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Abstract

A sequential quadratic Hamiltonian (SQH) method for solving control-constrained parabo-
lic optimal control problems with continuous and discontinuous non-convex cost functionals
is investigated. The solution to these problems is characterised by the Pontryagin’s maxi-
mum principle, which is also the starting point for the development of a sequential quadratic
Hamiltonian scheme. In a general setting that includes discontinuous and non-convex cost
functionals, it is proved that the SQH method is well-defined; however, convergence to an
optimal solution is proved only in the smooth case. Results of numerical experiments are
presented that successfully validate the proposed optimisation framework and demonstrate
its effectiveness and large applicability.
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1 Introduction

Optimal control of parabolic models with cost functionals for which necessary first-order conditions
can be reformulated as semi-smooth equations is a well developed modern research topic; see, e.g.,
[22, 45] and references therein. In this framework, optimal solutions are characterised by first-order
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optimality conditions that require semi-smoothness of the reduced cost functional allowing the
development of different solution procedures like proximal methods [39] and semi-smooth Newton-
methods [45]. However, in the case of cost functionals that are not Lipschitz continuous and in
the much less investigated case of discontinuous cost functionals, the property of semi-smoothness
is lost and the optimisation techniques mentioned above cannot be used, unless regularisation is
considered at the cost of modifying the nature of the problem; see, e.g., [32].

We mainly focus on discontinuous and non-convex cost functionals as the most challenging
benchmark that can be addressed by the method proposed in this work. In particular, we consider
a cost functional given by the following:

∫ T
0

∫
Ω
g (u (x, t)) dxdt where the control’s cost is evaluated

with the lower semi-continuous function

g (z) =

{
|z| if |z| > s

0 otherwise

where s > 0.
Our numerical approach has obviously much larger applicability. Discontinuous cost functionals

and, more generally, discontinuous variational problems appear already in the study of jet flows,
cavity problems and in plasma physics [6, 29]. However their numerical realisation has been
hindered by the lack of appropriate solvers. In this framework, the purpose of our work is to
contribute to the field of non-smooth optimisation with partial differential equations (PDEs) by
developing numerical tools that apply to non-regularised distributed parabolic optimal control
problems with discontinuous and non-convex cost functionals. For this purpose, we deal with
the optimal control theory based on the Pontryagin’s maximum principle (PMP) [9, 17, 35] that
was originally developed for control problems governed by ordinary differential equations (ODEs)
and has been much less investigated in the context of time-dependent PDE models; see, e.g.,
[14, 30, 36, 42, 43]. In particular, we focus on the work [36] to characterise a solution to our
parabolic control problems with a necessary optimality condition provided by the PMP. For these
problems we briefly address the issue of existence of optimal controls and then turn our attention
to their PMP characterisation.

Although the PMP principle represents a powerful theoretical tool, its use in the PDE context
has been hindered by the lack of efficient numerical implementation. In fact, well-known direct
and indirect methods used to solve ODE control problems are difficult to apply in the higher
space-time dimensional setting of PDE problems and in the case of large-size ODE problems. It is
the main purpose of the present work to address this issue by developing an efficient optimisation
scheme that is consistent with the PMP framework. For this purpose, we notice that a natural
approach to solve PDE models is by iterative methods that exploit the sparsity of discretized
PDEs. Moreover, we point out that the PMP principle has a pointwise formulation and even
its proof is by ‘needle variations’, and both are local in structure. Therefore it seems natural
to consider iterative strategies that implement local updates of the control function pointwise in
space and time.

For this reason, we focus on the iterative scheme first proposed in [38] and further discussed in
[10, 40] to solve ODE control problems by an augmented Hamiltonian technique and discuss their
extension to our PDE setting. Moreover, we also would like to mention the earlier works [26, 27]
where different so-called successive iteration solvers based on the minimisation of the Pontryagin-
Hamilton function are considered. Specifically, in [26] the Hamiltonian without augmentation is
used to find an update for the control, but, as the authors mention, the issue of convergence
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remains open for this approach. In any case, we have implemented the method in [26] and found
that it has difficulty to cope with our cost functionals. In [27], modifications of the method in
[26] are discussed that transform the state equation to obtain a weakly controlled problem or use
a damping of the control update. The third proposed alternative is to restrict the change of the
control to a short time window. In our opinion, the augmented Hamiltonian approach can be seen
having the same purpose: keep the updates of the control conveniently small.

We remark that the iterative schemes in [26, 27] are designed so that the values of the state
variable from the previous iteration are used while computing the update of the control in the
new iteration sweep. This important feature is also characteristic of the method that we propose
in this paper. Therefore we could say that our approach includes different aspects of the methods
proposed in [38, 40] and in [26, 27].

In our approach, we pointwise minimise an augmented Hamiltonian function to find an update
for the control that provides a better cost functional value. In doing this, we use the state
function of the governing model from the previous iteration, thus avoiding to recalculate this
function every time after a local control update as in [38, 40]. Our procedure results in a much
smaller number of solving of the state equation, which is necessary since these calculations are
very costly in the case of partial differential equations. In this way, we formulate a new efficient
and robust iterative procedure that is able to solve discontinuous optimisation problems while not
relying on regularisation techniques as in [21, 23, 24]. We would like to name our method the
sequential quadratic Hamiltonian (SQH) scheme and show that it is able to solve discontinuous
time-dependent parabolic optimal control problems with almost linear computational complexity.
To the best of our knowledge, there is no other available methodology with similar capability. In
this paper, we theoretically discuss the convergence properties of our iterative SQH method and
demonstrate numerically its effectiveness.

In the next section, we formulate a class of parabolic optimal control problems and discuss
the necessary functional estimates. In Section 3, we discuss the Pontryagin maximum principle
for the chosen parabolic optimal control problems. We outline the proof of the PMP principle
(Theorem 3.3), which is analogous to [36], providing a necessary optimality condition for our
optimisation problems with a discontinuous cost of the control. In Section 4, we discuss our PMP-
based SQH scheme. We discuss how our scheme provides updates to the control that correspond
to monotonically decreasing cost functional values for our optimisation problem. Furthermore, in
the case of a differentiable cost functional, we prove convergence of the SQH sequence to a local
optimal solution in the sense that appropriate first-order optimality conditions are satisfied. The
main results of Section 4 are Theorem 4.1 and Theorem 4.2. In Section 5, results of numerical
experiments considering different cost functionals are presented that successfully demonstrate the
almost optimal complexity of our SQH scheme and its robustness with respect to changes of the
values of the optimisation parameters. In particular, we show that the solution obtained with the
SQH scheme fulfils the PMP optimality condition. Furthermore, to allow a comparison with a
well-known optimisation scheme as the non-linear conjugated gradient (NCG) method, we consider
the case of a continuous cost functional and compare our iterative scheme with the NCG method.
Notice that a direct comparison of the SQH scheme with the method in [38] results obviously in
favour of our method since the latter requires a prohibitive large number of forward solves.

