
Seminar

Numerical methods for optimization and

optimal control

written by

Hannah Weinmann
Melissa Finster
Max Steinlein

Jonas Kleineisel

held by

Prof. Dr. Alfio Borzi

University of Würzburg
August 2019

Contents

1 Optimization in finite dimensions 1
1.1 Linear steepest descent . 1
1.2 Line Search with Armijo condition 3
1.3 Nonlinear steepest descent . 4
1.4 Linear conjugate gradient . 7
1.5 Nonlinear conjugate gradient . 11
1.6 Projected conjugate gradient . 14
1.7 Newton method . 18
1.8 BFGS-method . 20
1.9 Penalty method : SUMT . 22
1.10 Barrier method . 25

2 Calculus of variations 31
2.1 Direct method . 31
2.2 Indirect method with linear ∇J . 34

3 Optimal control 39
3.1 Optimal control of linear ODEs with initial conditions 39
3.2 Optimal control of linear ODEs with initial conditions and bounded

controls . 43
3.3 Optimal control of elliptic ODEs with Dirichlet boundary condition . 45

List of Figures 52

Introduction

The following presents a collection of algorithms concerned with optimization and
optimal control that were presented and implemented during the seminar “Opti-
mization” held by Prof. Dr. Alfio Borzi at the University of Würzburg during the
summer term 2019.

It is not the aim of this text to explain all details and theory that is necessary
to fully understand the design of each algorithm. For this we refer to the relevant
literature1. Instead, we aim to provide to the educated reader a set of descrip-
tions by pseudo-code and implementations that can be be used as starting points
for completing practical tasks. We chose Matlab as language for its simplicity and
suitability for numerical calculations. All codes should run just as well in Octave,
an open-source implementation of Matlab, and can of course easily be transferred
to any modern programming language.

Accompanying this PDF-document is an archive containing the source code files
that were included below.

1see for example:
Jorge Nocedal, Stephen Wright: Numerical Optimization, Springer Science & Business Media, 2000

1 Optimization in finite dimensions

1.1 Linear steepest descent

Steepest Descent is a gradient descent algorithm to solve a system of linear equations
Ax = b given by a matrix A ∈ Rn×n and a vector b ∈ Rn. This relies on the fact,
that x ∈ Rn solves Ax = b if and only if x is the minimal point of the second-order
polynomial in n variables

f(x) =
1

2
xTAx− xT b.

Since it is easy to compute the gradient as descent direction for this function and
because we have an explicit formula for the optimal step size, this algorithm is
rather simple. It is especially preferred over solving Ax = b directly for a large
number of variables n, when classical methods like Cholesky decomposition or Gauß
elimination are too expensive. However, for ill-conditioned problems, this method
can take a long time to converge, which is why one almost always prefers the
conjugate gradient method presented below for this task.

Algorithm: Linear steepest descent algorithm

Input:

A ∈ Rn×n symmetric positive definite matrix

b ∈ Rn arbitrary vector

x0 ∈ Rn starting value

ε > 0 stopping condition

Output:

x ∈ Rn approximate solution of Ax = b

1: v0 ← b−Ax0

2: for k = 0, . . . ,Kmax do
3: ck ← Avk . update descent direction correction

4: tk ←
〈vk, vk〉
〈vk, ck〉

. calculate step size

5: xk+1 = xk + tk · vk . perform optimization step
6: vk+1 = vk − tk · ck . update descent direction
7: if ‖vk‖ < ε then return xk

8: return xKmax

Because of this algorithm’s simplicity, it can be more or less directly converted from
pseudo-code to a runnable Matlab-program.

”codes/LinearSteepestDescent/linearSteepestDescent.m”

%{

Steepest Descent Algorithm

Find the minimal point of the function Q(x) = (1/2)*x'*A*x - x'*b
where A is symmetric and positive definite

1

This is equivalent to solving Ax = b

Returns the approximation at the minimum and optionally the required

number of steps

%}

function [x K] = linearSteepestDescent(A, b, x0)

Kmax = 1000; % Maximal number of steps

eps = 1e-8; % Tolerance for accepting x as the minimum

x = x0;

v = b - A*x;

for K = 0:Kmax

c = A*v; % Update descent direction correction

t = norm(v)^2 / (v.' * c); % Calculate step size

x = x + t*v; % Peform optimization step

v = v - t*c; % Update descent direction

if norm(v) < eps% Terminate if the possible descent is small

break;

end

end

end

We test our code with the following test script using symmetric positive definite
tridiagonal matrices. The distance from the exact solution is calculated by solving
the system of linear equations Ax = b exactly.

”codes/LinearSteepestDescent/testLSD.m”

% Test Parameters

n = 5;

A = gallery('tridiag ', n, -1,2,-1); % SPD Matrix

b = ones(n,1);

x0 = zeros(n,1); % Starting point

[xmin K] = linearSteepestDescent(A, b, x0);

fprintf (" Solution :");

xmin '
fprintf (" Required %i steps\nDistance from true minimum: %d\n", K, ...

norm(xmin - A\b));

This yields the following output:

Matlab-Shell

>> testSD

Solution:

ans =

2.5000 4.0000 4.5000 4.0000 2.5000

Required 122 steps

Distance from true minimum: 2.709315e-08

2

1.2 Line Search with Armijo condition

Though not technically an optimization algorithm, we discuss Line Search seper-
ately since it will be used by several of the following methods.

Line Search is a backtracking method to find, for a given continuous function f ,
point x and direction p, a step size with which the function admits a sufficient
decrease in the specified direction. In this case the condition for accepting a step
size t is given by the so-called Armijo condition

f(x+ t d) ≤ f(x)− α t ‖p‖2

for some parameter α > 0. If a step size is not accepted, we perform the backtrack-
ing step by halving the proposed step size, therefore guaranteeing fast convergence.

Algorithm: Line Search

Input:

f : Rn → R continuous function

x ∈ Rn current position

p ∈ Rn descent direction

Output:

t suitable step size

1: t← 1
2: while f(x+ tp) > f(x)− αt‖p‖2 do . Armijo condition for not accepting t
3: t← t

2 . Backtracking step
4: if t < 10−30 then return t . No suitable step size found

5: return t

”codes/LineSearch/linesearch.m”

%{

Line search algorithm with Armijo condition

For a given function f and direction p at a point x,

finds a step size t such that f admits a sufficient decrease in

direction p at x

Terminates with step size approximately 1e-30 if no sufficient

decrease is found.

%}

function [t] = linesearch(f, p, x)

alpha = 0.0001; % Specifies desired decrease

t = 1;

while f(x +t*p) > f(x) - alpha*t*power(norm(p), 2) % Armijo

condition for not accepting t

t = 0.5*t; % Backtracking step

if t < 1e-30 % No decrease found

return;

end

end

end

3

1.3 Nonlinear steepest descent

Often one is not in the convenient case of minimizing a linear-quadratic function
like we saw in the case of the linear steepest descent algorithm. Instead, one has
to deal with some arbitrary differentiable function f . In this case we still want to
use a gradient descent approach, meaning that we start at some point an descent
in the direction in which the function admits the greatest local descent, which is
precicely the direction of the gradient. However, unlike in the linear case, we do
not have a convenient formula which tells us exactly how far we have to go in order
to achieve maximal descent. Therefore we have to use Line Search to determine a
suitable step size.

Algorithm: Steepest descent algorithm

Input:

f : Rn → R differentiable function

∇f : Rn → Rn the gradient of f

x0 ∈ Rn starting value

Output:

x ∈ Rn approximation of the minimum

1: for k = 0, . . . ,Kmax do
2: pk+1 ← −∇f(xk) . compute descent direction
3: tk+1 ← linesearch(f,∇f, xk) . find step size
4: xk+1 = xk + tk+1 · pk+1 . perform optimization step
5: if ‖∇f(xk+1)‖ < ε then return xk+1 . terminate if the gradient is small

6: return xKmax

In the implementation we additionally save the norm of the gradient in every step
for visualization later. The Matlab code looks as follows:

4

”codes/SteepestDescent/steepestDescent.m”

%{

Steepest Descent Algorithm

Approximates the minimal point of a arbitrary function f with

given gradient grad by performing gradient descent with step size

chosen by line search

Returns the approximation at the minimum , the required

number of steps and a vector with all the norms of the gradient at

each step

%}

function [x K grads] = steepestDescent(f, grad , x0, Kmax , eps)

grads = zeros(1,Kmax);

x = x0;

for K = 0:Kmax

p = -grad(x); % Update descent direction via gradient

t = linesearch(f, p, x); % Find step size

x = x + t*p; % Perform optimization step

grads(K+1) = norm(p); % Save the gradient norm

if norm(p) < eps% Terminate if the gradient is small

break;

end

end

end

To test the Steepest Descent algorithm, we use the so called Rosenbrock - function,
a well-known benchmark function with known extrema. The true minimum lies at
the constant 1-vector. We will always use this function as a nonlinear test function
from now on.

”codes/SteepestDescent/testSD.m”

% Test Parameters

n = 5;

x0 = zeros(n,1); % Starting point

% Use n-dimensional rosenbrock function for testing

[xmin K grads] = steepestDescent (@ rosenbrock ,@ rosenbrockGrad , x0 ,

2000, 1e-8);

fprintf (" Solution :");

disp(xmin ')
fprintf(strcat (" Required %i steps\nDistance from true minimum :" ,...

" %d\nNorm of gradient: %d\n"), K, norm(xmin - ones(1,n)), ...

norm(rosenbrockGrad(xmin)));

plot(grads)

xlabel ("step")

ylabel ("norm of grad f")

xlim([-10, 2010])

5

”codes/SteepestDescent/rosenbrock.m”

% N-dimensional Rosenbrock function

function [fx] = rosenbrock(x)

N = max(size(x));

fx = 0;

for i = 1:(N-1)

fx = fx + 100*(x(i+1) - x(i)^2)^2 + (1-x(i))^2;

end

end

”codes/SteepestDescent/rosenbrockGrad.m”

% Gradient of the N-dimensional Rosenbrock function

function [g] = rosenbrockGrad(x)

N = max(size(x));

g = zeros(N,1);

for j=2:(N-1)

g(j) = 200*(x(j+1) - x(j)^2)*(-2*x(j)) - 2*(1-x(j)) + ...

