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Abstract

This brief paper explains how to obtain upper boundaries of short-
fall probabilities for a class of coherent risk measures based on one-sided
moments. The one-sided Chebyshev inequality is used for this purpose.
By recurrent summation of one-sided moments, the class is further ex-
tended and features subclasses of risk measures which express discrete
degrees of attitude towards risk. The members of such a subclass are
coherent, converge to the maximum loss and are suitable for risk capital
allocation by the gradient.
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1 Introduction

In Fischer (2003) a wide class of coherent risk measures depending on the

mean and the one-sided moments of a risky position was introduced. The

emphasis of the paper was on risk capital allocation and differentiability prop-

erties of risk measures which are suitable with respect to allocation by the

gradient (cf. Tasche (2000), Denault (2001)). In contrast to quantile-based

risk measures, the moment-based ones in Fischer (2003) figured out to have

very appealing allocation (i.e. differentiability) properties. However, due to
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the nature of these measures, an obvious stochastic interpretation of deter-

mined risk capitals (e.g. by corresponding shortfall properties) as in the case

of quantile-based ones is not possible.

Having a risky payoff X and a respective risk capital ρ(X) one might

be interested in the shortfall (or ruin) probability Pr(X + ρ(X) < 0) of

the combined position “payoff + risk capital”. This brief paper shows how

upper (pointwise) boundaries for Pr(X + ρ(X) < 0) can be obtained for

the one-sided moments measures (but not only for them) by the well-known

one-sided Chebyshev inequality. The particular boundaries are simple

explicit expressions using expectation, variance and risk capital due to the

considered payoff. Compact proofs of the one-sided Chebyshev and a further

Chebyshev-like inequality are given by Hölder’s inequality. By recurrence, the

class of measures of Fischer (2003) is further extended. The new measures are

defined as finite sums of certain p-th moments of a risky payoff. The recurrent

application of one and the same risk measurement principle (one-sided

moments) defines discrete degrees of attitude towards risk. The generated

risk measures are coherent, show reasonable convergence properties due to

the number n of iteration steps, i.e. they converge to the maximum loss for

n →∞, and finally they are suitable for risk capital allocation by the gradient.

The outline is as follows. In the present section we briefly introduce

notation and define coherent risk measures (CRM) as well as suitability of

risk measures due to risk capital allocation by the gradient. In Section 2

some results of Fischer (2003) on risk measures which depend on the mean

and the absolute lower central, i.e. one-sided moments of a risky position

are recalled. In Section 3 we applicate the one-sided Chebyshev inequality

for the deduction of upper boundaries for shortfall probabilities. The last

section extends the class of risk measures of Fischer (2003). Coherence, the

convergence property and suitability for capital allocation as explained above

are proven.

The following notation will be used. We will consider the vector space

Lp(Ω,A, Q), or just Lp(Q), for 1 ≤ p ≤ ∞ and a probability space (Ω,A, Q).

Lp(Q) consists of equivalence classes of p-integrable random variables, nonethe-

less we will treat its elements as random variables. Due to the context, no con-

fusion should arise. As usual, ||X||p = (EQ[|X|p])
1
p and ||X||∞ = ess.sup{|X|}.
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X± is defined as max{±X, 0}. We denote

σ±p (X) = ||(X − EQ[X])±||p. (1)

A one-period framework is considered, that means between the present time 0

and a future time horizon T no trading is possible. Risk is given by a random

payoff X, i.e. a random variable in Lp(Q) representing a cash flow at T . As

usual, we consider a risk measure ρ(X) to be the extra minimum cash added

to X such that the position becomes acceptable for the holder or a regulator.

Hence, a risk measure on Lp(Q), 1 ≤ p ≤ ∞, is defined by a functional

ρ : Lp(Q) → R. ρ is called a coherent if the following properties hold.

(M) Monotonicity: If X ≥ 0 then ρ(X) ≤ 0.

(S) Subadditivity: ρ(X + Y ) ≤ ρ(X) + ρ(Y ).

(PH) Positive homogeneity: For λ ≥ 0 we have ρ(λX) = λρ(X).

(T) Translation: For constants a we have ρ(a + X) = ρ(X)− a.

For further motivation and information concerning coherence see Artzner et

al. (1999) or Delbaen (2002). The discussion about suitable properties of risk

measures continues and alternative approaches exist (e.g. Goovaerts, Kaas and

Dhaene, 2003). However, in this paper we will consider coherent risk measures

(CRM), only.

