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Abstract

We explain how to optimize portfolios with respect to RORAC and
RORC based on Expected Shortfall. Recent results from the theories of
performance measurement and Swarm Intelligence are used for numeric
optimization. We combine and correlate geometric Brownian motions
for stocks with a two-factor Cox-Ingersoll-Ross (CIR-2) model for in-
terest rates such that portfolios of bonds and stocks can be optimized.
Examples for German market data as well as an analysis of the scalabil-
ity of the algorithms to assure fast run-times on clusters of computers
for large real-life portfolios are given. Differences between RORAC- and
RORC-optimized portfolios are demonstrated.
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1 Introduction

Portfolio optimization has a long history starting with Markowitz’ considera-

tions in the early 1950s. During the last ten years, interest in portfolio opti-

mization has shifted towards optimization with respect to risk measures like

Value-at-Risk (VaR) and the more sophisticated Expected Shortfall (ES), in

its various slightly differing forms also known as Conditional VaR (CVaR),
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Tail-VaR or Average VaR. Portfolio-VaR optimization using gradient search

methods can already be found in a Ph.D. dissertation of Lemus Rodriguez

(1999) and in an article by Gouriéroux, Laurent and Scaillet (2000). Since

then, gradient search has lost a lot of its attraction, especially as CVaR/ES

was more and more seen as the much more sophisticated risk measure coming

along with a computationally attractive optimization method. The articles of

Rockafellar and Uryasev (2000, 2002) that derived a linear optimization “short-

cut” formula for CVaR gave the risk management community a comprehensive

and efficient optimization tool at hand.

Although there exists a lot of literature on CVaR/ES-optimization, to

our knowledge there is hardly any on portfolio optimization with respect

to the performance measures Return-On-Risk-Capital and Return-On-Risk-

Adjusted-Capital (RORC and RORAC) in the case where both are calculated

with respect to a modern risk measure like ES. In particular, for this type of

problem there seems to be no optimization shortcut as in the case of CVaR/ES-

optimization. There also seems to be no literature about the use and impli-

cations of specific financial market models for such performance optimization.

Furthermore, while the focus of our paper lies on the detailed explanation of

the presented methods, we also want to demonstrate how fast developing com-

puter technology enables to solve portfolio optimization problems numerically

even for complex market models and big portfolios.

After briefly introducing the risk measure Expected Shortfall (ES) and

the performance measures RORC and RORAC with respect to ES, the

paper explains two concepts, Gradient Search (GS) and (Particle) Swarm

Intelligence (SI), for portfolio optimization with respect to one of these

measures. After that, a specific financial market model is proposed. This

model enables optimization of portfolios consisting of stochastically developing

bonds and stocks. The model combines and correlates stocks represented by

geometric Brownian motions with a two-factor Cox-Ingersoll-Ross (CIR-2)

model for the interest rates. The model choice is not arbitrary, but motivated

by our experience that the mentioned models have (often separately and in

largely simplified forms) been considered in major German life insurance

companies. The reader is provided with explicit model equations and formulas

and also explicit algorithms for GS- and SI-optimization. In particular, the

gradients of the RORC and RORAC performance measures under budget

constraints are derived. The reader is shown examples of optimized portfolios
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for German market data. These examples give strong evidence that the

choice between RORAC and RORC can make a significant difference for the

optimal portfolios even though these performance measures look quite similar

on the first view. We furthermore analyze the scalability of our algorithms

with respect to multi-processor computers, computer clusters or Global Grid

environments to assure fast run-times for large real-life portfolios.

The paper is organized as follows. Section 2 introduces the considered risk

and performance measures. Section 3 explains the general approach to the

optimization problem. Furthermore, Gradient Search, the Swarm Intelligence

optimization method and the role of stochastic simulation in these approaches

are described. After this, Section 4 introduces and discusses the proposed fi-

nancial market model. Section 5 is dedicated to the stochastic simulation part,

i.e. the generation of market scenarios. In Section 6, information on parame-

ter estimation can be found. Section 7 gives a brief chronological overview of

all steps concerning the proposed optimization methodology. In Section 8 we

present our findings for German market data. Section 9 shows the scalability

of our approaches. In Section 10 we conclude. Section 11 contains tables with

numeric results.

2 Risk and performance measures

2.1 General definitions

Let us define the total payoff (or total risk) of a portfolio by

X = X(u) :=
n∑
i=1

uiXi, (1)

where the portfolio u = (ui)1≤i≤n ∈ Rn represents n ∈ N different payoffs Xi

(1 ≤ i ≤ n) with weights ui ∈ R. The Xi are assumed to be one-dimensional

real-valued random variables. We call B = (X1, . . . , Xn) a portfolio base

(cf. Fischer, 2003) as the payoff of any considered portfolio u ∈ Rn will be

described by (1). As random variables the components of B do not have to be

linearly independent.

Now, consider a financial market with n securities. Assume that the prices

of these securities at time s ∈ R+
0 (the positive real numbers including 0) are



2 RISK AND PERFORMANCE MEASURES 4

given by random variables

V1(s), V2(s), . . . , Vn(s). (2)

At s = 0, which is the present, we assume to have constants. We will use the

notation

Vi = Vi(0) (3)

and

V = V (u) :=
n∑
i=1

uiVi(0) (4)

for the value of the portfolio u at time 0. For the rest of the paper, we will

consider specific payoffs X (or Xi), namely returns defined by

Xi := Vi(t)− Vi(0), (5)

where the variable t > 0 is the considered time horizon for which performance

or risk management is performed. Hence, the Xi are wins or losses due to the

i-th asset during the time interval [0, t], and the portfolio u has a total return

for the time interval from 0 to t of exactly X(u).

A risk measure ρ is usually defined as a mapping that assigns to a random

variable X (e.g. payoff or return) a real number ρ(X), its risk:

ρ : X 7−→ ρ(X). (6)

The amount ρ(X) is commonly interpreted as the minimum cash such that the

“risk” of X is “acceptable” to the holder of the portfolio whenever he/she has

the additional amount ρ(X) stored as risk capital (cf. Artzner et al., 1999).

Working with a portfolio base B = (X1, . . . , Xn), a risk measure ρ on the

payoffs X(u) for u ∈ Rn implies a risk measure ρB on the portfolios u. In

particular, we can define

ρB : u 7−→ ρ(X(u)). (7)

We also write ρ(u) for ρB(u). Based on the context, no confusion should arise.

