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Abstract. A new framework for the optimal control of probability density functions (PDF) of
stochastic processes is reviewed. This framework is based on Fokker-Planck (FP) partial differential
equations that govern the time evolution of the PDF of stochastic systems and on control objectives
that may require to follow a given PDF trajectory or to minimize an expectation functional.

Corresponding to different stochastic processes, different FP equations are obtained. In par-
ticular, FP equations of parabolic, fractional parabolic, integro parabolic, and hyperbolic type are
discussed. The corresponding optimization problems are deterministic and can be formulated in an
open-loop framework and within a closed-loop model predictive control strategy. The connection
between the Dynamic Programming scheme given by the Hamilton-Jacobi-Bellman equation and the
FP control framework is discussed. Under appropriate assumptions, it is shown that the two strate-
gies are equivalent. Some applications of the FP control framework to different models are discussed
and its extension in a mean-field framework is elucidated.
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1. Introduction. The modeling and control of stochastic processes is a very
active research field because of many present and envisioned application in finance,
sciences, and technology. We refer to different stochastic processes as Itō, subdiffusion,
jump, and piecewise-deterministic models as stochastic systems. The research on
stochastic systems is sustained by a well established mathematical theory [13, 48, 67,
114, 120] that provides tools for the investigation of the time evolution of random
quantities in many practical cases. In particular, one of the main tools for analysing
stochastic processes is the fact that the evolution of the probability density function
(PDF) associated to the state of these processes is governed by a linear time-dependent
partial differential equation (PDE), starting from a given initial PDF configuration;
see, e.g., [52, 105, 107]. Indeed, the structure of this linear PDE depends on the
features of the process as we illustrate in this paper. In particular, we remark that
these so-called Fokker-Planck (FP) equations can be derived from the Chapman-
Kolmogorov equation for the transition probability function of a Markov process. A
possible extension of FP equations to model non-Markovian processes is also possible
and results in PDEs with a special structure. Notice that FP equations have been
investigated in many works and in the literature they are named after many famous
scientists including Kolmogorov, Fokker, Planck, Einstein, and Smoluchowski. We use
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the term FP equation for convenience and refer to, e.g., [52] for an historical account
of the subject.

However, while the FP equation has been considered for long time to model the
time evolution of stochastic processes, it is only recently that a control framework for
these processes based on the FP equation has been proposed; see [5] for an earlier
publication. Following this publication, the Authors of this review have considerably
developed this topic [5, 6, 7, 8, 9, 10, 12, 29, 65, 66, 95, 96, 108, 109, 116] and
witnessed a surge of research work in this field focusing on FP models and related
control problems; see, e.g., [25, 28, 56, 57, 58, 74, 77, 78, 125, 127].

For this reason, we believe that the review, presented in this paper, of these recent
developments in an emerging field of applied mathematics is timely and appropriate
and may boost further research on this subject.

In the following, we illustrate different stochastic systems and the correspond-
ing FP equations. We start our discussion considering the Itō stochastic model. It
is a continuous-time stochastic process described by the following multidimensional
stochastic differential equation (SDE) with given initial condition{

dXt = b(Xt, t) dt+ σ(Xt, t) dWt

Xt0 = X0,
(1.1)

where the state variable Xt ∈ Ω ⊆ Rd is subject to deterministic infinitesimal in-
crements driven by the vector valued drift function b, and to random increments
proportional to a multi-dimensional Wiener process dWt ∈ Rm, with stochastically
independent components. We assume that the dispersion matrix σ ∈ Rd×m is full
rank. Concerning the existence and uniqueness of solutions Xt to (1.1), for a given
realization of Wt; see, e.g., [67, 114]. As discussed in [60] Remark 2.1, pag. 161, we
assume that the space of the stochastic processes is the one adapted to the filtration
generated by the Wiener process.

The FP equation associated to the process (1.1) is given by

∂tf(x, t)−
d∑

i,j=1

∂2
xixj

(aij(x, t) f(x, t)) +

d∑
i=1

∂xi (bi(x, t) f(x, t)) = 0 (1.2)

f(x, 0) = f0(x) (1.3)

where f denotes the PDF of the process, f0 represents the initial PDF distribution,
and hence f0(x) ≥ 0 with

∫
Ω
f0(x) dx = 1. The diffusion coefficient is given by

a = σ σ>/2, with elements

aij =
1

2

m∑
k=1

σik σjk.

Notice that in the FP equation (1.2), the ‘space’ dimension corresponds to the number
of components of the stochastic process. We remark that by dealing with (1.2) - (1.3),
we are restricting the statistical analysis to those processes that own an absolutely
continuous probability measure.

While we focus our discussion on linear FP problems, at this point we mention
that there exists a special class of problems with the structure (1.1) that leads to a
nonlinear FP extension of (1.2) - (1.3). This class of problems is the focus of the
mean-field approach that is discussed in Section 3 below.
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The FP problem (1.2) - (1.3) and the following ones, can be defined in bounded or
unbounded domains in Rd. Existence and uniqueness of solutions to these problems
often relay on the concept of uniform parabolicity. For the case Ω = Rd, we refer
to, e.g., [14, 60, 88, 24] and the references therein. In the case of bounded domains,
boundary conditions for the FP model must be chosen that ought to be meaningful for
the underlying stochastic process, as for example in the case of absorbing and reflecting
barriers [111]. Specifically, an absorbing barrier is one where the process leaves the
domain Ω and the corresponding boundary condition for the FP equation corresponds
to homogeneous Dirichlet boundary conditions. On the other hand, reflecting barriers
let the process remain in Ω and thus the corresponding FP boundary conditions are
modelled by the requirement that the flux of probability is zero. For this purpose,
notice that the FP equation (1.2) can be written in flux form: ∂tf = ∇ · F (x, t; f),
where the ith component of the flux is given by

Fi(x, t; f) =

d∑
j=1

∂xj
(aij(x, t) f(x, t))− bi(x, t) f(x, t).

Therefore zero-flux (reflecting) boundary conditions are given by

F · n = 0, on ∂Ω× (0, T ), (1.4)

where n is the unit outward normal to ∂Ω.
The stochastic model (1.1) appears in, e.g., the simulation of Brownian motion

with drift, as a Langevin equation, and it represents also a basic model in finance.
However, in some applications in biology and physics, anomalous diffusion processes
are observed that can be modelled by an extension of (1.1). The diffusion process
is said to be normal when the variance of the process grows linearly in time, i.e.
Var(Xt) ∝ t, which is the case of the Wiener process. If the variance grows in time
as Var(Xt) ∝ tα, with exponent α 6= 1, then the diffusion is said to be anomalous. In
particular, a subdiffusion process is described by a state variable Y (t) ∈ Rd driven by
the following model [91, 121] Yt = XS(t)

dXτ = b(Xτ , τ) dτ + σ(Xτ , τ) dWτ

Xτ0 = X0.
(1.5)

The inverse-time α-stable subordinator S(t) ∈ R is defined as a first-passage time
process, S(t) = inf{τ, U(τ) > t}, where U represents a strictly increasing α-stable
Lévy motion, α ∈ (0, 1). Moreover, the processes Wτ and S(t) are assumed to be
independent.

By denoting with f(x, t) the PDF for the process Y (t), driven by (1.5), the
following fractional FP equation results [91, 93, 94]

∂tf(x, t)− 0D
1−α
t

 d∑
i,j=1

∂2
xixj

(aij(x, t)f(x, t))−
d∑
i=1

∂xi
(bi(x, t)f(x, t))

 = 0

f(x, 0) = f0(x).

In this problem, the operator

0D
1−α
t g(t) =

1

Γ(α)
∂t

∫ t

0

(t− s)α−1g(s)ds,
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represents the fractional Riemann-Liouville derivative. Notice that the non-Markovian
process Y (t) results in a nonlocal differential operator in the (fractional) FP equation.

We see that in the Itō model (1.1) and in the subdiffusion model (1.5), noise is
added to a deterministic evolution equation to model random perturbations. On the
other hand, random perturbations can also be modelled by events that change the
deterministic motion at isolated instants of time as in, e.g., queueing and renewal
processes [45].