In order to provide all technical details supporting our work and to make this work self-
contained as far as possible, we include an appendix. In the Appendix, we prove an L∞-result
for linear parabolic partial differential equations that is essential for the PMP characterization of
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parabolic PDE control problems. We include this result since it is usually stated without proof
by making references to [28] where the required result is embedded in a more general framework.
Further, in the attempt to give a theoretical support to our framework with discontinuous cost
functionals, we prove existence of a minimiser for this optimisation setting in the case of a compact
admissible control set. A section of conclusion completes this work.

2 Formulation of the optimal control problem

In this section, we formulate our parabolic optimal control problems with discontinuous cost
functionals and discuss existence of optimal controls. Our governing model is a heat equation
with distributed control that is defined in the space-time cylinder Q = Ω× (0, T ), Ω ⊂ Rn, n ∈ N,
where Ω is an open bounded domain with a smooth boundary. We choose homogeneous Dirichlet
boundary conditions and an initial condition y0 ∈ L∞ (Ω).

For each t ∈ (0, T ), T > 0, the weak formulation of the resulting initial-boundary value
problem is as follows: Find y ∈ L2 (0, T ;H1

0 (Ω)) and y′ ∈ L2 (0, T ;H−1 (Ω)), that means, y ∈
W (0, T ) := {y ∈ L2 (0, T ;H1

0 (Ω)) | y′ ∈ L2 (0, T ;H−1 (Ω))}; see [44, Chapter 3], such that the
following is satisfied

(y′ (·, t) , v) +D (∇y (·, t) ,∇v) = (u (·, t) , v) in Q

y (·, 0) = y0 on Ω× {t = 0} (1)

y = 0 on ∂Ω,

for all v ∈ H1
0 (Ω). In this setting, y : Q → R denotes the state variable and u : Q → R denotes

the control. We denote with (·, ·) the scalar product in L2 (Ω), D > 0 is the diffusion coefficient,
y′ := ∂

∂t
y (x, t), and ∇ denotes the L2 (Ω) gradient.

Requiring u ∈ Lq (Q), q > n
2

+1 if n ≥ 2 and q ≥ 2 if n = 1, we have that there exists an unique
solution y ∈ W (0, T ) to (1), see [19, Chapter 7.1, Theorem 3] as y0,∈ L2 (Ω) and u ∈ L2 (Q),
see [1, Theorem 2.14]. However, for the aim of the Pontryagin maximum principle, this regularity
result needs to be improved. For this purpose, we require y0 ∈ H1

0 (Ω) ∩ L∞ (Ω). Then we have
y ∈ L2 (0, T ;H2 (Ω)) ∩ L∞ (0, T ;H1

0 (Ω)), see [19, Chapter 7 Theorem 5], such that we can apply
Theorem 6.1 (Appendix) and have the following theorem.

Theorem 2.1. Let y be the solution to (1). Then, y is essentially bounded by

‖y‖L∞(Q) ≤ ‖y0‖L∞(Ω) + C‖u‖Lq(Q),

where C > 0 is a constant.

Furthermore, we have that the control-to-state map, S : Lq (Q) → W (0, T ), u 7→ y = S (u)
is affine and continuous; see [44, (3.36)] and [1, Theorem 2.14] for the continuous embedding of
Lq (Q) → L2 (Q). Moreover, the map S is continuous as a map S : Lq (Q) → L2 (Q), since

‖y‖2
L2(Q) =

∫ T
0
‖y‖2

L2(Ω)dt ≤
∫ T

0
‖y‖2

H1
0 (Ω)

dt = ‖y‖L2(0,T ;H1
0 (Ω)).
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Next, we discuss the following parabolic optimal control problem

min
y,u

J (y, u)

s.t. (y′, v) +D (∇y,∇v) = (u, v) in Q

y (·, 0) = y0 on Ω× {t = 0} (2)

y = 0 on ∂Ω

u ∈ Uad,

where the cost functional J is given by

J (y, u) := Jc (y, u) + γ

∫
Q

g (u (x, t)) dxdt. (3)

In this functional, Jc represents a smooth functional objective as it appears in many control
problems [11, 44]. We have

Jc (y, u) :=
1

2
||y − yd||2L2(Q) +

α

2
||u||2L2(Q), α ≥ 0. (4)

In this case, the functional Jc models the task of driving the state y to track a desired state
trajectory yd ∈ Lq (Q), while keeping small the L2(Q)-cost of the control.

In addition to Jc, we have a possibly discontinuous cost functional given by

G (u) := γ

∫
Q

g (u (x, t)) dxdt, γ ≥ 0, (5)

where g : R→ R is a non-negative and lower semi-continuous function.
In particular, we consider the case where

g (u) =

{
|u| if |u| > s

0 otherwise

where s > 0. With this construction, we obtain a cost of the control that is zero if its value is
below a given threshold and it measures a L1 cost otherwise. Notice that with this choice the
reduced cost functional Ĵ (u) := J (S (u) , u) is discontinuous in Lq (Q).

The admissible set of controls is defined as follows

Uad := {u ∈ Lq (Q) | u (x, t) ∈ KU}, (6)

where KU is a compact subset of R.
In the case where G is a convex and continuous cost functional, existence of an optimal control

is guaranteed [44]. However, in the case of discontinuous cost functionals the issue of existence of
an optimal control is more delicate because the property of weakly lower semi-continuous is lost.
However, existence of an optimal solution can be proved considering a set of admissible controls
that is compact in Lq (Q); see Theorem 6.2 in the Appendix. For our purpose, we assume that
(2) admits a solution in Uad given in (6).
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3 The Pontryagin’s maximum principle

In this section, we discuss the characterisation of optimal controls in Uad in the framework of
the Pontryagin’s maximum principle in its easier variant with no final state constraints; see, e.g.,
[30, 36].

First, we illustrate the main theoretical steps in the derivation of the Pontryagin’s maximum
principle, also with the purpose to introduce essential concepts that are instrumental for the
discussion on our SQH scheme. In the following, the notation var1 ← var2 means that the
variable var1 is set equal to var2.

We formulate the following adjoint problem

(−p′ (·, t) , v) +D (∇p (·, t) ,∇v) = (y (·, t)− yd (·, t) , v) in Q

p (·, T ) = 0 on Ω× {T = 0}
p = 0 on ∂Ω.

(7)

This problem has the same structure as (1) after a transformation of the time variable t := T − τ
and noticing that y − yd ∈ Lq (Q), see [1, Theorem 2.14]. Hence, there exists an unique p ∈
L2 (0, T ;H1

0 (Ω)) and p′ ∈ L2 (0, T ;H−1 (Ω)) solving (7) for all v ∈ H1
0 (Ω).