A performance measure can also be represented by functions as just con-

sidered above. However, in contrast to risk measures, performance measures

are ususally intended to describe ratios like the relation of the expected return

to the risk capital or invested risk-adjusted capital. We have a look at conrete

examples, namely RORC and RORAC, in Section 2.3.
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2.2 Expected Shortfall

For 0 < α < 1, we define the α-Value-at-Risk by

VaRα(X) := − inf{x : P (X ≤ x) ≥ α}. (8)

Hence, VaR is a negative α-quantile of the distribution of the random variable

X, i.e. -VaRα(X) is a threshold which is fallen short of in α · 100% of all cases.

Expected Shortfall (ES) is defined by

ESα(X) := −E[X|X ≤ −VaRα(X)]. (9)

i.e. -ESα(X) is the expectation (i.e. the mean) of the losses under the condition

that the threshold mentioned above has already been fallen short of.

2.3 RORC and RORAC

The performance measure RORC, the Return-On-Risk-Capital, is defined by

ϕ(X) :=
E[X]

ρ(X)
. (10)

RORC measures the mean return per unit risk capital. For ρ = ESα, we have

ϕα(X) :=
E[X]

ESα(X)
, (11)

the ES-RORC. Carrying out numerical RORC-optimization, one might face the

problem that the optimal portfolio (although the portfolio value is constant)

could imply a huge amount of risk capital together with a huge expected return.

However, practical reasons might imply an upper bound for the risk capital,

e.g. in case of the ES-RORC ESα(u) ≤ ESmax might be imposed.

The performance measure RORAC, the Return-On-Risk-Adjusted-Capital,

is defined by

ψ(X) :=
E[X]

V + ρ(X)
. (12)

Indeed, ψ measures the mean (or expected) return per unit engaged capital,

since V + ρ is the value of the invested capital plus the cost of risk (cf. (4)).

Hence, in contrast to RORC (10), RORAC considers not only the risk capital

but the risk-adjusted investment capital. For ρ = ESα, i.e.

ψα(X) :=
E[X]

V + ESα(X)
, (13)

we talk of the ES-RORAC. As in the case of RORC, an upper bound for the

risk capital might be imposed in the case of RORAC-optimization.
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3 Portfolio optimization

3.1 The problem

We assume a fixed budget, i.e. portfolio value, of V which must be fully invested

at the present time t = 0. We are looking for the portfolio in Rn with value

V which minimizes (maximizes) the risk (performance). For convenience, we

assume that the risk ρ has to be minimized. As Vi is the price of asset i at

time 0, this implies the following constraint for the portfolios u:

V =
n∑
i=1

uiVi. (14)

A possible solution of the optimization problem is given by a portfolio u∗ ∈ Rn,

such that ρ(u∗) is minimal (on Rn) under (14). Defining

u′n := (V −
∑
i<n

uiVi)/Vn, (15)

and ρ′ as

ρ′(u1, . . . , un−1) := ρ(u1, . . . , un−1, u
′
n) (16)

it follows from (14) that we can express the solution u∗ by

(u∗1, . . . , u
∗
n−1) = argmin ρ′(u1, . . . , un−1), (17)

together with u∗n = (V −
∑

i<n u
∗
iVi)/Vn. Working with real data, we discov-

ered that candidate portfolios for extremal points due to the considered risk or

performance measures can contain tremendous amounts of short-sold assets,

i.e. the portfolio as a vector of real numbers contains huge negative compo-

nents. For this reason, we introduce a further constraint: For a, b ≥ 0, we

require

−bV
Vi
≤ ui ≤ a

V

Vi
for all 1 ≤ i ≤ n. (18)

For instance, b = 0 implies portfolios which allow no short-selling. The values

a = b = 1 guarantee that the amount of capital or debts in no asset is bigger

than the total value V of the portfolio.

3.2 Gradient Search

Let the risk measure ρ be differentiable on Rn. From standard analysis we

obtain for 1 ≤ i ≤ n− 1

∂ρ′

∂ui
(u1, . . . , un−1) =

∂ρ

∂ui
(u1, . . . , un−1, u

′
n)− Vi

Vn

∂ρ

∂u′n
(u1, . . . , un−1, u

′
n). (19)
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maxits=bigNumber

its=0

while its < maxits # fixed number of iterations

ptf=RandomPortfolio # satisfying constraints

loop

if Rho(ptf)<Rho(bestPtf) # small Rho wanted

bestPtf=ptf

end

grd=gradient(ptf)

ptfnew=ptf-grd*stepsize # if constraints, adapt this step

until Rho(ptfnew)>Rho(ptf)

its+=1

end

Figure 1: Simple pseudo-code for portfolio optimization using brute-force gra-
dient search. Clever varying the step-size can give further speed-up. Instead
of chosing random portfolios, one can use a grid-based search.

Using the partial derivates (19), one can start looking for the (local) extreme

points of ρ′ in Rn−1 by applying Gradient Search (GS) methods. This might be

a comfortable approach to solve the optimization problem (17) as long as the

considered measures have sufficient differentiability properties. However, the

proof of such differentiability properties can be rather difficult (see e.g. Tasche,

2000). This is one reason for our proposal of Swarm Intelligence optimization

methods (see Subsection 3.3).

Outline of a gradient minimum-search (Figure 1):

(1) Evaluate the gradient for the current portfolio. (2) If the gradient is

zero, exit. We have found a local or global minimum. (3) Follow the negative

gradient of the current portfolio one small step. Modify the portfolio to satify

the constraints. Continue with step 1.

On a one-processor computer this gradient algorithm has to be started

many times with different portfolios (“brute-force”), as one might be stuck in

a local minimum.

We need the partial derivatives (19) of ES, ES-RORC and ES-RORAC.

Expected Shortfall

Assuming sufficient differentiability properties, one can show that

∂ESα
∂ui

(u1, . . . , un) = −E[Xi|X ≤ −VaRα(X)]. (20)
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We refer to Tasche (2000) for further information on the differentiation of ES.

For ρ(u) = ESα(X(u)), equation (19) can be written as

∂ES′α
∂ui

(u1, . . . , un−1) = −E[Xi|X ≤ −VaRα(X)] (21)

+
Vi
Vn

E[Xn|X ≤ −VaRα(X)].