A large effort has been put in the investigation of the dynamics of jump-diffusion
processes; see, e.g., [13]. In this case, the time evolution of the state process Xt can be
described by a stochastic differential equation that adds to the Itō model a compound
Poisson process Pt ∈ Rd as follows

dXt = b(Xt, t)dt+ σ(Xt, t)dWt + dPt, (1.6)

where Pt is exponentially distributed in time with λe−λ∆t, and λ represents the rate
of jumps. In this process, the amplitude of the state jumps is distributed according
to a PDF function g = g(x).

The evolution of the PDF of (1.6) is modelled by a FP partial-integro differential
equation [65], whose integral part is due to the compound Poisson process Pt, as
follows

∂tf(x, t)−
d∑

i,j=1

∂2
xixj

((aij(x, t)f(x, t)) +

d∑
i=1

∂xi(bi(x, t)f(x, t))

= λ

∫
Ω

[f(x− y, t)− f(x, t)]g(y)dy.

(1.7)

Next, we illustrate a less investigated point process where a dynamical system
changes its deterministic structure at random points in time following a discrete
Markov process. These processes were first discussed in [82, 100], whereas a first
mathematical characterization of systems that switch randomly within a certain num-
ber of deterministic states at random times is given in [48]. In this reference, the
name piecewise-deterministic processes (PDP) appears for the first time. PDP pro-
cesses may also include stochastic hybrid systems and switching systems; see, e.g.,
[16, 37, 39, 44, 55].

For our discussion, we consider a class of PDP models described by a state function
that is continuous in time and is driven by a discrete state Markov process as follows

Ẋ(t) = AS(t)(X), t ∈ [t0,∞), (1.8)

where S(t) : [t0,∞) → S is the Markov process with a discrete set of states S =
{1, . . . , S}. This process is characterized by two random processes: 1) a Poisson
process for the switching times having an exponential PDF of transition events as
follows

ψs(t) = µse
−µst, with

∫ ∞
0

ψs(t) dt = 1, (1.9)

for each state s ∈ S; and 2) at the jump times, the process S(t) changes its value based
on a stochastic transition probability matrix, {qij}, with the following properties

0 ≤ qij ≤ 1,

M∑
i=1

qij = 1, i, j ∈ S.
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Given s ∈ S, we say that the dynamics is in the (deterministic) state s, and
it is driven by the function As : Ω → Rd, which belongs to the set of functions
{A1, . . . , AS}. The state function satisfies the initial condition X(t0) = X0 ∈ Ω,
being in the initial state s0 = S(t0). These models include dichotomic noise, ran-
dom telegraph processes, transport processes, and binary noise. Further, applications
include reacting-diffusing systems [92], biological dispersal [2, 118], non-Maxwellian
equilibrium [3, 11, 101], and filtered telegraph signal [104, 123].

Corresponding to the PDP model (1.8), we have the following FP system of first-
order hyperbolic PDEs with coupling depending on the stochastic transition matrix
as follows [8, 19, 43]

∂tfs(x, t) + ∂x(As(x) fs(x, t)) =

S∑
j=1

Qsj(x) fj(x, t), s = 1, . . . , S, (1.10)

where Qsj , depending on µj and qsj , is given by

Qsj =

{
µj qsj if j 6= s,
µs (qss − 1).

(1.11)

We see that the FP framework provides a unique bridge between SDEs and PDEs,
and many of these PDEs constitute a focus of modern developments in applied math-
ematics. In fact, notice that FP equations of multi-dimensional stochastic processes
give rise to high-dimensional PDEs, also of fractional type; moreover, notice that
jump-diffusion processes give rise to integro-PDEs, etc. These are all emerging topics
in applied mathematics.

It is the aim of this paper to illustrate a new control strategy for stochastic sys-
tems based on the corresponding FP models. As in any other control approach to
stochastic processes, the first step in the formulation of a control mechanism is to in-
clude control functions in, e.g., the drift and/or dispersion coefficients of the stochastic
differential model. Specifically, we focus on the case where the drift coefficient b is a
function of a control u. However, the FP control framework accommodates equally
well other control mechanisms that may enter in any of the coefficients characterizing
the stochastic process and appearing in the corresponding FP models.

The next step in the formulation of any control scheme is to model the objective
of the control. In particular, it may be required to drive the random process to follow
a desired trajectory or attain a required terminal configuration. In the framework
of stochastic optimal control, these tasks are formulated by introducing an objective
functional that depends on the state and control variables. For non-deterministic
processes the state evolution Xt is random, so that a direct insertion of a stochas-
tic process into a deterministic objective functional results into a random variable.
Therefore, to define a deterministic objective, the average on all possible trajectories
Xt is required [61]. With this procedure, the following objective is usually considered

J(X,u) = E[

∫ T

0

L(t,Xt, u(·, t)) dt+ Ψ[XT ]], (1.12)

where E[·] represents the expectation on the measure of the stochastic process. This
formulation is omnipresent in almost all stochastic optimal control problems consid-
ered in the scientific literature; see, e.g., [61, 102].

We notice that in this approach the control must be aware of all realization of the
state at all times. On the other hand, the stochastic process can be characterized by
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its statistical features, described by the PDF distribution. This fact has motivated
much work on different control strategies that consider the ensemble of all possible
trajectories. In [62, 81, 84, 119] PDF-based control schemes were proposed, where
the objective depends on the PDF of the stochastic state variable. In this way, a
deterministic objective results and no average is needed, and along these lines, past
scientific literature has dealt with alternative objectives as in [81, 84], where the
objective is defined by the Kullback-Leibler distance between the state PDF and a
desired one. On the other hand, in [62, 119] a square distance between the state
PDF and a desired PDF is considered. Although these works consider deterministic
objectives formulated with the PDF, they use stochastic models and the state PDF
is obtained by interpolation techniques.

The last conceptually innovative step of using the FP equation to model the
evolution of the PDF associated to a stochastic system appears for the first time in
[5, 6, 7, 8], where a control framework that considers stochastic control problems from
a statistical point of view, with the perspective to drive the collective behaviour of
the process, is investigated. This alternative approach reformulates the control prob-
lem from stochastic to deterministic, based on the fact that the state of a stochastic
process can be completely characterized by the PDF. Notice that solving the FP equa-
tion, a time-dependent PDF is obtained that can describe non-equilibrium statistics.
We remark that independently of the references above, the possibility of formulating
control problems with density function models as the FP equation was mentioned in
[30, 31].

From the discussion above, it is clear that the formulation of control objectives
in terms of the PDF and the use of the FP equation provide a consistent framework
to formulate a robust optimal control strategy for stochastic processes. The work-
ing paradigm of the FP-based control of stochastic models is the following. First,
one reasonably assumes that the initial PDF of the state variable is known at the
initial time, and the state variable Xt evolves according to a stochastic differential
model subject to the action of a multidimensional controller u. Corresponding to this
controlled model, we have a FP equation that includes the same controls in its coeffi-
cients. This FP equation and a PDF-based objective define an open-loop FP optimal
control problem whose solution provides the control sought. In this way, the prob-
lem of controlling a stochastic process is put in the realm of optimal control of PDE
models where many theoretical results and powerful solution tools are available; see,
e.g., [26, 89, 117] and references therein. In particular in [5, 6, 7, 8], a model predic-
tive control (MPC) approach [70, 71] is pursued to construct fast closed-loop control
schemes for the stochastic systems under consideration. These MPC schemes provide
robust controllers that apply equally well to linear and nonlinear models and allow
to accommodate different control- and state constraints [71, 79]. Recently, a more
extensive theoretical analysis for space-time dependent controls has been presented in
[56, 57, 108, 109].

