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Abstract

This paper proposes differentiability properties for positively homo-
geneous risk measures which ensure that the gradient can be applied for
reasonable risk capital allocation on non-trivial portfolios. It is shown
that these properties are fulfilled for a wide class of coherent risk mea-
sures based on the mean and the one-sided moments of a risky payoff.
In contrast to quantile-based risk measures like Value-at-Risk, this class
allows allocation in portfolios of very general distributions, e.g. discrete
ones. Two examples show how risk capital given by the VaR can be
allocated by adapting risk measures of this class to the VaR.
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1 Introduction

From the works of Denault (2001) and Tasche (2000) it is known that differ-

entiability of risk measures is crucial for risk capital allocation in portfolios.

The reason is that in the case of differentiable positively homogeneous risk

measures the gradient due to asset weights has figured out to be the unique

reasonable per-unit allocation principle. After a short introduction to risk

measures at the end of the present section, the approaches of Denault (2001)

and Tasche (2000) to this result are briefly reviewed in Section 2 of this paper.
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However, in contrast to the mentioned result, it is known that in practice

quantile-based risk measures like the widely used Value-at-Risk methodology

or the so-called Expected Shortfall encounter situations, e.g. in the case

of insurance claims, credit portfolios or digital options, where probability

distributions are discrete and the risk measures are not differentiable anymore

(cf. Tasche, 2000). Furthermore, Section 3 of this paper shows that at least in

the case of subadditive positively homogeneous risk measures differentiability

on all portfolios actually is not desirable since the risk measures become linear

and minimal in this case. As a solution, we define weaker differentiability

properties (also Section 3). For positively homogeneous (and in particular

coherent) risk measures these properties allow allocation by the gradient on

all relevant portfolios. Excluded are portfolios that contain only one type of

assets. However, in these cases the allocation problem is trivial. In Section 4,

we introduce a wide class of coherent risk measures based on the mean and the

one-sided moments of a risky payoff. In order to construct the class, it is shown

that weighted sums of coherent risk measures are again coherent. Hence, it

is possible to “mix” coherent risk measures. For example, one could consider

the arithmetic mean of the maximum-loss-principle and a semi-deviation-like

risk measure - both are members of the given class. An important result

of Section 4 is that the constructed risk measures (expected and maximum

loss excluded) are examples for the weakened differentiability properties of

Section 3. In contrast to quantile-based risk measures, members of this class

allow allocation in portfolios of very general distributions, e.g. discrete ones.

Furthermore, for any fixed random payoff X risk measures of this class can

be chosen such that the risk capital due to X equals any value between the

expected and the maximum loss of X. In Section 5, two numerical examples

show how this property can be used to choose a particular risk measure of

the class which assigns the same risk capital to a given portfolio as VaR

does. As a consequence, the risk capital originally given by the VaR can be

allocated by the gradient due to the chosen risk measure. Section 6 compares

the notation of this paper with the one used in Tasche (2000), respectively

Denault (2001). In addition to the mentioned results of the paper, some of

the lemmas proven in the technical appendix could be interesting in themselves.

Given a probability space (Ω,A, Q), we will consider the vector space

Lp(Ω,A, Q), or just Lp(Q), for 1 ≤ p ≤ ∞. Even though Lp(Q) consists
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of equivalence classes of p-integrable random variables, we will often treat its

elements as random variables. Due to the context, no confusion should arise.

The notation will be as follows. We have ||X||p = (EQ|X|p)
1
p and ||X||∞ =

ess.sup{|X|}. Recall, that Lp(Q) ⊂ Lq(Q) if 1 ≤ q < p ≤ ∞, since ||.||q ≤ ||.||p.
X− is defined as max{−X, 0}. We denote σ−p (X) = ||(X − EQ[X])−||p. Now,

let U ⊂ Rn for n ∈ N+ = N \ {0} be open and positively homogeneous, i.e. for

u ∈ U we have λu ∈ U for all λ > 0. A function f : U → R is called positively

homogeneous (or homogeneous of degree one) if f(λu) = λf(u) for all λ > 0,

u ∈ U . When f is also differentiable at every u = (u1, . . . , un) ∈ U , we obtain

the well-known Euler Theorem

f(u) =
n∑

i=1

ui
∂f

∂ui

(u). (1)

We consider a one-period framework, that means we have the present time

0 and a future time horizon T . Between 0 and T no trading is possible. We

assume “risk” to be given by a random payoff X, i.e. a random variable in

Lp(Q) representing a cash flow at T . We want to consider a risk measure ρ(X)

to be the extra minimum cash added to X that makes the position acceptable

for the holder or a regulator. For this reason, we state the following definition.

DEFINITION 1.1. A risk measure on Lp(Q), 1 ≤ p ≤ ∞, is defined by a

functional ρ : Lp(Q) → R.

We now give a definition of coherent risk measures. For a further motivation

and interpretation of this axiomatic approach to risk measurement we refer to

the article of Artzner et al. (1999).

DEFINITION 1.2. A functional ρ : Lp(Q) → R, where 1 ≤ p ≤ ∞, is called

a coherent risk measure (CRM) on Lp(Q) if the following properties hold.

(M) Monotonicity: If X ≥ 0 then ρ(X) ≤ 0.

(S) Subadditivity: ρ(X + Y ) ≤ ρ(X) + ρ(Y ).

(PH) Positive homogeneity: For λ ≥ 0 we have ρ(λX) = λρ(X).

(T) Translation: For constants a we have ρ(a + X) = ρ(X)− a.