Next, we define the Hamiltonian corresponding to (2) - (4) as follows

H (x, t, y, u, p) =
1

2
(y − yd)2 +

α

2
u2 + γg (u) + p u, (8)

where H : Rn × R+
0 × R ×KU × R → R. If y, u and p are functions, then H (x, t, y, u, p) stands

short for H (x, t, y(x, t), u(x, t), p(x, t)). We remark that throughout this work, we sometimes drop
the arguments (x, t) of functions to save notational effort when the functional dependence is clear
from the context.

The classical approach to prove the PMP principle is by the method of needle variation [17, 36].
For this purpose, let Sk (x0, t0) be an open ball centered at (x0, t0) ∈ Q with radius skx0,t0 such that
the Lebesgue measure of the ball tends to zero as k →∞, limk→∞ |Sk (x0, t0) | = 0. Analogous to
[36], we define the needle variation at (x0, t0) of an admissible control u∗ ∈ Uad as follows

uk (x, t) :=

{
u∗ (x, t) on Q\Sk (x0, t0)

u in Sk (x0, t0) ∩Q
(9)

where u ∈ KU . Notice that we consider a single needle variation as in [17, 30, 36].
We remark that the function uk ∈ Uad for all k ∈ N, for all (x0, t0) ∈ Q and u∗ ∈ Uad. This

can be seen as follows. The function uk = u∗χZ\Sk(x0,t0) + uχSk(x0,t0) is measurable for all k ∈ N
and (x0, t0) ∈ Q because the sum and the product of measurable functions is measurable, see [15,
Proposition 2.1.7] and the characteristic function χA is measurable if and only if A is measurable,
see [15, Example 2.1.2], the needle variation is measurable. As the image of the needle variation is

in KU almost everywhere and
(∫

Q
|uk (x, t) |qdxdt

) 1
q ≤ max (|ua|, |ub|) |Q|

1
q with |Q| the Lebesgue

measure of Q, the needle variation uk ∈ Lq (Q).
Next, we define the intermediate adjoint equation

(−p̃′ (·, t) , v) +D (∇p̃ (·, t) ,∇v) =

(
1

2
(y1 (·, t) + y2 (·, t))− yd (·, t) , v

)
in Q

p̃ (·, T ) =0 on Ω× {T = 0} ,
(10)
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with zero boundary conditions where y1 is the solution to (1) for u ← u1 and y2 is the solution
to (1) for u ← u2. Analogously to (7), after setting t := T − τ and because 1

2
(y1 + y2) −

yd ∈ Lq (Q), one can prove that the problem (10) has a unique solution p̃ ∈ L2 (0, T ;H1
0 (Ω))

and p̃′ ∈ L2 (0, T ;H−1 (Ω)). In addition, similarly to the forward equation (1), we also have
p, p̃ ∈ L2 (0, T ;H2 (Ω)) ∩ L∞ (0, T ;H1

0 (Ω)) as p (·, T ) = p̃ (·, T ) = 0, and hence p (·, T ) , p̃ (·, T ) ∈
L∞ (Ω) ∩H1

0 (Ω). Thus, we can establish the following theorem.

Theorem 3.1. The solution to (7) and the solution to (10) are essentially bounded.

Proof. We consider the time transformation t := T − τ and set p (t) ← p (T − τ). Then, ∂
∂t
p =

− ∂
∂τ
p. As y ∈ Lq (Q) according to Theorem 2.1 and yd ∈ Lq (Q), we can apply Theorem 2.1 again

to the solutions of (7) and (10) as p (·, T ) = 0, and so p (·, T ) ∈ L∞ (Ω) ∩H1
0 (Ω).

Now, we prove the following convergence result.

Theorem 3.2. Let u∗ ∈ Lq (Q) and y∗ be the solution to (1) for u ← u∗. Let p∗ be the corre-
sponding solution to (7) for y ← y∗. Let uk be defined in (9), yk be the solution to (1) for u← uk
as well as p̃k the corresponding solution to (10) for y1 ← y∗, y2 ← yk. Then, yk converges to y∗

in L∞ (Q) and p̃k converges to p∗ in L∞ (Q).

Proof. We have (x, t) 7→ u∗ (x, t) ∈ L∞ (Q); therefore almost every point of Q is a Lebesgue point
of (x, t) 7→ u∗ (x, t), see [19, page 649, Theorem 6]. This means that(∫

Q

|uk (x, t)− u∗ (x, t) |qdxdt
) 1

q

=

(∫
Sk(x0,t0)

|u− u∗ (x, t) |qdxdt
) 1

q

−→
k→∞

0,

for almost every point (x0, t0) of Q as (x, t) 7→ u−u∗ (x, t) ∈ Lq (Q). Therefore ||uk−u||Lq(Q) → 0
for k → ∞. Taking the difference of the heat equation (1) with the two controls u ← u∗ and
u← uk, we obtain

(z′k, v) +D (∇zk,∇v) = (uk − u∗, v) in Q

zk (·, 0) = 0 on Ω× {t = 0} ,

where zk := yk − y∗. From Theorem 2.1, we have that ||zk||L∞(Q) → 0 for k → ∞ because
||uk − u||Lq(Q) → 0 for k → ∞, see [1, Theorem 2.14]. Similarly, consider zk = p̃k − p∗. Subtract
the intermediate adjoint (10) for y1 ← y∗, y2 ← yk from the adjoint equation (7) with y ← y∗.
Then, we obtain

(−z′k, v) +D (∇zk,∇v) =

(
1

2
(yk − y∗) , v

)
in Q

zk (·, T ) = 0 on Ω× {t = 0} .

Analogous to Theorem 2.1 and the proof of Theorem 3.1, we have that ||zk||L∞(Q) → 0 for k →∞
if ||yk − y∗||Ln2 +1(Q)

→ 0 for k → ∞. Because of [1, Theorem 2.14], this is actually the case as

already ||yk − y∗||L∞(Q) → 0 for k →∞ according to the above discussion.
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Next, we define the following function F : Rn × R+
0 × R×KU → R as follows

F (x, t, y, u) :=
1

2
(y − yd)2 +

α

2
u2 + γg (u) .

Notice that F (x, t, y, u) stands short for F (x, t, y (x, t) , u (x, t)) if y or u are functions and J (y, u) =∫
Q
F (x, t, y, u) dxdt.

We remark that, in contrast to [36], we do not require that F (x, t, y, ·) is continuous on R.
Next, we provide two basic results for proving the Pontryagin’s maximum principle that we use to
characterise a solution to (2). The proofs are analogous to the corresponding ones in [36, Section
4].