We remark that the direct connection between stochastic models and the related
FP equations clarifies also the meaning and choice of different functional dependencies
of the control function with respect to the space and time variables. In fact, through
the identification Xt = x at time t, we can identify the control entering in the SDE
model as u = u(Xt, t) with the control function appearing in the FP equation as
u = u(x, t). Thus formally a space-time dependent control function may correspond
to a time-dependent feedback law, and this fact immediately suggests a connection
between the Hamilton-Jacobi-Bellman (HJB) and the FP control frameworks. In this
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paper, we discuss this connection and show that the FP-based strategy provides the
same optimal control as the HJB method for an appropriate choice of the objectives.

In the following section, we introduce the FP control framework within the La-
grange formalism and discuss the optimality systems corresponding to specific choices
of the objectives. We illustrate how the solution to the optimality system with
forward- and adjoint FP equations and an optimality condition equation characterizes
the optimal control solution. We also comment on appropriate discretization schemes
for the FP equation. These schemes provide stable and accurate approximation, while
guaranteeing positivity and conservation of total probability. In Section 3, we discuss
the case of N coupled SDEs, with a special structure of the coupling, and discuss
the limit N →∞. We show that with this limit a mean-field SDE is obtained whose
PDF is governed by a nonlinear FP model, which we use to discuss the case of non-
linear FP control problems. In Section 4, the connection between the HJB control
framework and the FP control strategy is discussed. In Section 5, we complete our
discussion on the FP optimization strategy reviewing works on inverse problems (pa-
rameter identification, calibration) governed by the FP equation. Section 6 is devoted
to applications. We consider the control of a quantum spin system described by a
stochastic Lindblad master equation, the control of motion of a pedestrian in a crowd,
and the optimal control of a PDP system arising in biology. A section of conclusions
completes this work.

2. The Fokker-Planck control framework. In this section, we illustrate the
Fokker-Planck control framework for different stochastic processes and discuss the
derivation of the optimality systems characterizing the solutions to the FP optimal
control problems. The formulation of the FP optimal control of a stochastic system
requires the following terms: 1) The definition of a (or many) control function u that
represents the driving mechanism of the stochastic system; 2) The FP equation cor-
responding to the stochastic system, that includes the control function, as parameter
modelling the PDF of the controlled system, denoted by f(u); 3) The objective that
models the purpose of the control on the system.

We denote with u the control function belonging to a closed and convex set of
admissible controls Uad ⊂ U , where we assume that U is a real Hilbert space with inner
product and norm denoted by (·, ·) and | · |, respectively. The PDF of the system as a
function of u is denoted by f(u) ∈ F , where F is a Hilbert space with inner product
and norm denoted by ((·, ·)) and || · ||. The PDF f is given by the solution of the FP
problem, which is formally expressed as c(f, u) = 0, including boundary- and initial
conditions, where c : F × U → F ∗, where F ∗ is the dual of F , and we assume that c
is Frechét-differentiable. It is required that the solution of this equation with given u
defines a continuous mapping u→ f(u). Let us denote its first derivative at u in the
direction δu by f ′(u, δu). It is characterized as the solution to the linearized equality
constraint cf (f, u) f ′(u, δu) + cu(f, u) δu = 0.

A cost functional is formally given by

J(·, ·) : F × U → R.

We assume that J(f, u) is Frechét-differentiable, and using the mapping u → f(u),
we can define the reduced cost functional Ĵ(u) = J(f(u), u). In particular, one can
consider objectives of the following form

J(f, u) = h(f) + ν g(u),
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where ν ≥ 0 is the weight of the cost of the control, and h and g are required to be
bounded from below and g(u)→∞ as |u| → ∞.

A general formulation of the FP optimal control problem follows the same guide-
lines of any optimal control with PDE models; see, e.g., [26, 89, 117]. We have

min
u∈Uad

J(f, u)

s.t. c(f, u) = 0.

Equivalently, we have: Find u ∈ Uad such that Ĵ(u) = infv∈Uad
Ĵ(v).

A local solution u ∈ Uad to the optimal control problem can be characterized by
the first order optimality condition as follows

Ĵ ′(u, v − u) ≥ 0 for all v ∈ Uad.

Now, to estimate this inequality, one introduces p ∈ F as the unique solution to
the following adjoint FP equation

c∗f (f, u) p+ h′(f) = 0,

where the adjoint operator c∗f : F → F ∗, and p is the Lagrange multiplier, also called
the adjoint variable. Using cf (f, u) f ′(u, δu)+cu(f, u) δu = 0 and δu = v−u, we have

Ĵ ′(u, v − u) = (ν g′(u) + c∗u p , v − u) ≥ 0 for all v ∈ Uad. (2.1)

In the case Uad = U , this condition becomes Ĵ ′(u) = 0.
Summarizing, the solution to the FP optimal control problem is characterized by

the following optimality system

c(f, u) = 0

cf (f, u)∗ p+ h′(f) = 0 (2.2)
(ν g′(u) + c∗u p , v − u) ≥ 0 for all v ∈ Uad.

We remark that the FP equation is a particular instance of the forward Kolmogorov
equation and the adjoint FP equation resembles the backward Kolmogorov equation.
In the FP optimality system (2.2), we refer to the third equation as the optimality
condition, and ∇Ĵ(u) = ν g′(u) + c∗u p(u) represents the reduced gradient.

Another way to derive the optimality system is by introducing the Lagrangian
function

L(f, u, p) = J(f, u) + 〈c(f, u), p〉F∗,F .

By formally equating to zero the Frechét derivatives of L with respect to the triple
(f, u, p), we obtain the optimality system; see, e.g., [89, 97, 117]. Inequality constraints
are treated by adding Lagrangian multipliers and corresponding complementarity con-
ditions.

We remark that the FP control framework results in FP equations with control
in the coefficients and, in this case, proving existence and uniqueness of the solution
of this optimal control problem is a difficult task. The case of controlled drift of the
form b(x, u) = −γ(x)+u as been studied in [6]. By following the arguments in [1, 117]
and subject to appropriate hypothesis on the structure of the FP control problem,
existence of the optimal solutions is proved in [56, 57, 106, 108, 109, 112]. Further,
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because the control mechanism enters non-linearly in FP control problems, it is in
general not possible to prove uniqueness of optimal control solutions; however, see [6]
for a special case. Notice that solutions of optimality systems represent only extremal
points and additional second-order conditions must be satisfied to guarantee that they
are the minima sought; see, e.g., [36, 117] for additional details.

Now, we illustrate the FP control framework for a Itō process. Consider the prob-
lem to determine a control u = u(x, t) such that starting with an initial distribution
f0, the process evolves towards a desired target probability density fd(x, t) at time
t = T . We have

min J(f, u) :=
1

2
‖f(·, T )− fd(·, T )‖2L2(Ω) +

ν

2
‖u‖2L2(Q) (2.3)

∂tf(x, t)− 1

2

d∑
i,j=1

∂2
xixj

(aij(x, t) f(x, t)) +

d∑
i=1

∂xi
(bi(x, t;u) f(x, t)) = 0 (2.4)

f(x, 0) = f0(x). (2.5)

The first-order necessary optimality conditions that characterize the optimal so-
lution to (2.3) - (2.5) are given by the following optimality system

∂tf − 1
2

∑d
i,j=1 ∂

2
xixj

(aij f) +
∑d
i=1 ∂xi

(bi(u) f) = 0 in Q,
f(x, 0) = f0(x) in Ω,

−∂tp− 1
2

∑d
i,j=1 aij ∂

2
xixj

p−
∑d
i=1 bi(u) ∂xi p = 0 in Q,

p(x, T ) = f(x, T )− fd(x, T ) in Ω,

ν ul +
∑d
i=1 p ∂xi

( ∂bi∂ul
f) = 0 in Q, l = 1, . . . , `

(2.6)

where Q = Ω× (0, T ), Σ = ∂Ω× (0, T ).
Notice that the case of piecewise constant controls discussed in [6], in the frame-

work of a MPC procedure, corresponds to the following optimality condition

ν ul +

∫ tk+1

tk

∫
Ω

d∑
i=1

p ∂xi

(
∂bi
∂ul

f

)
dx dt = 0,

where (tk, tk+1) corresponds to a time interval where the control is constant. The
case u = u(t) would require to remove the time integration from this formula.