200*(x(j) - x(j-1)^2);

end

g(1) = 200*(x(2) - x(1)^2)*(-2*x(1)) - 2*(1-x(1));

g(N) = 200*(x(N) - x(N-1)^2);

end

Even after 2000 optimization steps we are still rather far away from the correct
solution.

Matlab-Shell

>> testSD

Solution: 0.9914 0.9829 0.9659 0.9329 0.8699

Required 2000 steps

Distance from true minimum: 3.386944e-01

Norm of gradient: 1.287401e-01

If we look at the plot of the norm of the gradient of f at every step, we see that
the norm of the gradient is oscillating very fast. This indicates that the method is
oscillation between points. This is what prevents it from converging faster. In the
following conjugate gradient method we will see how to circumvent this problem.

6

0 200 400 600 800 1000 1200 1400 1600 1800 2000

step

0

2

4

6

8

10

12

14
n

o
rm

 o
f

g
ra

d
 f

Figure 1.1: ‖∇f(xk)‖ at each step k = 0, ...,Kmax for steepest descent

1.4 Linear conjugate gradient

The linear conjugate gradient method (CG) is used for solving large systems of
linear equations of the form Ax = b with a symmetric positive definite Matrix
A ∈ Rn×n. Since the method does not revert to expensive matrix operations it
is especially used for large problems. The error of the solution is monotonically
decreasing. One needs at most n steps to attain the exact solution.

The method is an iterative procedure which combines the gradient with the con-
jugated direction. One uses the residuum vectors r0, . . . , rn−1 ∈ Rn\{0} and the
coefficients s0, . . . , sn−2 ∈ R to determine the conjugate direction p0, . . . , pn−1 ∈ Rn.

p0 = r0

= b−Ax0

pk+1 = rk+1 + skpk k = 0, . . . , n− 2

Note that

〈pi, Apj〉 =

{
0 if i 6= j

1 if i = j

since A is symmetric positive definite.

Theorem

Let A be symmetric positive definite and p0, . . . , pn−1 ∈ Rn. The following sequence

xk+1 = xk + tkpk

with tk = 〈b−Axk, pk〉 0 ≤ k ≤ n− 1

7

with any chosen x0 ∈ Rn solves Axn = b.

Proof

Axk+1 = Axk + tkApk k = 0, . . . , n− 1

Axn = Axn−1 + tn−1Apn−1

= . . .

= Ax0 + t0Ap0 + . . .+ tn−1Apn−1

tk = 〈b−Axk, pk〉
= 〈b−Ax0, pk〉+ 〈Ax0 −Ax1, pk〉+ . . .+ 〈Axk−1 −Axk, pk〉
= 〈b−Ax0, pk〉 − t0〈Ap0, pk〉 − . . .− tk−1〈Apk−1, pk〉
= 〈b−Ax0, pk〉

Axn − b = Ax0 − b+ t0Ap0 + . . .+ tn−1Apn−1

〈Axn − b, pk〉 = 〈Ax0 − b, pk〉+ tk

= 〈Ax0 − b, pk〉+ 〈b−Ax0, pk〉
= 0

For the CG-Algorithm we need to determine sk and tk.
With

〈rk+1, pk+1〉 = 〈rk+1, rk+1〉

we can compute tk.

tk =
〈rk, pk〉
〈Apk, pk〉

=
〈rk, rk〉
〈Apk, pk〉

And with

〈rk+1, rk〉 = 〈rk, rk〉 − tk〈Apk, rk〉
= 〈rk, rk〉 − tk〈Apk, pk − sk−1pk−1〉
= 0

⇐⇒
0 = 〈Ark+1, pk〉+ sk〈Apk, pk〉

we get

sk = −〈Ark+1, pk〉
〈Apk, pk〉

= −〈rk+1, tkApk〉
〈pk, tkApk〉

= −〈rk+1, rk − rk+1〉
〈pk, rk − rk+1〉

=
〈rk+1, rk+1〉
〈pk, rk〉

8

Now the CG-Algorithm is given by

Algorithm: Linear conjugate gradient

Input:

A ∈ Rn×n S.p.d. Matrix

b ∈ Rn Vector b

x0 ∈ Rn Starting vector

Output:

x ∈ Rn Approximated solution of Ax = b

1: r0=b−Ax0

2: p0=r0

3: for k = 0, . . . ,Kmax do
4: tk ← 〈rk,rk〉

〈Apk,pk〉 . Compute step size
5: xk+1 ← xk + tkpk . Perform optimization step
6: rk+1 = rk − tkApk . Compute new residuum
7: if ‖rk+1‖ < ε then return xk+1 . Terminate if the residuum is small

8: sk =
〈rk+1,rk+1〉
〈rk,rk〉 . Find coefficient to compute pk+1

9: pk+1 = rk+1 + skpk . Compute conjungate direction vector

10: return xKmax

The algorithm starts by adjusting xk+1 with a computed step size tk and the con-
jugate direction pk. Afterwards we update the residuum. If the residuum rk+1 is
very small, tk+1 and pk+1 will be also very small. Therefore xk+2 will change rarely.
We terminate and return the current xk+1.

”codes/LinearConjugateGradient/linearCG.m”

%{

Linear Conjugate Gradient Method

Find the minimal point of the function Q(x) = (1/2)*x'*A*x - x'*b
where A is symmetric and positive definite

This is equivalent to solving Ax = b

%}

function [x, K] = linearCG(A, b, x0)

x = x0; % Starting point

Kmax = 1000; % Maximal number of steps

eps = 1e-8; % Tolerance for accepting x as the minimum

p = b-A*x;

rOld = p;

rNew = p;

for K = 0:Kmax

t = norm(rOld)^2 / (p'*A*p); % Calculate optimal step size

x = x + t*p; % Perform optimization step

rNew = rOld - t*A*p; % Calculate residual

if norm(rNew) < eps % Terminate for small residuals

break;

end

s = norm(rNew)^2 / norm(rOld)^2; % Step size for direction

correction

9

p = rNew + s*p; % Update descent direction while ensuring A-

orthogonality of the p's
rOld = rNew;

end

end

”codes/LinearConjugateGradient/testLCG.m”

% Test parameters

N = 10;

A = gallery('tridiag ', N, -1,2,-1); % SPD Matrix

b = ones(n,1);

[xmin , K] = linearCG(A, b, zeros(N,1)); % Call linearCG

fprintf (" Solution :");

disp(xmin ')
fprintf (" Required %i steps\nDistance from minimum: %d\n", K, norm(

xmin - A\b));

We use the program testLCG to call the function linearCG. It generates the follow-
ing output.

Matlab-Shell

>> testLinCG

Solution: 5.0000 9.0000 12.0000 14.0000 15.0000 15.0000 14.0000

12.0000 9.0000 5.0000

Required 4 steps

Distance from minimum: 3.202373e-15

10

Figure 1.2: Error of step K = 1, . . . , 4 of linear CG

In the chart (Figure 1.2) we see the norm of the difference between the exact solution
and the solution of step k. The error is as expected monotonically decreasing. The
algorithms stops at K = 4 < 10 = N because of the termination condition.

1.5 Nonlinear conjugate gradient

A generalization of the linear conjugate gradient method is the nonlinear conjugate
gradient method (NCG). In order for this method to converge the function must be
twice differentiable at the minimum and the second derivative has to be invertible
there.
The idea is to start with a given start value x0, compute the descent direction and
use line search to determine a suitable step size receiving x1 = x0−t0 ·∇f(x0). After
this first iteration an additional conjugate direction follows. There are different
ways for the computation of the step size sk, some examples are given below. After
updating the conjugate direction (pk+1 = −∇f(xk+1)+sk ·pk with p0 = −∇f(x0)) a
line search is accomplished (tk = mintk f(xk+tk ·pk)). Then the position is updated
(xk+1 = xk + tk · pk). This procedure repeats until a well enough approximation is
found.
There are the following different ways for the computation for the step size sk:

11

Fletcher - Reeves:

sk =
‖rk+1‖2

‖rk‖

Polak-Ribiere:

yk = ∇f(xk+1)−∇f(xk)

sk = −
rTk+1yk

‖rk‖2

Dai-Yuan:

yk = ∇f(xk+1)−∇f(xk)

sk = −‖rk+1‖2

pTk yk

Heyer-Zhang:

yk = ∇f(xk+1)−∇f(xk)

sk =

(
yk − 2pk

‖yk‖2

pTk yk

)T (
− rk+1

pTk yk

)

Algorithm: Nonlinear conjugate gradient

Input:

f : Rn → R differentiable function

∇f : Rn → Rn the gradient of f

x0 ∈ Rn starting value

Output:

x ∈ Rn approximation of the minimum

1: p0 ← −∇f(xk) . compute descent direction
2: for k = 0, . . . ,Kmax do
3: tk+1 ← linesearch(f, pk, xk) . find step size
4: xk+1 = xk + tk+1 · pk . perform optimization step
5: if ‖∇f(xk+1)‖ < ε then return xk+1 . terminate if the gradient is small

6: s← ∇f(xk+1)
∇f(xk) . find step size of the direction correction

7: pk+1 ← −∇f(xk+1) + s · pk . update descent direction

8: return xKmax

”codes/NonlinearCG/nonlinearCG.m”

%{

Nonlinear Conjugate Gradient Method

For any smooth function f with gradient grad ,

finds minima of f by searching for zeros of the gradient

Returns the minimum x, the required number of steps and a vector with

all the norms of the gradient at each step

12

%}

function [minx , K, grads] = nonlinearCG(f, grad , x0, Kmax , eps)

x = x0; % Starting point

p = -grad(x); % Initalize all descent directions with the

gradient

rOld = p;

rNew = p;

grads = zeros(1,Kmax);

for K = 0:Kmax

t = linesearch(f, p, x); % Determine step size by line search

x = x + t*p; % Perform optimization step

rNew = -grad(x);

grads(K+1) = norm(rNew);

if(norm(rNew) < eps) % Terminate for small gradient

break;

end

s = (norm(rNew))^2 / (norm(rOld))^2; % Fletcher -Reeves

formula for step size of the direction correction

%y = grad(x) - grad(x - t*p); % Dai -Yuan , Polak -Ribiere ,

Heyer -Zhang

%s = (norm(grad(x)))^2 / (p' * y); % Dai -Yuan

%s = (rNew ' * y) / (norm(rOld))^2; % Polak -Ribiere

%s = (y-2p * (norm(y))^2/(p' * y)' * (- rNew / (p' *

y)); % Heyer -Zhang

p = rNew + s*p; % Update descent direction

rOld = rNew;

end

minx = x;

end

”codes/NonlinearCG/testNCG.m”

% Test Parameters

n = 5;

x0 = zeros(n,1); % Starting point

% Use n-dimensional rosenbrock function for testing

[xmin K grads] = nonlinearCG (@ rosenbrock ,@ rosenbrockGrad , x0 , 2e3 , 1e

-8);

fprintf (" Solution :");

disp(xmin ')
fprintf(strcat (" Required %i steps\nDistance from true minimum :" ,...