Lemma 3.1. The following equation holds

J (y1, u1)− J (y2, u2) =

∫
Q

(H (x, t, y2, u1, p̃)−H (x, t, y2, u2, p̃)) dxdt,

where y1 is the solution to (1) for u← u1 ∈ Lq (Q), y2 is the solution to (1) for u← u2 ∈ Lq (Q)
and p̃ is the solution to (10).

Lemma 3.2. Let u∗ ∈ Uad be an admissible control and u ∈ KU . Furthermore, let uk be defined
as in (9), for all k ∈ N, and yk be the solution to (1) for u← uk. Then, the following holds

lim
k→∞

1

|Sk (x, t) |
(J (yk, uk)− J (y∗, u∗)) = H (x, t, y∗, u, p∗)−H (x, t, y∗, u∗, p∗) , (11)

for almost all (x, t) ∈ Q where y∗ is the solution to (1) for u ← u∗ and p∗ is the corresponding
solution to (7) for y ← y∗.

Theorem 3.3. Let (ȳ, ū, p̄) be an optimal solution to (2) where ȳ is the solution to (1) for u← ū
and p̄ is the solution to (7) for u← ū and y ← ȳ. Then, the following holds

H (x, t, ȳ, ū, p̄) = min
u∈KU

H (x, t, ȳ, u, p̄) , (12)

for almost every (x, t) ∈ Q.

4 A sequential quadratic Hamiltonian scheme

This section is devoted to the formulation and theoretical investigation of our sequential quadratic
Hamiltonian (SQH) scheme for solving the parabolic optimal control problem (2) - (3). The
starting point for the formulation of our SQH scheme is the idea of point-by-point (in a numerical
grid defined later) implementation of (12), having in mind the results of Lemma 3.1 and Lemma
3.2. Notice that a similar idea has been successful in the Lagrange framework in the case of
differentiable cost functionals, leading to the formulation of collective Gauss-Seidel schemes and
efficient multigrid methods for optimality systems; see, e.g., [11]. As already discussed in the
introduction, the SQH scheme represents a further development of the schemes proposed in [26, 27]
and in [38, 40] in the context of ODE control problems. We remark that the SQH approach could
formally be interpreted as a sequential quadratic programming method [13], which explains the
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naming of our iterative procedure. This procedure is characterised by two important features: 1)
a quadratic penalisation of the control’s updates; 2) at the given iterate, the computation of the
values of state variable after the control update at all points has been completed.

In the SQH method, the Hamiltonian (8) is augmented with the term ε (u (x, t)− v (x, t))2.
Thus, we define the following augmented Hamiltonian

Kε (x, t, y, u, v, p) := H (x, t, y, u, p) + ε (u (x, t)− v (x, t))2 , (13)

where Kε : Rn×R+
0 ×R×KU×KU×R→ R and ε > 0. Notice that Kε (x, t, y, u, v, p) stands short

for Kε (x, t, y (x, t) , u (x, t) , v (x, t) , p (x, t)) if y, u, v or p are functions. Roughly speaking, the
quadratic term ε (u (x, t)− v (x, t))2 aims at penalising local control updates that differ too much
from the current control value. This in turn prevents the corresponding state y to take values at
(x, t) that differ too much from the current value, see Lemma 3.2. Therefore we can reasonably
pursue to update the state variable after the control has been updated at all (x, t) points.

The basic idea in developing the SQH scheme is to minimise Kε on KU at each point (x, t)
in some given order; e.g., lexicographically. For this purpose, there are several ways to calculate
the element of KU which minimizes Kε at any given point of the space-time cylinder. First of all,
one can discretize KU and choose the corresponding minimising value of Kε by array search in
the resulting discretized set and assign this value to the control. Second, one can apply a secant
method in the set KU to find the minimum of the augmented Hamiltonian up to a given tolerance.
Third, one can use an analytical formula for the minima in KU , if available. From these comments,
we notice that the first approach can also be used if the set KU is a discrete set.

The main difference of our scheme with respect to the algorithm in [38, 40], and similar to [26],
is that, in the minimisation process, we use Kε

(
x, t, yk, u, uk, pk

)
instead of Kε

(
x, t, yk+1, u, uk, pk

)
.

In fact in [10, 38, 40] an update of the state y is computed after each local (pointwise) update
of the control, whereas in the SQH scheme the state yk of the previous iteration is used while
minimising Kε. This approach provides a great computational advantage since the update of the
state variable is a very costly procedure in large-size problems. Furthermore, the implementation
of the minimisation of Kε becomes much easier since it involves only the control function.

Notice that the weight ε plays an essential role to attain convergence of the proposed scheme
while penalising large control updates. Our SQH scheme is given in detail in the following algo-
rithm. The strategy for the adaptive changing of ε is based on that given in [38].

Algorithm 4.1 (SQH method).

1. Choose ε > 0, κ > 0, σ > 1, ζ ∈ (0, 1), η ∈ (0,∞), u0, compute y0 and p0, set k ← 0

2. Set
ũ (x, t) = argmin

w∈KU
Kε

(
x, t, yk, w, uk, pk

)
for all (x, t) ∈ Q.

3. Calculate ỹ corresponding to ũ and compute τ := ‖ũ− uk‖2
L2(Q).

4. If

J (ỹ, ũ)− J
(
yk, uk

)
> −η τ : Choose ε← σε

Else if
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J (ỹ, ũ) − J
(
yk, uk

)
≤ −η τ : Choose ε ← ζε, yk+1 ← ỹ, uk+1 ← ũ; compute pk+1

corresponding to yk+1 and uk+1 and set k ← k + 1

5. If τ < κ: STOP and return uk.
Else go to 2.

Algorithm 4.1 works as follows. After choosing the problem’s parameters and an initial guess
for the control, we determine ũ such that the augmented Hamiltonian is minimised for a given
state, adjoint, current control and ε. If the resulting control ũ and the corresponding ỹ do not
minimise the cost functional more than −ητ with respect to the former values yk and uk, we
increase ε and perform the minimisation of the resulting Kε again. Else, we accept the new
control function as well as the corresponding state, calculate the adjoint and diminish ε such that
greater variations of the control value become more likely. If the convergence criterion τ < κ is
not fulfilled, then in the SQH scheme the minimisation procedure is repeated. If the convergence
criterion is fulfilled, then the algorithm stops and returns the last calculated control uk.

Next, we prove that for given x, t, y, v, p and ε there exists a u (x, t) ∈ KU that minimises
Kε (x, t, y, u, v, p). Thus, Step 2 of Algorithm 4.1 is well posed. Later, we prove that there exists
a ε sufficiently large such that the condition for sufficient decrease of the cost functional’s value
is satisfied, and ‖uk − uk−1‖2 decreases such that the convergence criterion is eventually satisfied.
Hence, Step 4 in Algorithm 4.1 is well defined.