Notice that in (2.3) - (2.5) we have not specified the boundary conditions for the
FP equation. In the case of absorbing boundary conditions, f = 0 on ∂Ω, the same
conditions result for the adjoint variable. On the other hand, flux zero boundary
conditions result in homogeneous Neumann conditions for the adjoint variable.

The implementation of the FP control strategy requires discretization schemes
that are appropriate for approximating the FP forward and adjoint problems. For
this purpose, it appears essential that these approximation schemes guarantee positiv-
ity of the FP solution, together with stability and accuracy. In particular, in the case
of Itō processes that have a corresponding convection-diffusion Fokker-Planck equa-
tion for the PDF, a second-order space discretization scheme that guarantees all these
properties is based on an exponential fitting technique that was proposed indepen-
dently by Scharfetter & Gummel [110] and Chang & Cooper (CC) [38], and analyzed
in [6, 32, 33, 95, 65]. This scheme appears also appropriate for the discretization of
generalized FP equations, i.e. for fractional FP equations and for FP equations with
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an integral operator that appears in the case of jump-diffusion processes [65] . The
CC scheme has been further analysed in [108, 109] in combination with the alternate
direction method. We remark that an additional advantage of the CC scheme is that,
consistently to the discretize-before-optimize strategy [26], the transpose of the FP
CC stencil provides an appropriate discretization of the adjoint FP equation.

In the case of PDP processes, the Fokker-Planck equation is a system of first or-
der hyperbolic PDEs, and in this case a first-order time-explicit discretization scheme
preserving the required structural properties of the PDF solution is discussed in [4, 8].
Further schemes for FP PDP problems are discussed in [42, 54]. Recently, the ap-
proximation of FP optimality systems on unbounded domains based on Hermite poly-
nomials has been investigated in [96]. Clearly, the solution of FP optimality systems
becomes very challenging when high-dimensional stochastic processes are considered.
For this reason, special techniques for solving high-dimensional PDEs are under in-
vestigation; see, e.g., [50, 72, 126].

The FP optimal control strategy has been applied successfully to many different
systems. Concerning Itō stochastic processes, we refer to [6] for application of the FP
control framework to a stochastic Lotka-Volterra model, to [7] for the FP control of
a stochastic quantum spin model, to [108, 109] for the control of crowd motion and
to [77, 78] for that of the statistics of the spike emission of a neural membrane. For
stochastic Itō systems that include random jumps, e.g., for finance modelling, and
sparsity of the control we quote [66] and [9] for sub-diffusion models. Concerning
other stochastic systems, the FP control approach has been applied successfully also
to PDP models such as [8], to the optimization of antibiotic subtilin production [116],
and to discrete random walks [29].

3. The mean-field approach. In this section, we discuss a special case of
multi-dimensional Itō processes that allows to investigate the limit when the number
of dimensions goes to infinity. For this purpose, we explicitly refer to a system of N
identical interacting particles whose motion is subject to Wiener noises in a Rd space,
such that the following system results

dXi
t =

1

N

N∑
j=1

b(Xi
t , X

j
t ) dt+

1

N

N∑
j=1

σ(Xi
t , X

j
t ) dW i

t (3.1)

Xi
t0 = Xi

0, i = 1, . . . , N, (3.2)

where Xi
t ∈ Rd denotes the position (state) of the ith particle. Notice that the

structure of (3.1) assumes that in the coefficients an average of particle interactions
appears and, for σ =const., each particle is subject to an independent Wiener noise.

A special case of b(Xi
t , X

j
t ) has been considered in, e.g., [49] as follows

b(xi, xj) = −(xi)3 + xi − θ (xi − xj),

where θ > 0. This choice corresponds to a system of coupled nonlinear oscillators.
As already discussed in the Introduction, in correspondence to (3.1)-(3.2), we

have the following dN -dimensional FP equation

∂tfN −
1

2

N∑
i=1

∆i


 1

N

N∑
j=1

σ(xi, xj)

2

fN

+

N∑
i=1

∇i ·

 1

N

N∑
j=1

b(xi, xj)

 fN

 =0

(3.3)
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where fN = fN (x, t), x = (x1, . . . , xN ), xi ∈ Rd. We denote with ∆i, resp. ∇i, the
Rd Laplacian, resp. the Rd gradient for the variable coordinates of the ith particle.

With (3.3), we formulate a Cauchy problem specifying an initial PDF fN (x, 0) =
f0N (x). Since f0N represents the initial PDF distribution, we have f0N (x) ≥ 0 with∫
RdN f0N (x) dx = 1. However, the numerical solution of this problem is, in general,
practically impossible to compute even for a moderate value of N . On the other hand,
a powerful idea in order to reduce the dimensionality of this problem can be borrowed
from physics, namely a mean-field strategy [49, 83]. This strategy considers the limit
of (3.1)-(3.2) as N →∞ such that

1

N

N∑
j=1

b(xi, xj)→ E(b(xi, ·)), (3.4)

and similarly for σ we have 1
N

∑N
j=1 σ(xi, xj)→ E(σ(xi, ·)). If these limits hold, then

the stochastic differential equations (3.1) appear as decoupled and equivalent to each
other in the sense that any of the Xi

t represents the same process.
The validity of (3.4) has been rigorously discussed in, e.g., [27, 49, 115]. In

particular, the following empirical measure process

XN (A, t) :=
1

N

N∑
j=1

1A(Xj
t ), (3.5)

where A denotes any Borel set of Rd and 1A(·) is the indicator function of A, is proved
converge to a unique deterministic measure µt(A).

We remark that the above results are valid under the condition of indistinguisha-
bility, which means that the probability law (3.5) is invariant under exchange of par-
ticles. This is possible if the initial conditions Xi

0 are independently and identically
distributed and all the drift and dispersion functions are the same and symmetric
under exchange of particles; see, e.g., [115].

Based on these consideration, in the limit N → ∞, one considers the following
Itō process, where X denotes any of the Xi. We have

dXt = Eµt
[b(Xt, ·)] dt+ Eµt

[σ(Xt, ·)] dWt (3.6)
Xt0 = X0. (3.7)

As in [27] and under suitable conditions on b and σ, the measure µ becomes absolutely
continuous and we can write µt(dx) = f(·, t) dx, where f is the time dependent PDF
of (3.6)-(3.7). Corresponding to this process, we have the following mean-field FP
model

∂tf(x, t)− 1

2
∆

[
f(x, t)

(∫
Rd

σ(x, y)f(y, t)dy

)2
]

+∇ ·
[
f(x, t)

(∫
Rd

b(x, y)f(y, t)dy

)]
= 0,

where ∆, resp. ∇, represent the Laplacian, resp. the gradient, in Rd. Notice that the
nonlinear FP equation above can be written in a more compact form as follows

∂tf(x, t)− 1

2
∆
[
f(x, t) (Eft [σ(x, ·)])2

]
+∇ · [f(x, t) (Eft [b(x, ·)])] = 0. (3.8)

However, the explicit form better shows the non-linearity of the mean-field FP equa-
tion with respect to its PDF solution f .
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In [27], it is proved and demonstrated numerically by Monte Carlo simulation
that the empirical PDF obtained with (3.1)-(3.2) converges to the PDF given by (3.8)
with a rate of 1/

√
N . Therefore we can state that∫
Rd(N−1)

fN (x, x2, . . . , xN , t) dx2 . . . dxN ≈ f(x, t),

for N sufficiently large and any choice of the (N − 1) integration variables.
Now, following the focus of our work, we discuss the presence of a control function

in (3.1)-(3.2). In fact, the condition of indistinguishability suggests that one should
consider a unique control function entering in the drift and also only one entering
in the dispersion coefficient. For simplicity, we discuss only the former case; the
extension to the case of control in the dispersion is similar.