As we work without interest rates - in contrast to Artzner et al. (1999)

- there is no discounting factor in Definition 1.2. A generalization of CRM
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to the space of all random variables on a probability space can be found in

Delbaen (2000). However, having p ≥ 1 prevents us from being forced to allow

infinitely high risks. See Delbaen (2000) for details on this topic.

The scientific discussion about suitable properties of risk measures contin-

ues. Especially in the context of actuarial mathematics (a risk measure can be

seen as an insurance premium principle and vice versa) alternative approaches

exist (e.g. Goovaerts, Kaas and Dhaene, 2003). For the purposes of this paper,

we stay in the framework of positively homogeneous or coherent risk measures.

A deeper discussion about properties of risk measures in different economic

contexts is beyond the scope of this thesis.

2 Risk capital allocation by the gradient

Let us consider the payoff X(u) :=
∑n

i=1 uiXi ∈ Lp(Q) of a portfolio u =

(ui)1≤i≤n ∈ Rn consisting of assets (or subportfolios) with payoffs Xi ∈ Lp(Q).

DEFINITION 2.1. A portfolio base in Lp(Q) is a vector B ∈ (Lp(Q))n,

n ∈ N+. The components of B do not have to be linearly independent.

Having B = (X1, . . . , Xn), a risk measure ρ on the payoffs Lp(Q) implies a risk

measure ρB on the portfolios Rn. In particular, we define ρB : Rn → R by

ρB : u 7→ ρ(X(u)). (2)

If ρB is obtained from a CRM ρ on Lp(Q) and Xn is the only constant compo-

nent in B and not equal zero, ρB is also called coherent (cf. Denault, 2001). If

ρ fulfills axiom (S) and (PH) in Definition 1.2, ρB is subadditive and positively

homogeneous on Rn.

Due to diversification effects (or subadditivity of the risk measure), the

total risk of a portfolio is usually assumed to be less then the sum of the risks

of each subportfolio, i.e. we often have ρB(u) <
∑n

i=1 ρB(uiei), where ei is

the i-th canonical unit vector in Rn. The so-called allocation problem is the

question, how much risk capital should be allocated to each of the subportfolios

uiei and hence how the subportfolios should benefit from the diversification.

However, as identical payoffs should be treated identically, this question is

equivalent to the search for a reasonable per-unit allocation principle.
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DEFINITION 2.2. Given a portfolio base B and a risk measure ρB on Rn

a per-unit allocation in u ∈ Rn is a vector (ai(ρB, u))1≤i≤n, such that

n∑
i=1

uiai(ρB, u) = ρB(u). (3)

In Denault (2001) the author drives the attention of the reader to a result

of Aubin in the theory of coalitional games with fractional players. Aubin’s

theorem states that in the case of a positively homogeneous, convex and dif-

ferentiable cost function the core of such a game (Aubin uses the prefix fuzzy)

consists of one element: the gradient of the cost function due to the normed

weights of the players (Aubin, 1979). From this result, it is immediate that in

the case of a subadditive and positively homogeneous risk measure (e.g. a

coherent one), which is differentiable at a portfolio u ∈ Rn, the gradient

(∂ρB

∂ui
(u))1≤i≤n is the unique fair per-unit allocation. To derive this statement

from Aubin’s result, the notion of cost functions in game theory has to be

replaced by our notion of a risk measure. The players of the game are given

by the certain uiXi, coalitions of fractional players are given by portfolios v

with 0 ≤ v ≤ u, where the given portfolio u can without loss of generality be

assumed to be positive. Note that convexity and subadditivity are equivalent

under positive homogeneity. The core of such a game contains all per-unit

allocations (ai(ρB, u))1≤i≤n, such that for all coalitions v with 0 ≤ v ≤ u we

have
∑n

i=1 viai(ρB, u) ≤ ρB(v). That means, no sub-coalition v of u features

less stand-alone risk than the risk the coalition v would have been charged by

the respective per-unit allocation due to u. In this sense, the elements of the

core are fair allocations. For the sake of completeness, it should be mentioned

that in the case of a positively homogeneous risk measure the core of the game

is identical to the subdifferential of ρB at u. If ρB is also convex or subadditive,

the core is nonempty, convex and compact (Aubin, 1979). However, in this

general case uniqueness of the core gets lost. For differentiable CRM Denault

proved that the Aumann-Shapley value, which is the above gradient, features

certain coherence properties (Denault, 2001). For a deeper study of the con-

nections between the theory of convex games and coherent risk measures we

refer to Delbaen (2002).

In the case of just positively homogeneous risk measures, the theory of

convex games is no longer suitable to model the allocation problem. However,

it is still possible to talk about reasonable allocations. Tasche (2000) considers

the so-called return on risk-adjusted capital (RORAC) of the payoff X(u)
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of a portfolio u, which he defines by f(u) = EQ[X(u)]/ρB(u). Note, that

what we called risk measure is denoted economic capital by Tasche, whereas

he defines risk as fluctuation risk from the mean. Now, the idea is to call

a per-unit allocation suitable for performance measurement with ρB, when

(ai(ρB, u))1≤i≤n gives the right signals for local changes in the portfolio. More

precise, if EQ[Xi]/ai(ρB, u) > f(u), there should be an ε0 > 0, such that for

all ε ∈ (0, ε0) we have f(u − εei) < f(u) < f(u + εei). Analogously, for

E[Xi]/(ai(ρB, u)) < f(u) we demand f(u − εei) > f(u) > f(u + εei). Tasche

shows that in the case of differentiable positively homogeneous risk measures

the unique per-unit allocation (ai(ρB, u))1≤i≤n that is continuous on Rn and

suitable for performance measurement due to the risk adjusted return function

is the gradient (∂ρB

∂ui
(u))1≤i≤n (Tasche, 2000).