Concerning Step 2, we have the following.

Lemma 4.1. The function Kε : R → R, w 7→ Kε (x, t, y, w, v, p) attains a minimum for any
(x, t, y, v, p) ∈ Rn × R+

0 × R×KU × R and any ε ∈ R.

Proof. As Kε is bounded from below, there is a minimising sequence (un)n∈N ⊆ KU such that
infw∈KU Kε (x, t, y, w, v, p) = limn→∞Kε (x, t, y, un, v, p) as (Kε (x, t, y, un, v, p))n∈N is a monotoni-
cally decreasing sequence and thus converging [3, II Theorem 4.1]. As KU is compact, there is
a subsequence K ⊆ N such that limk→∞ uk = u with u ∈ KU . Furthermore, we have with [3, II
Theorem 5.7] and [18, Theorem 3.127]

inf
w∈KU

Kε (x, t, y, w, v, p) = lim
k→∞

Kε (x, t, y, uk, v, p) = lim inf
k→∞

Kε (x, t, y, uk, v, p)

= lim inf
k→∞

(
1

2
(y − yd)2 +

α

2
u2
k + γg (uk) + puk + ε (uk − v)2

)
≥ 1

2
(y − yd)2 +

α

2
u2 + γg (u) + pu+ ε (u− v)2 = Kε (x, t, y, u, v, p)

(14)

because of the lower semi-continuity of g.

The question arises whether ũ, obtained in Step 2, is Lebesgue measurable. This is certainly
the case if the function (z, u) 7→ Kε (z, y (z) , u, v (z) , p (z)) is Lebesgue measurable in z := (x, t)
for each u ∈ KU and is continuous in u for each z ∈ Q. For this case, see [37, 14.29 Example,
14.37 Theorem].

If Kε is only lower semi-continuous in u for each z ∈ Q, then, in general, we cannot guarantee
that ũ is Lebesgue measurable; see also the paragraph following [37, 14.28 Proposition]. However,

in the case of g (u) :=

{
|u− d| for |u− d| > s

0 otherwise
, d ∈ R, s > 0, as considered in the section on

10



numerical experiments, we can prove that starting our SQH scheme with an initial guess u0 that
is Lebesgue measurable, we obtain iterates uk that are Lebesgue measurable, see Section 5 for
details. For the remaining part of this section, we assume that ũ, which is generated in Step 2 of
Algorithm 4.1, is measurable.

In order to prove that, by increasing ε in Step 4 of Algorithm 4.1 (ε← σε), a ε is obtained such
that the condition for sufficient decrease is satisfied, we present the following lemma. A similar
result is proved in [10].

Lemma 4.2. Let (ỹ, ũ) and
(
yk, uk

)
be generated by Algorithm 4.1, k ∈ N0, and ũ, uk be measur-

able; denote δu := ũ − uk. Then, there is a θ > 0 independent of ε such that for ε > 0 currently
chosen by Algorithm 4.1, the following holds

J (ỹ, ũ)− J
(
yk, uk

)
≤ − (ε− θ) ‖δu‖2

L2(Q). (15)

In particular, J (ỹ, ũ)− J
(
yk, uk

)
≤ 0 for ε ≥ θ.

Proof. We denote δy := ỹ − yk. In this proof, we have as in Algorithm 4.1 that
Kε

(
x, t, yk, ũ, uk, pk

)
≤ Kε

(
x, t, yk, w, uk, pk

)
for all w ∈ KU , and thus

Kε

(
x, t, yk, ũ, uk, pk

)
≤ Kε

(
x, t, yk, uk, uk, pk

)
= H

(
x, t, yk, uk, pk

)
for all (x, t) ∈ Q. To obtain (15), we perform the following estimates where we use the Taylor
expansion of the map y 7→ H (·, ·, y, ·, ·), see [4, Chapter VII, Theorem 5.8 and Remark 5.9] and
[4, Chapter VII, Theorem 5.2]

J (ỹ, ũ)− J
(
yk, uk

)
=

∫
Q

F (x, t, ỹ, ũ)− F
(
x, t, yk, uk

)
dxdt

=

∫
Q

F (x, t, ỹ, ũ) + pkũ− pkũ− F
(
x, t, yk, uk

)
− pkuk + pkukdxdt

=

∫
Q

H
(
x, t, ỹ, ũ, pk

)
− pkũ−H

(
x, t, yk, uk, pk

)
+ pkukdxdt

=

∫
Q

H
(
x, t, yk + δy, ũ, pk

)
−H

(
x, t, yk, uk, pk

)
+ pk

(
uk − ũ

)
dxdt

=

∫
Q

H
(
x, t, yk, ũ, pk

)
+
(
yk − yd

)
δy +

1

2
(δy)2 −H

(
x, t, yk, uk, pk

)
dxdt

+

∫
Q

pk
(
uk − ũ

)
dxdt

=

∫
Q

Kε

(
x, t, yk, ũ, uk, pk

)
− ε (δu)2 −H

(
x, t, yk, uk, pk

)
+

1

2
(δy)2 dxdt

+

∫ T

0

−
((
pk
)′
, δy
)

+D
(
∇pk,∇δy

)
−
(

(δy)
′
, pk
)
−D

(
∇δy,∇pk

)
dt

≤
∫
Q

−ε (δu)2 +
1

2
(δy)2 dxdt.

11



Notice that in the first before last step, we use integration by parts [44, Theorem 3.11] using the fact
that δy (·, 0) = 0 and pk (·, T ) = 0, because of the initial condition for the state and the terminal
condition for the adjoint, respectively. We have that ‖δy (·, t) ‖2

L2(Ω) ≤ c (D) ‖δu (·, t) ‖2
L2(Ω) for all

t ∈ [0, T ], c (D) > 0. This can be seen as follows; similar to [28, (6.3)]. Consider the difference
between (1) with u← ũ and y ← ỹ and the same equation (1) but with u← uk and y ← yk. We
obtain ∫ T

0

∫
Ω

δy′ (x, t) v (x) +D∇δy (x, t)∇v (x) dxdt =

∫ T

0

∫
Ω

δu (x, t) v (x) dxdt,

from which we have∫ T

0

1

2

d

dt
‖δy (·, t) ‖2

L2(Ω) +D‖∇δy (·, t) ‖2
L2(Ω)dt ≤

∫ T

0

||δu (·, t) ‖2
L2(Ω)‖δy (·, t) ‖2

L2(Ω)dt,

according to [19, page 287, Theorem 3] and the Cauchy-Schwarz inequality, see [2, (2.2)]. Next,
we have

1

2

(
‖δy (·, T ) ‖2

L2(Ω) − ‖δy (·, 0) ‖2
L2(Ω)

)
+D‖∇δy‖2

L2(Q) ≤ ĉ

∫ T

0

||δu (·, t) ‖2
L2(Ω) ‖∇δy (·, t) ‖2

L2(Ω)dt,

for some ĉ > 0. Thus, as ‖δy (·, 0) ‖2
L2(Ω) = 0, we obtain

‖∇δy‖L2(Q) ≤ c̃ (D) ‖δu‖L2(Q),

for some c̃ (D) ≥ 0. Furthermore, by the Poincaré inequality [2, (6.7)], we have for c̃ > 0

‖δy‖L2(Q) =

√∫ T

0

‖δy‖2
L2(Ω)dt ≤ c̃

√∫ T

0

‖∇δy‖2
L2(Ω)dt = c̃‖∇δy‖L2(Q) ≤ c (D) ‖δu‖L2(Q).