Let us augment the drift in (3.1) by a control function u = u(x, t) as follows:
b = b(u(xi, t);xi, xj). With this setting, and following the above discussion, we obtain
a controlled mean-field FP equation as follows

∂tf(x, t)− 1

2
∆
[
f(x, t)Eft [σ(x, ·)]2

]
+∇ · [f(x, t)Eft [b(u(x, t);x, ·)]] = 0. (3.9)

Next, we define a class of cost functionals, for the N -particle setting, that appears
appropriate in our mean-field framework. We have

JN (fN , u) =

∫ T

0

∫
RdN

 1

N

N∑
j=1

`(xj , u(xj , t))

 fN (x1, . . . , xN , t) dx1 . . . dxN . (3.10)

This functional models the purpose of the control and its cost.
Now, we can exploit the symmetric structure of our evolution problem to obtain

the following limit objective

J(f, u) =

∫ T

0

∫
Rd

`(x, u(x, t)) f(x, t) dxdt. (3.11)

Therefore, within the FP control framework, we can determine the optimal control
u by solving an optimization problem that requires to minimize (3.11) subject to the
differential constraint given by (3.9). In particular, considering the case of a constant
σ, the adjoint mean-field FP equation for minimizing (3.11) subject to (3.9) is given
by

∂tp(x, t) +
σ2

2
∆p(x, t) +∇p(x, t) ·

∫
Rd

b(u(x, t);x, y)f(y, t) dy (3.12)

+

∫
Rd

(b(u(y, t); y, x) · ∇p(y, t)) f(y, t) dy + `(x, u(x, t)) = 0,

and the terminal condition p(x, T ) = 0.
With this adjoint variable and without bounds on the control, we obtain the

following optimality condition

f(x, t)

(
∇p(x, t) ·

∫
Rd

∂ub(u(x, t);x, y) f(y, t) dy + ∂u`(x, u(x, t))

)
= 0. (3.13)

While we elaborate further on this result in the next section, we can already
point out one of the important outcomes of the mean-field approach for determining
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an optimal control to the N -particle problem (3.1)-(3.2) with objectives given by
EfN [`(X,u)]. In fact, while this problem is intractable due to its high dimensionality,
We could solve the problem of minimising (3.11) subject to (3.9) and find a control u
that is the optimal one when N →∞.

4. The connection between the HJB and FP control frameworks. In
this section, we illustrate the connection between the FP control framework [5, 6,
8] and the Hamilton-Jacobi-Bellman (HJB) control strategy [22, 60, 90, 113]. The
present discussion outlines some of the results in [10] with some additional remarks
concerning a Merton portfolio problem, the issue of chosing boundary conditions in
HJB problems, and the mean-field framework. Our purpose is to show that the HJB
control approach emerges naturally from the FP control framework when considering
cost functionals of expectation type.

Consider the following d-dimensional controlled Itō stochastic process{
dXt = b(Xt, u(Xt, t))dt+ σ(Xt) dWt, t ∈ (t0, T ]
Xt0 = x0

(4.1)

We denote with A the set of Markovian controls that contains all jointly mea-
surable functions u with u(x, t) ∈ A ⊂ Rl. Controls of this kind are called Markov
control policies [60].

In a closed-loop control setting, the function u uses the current value Xt to affect
the dynamics of the stochastic process by adjusting the drift function. Corresponding
to (4.1), we consider the following functional

Ct0,x0
(u) = E[

∫ T

t0

`(Xs, u(Xs, s))ds+ g(XT ) | Xt0 = x0], (4.2)

which is a conditional expectation to the process Xt taking the value x0 at time t0.
We refer to the functions ` and g as the running cost and the terminal cost functions,
respectively.

Now, the optimal control u∗ that minimizes Ct0,x0
(u) for the process (4.1) is given

by

u∗ = argminu∈A Ct0,x0
(u). (4.3)

Further, we define the following value function

q(x, t) := min
u∈A

Ct,x(u) = Ct,x(u∗). (4.4)

The following theorem states that q is the solution to a HJB equation; see, e.g.,
[22, 60].

Theorem 4.1. Assume that Xt solves (4.1) with a control function u and that
the function q defined by (4.4) is bounded and smooth. Then q satisfies the following
HJB equation {

∂tq +H(x, t,Dq,D2q) = 0,
q(x, T ) = g(x),

(4.5)

with the Hamiltonian function

H(x, t,Dq,D2q) := min
v∈A

[

d∑
i=1

bi(x, v)∂xi
q(x, t)+

d∑
i,j=1

aij(x)∂2
xixj

q(x, t)+`(x, v)]. (4.6)
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Notice that, assuming differentiability with respect to the control function in (4.6),
the optimal control u∗ satisfies at each time t and for each x the following optimality
condition

d∑
i=1

∂ubi(x, u
∗(x, t))∂xi

q(x, t) + ∂u`(x, u
∗(x, t)) = 0. (4.7)

As in the FP case, existence and uniqueness of solutions to the HJB equation often
involve the concept of uniform parabolicity; see [14, 46, 60]. If this non-degeneracy
condition holds, results from the theory of PDEs of parabolic type imply existence
and uniqueness of solutions to the HJB problem (4.5) with the properties required in
the Verification Theorem [60].

Now, we discuss the Fokker-Planck optimal control strategy based on the same
optimization setting. In fact, we start from the functional (4.2) and notice that the
expectation is performed with respect to the probability measure induced by the
process Xt of (4.1). Therefore, following our assumption that this process owns an
absolutely continuous probability measure, we can explicitate the expectation in (4.2)
in terms of the PDF governed by the FP problem with initial density distribution
f0(x) = δ(x− x0) at t = t0. Thus, the functional (4.2) becomes

J(f(u), u) :=

∫ T

t0

∫
Rd

`(x, u(x, s)) f(x, s) ds dx+

∫
Rd

g(x)f(x, T ) dx. (4.8)

Therefore the optimization problem (4.3) can be equivalently stated as a FP opti-
mal control problem where an optimal control u in the admissible set A is sought
that minimizes (4.8). In doing this, we are identifying the chosen admissible set of
Markov control policies with the admissible set of controls in the FP optimal control
formulation.

Next, to characterize the optimal FP solution to this problem, we introduce the
following Lagrange function

L(f, p, u) :=

∫ T

t0

∫
Rd

`(x, u(x, s))f(x, s)dxds+

∫
Rd

g(x)f(x, T )dx

+

∫ T

t0

∫
Rd

p(x, s)
[
− ∂sf(x, s)−

d∑
i=1

∂xi
(bi(x, u(x, s))f(x, s))

+

d∑
ij=1

∂xixj
(aij(x)f(x, s))

]
dxds.

(4.9)

Thus, we obtain that the optimal control solution is characterized as the solution to
the following optimality system

−∂tf(x, t)−
∑d
i=1 ∂xi

(bi(x, u(x, t))f(x, t)) +
∑d
ij=1 ∂xixj

(aij(x)f(x, t)) = 0,

f(x, t0) = f0(x),
(4.10)

∂tp(x, t) +
∑d
i=1 bi(x, u(x, t))∂xip(x, t) +

∑d
ij=1 aij(x)∂xixjp(x, t) + `(x, u(x, t)) = 0,

p(x, T ) = g(x),
(4.11)



A FP CONTROL FRAMEWORK FOR STOCHASTIC SYSTEMS 15

and

f(x, t)

(
d∑
i=1

∂ubi(x, u(x, t))∂xi
p(x, t) + ∂u`(x, u(x, t))

)
= 0. (4.12)

Notice that a sufficient condition for (4.12) to hold is that the optimality condi-
tion (4.7) for the minimization of the Hamiltonian in the HJB formulation is satisfied.
We also remark that, assuming uniform parabolicity of the FP operator, the resulting
PDF is almost everywhere non-negative and therefore the HJB condition (4.7) ap-
pears to be also a necessary condition for optimality. Indeed, the HJB-FP connection
can be shown in a broader sense working with the Pontryagin’s maximum principle
framework that, in fact, can be proven using dynamic programming and the related
HJB equation; see, e.g., [18].