In both approaches, Denault’s and Tasche’s, the relationship between total

risk and risk contribution per unit is established by the Euler Theorem

ρB(u) =
n∑

i=1

ui
∂ρB

∂ui

(u). (4)

The per-unit risk contribution equals the marginal risk. So, concerning risk

capital allocation due to a (subadditive) positively homogeneous risk measure

on Lp(Q), it would be desirable to have ρB to be differentiable on Rn for every

portfolio base B ∈ (Lp(Q))n for all n ∈ N+.

3 Differentiability properties

As the Value-at-Risk methodology is widely used in practice, marginal risks

of VaR have been considered in several papers. In the Gaussian case we refer

to the works of Garman (1996) and (1997), in the general case of continuous

distributions to Laurent, Gouriéroux and Scaillet (2000). The perhaps more

sophisticated (but also quantile-based) expected shortfall (called Tail-VaR by

some authors) is considered in Scaillet (2000). Despite of the results in the case

of continuous distributions, having a quantile-based risk measure ρ like VaR

or expected shortfall, it is known that ρB is not differentiable on Rn in general.

Roughly speaking, for differentiability at least one of the Xi has to possess a

continuous density (Tasche, 2000). Hence, it is a problem to deal with discrete

spaces (Ω,A, Q) like e.g. in the case of credit portfolios, insurance claims or

digital options. It will be shown in Section 4 that the step to moment based risk

measures avoids this difficulty. Beside the differentiability difficulties, it is also
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known that VaR is not subadditive (Artzner et al., 1999). As diversification is

not rewarded, this is a major drawback.

However, even if risk measures are differentiable on Rn, this can imply

some problems. To understand what kind of problems can arise, we state a

proposition which connects differentiability with linearity and minimality of

subadditive positively homogeneous risk measures:

We have seen that it would be desirable to have ρB to be differentiable on Rn

for every portfolio base B ∈ (Lp(Q))n for all n ∈ N+. Considering the initial

ρ on Lp(Q), this implies the existence of Gâteaux-derivatives, i.e. derivatives

due to directions on Lp(Q).

PROPOSITION 3.1. Let S be a subset of the four axioms given in Definition

1.2, (PH) and (S) being contained in S. For a risk measure ρ on Lp(Q),

1 ≤ p ≤ ∞, that fulfills the axioms S, the following properties are equivalent:

(i) ρ is Gâteaux-differentiable on Lp(Q), (ii) ρ is linear, (iii) ρ is minimal due

to S, i.e. there is no risk measure ρ′ 6= ρ fulfilling S such that ρ′(X) ≤ ρ(X)

for all X ∈ Lp(Q). Differentiability of ρ on Lp(Q) implies (i), (ii) and (iii).

COROLLARY 3.2. A continuous coherent risk measure ρ on Lp(Q) is

Gâteaux-differentiable on Lp(Q), 1 < p < ∞, if and only if there exists a

probability measure Qρ ∼ Q on Ω, such that ρ(X) = −EQρ [X].

In particular, Proposition 3.1 is true for coherent risk measures. The proof

of 3.1 is omitted since equivalence of (i) and (ii) can be shown by a simple appli-

cation of the axioms (PH) and (S). Since subadditive positively homogeneous

risk measures are sub-linear functionals, the well-known proof for equivalence

of (ii) and (iii) in the general sub-linear case can easily be adapted to our cases.

The corollary follows from the duality of the Lp(Q) spaces.

As the two statements are also true for subspaces of Lp(Q), we face the

following problem: If ρB is a differentiable risk measure on Rn which fulfills S
(e.g. coherence), it is easy to show that ρB is linear. Therefore, ρB features

no diversification effects. We also obtain that ρ is linear on the linear span

〈B〉 of the components of B, which implies that ρ is minimal on 〈B〉 due to S
(coherence). Hence, differentiability on the whole Rn might be not useful.

Now, consider a portfolio base B = (X1, . . . , Xn) and a portfolio u = uiei =

(0, . . . , 0, ui, 0, . . . , 0), ui ∈ R, 1 ≤ i ≤ n. In this case the allocation problem is

trivial, since by (3) the risk capital allocated to Xi - which is the only asset - is

simply ρB(u)/ui. The following definition is motivated by this consideration.
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DEFINITION 3.3. Consider a portfolio base B = (X1, . . . , Xn) ∈ (Lp(Q))n,

n ∈ N+, 1 ≤ p ≤ ∞, and a portfolio u ∈ Rn. Define Ue =
⋃n

i=1〈ei〉, where

〈ei〉 ⊂ Rn is the linear span of ei. We propose to call a (subadditive) positively

homogeneous risk measure ρ on Lp(Q) suitable for risk capital allocation

by the gradient due to the portfolio base B if the function ρB : Rn → R with

ρB : u 7→ ρ(X(u)) is differentiable on the open set Rn \ Ue.

4 A class based on one-sided moments

We define a class of coherent risk measures which depend on the mean and the

one-sided higher moments of a risky position.

LEMMA 4.1. For 1 ≤ p ≤ ∞ and 0 ≤ a ≤ 1, the risk measure ρp,a with

ρp,a(X) = −EQ[X] + a · σ−p (X) = −EQ[X] + a · ||(X − EQ[X])−||p (5)

is coherent on Lp(Q).