Now, consider the payoff X(u) :=
∑n

i=1 uiXi ∈ Lp(Q) of a portfolio u =

(ui)1≤i≤n ∈ Rn persisting of assets with payoffs Xi ∈ Lp(Q). A portfolio base

in Lp(Q) is a vector B ∈ (Lp(Q))n, n ∈ N+. The components of B do not

have to be linearly independent (cf. Fischer, 2003). For B = (X1, . . . , Xn), a

risk measure ρ on the payoffs Lp(Q) directly implies a risk measure ρB on the

portfolios Rn. We define ρB : Rn → R by

ρB : u 7→ ρ(X(u)). (2)

When ρB is obtained from a CRM ρ on Lp(Q) and Xn is the only constant

component in B and not equal zero, ρB is also called coherent (cf. Denault,

2001).

The work Denault (2001) shows by application of results from game the-

ory (Aubin, 1979) that for a given CRM ρB as above the gradient in u,
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(∂ρB

∂ui
(u))1≤i≤n, is the unique fair capital allocation principle (per-unit alloca-

tion). That means ∂ρB

∂ui
(u), the marginal risk of the assets of type i in u, is the

unique fairly determined risk contribution of one such asset and one has

ρB(u) =
n∑

i=1

ui
∂ρB

∂ui

(u) (3)

due to the Euler Theorem. See also Fischer (2003) for a brief explanation of

the present theory (including Tasche’s performance measurement approach,

cf. Tasche (2000)). For this reason, we are interested in differentiability and

explicit partial derivatives of the considered risk measures.

In Fischer (2003) it was shown that especially in the case of CRM differ-

entiability in any portfolio in Rn might not be useful as the measures become

linear (and minimal) then. Therefore, weaker differentiability properties which

are still suitable for allocation purposes were introduced. In Fischer (2003) a

coherent (or positively homogeneous) risk measure ρ on Lp(Q) is called suit-

able for risk capital allocation by the gradient due to the portfolio base B if

the function ρB : Rn → R with ρB : u 7→ ρ(X(u)) is differentiable on the open

set Rn \ Ue, where Ue =
⋃n

i=1〈ei〉 and 〈ei〉 ⊂ Rn is the linear span of ei. The

rational of this principle is that for trivial portfolios (containing only one asset

type) the allocation problem is trivial. Hence, a CRM can have nice allocation

properties without being linear and minimal.

2 One-sided moments measures

We recapitulate some results of Fischer (2003) in this section.

PROPOSITION 2.1 (Fischer, 2003). Let P be a random variable on a

probability space (Ω′, P) with range P (Ω′) ⊂ [1, p] and assume that 1 ≤ p ≤ ∞
and 0 ≤ a ≤ 1. The risk measure

ρ(X) = −EQ[X] + a · EP[σ
−
P (X)] (4)

is coherent on Lp(Q). We have −EQ[X] ≤ ρ(X) ≤ ess.sup{−X}.

For a Dirac-measure P with atom p,

ρp,a(X) = −EQ[X] + a · σ−p (X) (5)

is a special case of (4). It was shown in Fischer (2003) that for any

X the risk measure ρ can be chosen such that ρ(X) equals any value



3 UPPER BOUNDARIES FOR SHORTFALL PROBABILITIES 5

v ∈ [−EQ[X], ess.sup{−X}], i.e. any value between the expected loss

and the maximum loss. More precise, for X 6= const a.s. and v ∈
[−EQ[X] + σ−1 (X), ess.sup{−X}] there is a unique p∗ = p∗(v) ∈ [1,∞] such

that ρp∗,1(X) = −EQ[X] + σ−p∗(X) = v.

PROPOSITION 2.2 (Fischer, 2003). Assume B ∈ (Lp(Q))n, n ∈ N+,

1 < p < ∞ and 0 ≤ a ≤ 1. Let 1 < P ≤ p be a random variable on a

probability space with measure P. The risk measures ρB implied by (4) are

differentiable on Rn \ UC(B), where UC(B) denotes the set of all u ∈ Rn for

which
∑n

i=1 uiXi = const. The partial derivatives are

∂ρB

∂ui

(u) = −EQ[Xi] + a · EP[σ
−
P (X(u))1−P · (6)

EQ[(−Xi + EQ[Xi]) · ((X(u)− EQ[X(u)])−)P−1]].