" %d\nNorm of gradient: %d\n"), K, norm(xmin - ones(1,n)), ...

norm(rosenbrockGrad(xmin)));

plot(grads)

xlabel ("step")

ylabel ("norm of grad f")

xlim([-10, 2010])

For testing we use the N -dimensional Rosenbrock function as above and take the
parameter in the Line Search as α = 0.01.

Matlab-Shell

>> testNCG

13

Solution: 1.00000 1.00000 1.00000 1.00000 1.00000

Required 1089 steps

Distance from true minimum: 5.96334e-09

Norm of gradient: 8.04072e-09

0 200 400 600 800 1000 1200 1400 1600 1800 2000

step

0

5

10

15

20

25

n
o

rm
 o

f
g

ra
d

 f

Figure 1.3: Norm of gradient for nonlinear conjugate gradient algorithm

1.6 Projected conjugate gradient

The projected conjugate gradient method is a variation of the NCG method with
the difference that the optimum x must be within an admissible set

Ω = {x ∈ Rn : ai ≤ xi ≤ bi, i = 1, ..., n}

with some a, b ∈ Rn. In each step of the PCG method, the solution xk is determined
as in the NCG method, where a modified linesearch only searches for step sizes that
give a sufficient decrease within the admissible set. Afterwards a correction is made
if x after the step is not in the admissible set:

if xi < ai, then xi = ai

if xi > bi, then xi = bi

if ai ≤ xi ≤ bi, then xi = xi

14

Algorithm: Projected conjugate gradient

Input:

f : Rn → R differentiable function

∇f : Rn → Rn the gradient of f

x0 ∈ Rn starting value

a ∈ Rn minimum admissible set

b ∈ Rn maximum admissible set

Output:

x ∈ Rn approximation of the minimum

1: p0 ← −∇f(xk) . compute descent direction
2: for k = 0, . . . ,Kmax do
3: tk+1 ← linesearchProjected(f, pk, xk, a, b) . find step size in admissible set
4: xk+1 = xk + tk+1 · pk . perform optimization step
5: xk+1 ← Proj(xk+1, a, b) . correct xk for the admissible set
6: if ‖∇f(xk+1)‖ < ε then return xk+1 . terminate if the gradient is small

7: s← ∇f(xk+1)
∇f(xk) . find step size of the direction correction

8: pk+1 ← −∇f(xk+1) + s · pk . update descent direction

9: return xKmax

”codes/ProjectedCG/projectedCG.m”

%{

Projected Nonlinear Conjugate Gradient Method

For any smooth function f with gradient grad ,

finds minima of f within an admissible set by searching for zeros of

the gradient

Returns the minimum x, the required number of steps and a vector with

all the norms of the gradient at each step

%}

function [minx , K, grads] = projectedCG(f, grad , x0, Kmax , eps ,a,b)

x = x0; % Starting point

p = -grad(x); % Initalize all descent directions with the

gradient

rOld = p;

rNew = p;

grads = zeros(1,Kmax);

for K = 0:Kmax

t = linesearchProjected(f, p, x,a,b); % Determine step size

by projected line search

x = proj(x + t*p, a,b); % Perform optimization step within

the admissible set

rNew = -grad(x);

grads(K+1) = norm(rNew);

if(norm(rNew) < eps) % Terminate for small gradient

break;

end

s = power(norm(rNew), 2) / power(norm(rOld) ,2); % Fletcher -

Reeves formula for step size of the direction correction

%y = grad(x) - grad(x - t*p); % Dei -Yuan

15

%s = power(norm(grad(x)) ,2) / (p' * y); % Dei -Yuan

p = rNew + s*p; % Update descent direction

rOld = rNew;

end

minx = x;

end

”codes/ProjectedCG/proj.m”

function [z] = proj(x,a,b)

n = length(x);

z = x;

for i = 1:n

if x(i) < a(i)

z(i) = a(i);

elseif x(i)> b(i)

z(i) = b(i);

end

end

end

”codes/ProjectedCG/linesearchProjected.m”

%{

Projected Line search algorithm with Armijo condition

For a given function f and direction p at a point x,

finds a step size t such that f admits a sufficient decrease in the

projected direction p at x

Terminates with step size approximately 1e-30 if no sufficient

decrease is found.

%}

function [t] = linesearchProjected(f, p, x,a,b)

alpha = 0.01; % Specifies desired decrease

t = 1;

while proj(f(x +t*p),a,b) > f(x) - alpha*t*power(norm(p), 2) %

Armijo condition for not accepting t

t = 0.5*t; % Backtracking step

if t < 1e-30 % No decrease found

return;

end

end

end

”codes/ProjectedCG/testPCG.m”

% Test Parameters

n = 5;

x0 = zeros(n,1); % Starting point

a = -1 * ones(n,1); % Admissible set , lower boundary

b = 0.8* ones(n,1); % Admissible set , upper boundary

% Use n-dimensional rosenbrock function for testing

[xmin K grads] = projectedCG (@ rosenbrock ,@ rosenbrockGrad , x0 , 3000, 1

e-8,a,b);

16

fprintf (" Solution :");

disp(xmin ')
fprintf(strcat (" Required %i steps\nNorm of gradient: %d\n") ,...

K, norm(rosenbrockGrad(xmin)));

plot(grads)

xlabel ("step")

ylabel ("norm of grad f")

xlim([-10, 2010])

For testing we use the N -dimensional Rosenbrock function as above and take the
parameters a = (-1, ..., -1), b = (0.8, ..., 0.8). With these parameters, the global
minimum (1, ..., 1) does not lie in the admissible set.

Matlab-Shell

>> testPCG

Solution: 0.800000 0.665974 0.448899 0.221497 0.053064

Required 3000 steps

Norm of gradient: 10.1751

0 500 1000 1500 2000
0

50

100

150

200

250

300

step

n
o
rm

 o
f
g
ra

d
 f

Figure 1.4: Norm of gradient for projected conjugate gradient

17

1.7 Newton method

Newton’s method is a standard algorithm to approximate the roots of a nonlinear
function. In the first place a one dimensional function f is considered. The idea
of Newton’s method is to begin with a start value x0, linearize the function in this
point i.e determine the tangent through f(x0) and compute the root of the tangent.
With the obtained approximation a new linearization can be received to get a new
approximation for the root. This leads to the iteration

xn+1 = xn −
f(xn)

f ′(xn)

This method can be generalized for systems of equations by using the Jacobian
instead of the derivative of f .
To solve an optimization problem of a function f , Newton’s method can be applied
to the derivative f ′, since the derivative is zero at a minimum or maximum.

Algorithm: Newton method

Input:

f : Rn → R differentiable function

∇f : Rn → Rn the gradient of f

∇2f : Rn → Rn×n the Hessian of f

x0 ∈ Rn starting value

Output:

x ∈ Rn approximation of the minimum

1: for k = 0, . . . ,Kmax do
2: xk+1 ← xk − [∇2f(xk)]−1∇f(xk) . perform optimization step
3: if ‖f(xk+1)‖ < ε then return xk+1 . terminate if the function is small

4: return xKmax

”codes/Newton/newton.m”

%{

Newton method

approximates an optimal point of a function f by approaching a root

of the gradient of f with given gradient and Hessian of f.

Returns the approximation of the optimum , the required number of

steps and a vector with all the norms of the gradient at each step

%}

function [x k grads] = newton (f, grad , hessian , x0, Kmax , eps)

grads = zeros(1,Kmax);

grads (1) = norm(f(x0));

x = x0

for k = 1 : Kmax

x = x - inv(hessian(x)) * grad(x);

grads(k+1) = norm(grad(x));

if grads(k+1) < eps

break;

end

18

end

end

To test the Newton method, we use again the Rosenbrock - function.

”codes/Newton/testNewton.m”

% test parameters

n = 5;

x0 = zeros(n,1); % starting point

%Use n-dimensional rosenbrock function for testing

[x k grads] = newton (@ rosenbrock , @rosenbrockGrad , @rosenBrockHessian

, x0 , 2000, 1e-8);

fprintf (" Solution :");

disp(x')
fprintf(strcat (" Required %i steps \n Distance from true optimum :" ,...