Delbaen (2002) shows that these risk measures can be obtained by the set

of probability measures (also called generalized scenarios, compare Artzner et

al. (1999)) P = {1 + a(g − E[g]) | g ≥ 0; ||g||q ≤ 1}, where q = p/(p− 1) and

probability measures are identified with their densities. In Delbaen (2000) we

find another type of risk measures that are connected to higher moments.

Proof of Lemma 4.1. The Lp-norm on the right side of (5) is finite, since X ∈
Lp(Q). Axiom (T) and (PH) are obvious. From Minkowski’s inequality and

the inequality (a+b)− ≤ a−+b− for a, b ∈ R, we obtain axiom (S). Axiom (M):

Let X ≥ 0. We have X−EQ[X] ≥ −EQ[X], therefore (X−EQ[X])− ≤ EQ[X]

and hence ||(X−EQ[X])−||∞ = ess.sup{(X−EQ[X])−} ≤ EQ[X]. Since ||(X−
EQ[X])−||p ≤ ||(X − EQ[X])−||∞ for p ∈ [1,∞], we get ||(X − EQ[X])−||p ≤
EQ[X]. Remembering 0 ≤ a ≤ 1, this completes the proof.

The Lp-norms imply that ρq,a ≤ ρp,a if q < p. The following result is on

weighted sums of coherent risk measures and generalizes the trivial fact that

convex sums of CRM are again CRM .

LEMMA 4.2. Let I ⊂ R be an index set and (ρi)i∈I be a family of coherent

risk measures respectively defined on Lp(i)(Q), where p : I → [1,∞]. Let

(ρi)i∈I be point-wise uniformly bounded on Lsup p(I)(Q) in the sense that there

is a function b : Lsup p(I)(Q) → R+
0 such that for each X ∈ Lsup p(I)(Q) we
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have |ρi(X)| ≤ b(X) for all i ∈ I. Let R be a random variable with range

I that is defined on a probability space Ω′ with measure P. Now, if for all

X ∈ Lsup p(I)(Q) the mapping ρR(.)(X) : Ω′ → R is measurable,

ρ(X) = EP[ρR(X)] (6)

defines a coherent risk measure on Lsup p(I)(Q).

Proof. ρ is well-defined, since for each X ∈ Lsup p(I)(Q) we know from |ρi(X)| ≤
b(X) and the measurability assumption, that ρR(X) is a bounded random

variable and therefore P-integrable. Now, the coherence axioms are obvious

by the properties of EP.

Using Lemma 4.2, the result of Lemma 4.1 can be generalized.

PROPOSITION 4.3. Let P be a random variable on a probability space

(Ω′, P) with range P (Ω′) ⊂ [1, p] and assume that 1 ≤ p ≤ ∞ and 0 ≤ a ≤ 1.

The risk measure

ρ(X) = −EQ[X] + a · EP[σ
−
P (X)] (7)

is coherent on Lp(Q). We have −EQ[X] ≤ ρ(X) ≤ ess.sup{−X}.

Proof. Due to Lemma 4.1 we consider a family (ρi,a)i∈[1,p] of coherent risk

measures given by (5), respectively defined on Li(Q). Now, let b(X) =

|EQ[X]| + ||(X − EQ[X])−||p. Clearly, |ρi(X)| ≤ b(X) for all 1 ≤ i ≤ p.

For all X ∈ Lp(Q) the mapping ρP (.),a(X) : Ω′ → R is measurable, since

P (.) is measurable and for all Y ∈ Lp(Q) the mapping q 7→ ||Y ||q is mea-

surable on P (Ω′) as it is continuous due to the relative topology on P (Ω′)

in R ∪ {∞} with the canonical topology (cf. Lemma 7.1). We obtain coher-

ence of (7) by Lemma 4.2. The last statement follows from ||.||p ≤ ||.||∞ and

σ−∞ = ess.sup{(X − EQ[X])−} = ess.sup{−X + EQ[X]}.

REMARK 4.4. An immediate consequence of Lemma 7.1 is that for

any X the risk measure ρ can be chosen such that ρ(X) equals any

value v ∈ [−EQ[X], ess.sup{−X}], i.e. any value between the expected

loss and the maximum loss. In particular, for X≡/ const a.s. and v ∈
[−EQ[X] + σ−1 (X), ess.sup{−X}] there is a unique p∗ = p∗(v) ∈ [1,∞] such

that ρp∗,1(X) = −EQ[X] + σ−p∗(X) = v.

EXAMPLE 4.5. ρ(X) = −EQ[X]+a1σ
−
1 +a2σ

−
2 + . . .+a∞σ−∞, where ap ≥ 0

for p ∈ {1, 2, 3, . . . ,∞} and a∞ +
∑∞

p=1 ap ≤ 1 is a coherent risk measure on
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Lq(Q), where q := sup{p|ap > 0} (we use the convention 0·(±∞) = (±∞)·0 =

0). In particular, a2 = a∞ = 1
2

could be interpreted as a coherent “mixture”

of the semi-deviation and the maximum-loss-principle.

DEFINITION 4.6. For B ∈ (Lp(Q))n, n ∈ N+, 1 < p < ∞, the set UC(B)

denotes the set of all u ∈ Rn for which
∑n

i=1 uiXi ≡ const.

LEMMA 4.7. The set Rn \ UC(B) is open in Rn.