COROLLARY 2.3 (Fischer, 2003). Under the assumptions of 2.2, the

risk measures ρ implied by (4) are suitable for risk capital allocation by the

gradient due to the portfolio base B if the components X1, . . . , Xn of B are

linearly independent and Xn 6= 0 is constant. The per-unit allocations are

given by (6).

Proof. UC(B) = 〈(0, . . . , 0, 1)〉 ⊂ Ue.

3 Upper boundaries for shortfall probabilities

Notation: In the following Pr(.) denotes the probability of events (described

in the brackets) due to the probability measure Q (which is defined on sets,

only). E[.] is the expectation operator due to Q.

A general problem of risk measures beside Value-at-Risk or Expected Short-

fall is that they normally have no quantile-like meaning that corresponds to

the shortfall probability Pr(X + ρ(X) < 0) of the portfolio X + ρ(X), that is

the portfolio X plus its particular risk capital ρ(X). In the following we con-

sider the so-called one-sided Chebyshev inequality, which is a tool that allows

statements on upper boundaries of shortfall probabilities.

LEMMA 3.1 (One-sided Chebyshev inequality). Let X ∈ Lp(Q), p ≥ 2,

be a random variable with expectation 0 and variance σ2. If t ≥ 0 we have

Pr(X ≥ t) ≤ σ2

σ2 + t2
. (7)

(7) is sharp, i.e. there are X such that (7) is an equality.
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In the literature many proofs of this inequality can be found. The presented

proof is rather analogue to the proof of the discrete case in Uspensky (1937).

Proof. We have

E[X − t] = −t (8)

and

E[(X − t)2] = σ2 + t2. (9)

From this we obtain by Hölder’s inequality

t2
(8)

≤

 ∫
X<t

(X − t)dQ

2

(10)

Hölder

≤
∫

X<t

1dQ ·
∫

X<t

(X − t)2dQ

(9)

≤ Pr(X < t)(σ2 + t2).

For equality in (7) just assume a discrete random variable X with x1 = t,

p1 = σ2

σ2+t2
and x2 = −σ2

t
, p2 = t2

σ2+t2
.

Let us consider a risk measure of type

ρ(X) = −E[X] + t, t > 0, (11)

where X ∈ L2(Q) and Var(X) = σ2. We can have t = t(X), here. Obviously,

the CRM defined in Proposition 2.1 fulfill this requirement.

COROLLARY 3.2. For risk measures of type (11) it holds that

Pr(X + ρ(X) ≤ 0) ≤ σ2

σ2 + (ρ(X) + E[X])2
. (12)

Proof. From Lemma 3.1 we obtain

Pr(X − E[X] + t ≤ 0) ≤ σ2

σ2 + t2
(13)

since E[−X + E[X]] = 0 and Var(−X + E[X]) = Var(X) = σ2.

The right side of (12) is a quick method to determine a boundary for Pr(X+

ρ(X) ≤ 0) when σ, E[X] and ρ(X) are known (and the distribution function

of X not or not well enough). Furthermore, one has a closed expression for

this boundary.
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The other way round, given a certain shortfall probability α ∈ (0, 1), this

α is undergone when chosing

ρ(X) + E[X] = t ≥ σ

√
1− α

α
. (14)

Having in mind regulatory purposes we are interested in small probabilities

like 5 or even 1 percent. However, α = 0.05 means t ≈ 4.36σ, analogously

t ≈ 9.95σ for the 1 percent shortfall probability. So, for small α the positive

term t in addition to the negative expectation −E[X] must be big compared

to the standard deviation of the payoff X.

Consider the risk measures of Proposition 2.1. From Equation (14) the

upper boundary α for the shortfall probability is implied by the condition

a · EP||(X − EQ[X])−||P ≥ σ

√
1− α

α
. (15)

(15) can be fulfilled as long as

ess.sup{(X − EQ[X])−} ≥ σ

√
1− α

α
(16)

(cf. Fischer, 2003). Hence, in case of portfolios with almost constant payoff

the one-sided Chebyshev inequality, respectively (15), might be rather useless.

On the other side, having an X that fulfills (16) one can choose a risk measure

fulfilling (15), so that the upper boundary α for the shortfall probability is

given.

It was shown in Fischer (2003) and mentioned below Proposition 2.1

that the above risk measures actually can be adapted to any value in

[−EQ[X], ess.sup{−X}] and therefore also to the Value-at-Risk or Expected

Shortfall due to a given level α (see Fischer (2003) for examples). Hence,

Corollary 3.2 is reasonably used when an upper shortfall probability boundary

due to a risk measure (4) must be computed quickly.