" %d\n Norm of gradient: %d\n "), k, norm(xmin - ones(1,n)) ,...

norm(rosenbrockGrad(x)));

plot(grads);

xlabel ("step")

ylabel ("norm of grad f")

xlim ([-10, 2010])

”codes/Newton/rosenbrockHessian.m”

% Hessian of the N-dimensional Rosenbrock function

function [h] = rosenbrockHessian(x)

N = max(size(x));

h = zeors(N,N);

for j = 2:(N-1)

h(j-1,j) = -400 x(j-1);

h(j,j) = 800 x(j)^2 - 400*(x(j+1) - x(j)^2) + 202;

h(j+1,j) = -400 x(j);

end

h(1,1) = 800 x(1)^2 - 400*(x(2)-x(1)^2) + 2;

h(2,1) = -400 x(1);

h(N,N) = 200;

h(N-1,N) = -400 x(N-1);

end

The Newton method converges very fast, but it is important to mention that com-
puting the inverse of the Hessian is quite expensive especially for great matrix
dimensions. Therefore one always tries to bypass the direct computation of an in-
verse and instead uses an approximation which leads to quasi-newton methods. An
example is described in the next section.

Matlab-Shell

>> testNewton

Solution: 1 1 1 1 1

Required 11 steps

Distance from true minimum: 0

Norm of gradient: 0

19

0 2 4 6 8 10 12

step

0

100

200

300

400

500

600

700

800

900

1000

no
rm

 o
f g

ra
d

f

Figure 1.5: ‖∇f(xk)‖ at each step k = 1, ..., kreqSteps for the Newton method

1.8 BFGS-method

The Broyden-Fletcher–Goldfarb-Shanno algorithm (BFGS) is a numerical method
for solving optimization problems without constraints. For this algorithm we do not
compute the exact Hessian, but instead we use an iteratively approximated matrix
H. Therefore it belongs to the Quasi-Newton-methods.

20

Algorithm: BFGS

Input:

f : Rn → R Differentiable function

∇f : Rn → Rn Gradient of f

x0 ∈ Rn Approximation of the minimum

1: H−1
0 = I

2: for k = 0, . . . ,Kmax do
3: dk ← −H−1

k ∇f(xk) . Compute search direction
4: tk ← linesearch(f, dk, xk) . Find step size
5: sk ← tkdk
6: yk ← ∇f(xk + sk)−∇f(xk) . Gradient delta
7: xk+1 ← xk + sk . Perform optimization step

8: H−1
k+1 ← (I − syTk

sTk yk
)H−1

k (I − yks
T
k

sTk yk
) +

sks
T
k

sTk yk
. Update approx. Hessian

9: if ‖sk‖ < ε then return xk+1 . Termination condition

10: return xKmax

”codes/BFGS/BFGS.m”

function [x, K] = BFGS(func , gradf , x0)

Kmax = 1000; % Maximal number of steps

eps = 1e-8; % Disables stopping condition

N = max(size(x0));

x = x0; % Starting value

grad = gradf(x); % Compute gradient of f(x)

I = eye(N); % Identity matrix

invH = I; % Start with identity matrix as approx. Hessian

for K = 0:Kmax

d = -invH*grad; % Compute search direction

t = linesearch(func ,d,x); % Find step size

s = t*d;

newGrad = gradf(x+s); % Compute new gradient

y = newGrad -grad; % Compute gradient delta

x = x+s; % Perform optimization step

grad = newGrad; % Overwrite the old gradient

invH = (I-(s*y')/(s'*y))*invH*(I-(y*s')/(s'*y))+(s*s')/(s'*y); %

Update approx. Hessian

if norm(s)<eps % Termination condition

break

end

end

end

”codes/BFGS/testBFGS.m”

N = 2;

x0 = zeros(N,1); % Iinitial value

[xmin , K] = BFGS(@ rosenbrock ,@ rosenbrockGrad ,x0); % Call BFGS

fprintf (" Solution :");

disp(xmin ')

21

fprintf (" Required %i steps\nDistance from true minimum: %d\n",...

K, norm(xmin - [1;1]));

With testBFGS we get the following output.

Matlab-Shell

>> testBFGS

Solution: 1.0000 1.0000

Required 26 steps

Distance from true minimum: 7.851116e-12

1.9 Penalty method : SUMT

After having discussed algorithms for unconstrained minimization problems in finite
dimensions, we now want to impose additional constraints. That is, we consider for
f : Rn → R, g : Rn → Rm, g = (g1, ..., gm)T the problem

minx∈Rn f(x)

s.t. g(x) ≤ 0

SUMT, standing for sequential unconstrained minimization technique, is a so-called
penalty method. The idea is to reformulate the constrained problem in a way, that
allows us to use one of the algorithms for unconstrained minimization repeatedly
to get a sequence of solutions of unconstrained problems (hence the name) which
converge to the solution for the constrained problem. This is achieved by adding a
penalty term to the minimization function which incorporates the constraints. We
consider

minx∈Rn Θ(x, c) := f(x) + c P (x)

with P beeing a penalty function P such that

• P is continuous

• P (x) ≥ 0

• P (x) = 0 if and only if x ∈ S := {x ∈ Rn | g(x) ≤ 0}.

There are different options for the penalty function and depending on this choice
the algorithm will converge faster for some problems and slower for others. We take

P (x) =

m∑
i=1

(max(0, gi(x)))2

The general scheme is now to minimize Θ(x, c) for fixed c, then increase c and
minmize again with starting value from the previous step. For minimizing Θ(x, c)
we compute the gradient

∇xΘ(x, c) = ∇f(x) + 2c

m∑
i=1

(max(0, gi(x))∇gi(x))

22

Then, the SUMT algorithm is given by

Algorithm: SUMT

Input:

f : Rn → R differentiable function

∇f : Rn → Rn the gradient of f

g : Rn → Rm differentiable function of constraints

∇g : Rn → Rm×n the Jacobian of g

c0 ∈ R starting value for penalty parameter

η ∈ R increasing factor for penalty parameter

x0 ∈ Rn starting value

Output:

x ∈ Rn approximation of the constrained minimum

1: Θ(x, c) := f(x) + c g(x)
2: ∇xΘ(x, c) := ∇f(x) + c∇g(x)
3: for k = 0, . . . ,Kmax do
4: xk+1 ← minx∈RnΘ(x, ck) . solve unconstrained problem, starting value xk
5: ck+1 ← η ck . increase penalty parameter
6: if ‖xk+1 − xk‖ < ε then return xk+1 . stopping condition

7: return xKmax

A major problem is the stopping condition: As we will see in the test, it may very
well occur that for several steps, xk does not change at all but for some larger c, i.e.
some later step, it does. Therefore the presented stopping condition was included
more for completeness than for practical use. Alternatively, one can just take a
fixed number of steps or come up with a more clever stopping condition like for
example considering not just the last one but the last 10 steps and only stop if
there was no change in all of those.

In the implementation we use use nonlinear conjugate gradient to solve the uncon-
strained minimization problem. Of course, any other minimization algorithm will
work as well.

”codes/SUMT/sumt.m”

function [x, k] = sumt(f, gradf , g, gradg , x0)

eta = 1.5;% Increasing factor for penalty parameter

c = 1.5; % Starting value for penalty parameter

Kmax = 50;% Maximal number of steps

eps = -1; % Disables stopping condition

x = x0;

xprev = x;

for k = 0:Kmax

% Define penalized function

thetaC = @(x) f(x) + c*sum(max(0,g(x)));

23

% Compute gradient of g only where g(x) >= 0

h = gradg(x).*(g(x) >= 0);

% Compute gradient of penalized function

gradThetaC = @(x) (gradf(x) + [2*c*sum(g(x).*h(:,1));...

2*c*sum(g(x).*h(:,2))]);

% Solve unconstrained minimization problem

x = nonlinearCG(thetaC ,gradThetaC , x, 100, 1e-8);

% Alternatively use steepestDescent(thetaC ,gradThetaC , xold , 500,

1e-8)

% or use any unconstrained minimization algorithm

if norm(xprev - x) < eps % Stopping condition

break;

end

c = eta*c; % Increase penalty parameter

xprev = x;

end

end

We test our code with a quadratic polynomial in R2 and linear constraints.

”codes/SUMT/f.m”

function [fx] = f(x)

fx = (x(1) - 6)^2 + (x(2) - 7)^2;

end

”codes/SUMT/gradf.m”

function [gfx] = gradf(x)

gfx = [2*(x(1) - 6); 2*(x(2) - 7)];

end

”codes/SUMT/g.m”

function [gx] = g(x)

gx = zeros(4, 1);

gx(1) = -3*x(1) - 2*x(2) + 5;

gx(2) = -x(1) + x(2) - 3;

gx(3) = x(1) + x(2) - 7;

gx(4) = (2/3)*x(1) - x(2) - 4/3;

end

”codes/SUMT/gradg.m”

function gradgx = gradg(x)

gradgx = [-3, -2; -1, 1; 1,1;2/3, -1];

end

”codes/SUMT/testSUMT.m”

24

x0 = [6;7];

[xmin , k] = sumt(@f, @gradf , @g, @gradg , x0);

fprintf (" Solution :");

disp(xmin ')
fprintf (" Required %i steps\nDistance from true minimum: %d\n",...

k, norm(xmin - [3;4]));

This produces the following output:

Matlab-Shell

>> testSUMT

Solution: 3.0000 4.0000

Required 50 steps

Distance from true minimum: 9.930137e-16

By plotting the norm of the steps, we see the phenomenon described above: for
several steps there is no change in xk and only for a larger c does xk jump to a
better solution. If we would have used the stopping condition, the algorithm would
have terminated after only 6 steps and produced a significantly worse solution.

0 5 10 15 20 25 30 35 40 45 50

step

0

0.5

1

1.5

n
o

rm
(x

n
e

w
 -

 x
o

ld
)

Figure 1.6: Step sizes for SUMT algorithm

1.10 Barrier method

As for the penalty method dicussed before, we want to solve the constrained opti-
mization problem

minx∈Rn f(x)

s.t. g(x) ≤ 0

where f : Rn → R, g : Rn → Rm, g = (g1, ..., gm)T are given differentiable map-
pings. Now, the idea for the barrier method is to instead optimize another function
B, which converges to infinity against the boundary of the feasible set. Furthermore,
B depends on a scaling parameter r, and is assumed to converge to the function

25

f as r goes to zero. Then the algorithm consists of iteratively optimizing B and
decreasing r until a stationary point is reached.