The result above demonstrates that we can identify the FP Lagrange multiplier p
with the HJB value function q, since at optimality, the p and q differential problems
coincide. Further, using (4.7) we could replace the optimal control u in terms of p in
the backward FP adjoint equation (4.11) and obtain the HJB equation in a nonlinear
form that is also common in the literature. Therefore the control u does not depend
explicitly on the density f and this fact explains why the feedback control is based
only on the value function.

The investigation of the HJB-FP connection may result very fruitful in order
to extend the HJB approach to accommodate different costs (see Section 6) of the
controls and different control constraints. Moreover, we remark that the HJB-FP
connection can be instrumental for the development of efficient numerical schemes
for solving HJB problems. On the other hand, it provides a framework that helps
establishing appropriate boundary conditions for HJB models.

To also illustrate this latter fact, we exploit the HJB-FP connection to obtain an
alternative formulation of the optimal Merton portfolio problem [60]. The evolution
process corresponding to the Merton Portfolio problem is modelled by the following
stochastic differential equation

dXt =
[
((1− u1)r + u1µ)Xt − u2

]
dt+ σu1Xt dWt,

X0 = x0,
(4.13)

together with the following maximization problem: Find u1, u2 such that

max
u1,u2

J(Xt, u1, u2) := E

[∫ T

0

e−βtl(u2)dt

]
,

where Xt ≥ 0 represents the wealth of the portfolio. The objective can also be written
as follows

J(f, u1, u2) :=

∫ ∞
0

∫ T

0

e−βtl(u2)f(x, t) dxdt. (4.14)

Here, r < µ is the interest rate in the riskless market, µ is the expected return,
σ > 0 is the volatility of the stock market, β > 0 is the discount rate. Further,
u1 = u1(x, t) ∈ [0, 1), is the fraction of wealth in the risky asset and u2 = u2(x, t) ≥ 0
is the consumption rate. The function l(z) is the utility function that satisfies the
following conditions: l(0) = 0, l′(0+) =∞, l′(z) > 0, l′′(z) < 0.
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The stochastic problem (4.13) corresponds to the following FP equation

∂tf(x, t)− 1

2
∂2
x(σ2u2

1x
2f(x, t)) + ∂x

[
(((µ− r)u1 + r)x− u2)f(x, t)

]
=0, (4.15)

f(x, 0) = δ(x− x0). (4.16)

This problem is defined for all x > 0 and the FP equation becomes degenerate at the
boundary x = 0.

In the FP control framework, we define the following optimization problem

max
u1,u2

J(f, u1, u2), subject to (4.15). (4.17)

To this FP optimal control problem corresponds an optimality system with (4.15)
and the following adjoint FP problem

−∂tq(x, t) =
1

2
σ2u2

1x
2∂2
xq(x, t) + (((µ− r)u1 + r)x− u2(x, t))∂xq

+ e−βtl(u2(x, t)) (4.18)
q(x, T ) =0.

Further, the following optimality conditions corresponding to u1 and u2 are obtained

−[σ2x2u1(x, t)∂2
xq(x, t) + (µ− r)x∂xq(x, t)] f(x, t) = 0,

[∂xq(x, t)− e−βtl′(u2(x, t))] f(x, t) = 0.

As we have seen, in the present setting with a cost functional of expectation type,
at optimality the adjoint variable q, which solves (4.18), corresponds to the value
function (4.4). However, the Merton model has a boundary in x = 0 where, because
of the degeneracy in the FP model, the value of the PDF (or its derivative) cannot
be assigned. However, this fact and the derivation of the adjoint problem lead to the
boundary condition q(0, t) = 0. Furthermore, requiring u2(0, t) = 0 appears possible
and compatible with the above boundary conditions. No requirements on u1(x, t)
result and also the case where u1 models borrowing and shorting of stocks can be
tackled. Notice that these conditions are similar to those of (4.17) in Chapter X of
[60].

We argue that the FP-HJB connection has general validity as far as linear FP
equations and expectation cost functionals are considered. We refer to [10] for an
example involving a dichotomic PDP process. The FP-HJB connection has been
already exploited in [108, 109] to develop a feedback control-constrained approach
for crowd motion and in [116] to model and control the micro-biological process of
antibiotic subtilin production.

On the other hand, in the case of nonlinear FP models, it seems difficult to formu-
late a dynamic principle and thus establish a general FP-HJB connection. However,
we can discuss this issue further considering the mean-field framework discussed in
the previous section and consider the mean-field FP control problem governed by
(3.9) with the objective functional given by (4.8). Also in this case, assuming that
σ is a constant function, the optimality condition is given by (3.12) and (3.13), and
assuming that the PDF is almost everywhere positive, we obtain

∇p(x, t) ·
∫
Rd

∂ub(u(x, t);x, y) f(y, t) dy + ∂u`(x, u(x, t)) = 0.
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Now, to simplify our discussion, consider the case

b(u(x, t);x, y) = u(x, t) + b̃(x, y) and `(x, u(x, t)) =
ν

2
u(x, t)2 + ˜̀(x),

then ∂ub = 1 and ∂u` = νu, and the following optimality condition results

∇p(x, t) + ν u(x, t) = 0. (4.19)

As discussed above, we can replace the optimal control given by this equation
(u = −∇p/ν) into the adjoint mean-field FP equation (3.12) and obtain the following

∂tp(x, t) +
σ2

2
∆p(x, t)− 1

2ν
|∇p(x, t)|2 +∇p(x, t) ·

∫
Rd

b̃(x, y)f(y, t) dy

− 1

ν

∫
Rd

|∇p(y, t)|2 f(y, t) dy (4.20)

+

∫
Rd

(
b̃(y, x) · ∇p(y, t)

)
f(y, t) dy + ˜̀(x) = 0,

with the terminal condition p(x, T ) = g(x).
We see that, in the case when b does not model a two particle interaction but

a drift of the form b(u(x, t);x) = u(x, t) + b̃(x), then the last two integral terms in
(4.20) become functions of time only and this adjoint does not reduce to the one
in the standard case. This result actually shows that the entire mean-field control
framework becomes meaningless if we remove particle interactions. Further notice
that in the general mean-field setting, with b = b(u;x, y), the equation (4.20) cannot
be considered a true HJB equation because it depends on the forward PDF solution
that enters in the integral term. This fact appears to be a common feature of all mean-
field control works, including mean-field games [21, 87] where a simplified version of
(4.20) is usually considered that still includes f among its coefficients.

Another important and better known connection between the value function
q(x, t) obtained solving the Hamilton-Jacobi equation, and the Pontryagin’s maxi-
mum principle is discussed in [41]. In this reference, it is proved that the adjoint
function is equal to the negative of the derivative of the value function with respect
to the initial state x. In fact, this correspondence is not in contradiction with the
HJB-FP connection established in the framework of control of stochastic models: we
obtain the same correspondence if we formulate our FP control problem in terms of
the distribution function F (x, t) =

∫ x
−∞ f(x, t) dx rather than for the PDF. Thus in

the Lagrange function L(F,Q, u), we find that the multiplier Q(x, t) equals the minus
derivative of the value function, i.e. −∂xq(x, t).

To illustrate this fact, consider the following one-dimensional Fokker-Planck prob-
lem for the distribution function

∂tF (x, t) = ∂x(a(x)∂xF (x, t))− b(x, u)∂xF (x, t) (4.21)
F (−∞, t) = 0, F (+∞, t) = 1, (4.22)

F (x, 0) = F0(x) =

∫ x

−∞
f0(x) dx. (4.23)
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We introduce the Lagrange multiplier Q(x, t) and the Lagrange function

L(F,Q, u) =

∫
R

∫ T

0

`(x, u)Fx(x, t)dx ds+

∫
R
g(x)Fx(x, T ) dx+∫

R

∫ T

0

Q(x, s) (−Ft − bFx + ∂x(aFx)) dx ds. (4.24)

The resulting adjoint equation is given by

∂tQ(x, t) + ∂x(b(x, u)Q(x, t)) + ∂x(a(x)∂xQ(x, t))− ∂x`(x, t) =0 (4.25)
Q(x, T ) =− ∂xg(x). (4.26)

Further, we obtain the following optimality condition

∂xF (x, t) [∂u`(x, u)−Q(x, t)∂ub(x, u)] = 0. (4.27)

A direct comparison with (4.12) reveals that Q(x, t) ≡ −∂xp(x, t) and thus Q(x, t) =
−∂xq(x, t) where q(x, t) is given in (4.4). Finally, the correspondence with the HJB
equation (4.5) can be established as follows

−∂tQ+ min
v∈A

[−∂x(b(x, v)Q(x, t))− ∂x(a(x)∂xQ(x, t)) + ∂x`(x, v)] =0 (4.28)

Q(x, T ) =− ∂xg(x).