Proof. The linear mapping X(.) : Rn → Lp(Q), where u 7→ X(u), is bounded,

since ||X(u)||p ≤
∑n

i=1 |ui| · ||Xi||p ≤ ||u|| ·
∑n

i=1 ||Xi||p. Hence, X(.) is contin-

uous on Rn. The set C of all constant elements of Lp(Q) is closed, since Lp(Q)

is a Banach-space due to the theorem of Riesz-Fischer and every Cauchy-

sequence of constant elements in Lp(Q) converges to a constant limit in Lp(Q)

(due to Lp-norm). Since X(.) is continuous, [X(.)]−1(C) = UC(B) is closed

and Rn \ UC(B) open.

We can now state a result on differentiability of the class of coherent risk

measures that was introduced in Proposition 4.3.

PROPOSITION 4.8. Assume B ∈ (Lp(Q))n, n ∈ N+, 1 < p < ∞ and

0 ≤ a ≤ 1. Let 1 < P ≤ p be a random variable on a probability space

with measure P. The risk measures ρB implied by (7) are differentiable on

Rn \ UC(B). The partial derivatives are

∂ρB

∂ui

(u) = −EQ[Xi] + a · EP[σ
−
P (X(u))1−P · (8)

EQ[(−Xi + EQ[Xi]) · ((X(u)− EQ[X(u)])−)P−1]].

The proof of Proposition 4.8 is rather technical and therefore given in

the appendix. We want to show that the risk measures (7) actually can not

be differentiable at some u ∈ UC(B). Suppose u ∈ UC(B), a > 0 and the

risk measure defined by (5), which is the special case P ≡ const. We have

ρp,a(u) = −EQ[X(u)], since X(u) ≡ EQ[X(u)]. Easily we obtain the two

different one-sided partial derivatives −EQ[Xi] + a · ||(±Xi ∓ EQ[Xi])
−||p in

u, but ||(Xi − EQ[Xi])
−||p 6= ||(−Xi + EQ[Xi])

−||p in general. So, we have no

differentiability in general.

COROLLARY 4.9. Under the assumptions of 4.8, the risk measures ρ im-

plied by (7) are suitable for risk capital allocation by the gradient due to the

portfolio base B if the components X1, . . . , Xn of B are linearly independent

and Xn ≡/ 0 is constant. The per-unit allocations are given by (8).
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Proof. UC(B) = 〈(0, . . . , 0, 1)〉 ⊂ Ue.

Corollary 4.9 is the main result on risk capital allocation by the consid-

ered class of coherent risk measures. No assumptions concerning the underly-

ing probability space (Ω,A, Q) have been made, discrete spaces can be taken

into consideration. The assumption of linear independence is quite weak as

it should be no problem to find a vector base in a real market. Even the

particular choice of the portfolio base B is not important as the gradient is

an aggregation invariant allocation principle (Denault, 2001). The reason is

that if we have two different portfolio bases B and B′ as given in Corollary 4.9

with 〈B〉 = 〈B′〉, there exists a linear isomorphism A on Rn such that we have

X(u) ≡ X ′(u′) and ρB(u) = ρB′(u′) for every u = Au′ ∈ Rn. We therefore

obtain from standard analysis for any two equivalent portfolios v and v′ with

v = Av′
n∑

i=1

v′i
∂ρB′

∂u′i
(u′) =

n∑
i=1

vi
∂ρB

∂ui

(u). (9)

So, the risk capital allocated to equivalent subportfolios, i.e. subportfolios with

the same payoff in Lp(Q), is identical.

5 Application

In this section, two examples illustrate how risk capital given by the Value-at-

Risk can be allocated using the risk measures from Section 4. In particular,

we use a risk measure of type ρp,1(X) = −EQ[X] + σ−p (X) as given in (5). We

define the Value-at-Risk by

VaRα(X) = − inf{x : Q(X ≤ x) > α}. (10)

As long as VaRα(X) ≥ −EQ[X] + σ−1 (X), we know from Remark 4.4 that

there is a unique p∗ ∈ [1,∞] such that ρp∗,1(X) = VaRα(X). Since the risk

measure ρp∗,1 (1 < p∗ < ∞) is suitable for risk capital allocation (cf. Corollary

4.9), the amount VaRα(X) can be allocated by allocation due to ρp∗,1, i.e. for

a portfolio base B as given in 4.9 and ρ∗B corresponding to ρp∗,1 (cf. (2)), we

have

VaRα(X(u)) = ρ∗B(u) =
n∑

i=1

ui
∂ρ∗B
∂ui

(u). (11)

EXAMPLE 5.1 (Discrete distributions). Suppose two stochastically in-

dependent payoff variables X1, X2 with discrete distributions as given in
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x Q(X1 = x) Q(X2 = x)
0.0 0.78 0.96

-0.5 0.20 0.02
-1.0 0.02 0.02

Table 1: Distribution of X1, X2

Table 1. The portfolio base is given by B = (X1, X2, 1). X1 and X2

could be interpreted as one unit of a credit engagement. Obviously, X1

bears higher risks as losses are more probable. We consider the portfolio

u = (u1, u2, u3) = (1000, 1000, 0). Easily we compute VaR0.05(X(u)) = 500.

To allocate the given risk capital, we adjust ρB(u) by choosing p∗, such that

ρp∗,1(X(u)) = VaR0.05(X(u)) = 500. We obtain p∗ ≈ 2.9157. From the dis-

crete version of (8) (|Ω| = 9, P ≡ p∗, a = 1) we obtain
∂ρ∗B
∂u1

(u) ≈ 0.31504 and
∂ρ∗B
∂u2

(u) ≈ 0.18496. The risk capital allocated to u1X1 is 315.04, for u2X2 it

is 184.96. To check what happens for a more conservative VaR, we compute

VaR0.01(X(u)), which is 1000. We obtain p∗ ≈ 9.4355 and the risk capital

allocated to u1X1 is 477.98, for u2X2 it is 522.02. It is interesting that in the

second case more risk capital is allocated to X2, which seems to bear less risk.