Thus, we have

‖δy‖2
L2(Q) =

∫ T

0

∫
Ω

(δy)2 dxdt =

∫ T

0

‖δy (·, t) ‖2
L2(Ω)dt ≤ c (D)

∫ T

0

‖δu (·, t) ‖2
L2(Ω)dt

= c (D) ‖δu‖2
L2(Q).

We conclude as follows∫
Q

−ε (δu)2 +
1

2
(δy)2 dxdt = −ε‖δu‖2

L2(Q) +
1

2
‖δy‖2

L2(Q) ≤
(
−ε+

1

2
c (D)

)
‖δu‖2

L2(Q),

which proves the claim with θ := c(D)
2

.

Next, we prove a lemma stating that Algorithm 4.1 stops when uk is a solution to (12).

Lemma 4.3. Let yk and uk be generated by Algorithm 4.1, k ∈ N0, and uk be measurable. If the
iterate uk is optimal, then Algorithm 4.1 stops, returning uk.
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Proof. If uk, k ∈ N0 is optimal, then we have that H
(
x, t, yk, uk, pk

)
= minw∈KU H

(
x, t, yk, w, pk

)
for almost all (x, t) ∈ Q and thus

Kε

(
x, t, yk, uk, uk, pk

)
= H

(
x, t, yk, uk, pk

)
≤ H

(
x, t, yk, w, pk

)
≤ H

(
x, t, yk, w, pk

)
+ ε
(
w − uk (z)

)2
= Kε

(
x, t, yk, w, uk, pk

)
,

for all w ∈ KU and for almost all (x, t) ∈ Q. That means that an optimal solution is always
among those candidates being selected by our algorithm. On the other hand, once having an
optimal solution uk, we have to exclude that there is a

(
x̃, t̃
)
∈ Q where uk is optimal and a ũ

with
(
ũ (x, t)− uk (x, t)

)2
> 0 such that Kε

(
x̃, t̃, yk, ũ, uk, pk

)
≤ Kε

(
x̃, t̃, yk, uk, uk, pk

)
in order to

ensure that Algorithm 4.1 stays in its determined optimal solution uk.
Suppose Kε

(
x̃, t̃, yk, ũ, uk, pk

)
≤ Kε

(
x̃, t̃, yk, uk, uk, pk

)
. First, we have, because of the optimal-

ity of uk, that H
(
x̃, t̃, yk, uk, pk

)
≤ H

(
x̃, t̃, yk, w, pk

)
for all w ∈ KU , especially for w = ũ

(
x̃, t̃
)
.

Then, we conclude from

Kε

(
x̃, t̃, yk, ũ, uk, pk

)
≤ Kε

(
x̃, t̃, yk, uk, uk, pk

)
,

and the optimality of uk that

H
(
x̃, t̃, yk, uk, pk

)
+ ε
(
ũ
(
x̃, t̃
)
− uk

(
x̃, t̃
))2 ≤ H

(
x̃, t̃, yk, ũ, pk

)
+ ε
(
ũ
(
x̃, t̃
)
− uk

(
x̃, t̃
))2

= Kε

(
x̃, t̃, yk, ũ, uk, pk

)
≤ Kε

(
x̃, t̃, yk, uk, uk, pk

)
= H

(
x̃, t̃, yk, uk, pk

)
,

and consequently ε
(
ũ
(
x̃, t̃
)
− uk

(
x̃, t̃
))2 ≤ 0. Algorithm 4.1 has updated the initial guess u0

at most k times where ε is diminished by ε ← ζε. Thus, we have that ε > 0 and therefore(
ũ
(
x̃, t̃
)
− uk

(
x̃, t̃
))2 ≤ 0, which means that ũ = uk almost everywhere as the calculation holds

for any
(
x̃, t̃
)
∈ Q where uk is optimal. Thus δu = 0 in the L2 (Q) sense and Algorithm 4.1 stops

and returns uk.

The following theorem states that the iteration over the Steps 2 to 4 in Algorithm 4.1 (no stop-
ping criterion) generate sequences

(
uk
)
k∈N0

and
(
yk
)
k∈N0

such that the cost functional J
(
yk, uk

)
monotonically decreases with limk→∞ ‖uk − uk−1‖L2(Q) = 0. A similar result is proved in [10]. In
the view of Lemma 4.3, we assume for the rest of this section that no element of the sequence(
uk
)
k∈N is optimal. Furthermore, we assume that each uk, k ∈ N0, is measurable.

Theorem 4.1. Let the sequence
(
yk
)
k∈N0

and
(
uk
)
k∈N0

be generated as in Algorithm 4.1 (loop over

Step 2 to Step 4). Then, the sequence of cost functional values J
(
yk, uk

)
monotonically decreases

with
lim
k→∞

(
J
(
yk+1, uk+1

)
− J

(
yk, uk

))
= 0,

and
lim
k→∞
‖uk+1 − uk‖L2(Q) = 0.

Proof. Due to Lemma 4.2, we have that Algorithm 4.1 determines ε > θ in finitely many steps
and we obtain an update of the control that reduces the value of the cost functional by at least
− (ε− θ) ‖uk+1 − uk‖2

L2(Q).
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If the update is rejected because J (ỹ, ũ) − J
(
yk, uk

)
> −η‖ũ − uk‖2

L2(Q), then ε is further
increased until ε− θ ≥ η and thus

J (ỹ, ũ)− J
(
yk, uk

)
≤ − (ε− θ) ‖ũ− uk‖2

L2(Q) ≤ −η‖ũ− uk‖2
L2(Q). (16)

Therefore there is an update after at least finitely many increases of ε in Step 4 of Algorithm 4.1
and we have that uk+1 ← ũ with corresponding ũ. Then we always have J

(
yk+1, uk+1

)
≤ J

(
yk, uk

)
and thus the sequence of iterates J

(
yk, uk

)
monotonically decreases.

As the cost functional is bounded from below, we have for any ρ > 0 the existence of k such
that

− ρη ≤ J
(
yk+1, uk+1

)
− J

(
yk, uk

)
≤ 0, (17)

because any sequence bounded from below converges, see [3, Chapter II, Theorem 4.1, Theorem
6.1] for details.

