓 (𝑢)) requires two pde solves.

State and adjoint variables were discretized using continuous piecewise linear
functions on a uniform grid with ℎ = 1.41 · 10−3, while the control variable was
discretized using piecewise constant functions. Let us remark that for the finest
discretization, the control functions have 2, 000, 000 degrees of freedom. Hence, the
discretization results in an optimization problem with 2, 000, 000 integer variables.

We used Algorithm 1 with the parameter choice from [8]:

𝜏 = 0.5, 𝜎 = 0.999, 𝛾min = 10−12, 𝛾max = 10+12, 𝑝 = 0.2.

We tested two different choices to compute the initial step-size 𝛾0,𝑘 : the first choice
uses the previous step-size with enlargement:

𝛾0,𝑘+1 := proj[𝛾min ,𝛾max ] (𝛾𝑘 · 𝜏
−1), (14)

the second choice is a spectral Barzilai-Borwein step-size as in [8, Section 5]:

𝛾0,𝑘+1 := proj[𝛾min ,𝛾max ]

(
∥𝑥𝑘 − 𝑥𝑘−1∥2𝑋

⟨∇ 𝑓 (𝑥𝑘) − ∇ 𝑓 (𝑥𝑘−1), 𝑥𝑘 − 𝑥𝑘−1⟩𝑋

)
. (15)

In addition, we implemented the max-strategy to define a new threshold Φ𝑘 [13],
where

Φ𝑘 := max
𝑟=0,...,min(𝑘,𝑚)

𝜙(𝑥𝑘−𝑟 ) (16)

with 𝑚 = 5. And we compared the non-monotone schemes with the monotone one
obtained by the choice

Φ𝑘 := 𝜙(𝑥𝑘). (17)

The termination criterion in step 8 of Algorithm 1 was:

if
 1
𝛾𝑘,𝑖
(𝑥𝑘,𝑖 − 𝑥𝑘)


𝑋

≤ 2𝜖 and∇ 𝑓 (𝑥𝑘) + 1
𝛾𝑘,𝑖
(𝑥𝑘,𝑖 − 𝑥𝑘) − ∇ 𝑓 (𝑥𝑘,𝑖)


𝑋

≤ 𝜖 return.
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where we set 𝜖 := 10−4. We used this modification of the termination criterion in
[8, 13] to save (costly) computations of∇ 𝑓 (𝑥𝑘,𝑖) in the inner loop when the difference
between 𝑥𝑘 and 𝑥𝑘,𝑖 is too large.

We tested these algorithms with different initial guesses and choices of 𝑦𝑑 . For
each initial value and desired state, we run each of these different methods. The inital
choice was generated using x0 = 50*(2*rand(N,1)-1);, where 𝑁 is degrees of
freedom of the control variable, while rand is Matlab’s built-in. For the desired
state, we took perturbations of

�̂�𝑑 (𝑥) := 10𝑥1 sin(5𝑥1) cos(7𝑥2).

That is, we set 𝑦𝑑 (𝑥𝑖) := �̂�𝑑 (𝑥𝑖) + rand for each node 𝑥𝑖 of the triangulation. In this
way, we generated a set of 100 random initial guesses and desired states. Then each
method was run for each of these choices.

In the performance plots in Figure 3 below, we will use the following labels to
distinguish the different choices for initial step-sizes and merit function update:

• weighted: Φ𝑘 as in Algorithm 1, 𝛾0,𝑘+1 as in (14),
• weighted, spectral: Φ𝑘 as in Algorithm 1, 𝛾0,𝑘+1 as in (15),
• max: Φ𝑘 as in (16), 𝛾0,𝑘+1 as in (14),
• max, spectral: Φ𝑘 as in (16), 𝛾0,𝑘+1 as in (15),
• mono: Φ𝑘 as in (17), 𝛾0,𝑘+1 as in (14),
• mono, spectral: Φ𝑘 as in (17), 𝛾0,𝑘+1 as in (15),

The results can be seen in Figure 3. We plotted performance graphs to show

• the best function value, i.e., min𝑘 𝜙(𝑥𝑘),
• the iteration, when the best value was obtained, i.e., argmin𝑘 𝜙(𝑥𝑘),
• the number of outer iterations,
• the number of pde solves, which serves as indication of running time, as these

pde solves are the most expensive parts of the iterations.

Interestingly, all spectral variants of the algorithms reach the same best function
value in all the test cases. In fact, they reach their minimal value after a small number
of iterations, while spending some more iterations until the termination criterion is
reached. Of the three spectral variants, the weighted versions spent many additional
inner iterations until the termination criterion was reached, which resulted in a much
higher number of pde solves than the other spectral versions. Here, more research is
needed to investigate better termination criteria.
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Fig. 3 Comparing variants of Algorithm 1 with monotone/non-monotone linesearch and
plain/spectral stepsizes
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