However, the relative difference is quite small compared to the first case. This

seems to be reasonable as we have VaR0.01(u1X1) = VaR0.01(u2X2) = 1000.

EXAMPLE 5.2 (Continuous distributions). Although continuous dis-

tributions are considered in this example, we assume that (5) are the risk

measures of choice. A possible scenario could be the situation where these risk

measures are intended to be used internally where at the same time external

regulatory requirements define the minimum risk capital by the VaR-method.

We assume to be given a portfolio base B = (X1, X2, 1) with

X1 ∼ n1 · v1 · (exp(σ1Z1)− 1) (12)

X2 ∼
√

n2 · v2 · σ2Z2,

where Z1, Z2 are assumed to be standard normally distributed with correlation

r ≥ 0. X1 could be interpreted as the log-normal payoff of a portfolio of n1

(identical) financial assets minus the price n1v1 at which they were bought. The

expected value of one asset is v1 · exp(σ2
1/2). X2 could be interpreted as an

approximation of the sum of n2 i.i.d. payoffs with expectation 0 and standard

deviation v2 ·σ2, e.g. coming from a balanced credit portfolio or the liabilities of

an insurance company. In particular, we assume σ1 = 0.2, σ2 = 0.1, n1 = 106,
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n2 = 10000, v1 = 200, v2 = 106 and r = 0.8 (r > 0 is reasonable in the case of

a credit portfolio). The “external” risk measure is assumed to be given by the

5%-VaR. The portfolio base is B = (X1, X2, 1) and the portfolio (1, 1, 0), i.e.

the considered overall payoff is the sum X = X1 + X2. The expectation of X1

is 4.04 · 106 (i.e. a mean return of 2%) and the standard deviation 41.2 · 106

(rounded values). For X2 we have expectation 0 and 10 · 106 for the standard

deviation (also rounded). All non-trivial computation, e.g. for VaR0.05(X)

and σ−p (X), is done by the classical Monte-Carlo method, i.e. Z1 and Z2 are

simulated and the VaR-quantile and the non-trivial integrals in (5) and (8)

are obtained from the simulated empirical distributions. We get VaR0.05(X) ≈
70 · 106. The calibration of ρp,1(X) is done by the bisection method (ρp,1(X)

is monotone in p). We start with the interval [1, 30], where p∗ is assumed to

be contained in, and go on 16 steps which corresponds to a theoretical error

for p∗ of less then (30 − 1) · 2−16 ≈ 0.44 · 10−3 (neglecting the Monte-Carlo

error). For each integral 200 ·106 pseudo-random values of Z1, respectively Z2,

are computed. We obtain p∗ ≈ 10.05 and ρp∗,1(X) ≈ 70.01 · 106. Computation

of the partial derivatives gives
∂ρ∗B
∂u1

(u) ≈ 53.55 · 106 and
∂ρ∗B
∂u2

(u) ≈ 16.38 · 106,

i.e. a sum 69.93 · 106 ≈ 70 · 106. As we have assumed X2 to be the sum of

n2 i.i.d. payoffs, we obtain the fair risk capital
∂ρ∗B
∂u2

(u)/n2 ≈ 1638 for each

individual payoff.

6 Comparison of the notation of Denault, Fis-

cher and Tasche

As each of the three papers uses a particular notation, it is useful to have

a direct comparison of variables and expressions corresponding to each other

(see Table 2).

A remark on Tasche’s approach (in Tasches’s notation, Fischer’s notation

in brackets): Please note, that

mir(u) > ai(u)m′u (13)

is equivalent to

mi

ai(u)−mi

>
m′u

r(u)−m′u
= g(u) (= f(u)), (14)

and ∑
i

uiai(u) = r(u) (15)
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Denault (2001) Fischer Tasche (2000)
Xi

Λi
Xi Ci

Λi ui ui

Xi uiXi uiCi

λi vi
λi

Λi
Xi viXi

r(Λ) ρB(u) r(u)−
∑n

i=1 uimi

EQ[Xi] mi

EQ[Xi]−Xi Xi

ρB(u) + EQ[X(u)] r(u)
ki ai(ρB, u) ai(u)−mi

f(u) g(u)

Table 2: Different notation

equivalent to ∑
i

ui(ai(u)−mi) = r(u)−
∑

i

uimi (16)

(
or
∑

i

uiai(ρB, u) = ρB(u)

)
. (17)

7 Appendix

LEMMA 7.1. Let P ⊂ [1,∞] and X ∈ Lsup P (Q). The mapping ||X||(.) :

P → [0,∞), p 7→ ||X||p, is continuous due to the relative topology on P in

R ∪ {∞} with the canonical topology.

Proof. The case P ⊂ [1,∞) and X essentially bounded can be deduced from

results in Bourbaki (1965). However, a general proof is needed.

The case X ≡ 0 is trivial, therefore we assume ||X||p > 0. Since ||X||(.)
is a real function which is monotone on P , it suffices to show that from the

convergence pn → p of a sequence (pn)n∈N in P there follows ||X||pn → ||X||p.
We first prove the case p = ∞, where ∞ ∈ P is assumed. For any ε > 0 there

exists some A ∈ A with Q(A) > 0 such that

|X(ω)| ≥ ess.sup{|X|} − ε (18)
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for all ω ∈ A. Now, as ||.||∞ := ess.sup(.), we have

ess.sup{|X|} ≥ ||X||pn (19)

≥
(∫

A

(ess.sup{|X|} − ε)pndQ
) 1

pn

= (ess.sup{|X|} − ε)(Q(A))
1

pn .