Finally, as (16) also holds for uk+1 instead of ũ, we obtain from (16) and (17) the following

ρη ≥ −
(
J
(
yk+1, uk+1

)
− J

(
yk, uk

))
≥ η‖uk+1 − uk‖2

L2(Q) ≥ 0,

for k sufficiently large and thus 0 ≤ ‖uk+1 − uk‖2
L2(Q) ≤ ρ for k sufficiently large. As ρ > 0 can be

chosen arbitrarily small, we have limk→∞ ‖uk+1 − uk‖L2(Q) = 0.

We remark that the result of Theorem 4.1 means that there exists a k̄ ∈ N such that the
Algorithm 4.1 stops at the k̄-th iteration where ‖uk̄+1 − uk̄‖2

L2(Q) < κ as κ > 0.
Notice that, if ũ determined in Algorithm 4.1 Step 2 is measurable, then due to the pointwise

bounds, we have ũ ∈ Uad and thus especially
(
uk
)
k∈N ⊆ Uad.

In general, if the cost functional is discontinuous, we cannot prove that ū returned by the
SQH method represents the optimal control sought. On the other hand, assuming a continuously
differentiable g, then we can prove that ū satisfies the optimality condition∫
Q
∇J (ū) (x, t) (w (x, t)− ū (x, t)) dxdt ≥ 0 for all w ∈ Uad; see [44, Lemma 2.21], where J (ū) :=

J (y (ū) , ū).
In order to prove this fact, let us introduce the Euclidean projection PKU : R → KU , see [8,

Proposition 2.1.3 (Projection Theorem)], and the reduced gradient ∇J (u) := αu + γ ∂
∂u
g (u) + p,

see [44].
Now, with an analogous calculation as in [10, Theorem 3.2], we can prove the following theorem.

Theorem 4.2. Assume that g : R → R in (5) is continuously differentiable and there is a lower
bound ε0 > 0 for ε. Then for each accumulation point ū of the sequence (un)n∈N0

generated as in

Algorithm 4.1 (loop over Step 2 to Step 4) with limk̃→∞ ‖uk̃ − ū‖Lq(Q) = 0, k̃ ∈ K̃ ⊆ N, there is a

subsequence
(
uk
)
k∈K, K ⊆ K̃, such that

lim
k→∞
‖uk − PKU

(
uk − 1

2ε
∇J

(
uk
))
‖L2(Q) = 0,

where ū fulfils the following optimality condition

∇J (ū) (x, t) (w (x, t)− ū (x, t)) ≥ 0,

for all w ∈ Uad and almost all (x, t) ∈ Q.
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Proof. We remark that ε > 0 for each iterate uk̃, k̃ ∈ K̃. As uk̃+1 minimises w 7→ Kε

(
x, t, yk̃, w, uk̃, pk̃

)
for all (x, t) ∈ Q with uk̃+1 ∈ KU , we have that

∂

∂uk̃+1
Kε

(
x, t, yk̃, uk̃+1, uk̃, pk̃

)(
w − uk̃+1

)
=

(
2ε
(
uk̃+1 − uk̃

)
+

∂

∂uk̃+1
H
(
x, t, yk̃, uk̃+1, pk

))(
w − uk̃+1

)
≥ 0,

for all w ∈ KU and for all (x, t) ∈ Q, see [44, Lemma 2.21]. Equivalently, we can write

uk̃+1 = PKU

(
uk̃ − 1

2ε

∂

∂uk̃+1
H
(
x, t, yk̃, uk̃+1, pk̃

))
; (18)

see [8, Proposition 2.1.3 (Projection Theorem)]. Additionally, we have

∇J
(
uk̃
)

=
∂

∂uk̃
H
(
x, t, yk̃, uk̃, pk̃

)
,

compare with (8). Starting from (18) and adding and subtracting equal terms, we have

uk̃ − PKU
(
uk̃ − 1

2ε
∇J

(
uk̃
))

= uk̃ − uk̃+1 + PKU

(
uk̃ − 1

2ε

∂

∂uk̃+1
H
(
x, t, yk̃, uk̃+1, pk̃

))
− PKU

(
uk̃ − 1

2ε

∂

∂uk̃
H
(
x, t, yk̃, uk̃, pk̃

))
.

Thus, using the triangle inequality and [8, Proposition 2.1.3 (Projection Theorem)] and ε > ε0, we
obtain

‖uk̃ − PKU
(
uk̃ − 1

2ε
∇J

(
uk̃
))
‖L2(Q)

≤ ‖uk̃ − uk̃+1‖L2(Q)

+
1

2ε0
‖ ∂

∂uk̃+1
H
(
x, t, yk̃, uk̃+1, pk̃

)
− ∂

∂uk̃
H
(
x, t, yk̃, uk̃, pk̃

)
‖L2(Q)

≤ ‖uk̃ − uk̃+1‖L2(Q) +
1

2ε0

(
α‖uk̃+1 − uk̃‖L2(Q) + γ‖ ∂

∂uk̃+1
g
(
uk̃+1

)
− ∂

∂uk̃
g
(
uk̃
)
‖L2(Q)

)
.

(19)

Now, we have the following estimates ‖yk̃ − ȳ‖L2(Q) ≤ c‖uk̃ − ū‖L2(Q), and analogously ‖pk̃ −
p̄‖L2(Q) ≤ c‖uk̃− ū‖L2(Q), c > 0 where ȳ is the solution to (1) for u← ū and p̄ is the solution to (7)
for y ← ȳ; see the proof of Lemma 4.2. For each accumulation point ū, there exists a subsequence
within the sequence generated as in Algorithm 4.1 that strongly converges to ū in Lq (Q) according
to our assumption. Using ‖ · ‖L2(Q) ≤ ‖ · ‖Lq(Q); see [1, Theorem 2.14], and [7, Proposition 3.6,
Remark 3.7], we obtain a subsequence,

(
uk
)
k∈K , K ⊆ N, with the following pointwise convergence

limk→∞ u
k (x, t) = ū (x, t), limk→∞ y

k (x, t) = ȳ (x, t) and limk→∞ p
k (x, t) = p̄ (x, t) for almost all

(x, t) ∈ Q. Consequently, we have

lim
k→∞
∇J

(
uk
)

= lim
k→∞

αuk + γ
∂

∂u
g (u) |u=uk + pk = αū+ γ

∂

∂u
g (u) |u=ū + p̄ = ∇J (ū) , (20)

15



for almost every (x, t) ∈ Q. If we take the limit on both sides of (19), considering the pointwise
converging subsequence, we obtain

lim
k→∞
‖uk − PKU

(
uk − 1

2ε
∇J

(
uk
))
‖L2(Q) = 0, (21)

where we use Theorem 4.1 for the first and second term and the dominated convergence theorem
[7, Proposition 2.17], [7, 2.2 Measurable and Borel functions] and [3, III.3 Theorem 3.6] with the
bounded image of uk, k ∈ K for the last term.