This expression is suitable for numerical evaluation by Monte-Carlo methods.

RORC

The partial derivatives (19) of the ES-RORC under the budget constraint (14)

are obtained from standard differentiation rules:

∂ϕ′α
∂ui

= −E[X] · E[Xi|X ≤ −VaRα(X)]

ESα(X)2
+

E[Xi]

ESα(X)
(22)

− Vi
Vn

(
−E[X] · E[Xn|X ≤ −VaRα(X)]

ESα(X)2
+

E[Xn]

ESα(X)

)
.

RORAC

As V is a constant, the partial derivatives (19) of the ES-RORAC under the

budget constraint (14) are similar to those of RORC:

∂ψ′α
∂ui

= −E[X] · E[Xi|X ≤ −VaRα(X)]

(V + ESα(X))2
+

E[Xi]

V + ESα(X)
(23)

− Vi
Vn

(
−E[X] · E[Xn|X ≤ −VaRα(X)]

(V + ESα(X))2
+

E[Xn]

V + ESα(X)

)
.

Again we see that (22) and (23) are relatively simple expression of expec-

tations and therefore suitable for Monte-Carlo methods.

3.3 Swarm Intelligence

Swarm Intelligence (SI) is a property of a system where the collective be-

haviours of unsophisticated agents interacting locally with their environment

cause coherent functional global patterns to emerge. SI provides a basis with

which it is possible to explore collective or distributed problem solving without

centralized control or the provision of a global model (cf. Kennedy et al., 2001).

The three underlying principles of SI are: evaluate, compare and imitate. Liv-

ing organisms can learn by evaluating stimuli and rate them as positive or

negative. In our case this is the metric (i.e. risk or performance measure) we
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want to optimize. As practiced in the Adaptive Culture Model (cf. Shibanai,

Yasuno and Ishiguro, 2001) and in real life, people compare themselves to oth-

ers and imitate only those neighbours that are superior to themselves. SI offers

a tradeoff between individual and group learning.

We give a brief outline of the algorithm (cf. Kennedy et al. (2001), Kennedy

and Eberhart (1995)) using standard notation. Let yi be the position of particle

i. In our case, the position represents a specific portfolio (yi ∈ Rn). The change

of portfolio is called v. v traditionally stands for velocity. Each clockstep t

particles move from one stop to another by yi(t) = yi(t− 1) + vi(t) and sample

the search space by modifying the velocity term. The direction of movement

is a function of the current position (yi), velocity (vi), the location of the

individual’s previous best success (pi), and the best position found by any

member of the neighborhood (pg):

yi(t) = f(yi(t− 1), vi(t− 1), pi, pg). (24)

One possible implementation is

vi(t) = vi(t− 1) + n1(pi − yi(t− 1)) + n2(pg − yi(t− 1)) (25)

with

yi(t) = yi(t− 1) + vi(t). (26)

The n variables are random variables defined by an upper limit, so that the

particles cycle around the two best bets: pi and pg. The random numbers (n1

and n2) are updated in every iteration. With real data the velocity v very

quickly becomes too large and one has to set limits.

As the value of a portfolio has to remain constant, two minor modifications

in the choice of v are required.

In simulation studies on typical portfolios it proves successful to inject

about 10% of new particles with random speeds and locations from time to

time and to remove the 10% worst performing particles. The exact population

size is an open research problem with experts having different opinions. A rule

of thumb is to keep the population size small, but to rely on a high number

of iterations. As this can take a long time for higher dimensional problems,

parallel computing solutions are an easy way out of the dilemma, following

Kent Thompson’s (co-inventor of Unix) famous quote: ”When in doubt, use

brute force”.
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ys=generateInitialPortfolios #satisfying the constraint

p=ys

loop

# best portfolios’s fitness so far

ys.each_with_index{ |y,i|

p[i]=y, if Rho(y)<Rho(p[i]) # small Rho wanted

}

i=rand size # arbitrary Rho

g=i

for j=indexes of neighbors

g=j if Rho(p[j])<Rho(p[g]) # g: index of best performer

# in the neighborhood

end

#assuming delta t=1

v[i]=[i]+n1*(p[i]-ys[i])+n2*(p[g]-ys[i])

v[i]=Vmax if v_id>Vmax

v[i]=Vmin if v_id<Vmin

ys[i]=ys[i]+v[i]

fixPortfolio # constraint

if loopCount mod 10000==0 # big number here

removeWorstPortfolio # remove 10% worst portfolios

injectNewPortfolios # inject 10% new portfolios

end

until some criterion

Figure 2: Simple pseudo-code for portfolio optimization using swarm particles
based on Kennedy et al. (2001). This basic algorithm is implemented more
efficiently.

3.4 How stochastic simulation fits in

Whether GS or SI methods are used to solve the portfolio optimization prob-

lem, a way must be found to determine the distributions of the payoff functions

Xi since finally any optimization routine must compute the measures (9), (11)

or (13). The Xi (cf. (5)) are wins or losses due to the i-th asset in the market

where we assumed to have n numbered assets. It is clear that ES, ES-RORC,

ES-RORAC, but also their derivatives, crucially depend on the model for the

future prices Vi(t) of these assets. The particular stochastic model we use will

be introduced in Section 4.

Once the model for the price processes is chosen and a way to get possible

parameters is found, one can theoretically evaluate the risk and performance

measures (9), (11) and (13) and their partial derivatives under budget con-
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straint (21), (22) and (23). However, one often encounters models (also in our

case) where it is not possible or quite difficult to calculate these values directly.

A more realistic assumption is that one succeeds in doing a stochastic simula-

tion of the model which computes m ∈ N+ (e.g. m = 104) market scenarios,

i.e. finally one has for each i numerical realizations (here given in increasing

order)

x1i , x
2
i , . . . , x

m
i (27)

of the random variable Xi defined by (5). The realizations (also in increasing

order)

x1, x2, . . . , xm (28)

for any X = X(u) follow immediately. Given these realizations, estimates

for the stochastic expressions in the considered measures can be used. In

particular, we compute estimates using the “empirical” distribution given by

the simulation output, e.g.