In general, the barrier B has the shape

B(x, r) = f(x) + r h(x),

where h : Rn → R is a barrier function depending on g. For h we considered

h(x) = −
m∑
i=1

1

gi(x)
inverse barrier,

h(x) = −
m∑
i=1

log(−gi(x)) logarithmic barrier,

although several other options are thinkable. Note, that these terms are well-
defined, if g(x) < 0. However, on the boundary of the admissible set they imply
the desired divergence of the barrier B. Their respective gradients are given by

∇h(x) =
m∑
i=1

∇gi(x)

gi(x)2
inverse barrier gradient,

∇h(x) = −
m∑
i=1

∇gi(x)

gi(x)
logarithmic barrier gradient.

Algorithm: Barrier method

Input:

f : Rn → R differentiable function

∇f : Rn → Rn gradient of f

g : Rn → Rm differentiable function of constraints

∇gi : Rn → Rn for i = 1, . . . ,m, gradients of g

h : Rn → R barrier function

r ∈ R starting value for barrier scaling

η ∈ R decreasing factor for barrier scaling

x0 ∈ Rn starting value

Output:

x ∈ Rn approximation of the constrained minimum

1: B(x, r) := f(x) + r h(x)
2: ∇xB(x, r) := ∇f(x) + r∇h(x)
3: for k = 0, . . . ,Kmax do
4: xk+1 ← minx∈RnB(x, rk) . solve unconstrained problem, starting value xk
5: rk+1 ← η rk . decrease scaling parameter
6: if ‖xk+1 − xk‖ < ε then return xk+1 . stopping condition

7: return xKmax

For the implementation we used a nonlinear conjugate gradient method to optimize
the function, but any gradient based optimization scheme would suffice. Note that

26

the parameter α in our linesearch has been adapted to increase stability. Moreover,
the barrier B is set to infinity outside of the admissible set to prevent the linesearch
in our gradient based algorithms from jumping over the boundary of the feasible
set. If the minimum of f lies on the boundary of the admissible set, the problem
becomes numerically unstable, since the minimum of B converges to the boundary
as r approaches zero. On the other hand B diverges to infinity against the boundary.
Therefore, the problem is prone to oscillation with increasing number of iterations.
To compensate we included an additional stopping criterion. As an example we
tested the code for the functions

f : R2 → R, x 7→ 2x2
1 + 9x2

g : R2 → R, x 7→ 4 − x1 − x2

with the analytic solution x∗ = (2.25, 1.75).

”codes/BarrierMethod/linesearch.m”

%{

Line search algorithm with Armijo condition

For a given function f and direction p at a point x,

finds a step size t such that f admits a sufficient decrease in

direction p at x

Terminates with step size approximately 1e-5 if no sufficient

decrease is found.

%}

function [t] = linesearch(f, p, x)

alpha = 0.00005; % Specifies desired decrease

t = 1;

while f(x +t*p) > f(x) - alpha*t*power(norm(p), 2) % Armijo

condition for not accepting t

t = 0.5*t; % Backtracking step

if t < 1e-5 % No decrease found

return;

end

end

end

”codes/BarrierMethod/barrierMethod.m”

%the barrier method minimizes the function f(x) s.t. g(x) <=0

%inputs: functions f and g, their gradients gradf and gradg , and the

initial value x0 for x

%outputs: solution x, required number of steps k, changes of the

solutions dx with each iteration

function [x, k, dx] = barrierMethod(f, gradf , g, gradg , x0)

%%% initialization

r = 10; %scaling factor of the barrier

eta = .5; %decrease of the barrier scaling

Kmax = 100; %maximal number of iterations

eps = 1e-4; %threshold for the change of x to break

iterations

x = x0; %initial value for x

xold = x; %save old value for x

27

dx = zeros(1,Kmax); %save changes in the solution

for k = 1:Kmax

%specify either inverse or log barrier in barrier.m and

gradBarrier.m

B = @(x) barrier(f, g, r, x);

gradB = @(x) gradBarrier(gradf , g, gradg , r, x);

%optimization of the barrier function

%use e.g. nonlinear CG or steepest descent

x = nonlinearCG(B,gradB , xold , 1000, 1e-4);

%x = steepestDescent(B,gradB , xold , 1000, 1e-4);

dx(k) = norm(x-xold); %save difference of old and new solution

if dx(k) < eps %break , if the difference in the solutions is

small enough

break

%break , if the solution starts oscillating ,

%or if the gradient descent doesn 't yield valid results

elseif k > 1 && dx(k)>dx(k-1) || sum(isnan(x)) >0

fprintf('Stability warning: solution starts oscillating !\n')
x=xold;

k=k-1;

break

end

r = eta*r; %decrease barrier scaling parameter

xold = x;

end

”codes/BarrierMethod/barrier.m”

function Bx = barrier(f, g, r, x)

%%use either inverse or log barrier

if g(x) <= 0 %then x in admissible set

%Bx = f(x) + sum(r*-1./g(x)); %inverse barrier

Bx = f(x) - r*sum(log(-g(x))); %log barrier

else

Bx = inf; %sets the barrier outside the feasible set to infinity

for numerical stability

end

end

”codes/BarrierMethod/gradBarrier.m”

function dB = gradBarrier(gradf , g, gradg , r, x)

%%use either inverse or log barrier

%dB = gradf(x) + r*sum(g(x) '.^(-2)*gradg(x) ,2); %gradient inverse

barrier

dB = gradf(x) - r*sum (1./g(x) '*gradg(x) ,2); %gradient log barrier

end

”codes/BarrierMethod/barrierMethodTest.m”

28

%define the functions f and g, and their gradients

f = @(x) 2*x(1) ^2+9*x(2);

gradf = @(x) [4*x(1) ;9];

g = @(x) -x(1)-x(2)+4;

gradg = @(x) [-1;-1];

x0 = [4;4]; %starting value for x

[x,k,dx] = barrierMethod(f, gradf , g, gradg , x0);

error = norm(x -[2.25;1.75]);

fprintf (" Solution: ")

disp(x')
fprintf (" Required %d steps \nDistance from true minimum: %f\n",k,

error)

figure

plot (1:k, dx(1:k))

xlabel('step')
ylabel('dx')
title('change of x')
set(gca , 'YScale ', 'log')

We get the following output for the inverse barrier:

Matlab-Shell

>> barrierMethodTest

Solution: 2.2500 1.7503

Required 25 steps

Distance from true minimum: 0.000268

And the following for the logarithmic barrier:

Matlab-Shell

>> barrierMethodTest

Solution: 2.2500 1.7501

Required 15 steps

Distance from true minimum: 0.000069

The algorithm utilizing the logarithmic barrier converged faster and with more accu-
racy in our example. Between the iterations, the numerical minima of B converged
steadily to the minimum of f as could be seen by the output of the step-sizes dx.

29

0 5 10 15 20 25

step

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

10 1

d
x

change of x

0 5 10 15

step

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

10 1

d
x

change of x

Figure 1.7: Step-sizes for barrier method with inverse barrier (left) and logarithmic
barrier (right)

30

2 Calculus of variations

In this chapter we talk about solving variations problems numerically. We will
minimize the value of a functional with the direct and indirect method. We consider
a variation problem in the form

miny∈V J(y) :=

∫ b

a
l
(
x, y(x), y′(x)

)
dx

with V := {v ∈C1[a, b] | v(a) = ya, v(b) = yb}

with l ∈ C2.

2.1 Direct method

For the direct method we discretize the variation problem. Consequently we obtain
a finite-dimensional variation problem. Now we can use methods for non-linear
minimization problem. We already introduced some non-linear minimization meth-
ods in chapter 1.

For the direct method we observe the minimization problem

miny∈V J(y) :=

∫ 2

1

(
1

2
y2 +

1

2
(y′)2

)
dx

with V := {v ∈C1[1, 2] | v(1) = 1, v(2) = 4}

First we discretize x on the given interval I = [1, 2]. We divide our interval I into
N subintervals with step size h = 1

N . With xj = jh for j = 0, . . . , N and yj = y(xj)
for j = 1, . . . , N − 1 we can discretize the functional J . Note that y0 and yN are
fixed by the interval bounds. To illustrate that we talk about the numerical solution
we write yh.

Jh(yh) = h
N∑
j=1

l

(
xj−1 + xj

2
,
yj−1 + yj

2
,
yj − yj−1

h

)
For our given example we get

Jh(yh) = h

N∑
j=1

(
1

2

(
yj−1 + yj

2

)2

+
1

2

(
yj − yj−1

h

)2
)

as discretized functional.
Now we compute the gradient of the descretized functional

∂Jh(yh)

∂yj
=

h

2

(
∂l

∂y

∣∣∣∣
j

+
∂l

∂y

∣∣∣∣
j+1

)
+

∂l

∂y′

∣∣∣∣
j

− ∂l

∂y′

∣∣∣∣
j+1

with l|j = l
(
xj−1+xj

2 ,
yj−1+yj

2 ,
yj−yj−1

h

)
.

31

For our example we obtain

∂Jh(yh)

∂yj
=

h

2

(
yj−1 + yj

2
+
yj + yj+1

2

)
+
yj − yj−1

h
− yj+1 − yj

h

for j = 1, . . . , N − 1.

Now we can use the nonlinear CG-method which was discussed in chapter 1.5 to
solve this minimization problem.