5. The FP framework and inverse problems. In this section, we discuss
the use of the FP control framework for parameter- and functions identification in
stochastic models. In fact, following the widely used PDE optimization formulation
of PDE inverse problems, one can immediately recognize that in the FP framework,
the cost functionals may include measures of discrepancy between simulated PDFs
and measured ones, and between measured and simulated stochastic states and their
statistical properties. Moreover, these objectives can have additional regularization
terms of the functions to be identified.

The FP approach to parameter identification in stochastic models appears to be
a much less investigated topic, with only a few contributions in the last decade. A
pioneering work in this field can be found in [17]. In this work, the estimation of
space-time function coefficients in the FP equation is considered with application to
structured population models. The first attempts to use the FP equation and its
adjoint to calibrate financial models are presented in [80, 53]. In [80], a FP parameter
identification problem with parametrized drift and volatility and a least-square func-
tional of exchange rates is considered. In [53], the identification of local volatility in
the Black-Scholes/Dupire equation from market prices of European Vanilla options is
considered. Further developments in this field in the context of financial mathematics
are discussed in [63].

Another work on parameter identification of drift coefficients in stochastic models
using the FP equation is presented in [51]. This work considers the identification
of a state-dependent drift with the objective to maximize the likelihood of given
observations.

The FP control framework discussed in this paper is also the main focus of the
work [12] devoted to the problem of parameter calibration of Lévy processes. In this
reference, the Lévy measure is approximated in the linear space of splines and the
calibration parameters are the coefficients of the linear combination of compound
Poisson processes. The optimal values of these parameters are obtained by solving
the problem of minimizing a functional representing a Kullback-Leibler distance of
sample measurements.
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6. Applications. In this section, we report results of numerical experiments to
illustrate the ability of the FP control framework to provide robust control functions
that drive stochastic systems to achieve given objectives. Specifically, we discuss some
challenging control problems related to Itō stochastic models and deal with the control
of a biological PDP problem.

One of the fundamental problems in quantum mechanics is the modelling of the
interaction of a quantum system with an external measurement device. For this
purpose, the Liouville - von Neumann master equation, governing the evolution of
the statistical ensemble of a quantum state, is augmented with a ‘dissipator’ term
and results in a Lindblad master equation [8, 15]. Furthermore, in order to model the
action of a measurement operation on the Lindblad dynamics, two types of stochastic
Schrödinger equations have been investigated that correspond to measurements in
continuous time (diffusion process) and to measurements at different instants of time
(jump process) [47, 68].

Based on the results in [7], we illustrate the FP control of a two-level spin system
in the diffusive case [122]. In this case, the stochastic master equation governing the
orientation of the spin components in spherical coordinates is given by{

dϕ(t) = Bϕ(ϕ, θ, u, v) dt+ σ11(ϕ, θ)dW1 + σ12(ϕ, θ)dW2

dθ(t) = Bθ(ϕ, θ, u, v) dt+ σ21(ϕ, θ)dW1 + σ22(ϕ, θ)dW2,
(6.1)

where

Bϕ(ϕ, θ, u, v) = ω + a cot(θ)(u sin(ϕ) + v cos(ϕ))

Bθ(ϕ, θ, u, v) = −a(u cos(ϕ)− v sin(ϕ)) + g
1 + cos(θ)

sin(θ)
(1− (1 + cos(θ)) cos(θ)/4)

σ11(ϕ, θ) = −
√

g
2

1 + cos(θ)

sin(θ)
sin(ϕ), σ12(ϕ, θ) =

√
g
2

1 + cos(θ)

sin(θ)
cos(ϕ),

σ21(ϕ, θ) =
√

g
2 (1 + cos(θ)) cos(ϕ), σ22(ϕ, θ) =

√
g
2 (1 + cos(θ)) sin(ϕ),

and u and v denote magnetic control fields.
Corresponding to the stochastic Bloch equation (6.1), the following FP equation

on the Bloch sphere is obtained

∂tf = −∂ϕ(Bϕ(ϕ, θ, u, v) f)− ∂θ[(Bθ(ϕ, u, v) f ]

+
g

4
∂2
ϕ

(
1 + cos(θ)

1− cos(θ)
f

)
+
g

4
∂2
θ ((1 + cos(θ))2 f), (6.2)

where ϕ ∈ [0, 2π], θ ∈ (0, π), and the solution f(ϕ, θ, t) ≥ 0 is required to be non-
negative and its integral on the domain be conserved and normalized to one.

We consider the optimal control problem governed by the FP equation (6.2) with
initial PDF given by a narrow normalized bi-dimensional Gaussian placed at the
equator at (θ, φ) = (π/2, π) with variances equal to σ = π/20. The aim is to reach a
final desired Gaussian PDF target at the south pole with variances σ = π/8 in a time
horizon of T = 4. In the MPC procedure N = 10 time windows are considered.

Now, to demonstrate the ability of the FP framework to control the stochastic
model (6.1), we insert the resulting sequence of FP optimal control functions in the
stochastic model and perform Monte Carlo simulations. The stochastic trajectories
are computed using the Euler-Maruyama scheme [75] and in each realization the same
controls are used; see Figure 6.1 for a plot of two controlled stochastic trajectories on
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Fig. 6.1. Two controlled stochastic trajectories starting at the equator and reaching the south
pole of the Bloch sphere.

the Bloch sphere. We obtain that all trajectories on the Bloch sphere, although very
different, converge towards the south pole with the desired distribution.

Next, based on results given in [109], we discuss an application of the FP control
framework to crowd motion. Efforts to investigate crowd movement, both empirically
and theoretically, are motivated by many applications as, e.g., emergency evacuation
procedures and efficient planning and designing of structures like bridges, stairways;
see, e.g., [20, 34, 64].

Let us consider the motion of a pedestrian in a crowd [109], whose position at
time t is denoted with X(t), and its velocity field, depending on position, is given by
u(x, t). By assuming that the individual is subject to random collisions, the following
stochastic model appears appropriate

dX(t) = u(X(t), t)dt+ σdW (t),

X(0) = X0.
(6.3)
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In correspondence to this SDE model, we have the following FP problem

∂tf(x, t)− σ2

2

n∑
i=1

∂2
xixi

f(x, t) +

n∑
i=1

∂xi
(ui(x, t)f(x, t)) =0,

f(x, 0) =f0(x).