Ê[X] =
1

m

m∑
j=1

xj, (29)

V̂aRα(X) = −xdαme (30)

or

ÊSα[X] =
−
∑

xj≤−V̂aRα(X) x
j

card{j : xj ≤ −V̂aRα(X)}
, (31)

where dre denotes the smallest integer which is greater or equal the real number

r. One could use other perhaps more sophisticated estimators. Nonetheless,

replacing all stochastic expressions in (9), (11), (13), (21), (22) and (23) as sug-

gested by (29) to (31), one obtains approximations for the respective measures

and their gradients which are easy to implement in any suitable programming

language. Gradient Search methods or Swarm Intelligence optimization meth-

ods can now be executed using the obtained approximations.

4 A particular market model

Until now, the presented theory has been completely independent from a par-

ticular market model eventually used. In the following sections we apply the

above ideas to a concrete model and data setup.

We model stocks and non-defaultable bonds. All stochastics evolve from a

(d+2)-dimensional Brownian motion (Wiener process) (Wi)i=1,...,d+2, where the
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first two components drive the dynamics of the two-factor interest rate model

for the bonds and the last d drive the dynamics of d stocks. The Brownian

motions Wi are correlated by a covariance matrix Σ where for i = 1, . . . , d+ 2

Σi,i = 1, and Σ1,0 = Σ0,1 = 0, (32)

i.e. each Wi is a one-dimensional standard Brownian motion, and W1 and W2

are uncorrelated.

4.1 Interest rates and bonds

The relation between the price p(t, τ) of a unit zero-coupon bond with maturity

τ at time t, i.e. the price at time t of the guaranteed payoff 1 at time t + τ ,

and the corresponding spot (interest) rate R(t, τ) is

eR(t,τ)·τ =
1

p(t, τ)
. (33)

Hence, R(t, τ) is the at t guaranteed continuously compounded yearly rate of

interest during the time interval [t, t + τ ]. For future points in time (t > 0),

p(t, τ), respectively R(t, τ), are assumed to be random variables. We can now

turn to the considered interest rate model of Chen and Scott (1992) with two

stochastic factors. The model is usually called Cox-Ingersoll-Ross-2 (CIR-2)

as it heavily relies on the work of Cox, Ingersoll and Ross (1985).

The model features two stochastic factors (x1, x2) fulfilling the stochastic

differential equations

dxi = (bi − ai · xi)dt+ σi
√
xidWi (i = 1, 2) (34)

where bi, ai and σi are positive constants. One has xi > 0 if 2bi > σ2
i . By (32)

the Brownian motions W1 and W2 are independent. Equation (34) defines a

so-called mean reversion process. The parameter a is called the strength of the

mean reversion and b/a the mean reversion level, i.e. the long-term mean of

the process xi. The implied spot rate at time t for a maturity τ is

R(t, τ) =
2∑
i=1

(
− logAi(τ)

τ
+
Bi(τ)

τ
xi(t)

)
, (35)

the implied unit zero-coupon bond price by (33)

p(t, τ, x(t)) =
2∏
i=1

Ai(τ)e−Bi(τ)xi(t). (36)
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The functions Ai and Bi are given by

Ai(τ) =

[
2hie

(ai+λi+hi)τ/2

2hi + (ai + λi + hi)(eτhi − 1)

]2bi/σ2
i

(37)

and

Bi(τ) =

[
2(eτhi − 1)

2hi + (ai + λi + hi)(eτhi − 1)

]
, (38)

where

hi =
√

(ai + λi)2 + 2σ2
i . (39)

The parameter λi is related to the change of measure (physical to martingale

measure) and can together with all other parameters be estimated from his-

torical interest rates. Prices of coupon bonds can now be calculated as the

sums of prices of properly chosen zero-coupon bonds.

4.2 Stocks

We model d stocks by geometric Brownian motions, i.e. price processes Sj

(j = 1, . . . , d) with

Sj(t) = Sj(0)eµjt+σjWj+2(t), (40)

where µj ∈ R is the drift and σj ∈ R+ the diffusion coefficient of the Brownian

motion in the exponent. In terms of stochastic differential equations we have

d lnSj = µjdt+ σjdWj+2. (41)

4.3 Comments

The choice of our model is based on experience with practitioners. A couple

of German life insurance companies have been considering one-factor Cox-

Ingersoll-Ross models together with geometric Brownian motions in the con-

text of Asset Liability Management. Usually, the models are independently

used to model debt securities and stocks. The combination and correlation of

the models as proposed in this paper and also the incorporation of multifactor

interest rate models seems to be an improvement of these approaches. For

insurance companies (known to be conservative), an important aspect of such

models is the acceptance by the scientific public. This explains somewhat the

decision for ”standard” models like geometric Brownian motions or the CIR-

1 model. As mentioned in Fischer, May and Walther (2004), the Vasicek-2
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(Gaussian) model for instance behaves in some way better than CIR-2 (con-

cerning parameter estimation; see also Babbs and Nowman (1998)). Nonethe-

less, insurance companies seem to prefer CIR as under the respective parameter

constraints CIR assures positive interest rates.

5 Market scenario generation

As described earlier, we are going to carry out a stochastic simulation to obtain

an “empirical” distribution of the considered random payoffs. A simulation

requires discretization. The width of one time step is the constant ∆ (e.g. one

day, one month etc.), i.e. we consider points tm+1 = tm + ∆ (m ∈ N) and

t0 = 0. Increments

δWi,m := Wi(tm)−Wi(tm−1) (42)

of the (d + 2) Brownian motions have to be simulated. For fixed m, the

δWi,m are correlated by the covariance matrix ∆Σ (cf. (32)). For fixed

i, the increments δWi,m are independent normally distributed random vari-

ables with variance ∆ and expectation 0. Hence, all discretized dynamics

are driven by a series of standard normally distributed random variables

Ni,m (i = 1, . . . , d + 2;m ∈ N+), where for each m the random variables

(Ni,m)i=1,...,d+2 are correlated by the covariance matrix Σ which will later be

estimated from real data.

5.1 Simulation of correlated normal random variables

Simulation of i.i.d. normal random variables is standard. Let us consider the

Cholesky decomposition

Σ = CCt (43)

of the covariance matrix Σ. If Z = (Zi)i=1,...,d+2 are d+ 2 i.i.d. normal random

variables, then

(Ni)i=1,...,d+2 = N = C · Z (44)

contains d+ 2 normally distributed random variables with covariances Σ.