We obtain

ess.sup{|X|} ≥ lim
pn→∞

||X||pn ≥ ess.sup{|X|} − ε (20)

and hence

ess.sup{|X|} = ||X||∞ = lim
pn→∞

||X||pn (21)

by definition of ||.||∞. Now, assume 1 ≤ p < ∞ and p ∈ P . We have

|X(ω)|pn ≤ max{|X(ω)|sup P , 1}. (22)

By dominated convergence, we obtain∫
|X(ω)|pndQ(ω) −→

∫
|X(ω)|pdQ(ω), (23)

i.e. ||X||pn
pn
−→ ||X||pp. The triangle inequality gives us

| ||X||pn − ||X||p| (24)

≤
∣∣∣ pn
√
||X||pn

pn − p
√
||X||pn

pn

∣∣∣+ ∣∣∣ p
√
||X||pn

pn − p
√
||X||pp

∣∣∣ .
The right part of the sum converges to zero as the p-th root is a continuous

function. The left part converges to zero for the following reasons. As we

know, an := ||X||pn
pn

converges to a := ||X||pp > 0. Now,∣∣∣ pn
√
||X||pn

pn − p
√
||X||pn

pn

∣∣∣ (25)

= | pn
√

an − p
√

an|

= |exp {ln{an}/p}| · |exp {(1/pn − 1/p) ln{an}} − 1| .

The first factor is bounded, since an converges to a > 0, the second one

converges to zero as (1/pn− 1/p) ln{an} converges to zero and the exponential

function is continuous.

The proof of Proposition 4.8 needs the following technical lemmas.

LEMMA 7.2. Let U be an open subset of Rn, n ∈ N+, and f : U × Ω → R
be a function with following properties:
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a) ω 7→ f(u, ω) is Q-integrable for all u ∈ U .

b) u 7→ f(u, ω) is in any u ∈ U partially differentiable with respect to ui.

c) There exists a Q-integrable function hU ≥ 0 on Ω with
∣∣∣ ∂f
∂ui

(u, ω)
∣∣∣ ≤

hU(ω) for all (u, ω) ∈ U × Ω.

The function ϕ(u) =
∫

f(u, ω)dQ(ω) on U is partially differentiable with re-

spect to ui. The mapping ω 7→ ∂f
∂ui

(u, ω) is Q-integrable and for u ∈ U

∂ϕ

∂ui

(u) =

∫
∂f

∂ui

(u, ω)dQ(ω). (26)

The proof by the dominated convergence theorem is well-known.

LEMMA 7.3. Define U = 4u1×· · ·×4un ⊂ Rn, where for all i ∈ {1, . . . , n}
4ui is a nonempty, bounded and open interval in R. Let X(u) =

∑n
i=1 uiXi be

a sum of real-valued random variables Xi ∈ Lp(Q) with u = (u1, . . . , un) ∈ U ,

n ∈ N+ and 1 < p < ∞. Let y(u) be a real-valued function that is differentiable,

bounded and for which y(u) < ess.sup{−X(u)} on U . The partial derivatives
∂y
∂ui

(u) are also assumed to be bounded on U . Under this assumptions, ||(X(u)+

y(u))−||p is differentiable on U .

Proof. Define g(u, ω) = (X(u, ω) + y(u))−. For 1 ≤ i ≤ n we will prove

existence and continuity of the partial derivatives of ||g(u)||p.
Existence: We have ||g(u)||p =

(∫
g(u, ω)p dQ(ω)

)1/p
. Now, if we can apply

Lemma 7.2 to gp (where f from 7.2 corresponds to gp) and if g(u) is not

constant 0 for every u ∈ U , we obtain for every i

∂||g(u)||p
∂ui

(u) =

∫
∂gp

∂ui

(u) dQ · 1

p
·
(∫

g(u)p dQ
) 1

p
−1

. (27)

Note, that for u ∈ U we have g(u) > 0 on a set of measure greater 0, since

y(u) < ess.sup{−X(u)}. Therefore the right integral in (27) is greater 0 (no

division by zero!). We are going to check the points a) to c) from Lemma 7.2.

Ad a). ω 7→ g(u, ω)p is Q-integrable, since X(u) ∈ Lp(Q) and y(u) ∈ R. Ad

b). First, we consider the function [(.)−]p : R → R+
0 , x 7→ (x−)p. Clearly, this

function is differentiable for 1 < p < ∞. Now, g(u, ω)p = [(
∑n

i=1 uiXi(ω) +

y(u))−]p - as a combination of a differentiable and a partially differentiable

function - is partially differentiable at ui. We obtain

∂gp

∂ui

(u, ω) = −
(

Xi(ω) +
∂y

∂ui

(u)

)
· p · g(u, ω)p−1. (28)
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Ad c). There exist positive constants a and b, such that for all j ∈ {1, . . . , n}
we have | ∂y

∂uj
(u)| ≤ a and |y(u)| ≤ b on U . Now, define

umax(U) = sup{|u′j| : u′j ∈ 4uj, j ∈ {1, . . . , n}}, (29)

which is finite, and

kU(ω) = n · umax(U) ·max
j
{|Xj(ω)|}+ b. (30)