(6.4)

Now, assume that the domain is bounded and convex with reflecting barriers for the
process (a closed room). This setting results in flux zero boundary conditions, i.e.
(σ

2

2 ∇f − uf) · n̂ = 0, where n̂ is the unit outward normal to ∂Ω.
The control framework consists in determining the control velocity u such that

the process follows as close as possible a desired trajectory x̄(t) in (0, T ) and reaches
a desired terminal position xT at final time. This objective can be formulated as the
minimization of the following tracking functional

J(f, u) = α

∫ T

0

∫
Ω

V (x− x̄(t)) f(x, t) dx dt+ β

∫
Ω

V (x− xT ) f(x, T ) dx+

ν

2

∫ T

0

∫
Ω

B(u(x, t)) dx dt α, β, ν > 0,

(6.5)

where V denotes a convex function (potential) of its arguments, and for B(u) we
consider the following two choices of the cost of the control

B(u(x, t)) = |u(x, t)|2 + |∇u(x, t)|2 (6.6)

B(u(x, t)) = (|u(x, t)|2 + |∇u(x, t)|2)f(x, t). (6.7)

These choices are considered in [109] in order to compare a standard setting of
H1(Q) cost of the control with its expectation counterpart that corresponds to a
setting where the HJB-FP connection holds. In fact, notice that in the second case
(6.7), the adjoint equation reads as follows

−∂tp(x, t)−
σ2

2

n∑
i=1

∂2
xixi

p−
n∑
i=1

ui∂xi
p = −αV (x− xt)−

ν

2
(|u(x, t)|2 + |∇u(x, t)|2),

with p(x, T ) = −βV (x − xT ). Further, because the objective is linear in f , the
functional (6.5) becomes an expectation cost functional. Now, we have that, in the
unconstrained-control case, the optimality condition is given by

f

(
νuk − ν∆uk −

∂p

∂xk

)
= 0, k = 1 . . . n.

Equating to zero the term in parenthesis (an elliptic equation augmented with ho-
mogeneous Dirichlet boundary conditions [109]), we obtain a sufficient condition for
optimality. In this case, the control u is determined by this optimality condition and
the adjoint equation and thus the resulting control can be regarded as a closed-loop
control for our stochastic model. Notice that due to the presence of the gradient of
the control |∇u(x, t)|2 in the cost function, there is no the exact correspondence to
the HJB equation discussed in Section 4, rather it represents a suitable extension.

We solve the optimal control problem (6.4), (6.5), (6.6) with the values of α = 1,
β = 1, and ν = 0.01 in (6.5). We take Ω = (−L,L) × (−L,L) with L = 6. Let
x = (x1, x2). The diffusion parameter is σ = 1. The initial PDF f0(x) is given as
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follows f0(x) = Ĉe−2{(x1−A1)2+(x2−A2)2}, where (A1, A2) = x̄(0) is the starting point
of the trajectory x̄ and Ĉ is a normalization constant such that

∫
Ω
f0(x) = 1. We

choose the control bounds ua = −5 and ub = 5. The total number of spatial grid
points is Nx = 60 and the number of temporal grid points is Nt = 60. The desired
trajectory is given by x̄(t) = (1.5t, 0) and the potential V is given by

V (x, t) =

{
100, (x1 − 3)2 + x2

2 ≤ 0.22

(x1 − 1.5t)2 + x2
2, otherwise,

(6.8)

where we also model the presence of an obstacle by a cylinder centered at (3,0) and
radius 0.2 (a concave function). The time interval is chosen as [0, T ] = [0, 2]. In
correspondence to this setting, the solution of the optimization problem gives the
evolution of the controlled PDF as depicted in Figure 6.2 (left), and the control u.
The latter is used for Monte-Carlo simulations of the stochastic process for which a
few trajectories are shown in Figure 6.2 (right).

0 1 2 3 4 5

-2

-1

0

1

2

3

Fig. 6.2. Evolution of the PDF related to the controlled random process along a trajectory with
an obstacle represented by a high potential.

We see that the control u drives the crowd along the desired path while avoid-
ing the obstacle until the terminal point is reached. Notice that similar results are
presented in [109] for the case of control costs given by (6.7).

We complete this section by illustrating the case of FP control of a PDP model of
production of antibiotics (subtilin) that is synthetized by the Bacillus subtilis [76, 40].
This case refers to the results of [116]. A subtilin PDP model with the structure (1.8)
is specified as follows

A1(x, u1) =

 −k̃1 x1 + k2 ξ x3 + u1

χ(−∞, ηDmax)(x1) k3 − λ1x2

−λ3x3

 , (6.9)

A2(x, u2) =

 −k̃1 x1 + k2 ξ x3 + u2

χ(−∞, ηDmax)(x1) k3 − λ1x2

k5 − λ3x3

 , (6.10)

where x1 denotes the amount of nutrients, x2 denotes the concentration of SigH (a
sigma factor that regulates gene expressions), and x3 denotes the concentration of
SpaS (antibiotics, subtilin structural peptide). The controls u1, u2 model an increase
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or decrease of concentration of the nutrients. The switching law for this 2-states
process is given by (1.9) with µs = 5.

The Fokker-Planck system of our subtilin PDP model is given by (1.10) with
(6.9) and (6.10), and the stochastic matrix depends on x2 (see [116] for details). The
functions f1(x, t) and f2(x, t) are the two marginal PDFs related to the two dynamical
states.

Now, assume that the purpose of the control is to maximize the production of
subtilin. This objective can be formulated as the minimization of the following cost
functional

J(f, u) =
1

2

2∑
s=1

∫ T

0

∫
Ω

|us(x, t)|2 fs(x, t) dx dt−
2∑
s=1

∫
Ω

α

2σ
√

2π
e
−

(x3 − d3)2

2σ2 fs(x, T ) dx

(6.11)

The first term in this functional can be interpreted as the mean nutrition effort repre-
sented by the control u = (u1, u2) and the second term models an attractive potential
to a desired value d3 for the final value of SpaS.

The FP optimal control formulation requires to minimize (6.11) subject to the
constraint given by the PDP FP system (1.10) with (6.9)-(6.10). We obtain the
following adjoint FP system

1

2
|us(x, t)|2 + ∂tps(x, t) +

3∑
i=1

Ais(x, us)∂xi
ps(x, t) = −

2∑
l=1

Qsl(x)pl(x, t) (6.12)

ps(x, T ) = gs(x) (6.13)
us(x, t) + ∂x1ps(x, t) = 0, s = 1, 2. (6.14)

Notice that also in this case we have factored out the PDFs multiplying the optimality
condition. Thus, we obtain that the adjoint FP problem does not depend on the PDFs
and is defined backwards in time. By including the optimality condition in the adjoint
FP equation, we obtain

∂tps(x, t) +

3∑
i=1

Ais(x)∂xi
ps(x, t) +

1

2

(
∂x1

ps(x, t)
)2

= −
2∑
l=1

Qsl(x) pl(x, t)

ps(x, T ) = gs(x), s = 1, 2.

From the resulting adjoint variables, we compute the controls using (6.14).
In the numerical experiments, we consider a time horizon T = 10 and Ω = (1 , 7)×

(0 , 4) × (−0.5 , 5.5), with settings µs = 5, s = 1, 2, ηDmax = 4.0, d3 = 3, α = 10,
σ = 0.3. The optimal controls u1 and u2 are determined solving the FP optimal
control problem and thereafter are inserted in the PDP model to perform Monte
Carlo validation. Figure 6.3 shows the first 20 runs of the Monte-Carlo simulation
and the resulting relative frequencies at terminal time T = 10. We see that the control
is able to steer the subtilin to increase antibiotic production towards the desired value.

7. Conclusions. An overview of recent developments in the field of control of
stochastic systems based on the corresponding probability density functions (PDFs)
and the related Fokker-Planck (FP) equations was presented. Many different classes
of stochastic systems and the corresponding FP models were considered.
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Fig. 6.3. Left, 20 trajectories of Monte Carlo simulation of the controlled system states.
Right, relative frequency of 100 runs. The control of the nutrients acts to increase the value of the
production towards the desired value of production of SpaS.

In this control framework, starting from the controlled stochastic model, a con-
trolled FP equation is derived and objectives of the control are formulated that may
require to follow a given PDF trajectory or to minimize an expectation functional.
The resulting controls were validated with the stochastic models by Monte Carlo
simulations.

While this work was devoted to stochastic models that result in linear FP equa-
tions, the case of N interacting systems and its mean-field limit N →∞ was discussed
to show that in this case a nonlinear FP equation arises.

The fact was discussed that using expectation functionals, the FP controls are
equivalent to the ones obtained within the dynamic programming Hamilton-Jacobi-
Bellman scheme. Furthermore, a brief review of recent contributions on inverse prob-
lems governed by the FP equation was given. This work was completed showing
results of the FP control framework applied to challenging control problems with
stochastic models.
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