5.2 Interest rates and bonds

From (34), a so-called Euler-approximation gives the recursion

xi,m = xi,m−1 + (bi − ai · xi,m−1)∆ + σi
√
xi,m−1

√
∆Ni,m (i = 1, 2) (45)
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where the Ni,m (fixed i or alternatively fixed m) are i.i.d. N(0, 1). Plugging

the computed values into (35), resp. (36), returns the desired interest rates,

resp. bond prices.

5.3 Stocks

From (41), we obtain the Euler-scheme

lnSj,m − lnSj,m−1 = µj ·∆ + σj ·
√

∆ ·Nj+2,m (1 ≤ j ≤ d) (46)

where the Nj+2,m (fixed j) are i.i.d. N(0, 1). This implies for M ∈ N+

Sj,M = Sj,0 exp

(
µjM∆ + σj

M∑
m=1

√
∆Nj+2,m

)
. (47)

6 Estimation of parameters

6.1 Interest rates and bonds

Parameter estimation for the CIR-2 model and detailed descriptions of the

used methods are subject of several existing articles, e.g. Chen and Scott

(1993), Duan and Simonato (1999), Bolder (2001), Beletsky and Szimayer

(2002) and Fischer, May and Walther (2004). The problem is not trivial. The

most efficient method seems to be pseudo maximum-likelihood estimation with

Kalman-filtering. In particular, we used the machinery as explained in Fischer,

May and Walther (2004). The interested reader can find further information

in this paper and the references therein.

A comment on the data: we use the historical yield structure of the Ger-

man debt securities market (monthly, taken at the end of each month). The

values for spot rates with maturities τ > 0 up to 28 years can be computed

via a parametric presentation of yield curves (the so-called Svensson-method;

cf. Svensson (1994) and Schich (1997)) for which the historical parameters can

be taken from the homepage of the German Federal Reserve (Deutsche Bun-

desbank; http://www.bundesbank.de). The implied Bundesbank values R′

are estimates of discrete interest rates on notional zero-coupon bonds based

on German Federal bonds and treasuries (cf. Schich, 1997) and have to be

converted into continuous interest rates by R = ln(1 +R′).
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6.2 Stocks

Given the market data Sj,m (j = 1, . . . , d; m = −M, . . . , 0; time step = ∆;

t = 0 is the present), Equation (46) is used to obtain the estimators

µ̂j =
1

M∆
ln(Sj,0/Sj,−M) (48)

and

σ̂j =

√√√√ 1

M∆

0∑
i=1−M

(ln(Sj,m/Sj,m−1)−∆µ̂j)2 (49)

for the parameters of the stock price dynamics.

6.3 The covariance matrix

After having plugged in historical data, solving the equations (45) and (46)

for Ni,m gives us a time series (Ni,m) (i = 1, . . . , d + 2; m = 1 −M, . . . , 0) of

hypothetical historical realizations of the normal random variables (44). The

values

Σ̂i,j =
1

M

0∑
m=1−M

Ni,mNj,m (50)

can be used as estimates for the entries of the covariance matrix Σ. However,

there is still something missing since we can not get the historical realizations

xi,m of the stochastic factors of the interest rate model (45) directly from the

market. Instead, we use the affine term structure (35) to derive them from the

interest data. One has(
R(t, τ1)
R(t, τ2)

)
︸ ︷︷ ︸ =

(
− logA1(τ1)

τ1
− logA2(τ1)

τ1

− logA1(τ2)
τ2

− logA2(τ2)
τ2

)
︸ ︷︷ ︸+

(
B1(τ1)
τ1

B2(τ1)
τ1

B1(τ2)
τ2

B2(τ2)
τ2

)
︸ ︷︷ ︸ ·

(
x1(t)
x2(t)

)
︸ ︷︷ ︸ (51)

Rt = MA + MB · x(t). (52)

From

x(t) = M−1
B (Rt −MA) (53)

we obtain a time series xi,m (i = 1, 2; m = −M, . . . , 0) by inserting the time

series of the respective spot rates into (53). Slightly different from Fischer,

May and Walther (2004), our suggestion is

τ1 = 0.5 years, τ2 = 10.0 years. (54)

Equation (53) also returns the starting values x(0) = (x1(0), x2(0)) for

the simulation of the factors x1 and x2. The calculation of the values x(0)
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implies a mathematically continuous continuation of the history of the spot

rates R(., τ1) and R(., τ2) by the CIR-2 model. For other maturities than τ1

and τ2 there might be jumps in the respective sport rate (cf. Fischer, May

and Walther, 2004). A simulation study of the same authors showed that

for realistic time horizons the starting values have significant influence on the

means of the simulated interest rates. Hence, a proper calculation of starting

values is important.

Having executed the explained procedure, one can calculate the empirical

covariance matrix Σ̂ by (50). At this point, a further problem arises. The

CIR-2 model works with uncorrelated Brownian motions (cf. subsection 4.1).

Nonetheless, the upper left 2× 2-submatrix of Σ̂, which theoretically should be

the two-dimensional identity, may differ from the theoretical values. To stay

in the proposed model, one can adjust the estimate Σ̂ by setting the upper

left 2 × 2-submatrix to the identity matrix. Doing this, it is important to

check whether the new matrix is still positively definite as we afterwards have

to carry out the Cholesky decomposition. In cases where positive definiteness

gets lost, one should choose a symmetric positively definite matrix close to the

proposed matrix with the identity in the upper left corner.

The proposed technique for the calculation of the covariance matrix and

the starting values should be suitable for any stochastic interest rate model

with an affine term structure (e.g. Vasicek-2).

7 Chronological overview

I. Estimation

• Get data • estimate parameters of stock prices; (48) and (49) • estimate

parameters of interest rate dynamics (cf. Subsection 4.1) • compute the his-

torical time series xi,m (m ≤ 0) by (53) • solve equations (46) and (45) for the

historical Nj,m (m ≤ 0) • compute the covariance matrix Σ̂; (50) • compute

the Cholesky decomposition of Σ̂; (43)

II. Simulation

• Simulate future i.i.d. normal random variables and plug them into (44) to

get the simulated Ni,m (m > 0) • plug the Ni,m into (46) and (45) to get the

simulated scenario of stock prices and interest rate model factors xi,m (m > 0)

• plug the factors xi,m into (35) or (36) to get spot rates or bond prices •
reiterate the above three steps to get a large set of market scenarios
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III. Evaluation

• Choose (or assume to be given) a certain portfolio • compute portfolio values

(e.g. by (1)) using the scenarios generated in step II • compute the risk and

performance measures (9), (11) and (13) by the empirical portfolio distribu-

tions obtained; cf. (29) to (31) • if necessary, compute the partial derivatives

(21), (22) and (23)

IV. Optimization

• Use a GS or SI method repeating step III for each new portfolio

Note that step II must only be done once. The optimization iterations use

the same set of scenarios for alternating portfolios.