”codes/CVDirectLinear/DirectCV.m”

a = 1; % Intervall I=[a,b]

b = 2;

N = 20;

h = (b-a)/N; % Step size

x= (a:h:b) '; % Discretized x-vector with step size h

ya = 1; % Fixed boudaries

yb = 4;

jhReduced = @(y) Jh(x,[ya; y ; yb]); % Store function Jh(x,y) in a

function handle with argument y

gradJhReduced = @(y) gradJdy(x, [ya; y ; yb]); % Store function

gradJdy(x,y) in a function handle with argument y

y0 = zeros(N-1,1); % Start value

ymin = nonlinearCG(jhReduced , gradJhReduced , y0); % Call function

nonlinearCG with fucntion and gradient of the corresponding

example and start value y0

”codes/CVDirectLinear/l.m”

function ret = l(x, yx, ypx)

ret =0.5*(ypx ^2+yx^2);

end

”codes/CVDirectLinear/Jh.m”

function sum = Jh(x,y)

N = length(x);

h = x(2) - x(1);

sum = 0;

for j = 2:N

sum = sum + l(0.5*(x(j-1) + x(j)), 0.5*(y(j-1) + y(j)), (y(j)

- y(j-1))/h);

end

sum = sum*h;

end

”codes/CVDirectLinear/gradJdy.m”

function grad = gradJdy(x, y)

N = length(x);

32

h = x(2) - x(1);

grad = zeros(N-2,1);

for j = 2:N-1

grad(j-1) = h/2 * dldy (0.5*(x(j-1) + x(j)), 0.5*(y(j-1) + y(j

)) , (y(j) - y(j-1))/h) + ...

h/2 * dldy(0.5*(x(j+1) + x(j)) , 0.5*(y(j+1) + y

(j)) , (y(j+1) - y(j))/h) + ...

dldyp (0.5*(x(j-1) + x(j)) , 0.5*(y(j-1) + y(j)) ,

(y(j) - y(j-1))/h) - ...

dldyp(0.5*(x(j+1) + x(j)) , 0.5*(y(j+1) + y(j))

, (y(j+1) - y(j))/h);

end

end

”codes/CVDirectLinear/dldy.m”

function ret = dldy(x, yx, ypx)

ret = yx;

end

”codes/CVDirectLinear/dldyp.m”

function ret = dldyp(x, yx, ypx)

ret = ypx;

end

33

Figure 2.1: Numerical solution with DirectCV and exact solution

The line diagram (figure 2.1) shows the numerical approximated solution for all xj
and the exact solution for the interval I = [1, 2]. The numerical and exact solution
differs especially in the centre of the interval. This is due to the start solution y0.
We have only information about the boundaries ya and yb therefore we get the best
approximation by the interval bounds.

2.2 Indirect method with linear ∇J
Unlike in the direct method for calculus of variations where we minimized directly on
the discretized function space, another possibility is to indirectly find the minimizing
function by solving the Euler-Lagrange equations.
The example problem is the same as before:

miny∈V J(y) :=

∫ 1

0

(
1

2
y2 +

1

2
(y′)2

)
dx

with V := {v ∈C1[0, 1] | v(0) = 1, v(1) = 4}

and thus l(x, y, y′) := 1
2y(x)2 + 1

2(y′(x))2. We discretize the interval [0,1] by N

equidistant points xk = k−1
N−1 with step size h := 1

N−1 . Now, there are in principle

34

two possible approaches:

a) optimize-before-discretize:

We could first write the Euler-Lagrange equation

∂l

∂y
− d

dx

∂l

∂y′
= 0 ⇔ y − y′′ = 0

and then discretize y to be a vector y = (yk)k=1,...,N where yk = y(xk). Using the
forward Euler-method the second derivative of y at the grid point xk is then given
by

y′′(xk) = (y′′)k =
yk+1 − 2yk + yk−1

h2

for k = 2, ..., N − 1. The discretized Euler-Lagrange equation is thus given by

yk −
1

h2
(yk+1 − 2yk + yk−1) = 0 for k = 2, ..., N − 1

with boundary conditions
y1 = 1 yN = 4.

Since this is just a linear system of equations we can write it in matrix form


1 0 . . . 0

0
. . .

...
...

. . . 0

0 . . . 0 1

−
1

h2


0 . . . 0
1 2 1

. . .
. . .

. . .

1 2 1
0 . . . 0



 ·


y1

y2

y3
...
yN

 =


1
0
...
0
4


and easily solve (numerically) for (yk)k=1,...,N since the left-hand side is invertible.

b) discretize-before-optimize:

The second possiblity is to first discretize the functional J and then derive the
corresponding Euler-Lagrange equations by numerically computing the gradient of
J. Using the discretization y = (yk)k=1,...,N with yk = y(xk) and the midpoint-
method for numerical integration, the functional J is discretized by

Jh((yk)k) = h

N∑
j=2

l

(
1

2
(xj−1 + xj),

1

2
(yj−1 + yj),

1

h
(yj − yj−1)

)
(2.1)

By abbreviating

∂l

∂y

∣∣∣∣
j

:=
∂l

∂y

(
1

2
(xj−1 + xj),

1

2
(yj−1 + yj),

1

h
(yj − yj−1)

)
and analogous for ∂l

∂y′

∣∣∣
j

we derive 2.1 for yj to get

∂Jh(y)

∂yj
=

h

2

(
∂l

∂y

∣∣∣∣
j

+
∂l

∂y

∣∣∣∣
j+1

)
+

∂l

∂y′

∣∣∣∣
j

− ∂l

∂y′

∣∣∣∣
j+1

= h

(
1

2

(
∂l

∂y

∣∣∣∣
j

+
∂l

∂y

∣∣∣∣
j+1

)
− 1

h

(
∂l

∂y′

∣∣∣∣
j+1

− ∂l

∂y′

∣∣∣∣
j

))

35

since only two terms in the sum remain. Because we know that in general the
gradient of J is given by

(∇J(y), h) =

∫ b

a
h ·
(
∂l

∂y
− d

dx

∂l

∂y′

)
dx

this yields the discretized Euler-Lagrange equation

1

2

(
∂l

∂y

∣∣∣∣
j

+
∂l

∂y

∣∣∣∣
j+1

)
− 1

h

(
∂l

∂y′

∣∣∣∣
j+1

− ∂l

∂y′

∣∣∣∣
j

)
= 0 for j = 2, ..., N − 1.

Computing ∂l
∂y = y and ∂l

∂y′ = y′ we obtain with our abbreviations ∂l
∂y

∣∣∣
j

= 1
2(yj +

yj−1) and ∂l
∂y′

∣∣∣
j

= 1
h(yj−yj+1) the explicit system of linear Euler-Lagrange equations

1

2

(
yj+1 + 2yj + yj+1

2

)
− 1

h

(
yj+1 − 2yj + yj+1

h

)
for j = 2, ..., N − 1

with boundary conditions
y1 = 1 yN = 4.

Writing this sytem of linear equations again in matrix form
1

4


4 . . . 0
1 2 1

. . .
. . .

. . .

1 2 1
0 . . . 0 4

−
1

h2


0 . . . 0
1 2 1

. . .
. . .

. . .

1 2 1
0 . . . 0



 ·


y1

y2

y3
...
yN

 =


1
0
...
0
4


we can easily solve numerically for (yk).

One can easily verify that the exact solution to the Euler-Lagrange equation is given
by

y(x) = c1 exp(x) + c2 exp(−x)

where the boundary conditions determine (c1, c2)T uniquely by(
e1 e−1

e2 e−2

)
·
(
c1

c2

)
=

(
1
4

)
.

The implementation is rather simple since it only amounts to solving a system of
linear equations. For comparison, we plot the exact solution as well as the deviation
from the exact solution.

”codes/CVIndirectLinear/CVIndirectLinear.m”

a = 1;

b = 2;

ya = 1;

yb = 4;

N = 100; % Mesh size

h = (b-a)/(N-1);

x = linspace(a,b,N) ';

36

B = gallery('tridiag ', N, 1,-2,1);

B(1,:) = zeros(1,N);

B(N,:) = zeros(1,N);

% Generate matrix for discretize before optimize

ADBO = gallery('tridiag ', N, 1,2,1);

a = zeros(1,N);

a(1) = 4;

ADBO (1,:) = a;

a = zeros(1,N);

a(N) = 4;

ADBO(N,:) = a;

CDBO = (1/4)*ADBO - 1/power(h, 2)*B;

% Generate matrix for optimize before discretize:

AOBD = 4*eye(N);

COBD = (1/4)*AOBD - 1/power(h, 2)*B;

% Generate right -hand side of equation

r = zeros(N,1);

r(1) = ya;

r(N) = yb;

solDBO = CDBO \ r; % Solve DBO system of equations

solOBD = COBD \ r; % Solve OBD system of equations

% Compute exact solution for comparison

c = [exp(1) , exp(-1) ; exp(2) , exp(-2)] \ [1;4];

solExact = c(1)*exp(x) + c(2)*exp(-x);

figure('Position ', [10 10 700 450])

clf

%plot(x, exactY , 'r--o', "MarkerIndices", 1:5: length(exactY));

% Plot all three solutions

subplot (2,1,1)

hold on

plot(x, solExact , 'r--');
plot(x, solDBO ,'g-.')

plot(x, solOBD ,'b')

legend ("Exact","Numerical DBO", "Numerical OBD")

title (" Solutions ")

hold off% Error plot for DBO and OBD

subplot (2,1,2)

hold on

plot(x, solExact -solDBO);

plot(x, solExact -solOBD);

legend ("DBO","OBD")

title (" Errors ")

ylim([-3e-6, 6e-6]);

This gives:

37

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
1

2

3

4
Solutions

Exact

Numerical DBO

Numerical OBD

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

-2

0

2

4

6
10

-6 Errors

DBO

OBD

Figure 2.2: Solutions and errors for indirect method for CV with dbo and obd

We see that both methods have errors of the same magnitude with OBD having a
slightly smaller error in this case.

Since the gradient ∇J was linear, solving the Euler-Lagrange equations meant in
this case just solving a system of linear equations, for both DBO and OBD. For
nonlinear ∇J we can apply the same techniques as above but will then get a system
of nonlinear equations. In this case one could use a Newton method to approximate
a solution.