Clearly, kU(ω) ≥ g(u, ω). Now define

hU(ω) = (|Xi(ω)|+ a) · p · (kU(ω))p−1. (31)

Comparing this to (28), we clearly obtain

0 ≤
∣∣∣∣∂gp

∂ui

(u, ω)

∣∣∣∣ ≤ hU(ω) (32)

for all (u, ω) ∈ U × Ω. Concerning integrability of (31), we know that

(|Xi(ω)| + a) · p is p-integrable, since Xi is. We also know that (kU(ω))p−1

is p
p−1

-integrable. The latter statement follows from the fact that every single

|Xj(ω)| is p-integrable and therefore kU(ω) - as a multiple of the maximum plus

a constant - is p-integrable. We further have 1/p+(p−1)/p = 1. As an imme-

diate consequence of Hölder’s inequality, the product hU(ω) of (|Xi(ω)|+a) · p
and (kU(ω))p−1 is integrable.

Continuity: Consider a sequence (un)n∈N with limn→∞ un = u in U =

4u1 × · · · × 4un. Now, substitute u by un in (27). For fix ω ∈ Ω it follows

from the definition of g(u) and (28) that the substituted expressions under the

integrals in (27) converge (pointwise in ω) to the original expressions (in u).

Now have in mind, that hU (32) dominates the left integrand of (27) and (kU)p

(30) dominates the right one. As hU and (kU)p are integrable, it follows from

the dominated convergence theorem that the substituted integrals themselves

converge to the original integrals. Hence, (27) is continuous in u.

LEMMA 7.4. Assume B ∈ (Lp(Q))n, n ∈ N+, 1 < p < ∞. Suppose 0 ≤ a ≤
1. The risk measures ρB(u) implied by (5) are differentiable on Rn \ UC(B).

The partial derivatives are

∂ρB

∂ui

(u) = −EQ[Xi] + a · σ−p (X(u))1−p · (33)

EQ[(−Xi + EQ[Xi]) · ((X(u)− EQ[X(u)])−)p−1].
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Proof. As R\UC(B) is open, it can be seen as union of bounded n-dimensional

open intervals U . We focus on the Lp(Q)-norm expression in ρB(u). Define

y(u) = −EQ[X(u)]. Now, the requirements of Lemma 7.3 are satisfied, since

−EQ[X(u)] < ess.sup{−X(u)} as long as X(u) ≡/ const. We obtain that the

risk measure is differentiable in U and

∂ρB

∂ui

(u) = −EQ[Xi] +

∫
∂gp

∂ui

(u)dQ · a · 1

p
· ||g(u)||1−p

p . (34)

As (34) does not depend on the choice of the particular U ⊂ Rn\UC(B), ρB(u)

is differentiable on Rn \ UC(B). Since by definition ||g(u)||p = σ−p (X(u)), we

obtain (33) by combining (28) with (34).

Proof of Proposition 4.8. We use the notation from the proofs of the Lem-

mas 7.3 and 7.4. Assume U = 4u1 × · · · × 4un to be a bounded nonempty

n-dimensional open interval in Rn \UC(B), where for all i ∈ {1, . . . , n} 4ui is

an open interval. Consider equation (7). We have

EP[σ
−
P (X(u))] =

∫
||g(u)||P (ω′)dP(ω′) . (35)

We prove the existence and continuity of the partial derivatives of (35).

Existence: Again, we are going to check the points a) to c) from Lemma 7.2

(f corresponds to ||g(u)||P (ω′)). Ad a). ω′ 7→ ||g(u)||P (ω′) is integrable, since

||g(u)||P (ω′) ≤ ||g(u)||p < ∞. Ad b). Since P (ω′) is fix, it follows from the

proof of Lemma 7.4 (Eq. (34)), that u 7→ ||g(u)||P (ω′) is in every point u ∈ U

partially differentiable with respect to ui. Ad c). From (34) we get

∂f

∂ui

(u, ω′) =

∫
∂gP (ω′)

∂ui

(u)dQ · a

P (ω′)
· ||g(u)||1−P (ω′)

P (ω′) . (36)

From (28) we obtain

∂gP (ω′)

∂ui

(u, ω) = −(Xi(ω)− EQ[Xi]) · P (ω′) · g(u, ω)P (ω′)−1. (37)

As g(u, ω)P (ω′)−1 is P (ω′)
P (ω′)−1

-integrable, we get from Hölder’s inequality∣∣∣∣∫ ∂gP (ω′)

∂ui

(u, ω)dQ
∣∣∣∣ ≤

∣∣∣∣∣∣∣∣∂gP (ω′)

∂ui

(u, ω)

∣∣∣∣∣∣∣∣
1

(38)

≤ ||(Xi − EQ[Xi])||P (ω′) · P (ω′) · ||g(u)||P (ω′)−1
P (ω′) .

Combining this with (36), we obtain∣∣∣∣ ∂f

∂ui

(u, ω′)

∣∣∣∣ ≤ ||(Xi − EQ[Xi])||P (ω′) · a (39)

≤ ||(Xi − EQ[Xi])||p · a ≡ const.
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Choosing hU(ω′) = ||(Xi −EQ[Xi])||p · a, this completes the proof of c). From

the arbitrariness of U ⊂ Rn \UC(B), we obtain partial differentiability of ρ on

Rn \ UC(B). Equation (8) follows from the combination of Lemma (7.2) with

the result (33) of Lemma 7.4.

Continuity: As we know from the proof of Lemma 7.4, expression (36) is

continuous on Rn \UC(B). By (39), dominated convergence proves continuity

of the partial derivatives.
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