8 First results

8.1 Gradient Search vs. Swarm Intelligence

(Particle) Swarm Intelligence is a powerful tool to solve optimization prob-

lems in a fixed search-space. SI is computationally appealing as simple to

implement and computationally robust with respect to local minima and max-

ima, provided enough iterations are performed. As an additional bonus, SI is

inherently suitable for parallel computing and can be implemented in a mas-

sively parallel way (cf. Auslander et al. (1995), Fabiunke (2002)). Gradient

(Grid) Search methods are superior to random-guessing algorithms like SI if

the search-space is e.g. a sphere, but on highly multi-dimensional surfaces, the

gradient method gets stuck too often in local extreme points and therefore

becomes computationally expensive, as one has to start from many different

starting points. In higher-dimensional problems, SI seem fitter than GS meth-

ods. However, one has to be careful with such statements, as according to

the No Free Lunch (NFL) theorem (cf. Wolpert and Macready, 1996), when

performance is averaged over all possible search spaces, all search algorithms

perform equally well.

Ultimately, we decided to stick with SI algorithms, which seem to con-

verge faster for large real-life size portfolios. Combining these evolutionary

algorithms with a selected Gradient Search for selected good intermediate so-

lutions provides further speed-up. One should also mention that depending on

the chosen market model it might be not easy to prove that the possibly for

optimization purposes used derivatives (21), (22) and (23) really exist. This,
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however, is no real drawback when using a combined SI-GS-method since the

GS-optimization routines are now subject to “back-testing” by the SI-methods.

Problems coming in line with differentiation of quantile expressions could also

be avoided by using risk measures which have more suitable differentiability

properties like e.g. the risk measures proposed in Fischer (2003).

One caveat with all numerical solutions, without further assumptions about

the search-space is that there is no guarantee that the optimal solution is

found. In practice, one monitors the rate of convergence and dedicates enough

search-time. Looking at the number of idle PCs and workstations in the typical

investment bank or insurance company, one can be on the save side and farm

out the work to a large number of processors or a dedicated cluster or Global

Grid. However, it should also be mentioned that financial institutions often

have no interest in global optimization, but local one since existing portfolios

are often optimized in small steps and not by a complete restructuring.

8.2 Discussion of numeric outcomes

For our numeric examples the time horizon is one month where the simulation

takes 20 steps per month. The number of iterations is 1000. We consider

portfolios which have a present value of exactly 1000 EUR. We optimize using

a local GS-method and a combined SI-GS-method. The second one is run

with and without constraint b = 0, i.e. with and without shortselling in the

portfolio (cf. (18)). The considered confidence level for ES is α = 5%. Two

types of portfolios are examined. The smaller one contains two bonds and two

stocks, the bigger one 10 bonds and 10 stocks. In particular, we considered

the following bonds and stocks (which are here listed in the same order as in

the portfolio vectors in the tables in the Section 11):

(A) 2 zero-coupon bonds: Maturity 1 year and 10 years.

2 “stocks”: Xetra DAX and Allianz

(B) 10 zero-coupon bonds: Maturity 1 year up to 10 years.

10 stocks: Allianz, BASF, BMW, Bayer, Commerzbank, Daimler-

Chrysler, Deutsche Bank, Lufthansa, E.ON, Hypovereinsbank

All stocks are elements of the Xetra DAX and had their IPO at least 10 years

ago. Data was taken from http://de.finance.yahoo.com. The estimates are

calculated from monthly data from May 2002 to April 2003. We obtain the
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model parameters listed in Table 1. The same time interval and discretization

was taken for the estimation of the term structure model parameters. Matu-

rities from 1 to 10 years were taken into consideration. Results are in Table 2.

The entries of the (adjusted) covariance matrix in Table 3 confirm the use of

correlations between the interest rates and the stock market model factors to

obtain a more realistic combined model.

For each of our setups we computed the ES-, ES-RORC- and ES-RORAC-

optimal portfolio. The mean, VaR, ES, ES-RORC and ES-RORAC for 1-

month returns these portfolios are listed in the Tables 4-9 in Section 11 (to-

gether with the optimal portfolios themselves in the four assets case). The

optimized portfolios are compared with “normed” portfolios where the same

capital is invested in each of the four, respectively 20 assets. As expected,

the combined SI-GS-method is superior to the local GS-method starting at

the normed portfolio. Local extreme points seem to exist in most of the con-

sidered cases. A situation as in Table 5 where the ES of the ES-optimized

portfolio is higher than (but close to) the ES of the RORC-optimized portfolio

could be a symptom for the need of more or finer iterations.

A reasonable optimization output is that the results imply that bonds of

longer maturities bear more risks. This can be seen in decreasing weights of

bonds with higher maturities in the ES-optimized portfolios (e.g. Tables 5 &

6). This was also observed for the portfolios with 20 assets which are not

listed in detail. Massive short-selling and possible absence of global extreme

points (e.g. in the RORAC case, cf. Table 4) strongly suggest the use of the

constraint b = 0 (no short-selling). Roughly speaking, the implication seems

to be that optimized portfolios under the constraint contain almost no stocks

which is reasonable under the market conditions given between May 2002 and

April 2003. A remarkable observation in the constrained case is that ES- and

ES-RORC-optimal portfolios seem to be quite similar and prefer bonds at the

short end, whereas the ES-RORAC-optimal portfolios tend to prefer the long

end of the term structure (cf. Tables 6). This was also observed for port-

folios with 10 bonds and 10 stocks. The reason must be that RORAC, in

contrast to RORC, rewards under the assumption of the same given RORC

assets with lower prices since prices are included in the denominator of its def-

inition. This observation, although made for a very specific market situation,

shows how sensitive optimization is towards the choice between the (on the

first look quite similar) performance measures RORC and RORAC. Financial
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institutions should bear that in mind.

In summary, all obtained results seem to be reasonable from the economic

point of view and confirm the proposed methods. We can not really judge

the impact of the choice of the market model at this stage of our research.