The following lemma states a further inequality of Chebyshev-type.

LEMMA 3.3. For a random variable X ∈ Lp(Q), p ≥ 2, we have

Pr(X < E[X]) ≥
(

σ−1
σ−2

)2

. (17)
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Proof. By Hölder’s inequality we obtain

(σ−1 )2 =

 ∫
X<E[X]

(X − E[X])dQ


2

(18)

Hölder

≤
∫

X<E[X]

1dQ ·
∫

X<E[X]

(X − E[X])2dQ

= Pr(X < E[X]) · (σ−2 )2.

COROLLARY 3.4. For a random variable X ∈ Lp(Q), p ≥ 2, we have

i) Pr(X < E[X]) ≥
(

σ−1
σ−2

)2

ii) Pr(X ≥ E[X]) ≤ 1−
(

σ−1
σ−2

)2

iii) Pr(X > E[X]) ≥
(

σ+
1

σ+
2

)2

iv) Pr(X ≤ E[X]) ≤ 1−
(

σ+
1

σ+
2

)2

.

Proof. The relations iii) and iv) follow from i) and ii) by the substitution

X ′ = −X, where σ−p (X ′) = σ+
p (X).

Note that σ−1 = σ+
1 . An example in Section 4 gives an application of

inequality ii) due to shortfall probabilities. The example concerns a class of

coherent risk measures that is defined by recurrence.

4 Risk measures obtained by recurrence

In Proposition 2.1 (4) different attitudes towards risk can be expressed by

certain choices of the variable a and the measure P. However, the stress given

to the certain moments can be chosen quite arbitrarily. Furthermore, it is hard

to find an illustrative interpretation for these risk measures, although higher

moments seem to be connected to stochastic dominance and degrees of risk

aversion (cf. Levy, 1992). Clearly, risk measures are subjective. Nonetheless,

the philosophy behind the choice of a certain measure should be able to be

communicated. The underlying attitude towards risk should be objective in

the sense of a reasonable stochastic interpretation. Also the step from a certain

risk measure towards a more conservative one should be somehow objective.
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The present section is driven by the intention to find a class of coherent risk

measures that features discrete degrees of attitude towards risk. We intend to

applicate one and the same stochastic philosophy when going from one degree

to the next, more conservative one.

DEFINITION 4.1. For 1 ≤ p ≤ ∞ and an integer n > 0 we define the

one-sided Lp-norm risk measure of degree n on Lp(Q) by

ρp,n(X) = ρp,n−1(X) + ||(X + ρp,n−1(X))−||p (19)

where ρp,0(X) := −EQ[X].

For p = 1 the different degrees of attitude towards risk follow a consis-

tent stochastic philosophy in the sense that the definition of risk measures by

recurrence in (19) assures the application of one stochastic principle or risk

measurement method: The measure at level n is obtained as sum of the one

at level n − 1 plus the expected shortfall (the expectation not conditioned on

the shortfall, here) due to the risk capital given at level n− 1.

PROPOSITION 4.2. The risk measures defined by (19) are coherent.

Proof. By induction: Axiom (PH) and (T) are trivial. Axiom (M): Assume

X ≥ 0. ρp,0(X) ≤ 0 follows. Now, assume ρp,n(X) ≤ 0. We get X + ρp,n(X) ≥
ρp,n(X) and therefore 0 ≤ (X + ρp,n(X))− ≤ −ρp,n(X), which implies ||(X +

ρp,n(X))−||p ≤ −ρp,n(X). This implies ρp,n+1(X) ≤ 0.

Axiom (S) by induction: Again, n = 0 is trivial. Assume

ρp,n(X + Y ) + ε = ρp,n(X) + ρp,n(Y ) (20)

for some ε ≥ 0. Now,

ρp,n+1(X + Y ) (21)

= ρp,n(X) + ρp,n(X)− ε + ||(X + Y + ρp,n(X) + ρp,n(Y )− ε)−||p
≤ ρp,n(X) + ρp,n(X)− ε + ||(X + ρp,n(X))−||p + ||Y + ρp,n(Y ))−||p + ε

= ρp,n+1(X) + ρp,n+1(Y ) .