38

3 Optimal control

3.1 Optimal control of linear ODEs with initial condi-
tions

As a first example of an optimal control problem we consider the control of the
following tracking functional

minu∈L2(Ω) J(y, u) :=
1

2
‖y − yd‖2L2(Ω) +

ν

2
‖u‖2L2(Ω)

y′ = y + u s.t. y(0) = 1

with Ω = (0, 1), ν > 0 and target trajectory yd = 2 · χ(1
2
,1). The corresponding

optimality system reads as follows:

y′ = y + u s.t. y(0) = 1 state equation,

−p′ = p − (y − yd) s.t. p(1) = 0 adjoint equation,

0 = ν u − p optimality condition.

By solving the state equation we obtain the implicit dependence of y on u and
thereby reduce the optimization problem to the minimization of the reduced func-
tional

minu∈L2(Ω) Ĵ(u) := J (y(u), u) .

The gradient of Ĵ is given by the optimality condition, yielding

∇Ĵ(u) = ν u − p(u).

Note how p implicitly depends on y by the adjoint equation, which in turn implicitly
depends on u as mentioned already. Thus one deduces the implicit dependence of
p on u.

For the numerical computation of the state and adjoint equations we use explicit
Euler methods, utilizing forward and backward differences respectively. Since the
adjoint equation is evolving backwards in time we will consider the algorithm more
closely in the following. First we discretize Ω as a mesh (xk)k=1,...,N with step size
h = 1

N−1 , i.e., xk = k−1
N−1 . Now the terminal condition of p is given as p(xN) = 0

and from the approximation p′(xk) ≈ 1
h(p(xk)− p(xk−1)) we iteratively calculate

p(xk−1) = p(xk) − h · (−p(xk) + (y(xk)− yd(xk))),

for all k = N, . . . , 2 to obtain a discretized p. The gradient ∇Ĵ is then derived with
the above formula. For the minimization step we can use any gradient-based opti-
mization scheme, such as steepest descent or nonlinear conjugate gradient methods.
Note, however, that we adapted the parameters of our linesearch to increase the
rate of convergence.

39

”codes/OPC/linesearch.m”

%{

Line search algorithm with Armijo condition

For a given function f and direction p at a point x,

finds a step size t such that f admits a sufficient decrease in

direction p at x

Terminates with step size approximately 1e-5 if no sufficient

decrease is found.

%}

function [t] = linesearch(f, p, x)

alpha = 0.00005; % Specifies desired decrease

t = 4;

while f(x +t*p) > f(x) - alpha*t*power(norm(p), 2) % Armijo

condition for not accepting t

t = 0.5*t; % Backtracking step

if t < 1e-5 % No decrease found

return;

end

end

end

”codes/OPC/targetTrajectory.m”

%receives an input vector x and calculates the corresponding values

%outputs values of the target trajectory as a vector

function y=targetTrajectory(x)

N=length(x);

y=zeros(N,1);

for i=1:N

if x(i) <1/2

y(i)=0;

else

y(i)=2;

end

end

end

”codes/OPC/solveStateEq.m”

%numerically solves the state equation with initial condition y(a)=ya

%by explicit Euler

function y=solveStateEq(x,u,ya)

N=length(x);

y=zeros(N,1);

y(1)=ya;

dx=x(2)-x(1);

for i=2:N

y(i)=dx*stateEq(x(i-1),y(i-1),u(i-1))+y(i-1);

end

end

”codes/OPC/stateEq.m”

40

%calculates the state equation given by the functional J

function dy=stateEq(x,y,u)

dy=y+u;

end

”codes/OPC/solveAdjointEq.m”

%numerically solves backwards evolving adjoint equation by explicit

Euler

%with terminal condition p(b)=pb for p given by the functional

function p=solveAdjointEq(x,y,u,pb)

N=length(x);

dx=x(2)-x(1);

p=zeros(N,1);

p(N)=pb;

for j=1:N-1

i=N-j;

p(i)=-dx*adjointEq(x(i+1),y(i+1),u(i+1),p(i+1))+p(i+1);

end

end

”codes/OPC/adjointEq.m”

%calculates the adjoint equation given by the functional J

function dp=adjointEq(x,y,u,p)

dp=-p+y-targetTrajectory(x);

end

”codes/OPC/OPC.m”

%solves the optimal control problem for the functional J(y,u)

%J(y,u)=|y-y_d |^2+1/2* nu*|u|^2

%y is the state , u is the control , y_d is the target trajectory

%solves the optimization problem via gradient descent

%%% initialization

a=0; %lower interval boundary

b=1; %upper interval boundary

ya=1; %initial value for y

N=1e2; %number of partition points of the interval

dx=(b-a)/N; %determine step size of the mesh

x=[a:dx:b]; %generate mesh

u=zeros(N+1,1); %initialize the control u

Kmax=5e3; %maximal number of iterations

eps=1e-2; %threshold for gradient magnitude to break iterations

%cost of the penalty term; decrease nu to increase accuracy of

%approximation to target trajectory

nu=1e-3;

%generate function for the functional J; receives vectors as inputs

J = @(y,u) 1/2*dx*sum((y-targetTrajectory(x)).^2)+nu/2*dx*sum(u.^2);

%generate reduced functional J_hat

J_hat = @(u) J(solveStateEq(x,u,ya),u);

%generate gradient of J_hat; grad_J_hat = -p+nu*u

41

grad_J_hat = @(u) -solveAdjointEq(x,solveStateEq(x,u,ya),u,0)+nu*u;

%calculation via e.g. nonlinearCG , steepestDescent

[u,k,grads]= nonlinearCG(J_hat ,grad_J_hat ,u,Kmax ,eps);

%alternatively use:

%[u,k,grads]= steepestDescent(J_hat ,grad_J_hat ,u,Kmax ,eps);

%calculate y from the optimal control u

y=solveStateEq(x,u,ya);

figure

hold on

subplot (3,1,1)

plot(x,[y,targetTrajectory(x)])

title('y')
lgd=legend('solution ', 'target trajectory ');
lgd.Location='northwest ';
subplot (3,1,2)

plot(x,u)

title('u')
subplot (3,1,3)

plot (1:k,grads (1:k))

title('norm grad J hat')

The algorithm terminates after 91 steps. After 20 steps the approximation of y
to the minimum is already fairly accurate. If the parameter ν is decreased, y
approaches the target trajectory more closely, but the control u diverges at the
points 0 and 1

2 . This divergence is typical for the forced discrepancy between the
initial conditions for y and yd, as well as the discontinuity of yd .

42

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2
y

solution

target trajectory

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-20

0

20

u

0 10 20 30 40 50 60 70 80 90 100
0

2

4

norm grad J hat

Figure 3.1: Solution, control and ‖∇Ĵ(uk)‖ for optimal control problem

3.2 Optimal control of linear ODEs with initial condi-
tions and bounded controls

As before, we consider the optimal control problem given by the tracking functional

minu∈U J(y, u) :=
1

2
‖y − yd‖2L2(Ω) +

ν

2
‖u‖2L2(Ω)

y′ = y + u s.t. y(0) = 1

with Ω = (0, 1), ν > 0 and target trajectory yd = 2 · χ(1
2
,1). But now we only allow

constrained controls u ∈ U with

U := {u ∈ L2(Ω), s.t. ulow ≤ u ≤ uhigh a.e.},

where ulow, uhigh ∈ L2(Ω) are given functions.

In our implementation we assumed ulow, uhigh ∈ R to be constant functions, al-
though the algorithm can be easily adapted to the arbitrary case. The problem
is again solved numerically by a gradient based optimization scheme. We utilize a

43

projected conjugate gradient method, where the control u is projected onto the ad-
missasble set U after each update-step. For the discussion of the optimality system,
numerical solution of the state and adjoint equation, and derivation of the reduced
functional Ĵ see section 3.1.

”codes/OPCboundedControl/OPCboundedControl.m”

%solves the optimal control problem for the functional J(y,u)

%J(y,u)=|y-y_d |^2+1/2* nu*|u|^2

%allows only bounded controls u, bounded form below by u_low ,

%and bounded from above by u_high

%y is the state , u is the control , y_d is the target trajectory

%solves the optimization problem via projected gradient descent

%%% initialization

a=0; %lower interval boundary

b=1; %upper interval boundary

ya=1; %initial value for y

N=1e2; %number of partition points of the interval

dx=(b-a)/N; %determine step size of the mesh

x=[a:dx:b]; %generate mesh

u=zeros(N+1,1); %initialize the control u

u_low =-10; %lower boundary for the control values

u_high =10; %upper boundary for the control values

Kmax=3e2; %maximal number of iterations

eps=1e-2; %threshold for gradient magnitude to break iterations

%cost of the penalty term; decrease nu to increase accuracy of

%approximation to target trajectory

nu=1e-3;

%generate function for the functional; receives vectors as inputs

J = @(y,u) 1/2*dx*sum((y-targetTrajectory(x)).^2)+nu/2*dx*sum(u.^2);

%generate reduced functional J_hat

J_hat = @(u) J(solveStateEq(x,u,ya),u);

%generate gradient of J_hat; grad_J_hat = -p+nu*u

grad_J_hat = @(u) -solveAdjointEq(x,solveStateEq(x,u,ya),u,0)+nu*u;

%calculation via projectedCG

[u,k,grads]= projectedCG(J_hat ,grad_J_hat ,u,Kmax ,eps ,u_low*ones(N+1,1)

,u_high*ones(N+1,1));

%calculate y from the optimal control u

y=solveStateEq(x,u,ya);

figure

hold on

subplot (3,1,1)

plot(x,[y,targetTrajectory(x)])

title('y')
lgd=legend('solution ', 'target trajectory ');
lgd.Location='northwest ';
subplot (3,1,2)

plot(x,u)

title('u')
subplot (3,1,3)

plot (1:k,grads (1:k))

title('norm grad J hat')

44

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2
y

solution

target trajectory

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-10

0

10
u

0 50 100 150 200 250 300
0

2

4

norm grad J hat

Figure 3.2: Solution, control and ‖∇Ĵ(uk)‖ for optimal control problem with
bounded controls

From the plot of the derived functions y and u one can deduce the influence of
the imposed conditions on the controls. The solution y approximates the target
trajectory worse than in the previous section, where arbitrary controls were allowed.
The control u piecewisely attains the values ulow and uhigh, and resembles a cut-off
version of the unconstrained control derived before.