However, we guess that other reasonable models (e.g. such using Vasicek-2)

would imply results similar to ours.

9 Parallel programming and scalability

9.1 Bulk synchronous parallel computing

Since 1944 von Neumann’s model for sequential computing has been widely

accepted, but there is no standard model for parallel computing. Most ap-

proaches nowadays are based on message-passing, but they are often inade-

quate, since the potential danger of deadlock, in which each possible activity is

blocked, waiting on some other activity that is also blocked, increases dramati-

cally with the complexity of software. Furthermore, models based on message-

passing, e.g. MPI (Message passing interface), do not easily allow performance

prediction. The Bulk synchronous parallel computing model (BSP) however

abstracts low-level program structure in favour of so-called supersteps. This

allows easy debugging, removes the problem of deadlock and allows a reasoning

of the correctness of the code nearly as easily as in sequential code.

A BSP computer consists of a set of processor/memory pairs, a global com-

munication network and a mechanism for the efficient barrier synchronisation

of the processors. In real life, this could be anything: a single/multi-processor

PC, a cluster of workstations or a real parallel machine like the Cray T3D.

The fundamental idea of BSP is the notion of a superstep. In a superstep,

computation and communication are decoupled. This avoids deadlock. First

the processes perform as many calculations as possible using their local data.

If one processor needs data from another, communication starts only after

all the computation has stopped. When communication is finished, barrier

synchronisation is called and the next superstep begins.

9.2 Cost modelling and performance prediction

A cost model helps to guide the choice of programming algorithm.

The separation of communication from synchronisation and the inherent

simplicity of the superstep structure make it relatively easy to find a suitable
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cost-model. The cost is expressed in terms of steps or floating point operations

(FlOps) for each portion of the program. The cost parameters are the BSP

parameters for the machine and parameters determined by the choice of al-

gorithm and their implementation. As a BSP program consists of a sequence

of supersteps, the “cost” of an entire program is the sum of the contributions

from its supersteps.

What are the key parameters that determine performance? Extensive re-

search by the originators of the BSPlib showed that the following four key

parameters are sufficient (cf. Hill and McColl, 1996):

• the number of processors, p;

• processor speed, s (number of steps per second);

• the cost l (steps), of achieving barrier synchronisation (which depends

on network latency, which is a measurement of delay from one end of a

network to another). Basically l is the cost of telling all processors to

wait till all communication has been performed; and

• the cost g (steps per word), of delivering message data. This captures

the interprocess communication speed.

Since the processor speed s is essentially a normalising factor, there are only

three independent parameters: p, l and g. The cost of one superstep is

max(wi) + g ·max(hi) + l (55)

where i ranges over processors (i = 1, . . . , p), wi is the time for the local compu-

tation in processor i and hi is the number of incoming or outcoming messages

per processor. The values of the parameters are determined by measurement

using suitable benchmarks that mimic average computation and communica-

tion loads (cf. Hill, 1996). The dependence on a specific platform enters the

cost function only through the parameters p, l and g.

We follow convention and count every floating point operation as 1.

The BSP approach offers a simple cost model. In general, cost-modeling

applications give a rough ball-park figure of the cost on any parallel machine

and configuration size. The role of profiling tools like bsprof aids simplis-

tic pencil and paper cost modeling, and it effectively predicts the cost of an

algorithm on any parallel machine (cf. Hill, Crumpton and Burgess, 1996).
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9.3 Scalability of optimization algorithms

Programmers take the burden of writing parallel programs to increase speed

and memory. The aim of every parallel algorithm designer is to write code

that scales linearly, i.e. runs p times as fast on a p-processor machine. This

clearly constitutes an upper bound, if the sequential algorithm is already op-

timal. Linear scalability is achieved by using good load-balancing, keeping all

processors busy all the time and communication costs are minimized.

Data dependency can make optimal speed-up impossible. It determines

parallel complexity, the minimum number of steps an algorithm would need to

run on a PRAM-computer. This constitutes an upper bound on the maximal

speed-up that can be achieved.

There are many different and more sophisticated layouts of parallel imple-

mentations possible. The right choice depends on the size of the portfolio and

available hardware. For the sake of simplicity in this article we have chosen

the brute force approach.

Sketch of the scalability for a parallel brute-force GS: To avoid local extrema,

one has to start many times from different grid-points:

1. Superstep: Broadcast the initial portfolio structure and search-areas,

or only the portfolio structure and use random startpoints. Depend-

ing on the network architecture (reflected in the value of g), one might

use several supersteps and use e.g. a tree-shaped communication form.

Asymptotic cost for a 1 phase broadcast: l + npg, where n is the size of

the initial portfolio structure.

2. Superstep: Now work out gradient searches on all processors for a given

time. E.g. every processors performs a set-number of searches. On av-

erage this will balance out. Asymptotic cost: 1/p× sequential time, as

if p processors work out k/p searches, k searches are performed in total.

The sequential time is the all dominating factor.

3. Superstep: Each processor sends its best grid point back to processor 1,

which sorts them and gives the final result. Asymptotic cost: l+ng+ p.

The extra p arise from chosing the point with best fitness.

As the communication cost, sorting, etc. is negligible for any reasonable

number of searches, this algorithm clearly scales linearly with the number of
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processors used.

Sketch of the scalability for SI:

Superstep: As in the 1-processor mode (see Figure 2), but now per-

formed on all p processors. Every 1000 or 10000 iterations fit values are

exchanged, then the next superstep starts.

Since the cost of data interchange is negligible compared to the cost of the

iterations in each superstep, we have scalability as in the GS case.

One typical schoolbook error in this context is not to use a high quality

random number generator, assuring independent random number streams on

all processors (cf. Mascagni, Ceperley and Srinivasan (1998, 1999)).

Large clusters as well as the rise of grid-computing requires analytic fore-

castig of run-times to chose the appropriate hardware for the task. There are

many potential trade-offs (cf. Jarvis et al. (2002, 2003) and Roehrl (1998)):

time versus money, etc. Our paper has shown that a pragmatic approach can

take advantage of developments in computerscience to enable the exploration

of new portfolio optimization techniques using parallel computing techniques.

10 Conclusion

In Section 1 to 3 we described two general methodologies of ES-, ES-RORC-

and ES-RORAC-optimization: gradient search and swarm intelligence op-

timization, both suitable independently from the considered market model.