For fixed X ∈ Lp(Q) the sequence of risk measures (19) is monotone and

converges from below to the maximum loss. So, the measures feature the

desired discrete degrees of attitude towards risk and at the same time they can

(pointwise in X) be chosen arbitrarily close to the maximum loss.
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PROPOSITION 4.3. Given a payoff X ∈ Lp(Q), 1 ≤ p ≤ ∞, one has

ρp,n(X)
n→∞−→ ess.sup{−X}. (22)

Hence, if ess.sup{−X} < ∞, one has

||(X + ρp,n(X))−||p
n→∞−→ 0. (23)

The sequences are monotone (increasing/decreasing). If X 6= const a.s., 1 ≤
p < ∞ and n ∈ N0, we have ρp,n(X) < ess.sup{−X}.

Proof. Clearly, ρp,n(X) ≤ ρp,n+1(X) for n ≥ 0 and ρp,0(X) = −E[X] ≤
ess.sup{−X}. Assume ρp,n(X) ≤ ess.sup{−X}. Since

||(X + ρp,n(X))−||p ≤ ess.sup{−(X + ρp,n(X))} (24)

= ess.sup{−X} − ρp,n(X),

(19) implies ρp,n+1(X) ≤ ess.sup{−X}. So, the considered sequence is increas-

ing and dominated by ess.sup{−X}. If the limit was finite and not given by

ess.sup{−X}, we would have

ε ≤ ||(X + lim
n→∞

ρp,n(X))−||p ≤ ||(X + ρp,n(X))−||p (25)

for some ε > 0 and all integers n ≥ 0. Now, choose n0 big enough such that

lim
n→∞

ρp,n(X)− ρp,n0(X) < ε, i.e.

lim
n→∞

ρp,n(X)− ε < ρp,n0(X). (26)

Combining (26) with (25) we obtain

lim
n→∞

ρp,n(X) < ρp,n0(X) + ||(X + ρp,n0(X))−||p = ρp,n0+1(X),

which is a contradiction. We can now turn to the last statement. In (24) equal-

ity, i.e. ρp,n+1(X) = ess.sup{−X}, occurs if and only if (X+ρp,n(X))− = const

a.s. (p < ∞). This in turn is equivalent to X = const or ρp,n(X) ≥
ess.sup{−X}. However, ρp,0(X) = −EQ[X] < ess.sup{−X} under the as-

sumption X 6= const.

PROPOSITION 4.4. Under the conditions of Proposition 2.2 the risk mea-

sures implied by (19) are differentiable on Rn \UC. Under the assumptions of

Corollary 2.3 they are suitable for risk capital allocation.
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Proof by induction. The case n = 1 was shown in Fischer (2003). Assume

ρp,n(X(u)) to be proven as well. As we know, ρp,n(X(u)) < ess.sup{−X(u)}.
Since ρp,n(X(u)) is differentiable on an open subset of Rn, we can find for every

u ∈ Rn \ UC an open interval U with u ∈ U ⊂ Rn \ UC such that the partial

derivatives are bounded on U . Now, we apply Lemma A.3 in Fischer (2003) by

setting y(u) = ρp,n(X(u)). The proposition follows from the fact that Rn \ UC

can be covered by such U .

Explicit partial derivatives can be obtained by the results of Fischer

(2003). The choice p = 1.01 for example implies risk measures (19) which

have the above allocation properties but which are still close to the case p = 1

where the expected shortfall philosophy is recurrently applied (as explained

below Definition 4.1).

Boundaries for shortfall probabilities. We now turn to an application

of Corollary 3.4. We are interested in shortfall probabilities due to risk capital

given by ρ1,n, i.e. in probabilities of form Pr(X + ρ1,n(X) < 0). By inequality

ii) of Corollary 3.4 and Equality (19) we obtain for n > 1 and X ∈ L2

Pr(X + ρ1,n(X) < 0) (27)

= Pr(X + ρ1,n−1 < −E[(X + ρ1,n−1(X))−])

= Pr((X + ρ1,n−1)
− > E[(X + ρ1,n−1(X))−])

≤ Pr((X + ρ1,n−1)
− ≥ E[(X + ρ1,n−1(X))−])

≤ 1− σ−1 (Y )
2

σ−2 (Y )
2 ,

where Y := (X + ρ1,n−1(X))−.

The following example demonstrates the problem that especially for dis-

crete distributions the shortfall probability and also the last expression in (27)

above must not converge to zero.

Take Ω = {ω1, ω2}, X(ω1) = −1000, X(ω2) = 0, Pr(ω1) = 0.5 and Pr(ω2) =

0.5. Easily, we find ρ0 = 500, ρ1 = 750, ρ2 = 875 and so on, where ρn < 1000

for all n. So, the shortfall probability due to any ρn is constant 0.5.
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