3.3 Optimal control of elliptic ODEs with Dirichlet bound-
ary condition

For a second example in optimal control we consider the elliptic-type problem with
Dirichlet boundary condition

minu∈L2(Ω) J(y, u) :=
1

2
‖y − yd‖2L2(Ω) +

ν

2
‖u‖2L2(Ω)

−y′′ + u y = f on Ω

y = g on ∂Ω

45

with Ω = (0, 1), ν = 10−8 > 0, f ≡ 1, boundary conditions g(0) = 0, g(1) = 1 and
target trajectory yd = χ(1, 2

3
) +χ(1

3
, 2
3

). The control term u y in the state equation is

called a bilinear control. One can easily compute the optimality system as

−y′′ + u y = f on Ω
y = g on ∂Ω

}
state equation

−p′′ + u p = −(y − yd) on Ω
p = 0 on ∂Ω

}
adjoint equation

ν u + y p = 0 optimality condition

The numerical calculation is done on a grid (xk)k=1,...,N , xk = k−1
N−1 with N points

and step size h := 1
N−1 . All functions y, p, u, are discretized as N -vectors by

yk := y(xk) and so on.

We notice that the state equation and the adjoint equation are of the same struc-
ture with only the right-hand sides f and g changed. This is typical for elliptic
problems. Therefore we only discuss the numerical solution of the state equation,
the adjoint equation is handled analogous. Since the state equation is linear in y,
we can use a similar approach like we did for the indirect method in CV in the case
optimize-before-discretize above:

By approximating (y′′)(xj) ≈ 1
h2 (yj+1 − 2yj + yj−1) and (u y)(xj) ≈ uj yj the dis-

cretized state equation reads

− 1

h2
(yj+1 − 2yj + yj−1) + uj yj = 1 for k = 2, ..., N − 1

y1 = 0, yN = 1

As before, we write this in matrix form

1

h2


1 0 . . . 0
−1 (2 + h2u2) −1

0
. . .

. . .
. . . 0

... −1 (2 + h2uN−1) −1
0 . . . 0 1

 ·


y1

y2
...

yN−1

yN

 =



g(0)
h2

f2
...

fN−1
g(1)
h2

 .

Thereby we see that in this case evaluating the control-to-state map just amounts to
solving a system of linear equations. Using this control-to-state map, we obtain the
reduced functional Ĵ(u) = J(S(u), u) which we want to minimize using a gradient
descent algorithm. The gradient of Ĵ is given by the optimality condition

∇Ĵ(u) = ν u + y p

which requires us to solve the adjoint equation p = p(x, y, u). As mentioned above,
this can be done analogously to the state equation. We want to use some gradient
descent scheme, in which the step size has to be determined by Line Search. Note,
that in every evaluation of Ĵ during Line Search, the state equation has to be solved.
The gradient in the gradient can be computed as follows:

46

Algorithm: Compute ∇Ĵ for elliptic OPC problem

Input:

ν cost factor

y = y(x, u) solution to the state equation

p = p(x, y, u) solution to the adjoint equation

u control function

Output:

∇Ĵ(u) gradient of Ĵ at u

1: y ← y(x, uk) . solve state equation
2: p← p(x, y, u) . solve adjoint equation
3: return ∇Ĵ(u) = p y + ν u . get gradient via optimality condition

The implementation basically just consists of steepest descent or a conjugate gradi-
ent method and requires additionally to solve the state- and adjoint equation. But
this is just a system of linear equations like in the SUMT method. We only need
to add those two pieces together. It is also worth noting that for this purpose we
adjusted the parameter in the Line Search to start out bigger to allow for as faster
descent in the beginning and accept smaller decreases to make any descent near the
minimum possible.

47

”codes/OPCelliptic/linesearch.m”

%{

Line search algorithm with Armijo condition

For a given function f and direction p at a point x,

finds a step size t such that f admits a sufficient decrease in

direction p at x

Terminates with step size approximately 1e-5 if no sufficient

decrease is found.

%}

function [t] = linesearch(f, p, x)

alpha = 0.00005; % Specifies desired decrease

t = 4;

while f(x +t*p) > f(x) - alpha*t*power(norm(p), 2) % Armijo

condition for not accepting t

t = 0.5*t; % Backtracking step

if t < 1e-5 % No decrease found

return;

end

end

end

”codes/OPCelliptic/J.m”

% Functional J(y,u) = integral_0 ^1 (0.5*(y-yd)^2 + (ny/2)*u^2)

function Jyu = J(x,u, y,yd, ny)

N = length(x);

dx = (x(N)-x(1))/(N-1);

Jyu = sum(0.5*(y - yd).^2 + 0.5*ny*u.^2);

end

”codes/OPCelliptic/solveStateEq.m”

% Solves the state equation

% -y'' + yu = f on (0,1)

% y = g on the boundary of (0,1)

% with f given as a N-vector

% and g given as a 2-vector with the boundary values

function y = solveStateEq(x, u,g, f)

N = length(x);

h = 1/(N-1);

% generate matrix corresponding to the equation

A = (1/(h^2)) * full(gallery (" tridiag", N, -1,2,-1));

A = A + diag(u);

A(1,1) = 1;

A(1,2) = 0;

A(N,N) = 1;

A(N, N-1) = 0;

f(1) = g(1); % boundary condition y(0) = g(0)

f(length(f)) = g(2);% boundary condition y(1) = g(1)

y = (A\(f'))'; % solve linear equation A y = f

end

48

”codes/OPCelliptic/solveAdjointEq.m”

% Solves the adjoint equation

% -p'' + pu = -(y-yd) on (0,1)

% p = 0 on the boundary of (0,1)

% with yd given as a N-vector

function p = solveAdjointEq(x,y,u, yd)

N = length(x);

h = 1/(N-1);

% generate matrix corresponding to the equation

A = (1/h^2) * full(gallery (" tridiag", N, -1,2,-1));

A = A + diag(u);

A(1,1) = 1;

A(1,2) = 0;

A(N,N) = 1;

A(N, N-1) = 0;

f = -(y -yd); % right -hand side

f(1) = 0; % boundary condition p(0) = 0

f(length(f)) = 0; % boundary condition p(1) = 0

p = (A\(f'))'; % solve linear equation A p = f

end

”codes/OPCelliptic/OPCelliptic.m”

a = 0;

b = 1;

N = 200; % mesh size

x = linspace(a, b, N);

Kmax = 5000; % maximal number of steps

ny = 1e-8; % cost factor

g = [0 ,1]; % boundary values

f = ones(1,N); % state equation right -hand side

yd = zeros(1,N);% generate target trajectory function

yd (1:1: round(N/3)) = 1;

yd(round(N/3) :1: round (2*N/3)) = 2;

Jhat = @(u) J(x, u, solveStateEq(x,u,g, f),yd, ny);

grad = @(u) gradJhat(x,u, g, f, yd, ny);

% alternatively use

% steepestDescent(Jhat , grad , zeros(1,N), Kmax , 1e-8);

[u k grads] = nonlinearCG(Jhat , grad , zeros(1,N), Kmax , 1e-8);

clf

y = solveStateEq(x,u, g, f);

subplot (3,1,1)

plot(x,y, x, yd) % plot solution and target trajectory

ylim ([-0.2 ,2.3])

legend (" solution", "target trajectory ")

title("y")

subplot (3,1,2)

plot(x,u) % plot control function

title("u")

subplot (3,1,3)

plot (1:k , grads (1:k)) % plot the gradient of Jhat

title("norm grad J hat");

set(gcf , 'Position ', [100, 100, 800, 500])

49

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.5

1

1.5

2

y

solution

target trajectory

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-50

0

50

u

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.2

0.4

0.6

0.8
norm grad J hat

Figure 3.3: Solution, control and ‖∇Ĵ(uk)‖ for elliptic optimal control problem
with steepest descent

Typical for bilinear controls is very slow descent near the minimum. Comparing the
plots generated by steepest descent and conjugate gradient in Figure 3.3 and 3.4,
we see that conjugate gradient achieves significantly better results in much fewer
steps. It converges much faster away from the minimum and gets a lot closer to
it. Steepest descent has the typical problem of oscillating around the minimum
we have seen before. Conjugate gradient also oscillates somewhat but much less
regular and with smaller amplitude around the minimum.

50

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.5

1

1.5

2

y

solution

target trajectory

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1000

-500

0

500

1000

u

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

5

10

norm grad J hat

Figure 3.4: Solution, control and ‖∇Ĵ(uk)‖ for elliptic optimal control problem
with conjugate gradient

51

List of Figures

1.1 ‖∇f(xk)‖ at each step k = 0, ...,Kmax for steepest descent 7
1.2 Error of step K = 1, . . . , 4 of linear CG 11
1.3 Norm of gradient for nonlinear conjugate gradient algorithm 14
1.4 Norm of gradient for projected conjugate gradient 17
1.5 ‖∇f(xk)‖ at each step k = 1, ..., kreqSteps for the Newton method . . 20
1.6 Step sizes for SUMT algorithm . 25
1.7 Step-sizes for barrier method with inverse barrier (left) and logarith-

mic barrier (right) . 30

2.1 Numerical solution with DirectCV and exact solution 34
2.2 Solutions and errors for indirect method for CV with dbo and obd . 38

3.1 Solution, control and ‖∇Ĵ(uk)‖ for optimal control problem 43
3.2 Solution, control and ‖∇Ĵ(uk)‖ for optimal control problem with

bounded controls . 45
3.3 Solution, control and ‖∇Ĵ(uk)‖ for elliptic optimal control problem

with steepest descent . 50
3.4 Solution, control and ‖∇Ĵ(uk)‖ for elliptic optimal control problem

with conjugate gradient . 51

52