Later, we proposed a particular market model which seems to be suitable to

describe at the same time bonds and stocks, as well as dependencies between

them. As we know, practicioners have been using similar models to forecast

separately bonds and stocks. The model was used for our numerical examples

with German market data. We thoroughly explained the proposed model and

the respective simulation and optimization procedures. The economically rea-

sonable results from our numeric examples and a scalability analysis show the

suitability and practicability of the proposed methodology. Furthermore, dif-

ferences between RORAC- and RORC-optimization have been demonstrated.

The impact of alternative models could not be considered and leaves questions

open for future research.
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11 Tables and figures

Share Vi(0) µ̂i σ̂i

Xetra DAX 2942.04 -0.54 0.45

Allianz 56.17 -1.46 0.78

BASF 38.16 -0.29 0.31

BMW 29.06 -0.50 0.32

Bayer 16.75 -0.80 0.66

Commerzbank 8.32 -0.92 0.79

DaimlerChrysler 28.90 -0.65 0.36

Deutsche Bank 44.86 -0.59 0.47

Lufthansa 8.79 -0.56 0.48

E.ON 41.80 -0.31 0.29

Hypovereinsbank 10.20 -1.41 0.92

Table 1: Stock market parameters (05/2002 - 04/2003). In the portfolio with
4 assets, the Xetra DAX is treated like a single stock.

â1 b̂1 σ̂1 λ̂1

0.2648 0.0120 0.1236 -0.0647

â2 b̂2 σ̂2 λ̂2

1.7563 0.0145 0.1704 0.4968

Table 2: Estimates for the CIR-2-model (05/2002 - 04/2003)


1 0 0.7333 0.5860

0 1 −0.4180 −0.3799

0.7333 −0.4180 1 0.9062

0.5860 −0.3799 0.9062 1


Table 3: Adjusted covariance matrix Σ̂ (4 assets)
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Portfolio Mean VaR ES ES-RORC ES-RORAC

normed -29.21 148.56 169.90 -0.1719 -0.0250

Units (256.03; 382.88; 0.0850; 4.4508)

Capital (250.0; 250.0; 250.0; 250.0)

ES-opt. 2.20 8.02 11.67 0.1888 0.0022

Units (575.22; 595.47; 0.0284; -0.6059)

Capital (561.67; 388.81; 83.54; -34.03)

RORC-opt. 8.73 18.61 28.39 0.3071 0.0085

Units (506.74; 650.08; 0.0856; -3.0470)

Capital (494.81; 424.47; 251.87; -171.15)

RORAC-opt. 14,535.32 34,795.68 56,428.72 0.2576 0.2531

Units (89,585.98; -170,200.78; 102.93; -4,952.51)

Capital (87,476.85; -111,132.65; 302,838.23; -278,182.42)

Table 4: 4 assets; α = 0.05; no constraints; locally GS-optimized portfolios;
GS started at normed portfolio

Portfolio Mean VaR ES ES-RORC ES-RORAC

normed -29.21 148.56 169.90 -0.1719 -0.0250

Units (256.03; 382.88; 0.0850; 4.4508

Capital (250.0; 250.0; 250.0; 250.0)

ES-opt. 2.75 1.11 2.19 1.2555 0.0027

Units (1,758.10; -1,049.55; -0.0115; 0.0413)

Capital (1,716.71; -685.31; -33.73; 2.32)

RORC-opt. 3.07 0.84 1.96 1.5643 0.0031

Units (1,533.04; -730.19; -0.0036; -0.1729)

Capital (1,496.95; -476.78; -10.46; -9.71)

RORAC-opt. 29,454.12 70,484.98 114,339.65 0.2576 0.2554

Units (186,074.79; -353,548.05; 208.71; -10,038.90)

Capital (181,693.00; -230,849.31; 614,040.41; -563,885.10)

Table 5: 4 assets; α = 0.05; no constraints; SI-GS-optimized portfolios
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Portfolio Mean VaR ES ES-RORC ES-RORAC

normed -29.21 148.56 169.90 -0.1719 -0.0250

Units (256.03; 382.88; 0.0850; 4.4508)

Capital (250.0; 250.0; 250.0; 250.0)

ES-opt. 1.81 4.19 6.26 0.2894 0.0018

Units (1,020.03; 0.22; 0.0013; 0.0001)

Capital (996.01; 0.14; 3.84; 0.01)

RORC-opt. 1.88 4.29 6.37 0.2957 0.0019

Units (1,020.60; 4.22; 0.0000; 0.0119)

Capital (996.57; 2.76; 0.01; 0.67)

RORAC-opt. 2.13 19.43 25.32 0.0843 0.0021

Units (84.47; 1,404.48; 0.0001; 0.0027)

Capital (82.48; 917.06; 0.31; 0.15)

Table 6: 4 assets; α = 0.05; constraint b = 0; SI-GS-optimized portfolios

Portfolio Mean VaR ES ES-RORC ES-RORAC

normed -19.29 115.36 134.59 -0.1433 -0.0170

ES-opt. 0.32 6.93 8.87 0.0361 0.0003

RORC-opt. 7.13 8.28 13.79 0.5172 0.0070

RORAC-opt. 653.55 884.70 1,369.21 0.4773 0.2759

Table 7: 20 assets; α = 0.05; no constraints; locally GS-optimized portfolios;
GS started at normed portfolio

Portfolio Mean VaR ES ES-RORC ES-RORAC

normed -19.29 115.36 134.59 -0.1433 -0.0170

ES-opt. 2.52 2.23 3.56 0.7064 0.0025

RORC-opt. 4.40 2.92 4.82 0.9129 0.0044

RORAC-opt. 651.75 842.94 1,357.35 0.4802 0.2765

Table 8: 20 assets; α = 0.05; no constraints; SI-GS-optimized portfolios

Portfolio Mean VaR ES ES-RORC ES-RORAC

normed -19.29 115.36 134.59 -0.1433 -0.0170

ES-opt. -2.10 18.59 22.75 -0.0922 -0.0021

RORC-opt. -2.22 23.76 27.84 -0.0799 -0.0021

RORAC-opt. -2.1723 19.01 23.17 -0.0937 -0.0021

Table 9: 20 assets; α = 0.05; constraint b = 0; SI-GS-optimized portfolios
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