Next, we prove that∇J (ū) (x, t) (w (x, t)− ū (x, t)) ≥ 0 for all w ∈ Uad for almost all (x, t) ∈ Q.
For this purpose, we start with

vk := PKU

(
uk − 1

2ε
∇J

(
uk
))

,

for almost every (x, t) ∈ Q. This is equivalent to(
vk − uk +

1

2ε
∇J

(
uk
)) (

w − vk
)
≥ 0,

for all w ∈ Uad for almost all (x, t) ∈ Q, see [8, Proposition 2.1.3 (Projection Theorem)]. Then we
have (

vk − uk
) (
w − vk

)
+

1

2ε
∇J

(
uk
) (
w − vk

)
≥ 0.

Adding and subtracting uk, we obtain

2ε
(
vk − uk

) (
w − vk

)
+∇J

(
uk
) (
w − uk

)
+∇J

(
uk
) (
uk − vk

)
≥ 0. (22)

Due to |w − vk| ≤ 2 max (|ua|, |ub|) and the upper bound σ (η + θ) for ε because of (16) and Step
4 of Algorithm 4.1, and the fact that converging sequences are bounded [3, II, Theorem 1.10]
combined with (21) and (20), we obtain the following by taking the limit in (22). We have

∇J (ū) (w − ū) ≥ 0,

for all w ∈ Uad for almost all (x, t) ∈ Q; see [3, II Theorem 2.4] and [3, II Theorem 2.7].

This result also proves that
∫
Q
∇J (ū) (x, t) (w (x, t)− ū (x, t)) dxdt ≥ 0 for all w ∈ Uad, see

[5, Chapter X Corollary 2.16]. Notice that, if g is strictly convex, then ū is the optimal control
sought.

We remark that the analysis above is performed at a functional level and independently of the
discretisation used. However, for the numerical realisation of our optimisation scheme, we consider
the following finite differences setting [25], where we assume that the control is approximated by
a piecewise constant function.

We take a space-time cylinder Q = Ω × (0, T ) with Ω = (a, b)n, and define the following
space-time grid

Qh,4t := {(xi1...in , tm) , | xi1...in ∈ Ωh, tm = m4t, m ∈ {1, ..., Nt}} ,
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where
Ωh = {(a+ i1h, . . . , a+ inh) ∈ Rn, ij ∈ {1, ..., N − 1} , j ∈ 1, ..., n} .

The space and time mesh-sizes are given by h := b−a
N

, 4t := T
Nt

. We assume that the grid points
(xi1...in , tm) and tm = m4t are ordered lexicographically.

In order to compute the state and adjoint variables, we approximate (1) and (7) using the
implicit Euler scheme and finite differences. For the computation of the integrals appearing in J
and for the integration of H (see below), we use the rectangle rule; see, e.g., [41].

5 Numerical experiments

In this section, we present results of numerical experiments to validate our optimal control formu-
lation and the convergence performance of the SQH method.

For the lower semi-continuous function g in (3), we choose the following

gd,s (u) :=

{
|u− d| for |u− d| > s

0 otherwise .
(23)

Notice that Gd,s (u) :=
∫
Q
gd,s (u (x, t)) dxdt measures zero costs as far as the control u is in

the L1 closed ball centered in d ∈ R with radius s > 0. If u is in the complement of this ball, then
the cost given by Gd,s is of L1 type. It can be shown with an elementary calculation that Gd,s is
a discontinuous functional (e.g., consider the case of constant controls).

In our numerical experiments, we consider Ω = (a, b) with a = 0, b = 1 and T = 1. The
initial guess for the control and the initial value y0 for the state is the zero function. Furthermore,
κ = 10−6, ζ = 3

20
, σ = 50 and η = 10−7. The initial value of ε equals 3

5
.

The numerical parameters are set as follows, N = 100, Nt = 200, D = 1
5
, and if not otherwise

stated α = 10−5, γ = 10−1. Furthermore, we have, KU = [0, 10] and

yd (x, t) =

{
5 if x̄ (t)− c ≤ x ≤ x̄ (t) + c

0 else,
(24)

where x̄ (t) := x0+ 2
5

(b− a) sin
(
2π t

T

)
, x0 = b+a

2
, and c = 7

100
(b− a). We choose the cost functional

J as in (3) - (4) with the desired trajectory (24) and set d = 0, s = 1.
The augmented Hamiltonian Kε (x, t, y, u, v, p) is minimised as follows. As y and p are held

fixed, we have

K̃ε (x, t, y, u, v, p) :=
α

2
u2 + g0,1 (u) + pu+ ε (u− v)2 .

Its minimum can be exactly given by a case study as follows.
If 0 ≤ u ≤ s, we have K̃ε (x, t, y, u, v, p) = α

2
u2 + pu+ ε (u− v)2 with its minimum at

u1 := min

(
max

(
0,

2εv − p
2ε+ α

)
, s

)
.

If s < u ≤ 10, we have K̃ε (x, t, y, u, v, p) := α
2
u2 + γu+ pu+ ε (u− v)2 with its minimum at

u2 := min

(
max

(
s,

2εv − (p+ γ)

2ε+ α

)
, 10

)
.
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Then the minimum of K̃ε over KU is given by

u = argmin
w∈KU

K̃ε (x, t, y, w, v, p) = argmin
w∈{u1,u2}

K̃ε (x, t, y, w, v, p) .

Next, we remark that u, as a function, is Lebesgue measurable assuming that the last iterate
v is also Lebesgue measurable. To illustrate this fact, denote with z := (x, t), and notice that
p is Lebesgue measurable since it is the solution to (10). Thus, we have that u1 and u2 are
Lebesgue measurable functions; see [15, Proposition 2.1.4, Proposition 2.1.7]. Further, we have
that K̃ε (z, u1 (z)) := K̃ε (z, y (z) , u1 (z) , v (z) , p (z)) and
K̃ε (z, u1 (z)) := K̃ε (z, y (z) , u1 (z) , v (z) , p (z)) are Lebesgue measurable according to Lemma
6.3 in the Appendix and because the sum and the product of Lebesgue measurable functions is
Lebesgue measurable; see [15, Proposition 2.1.7].

Now, the function u (z) is given by

u (z) :=

{
u1 (z) if K̃ε (z, u1 (z)) ≤ K̃ε (z, u2 (z))

u2 (z) if K̃ε (z, u1 (z)) > K̃ε (z, u2 (z))
.

According to [15, Proposition 2.1.1] and the following paragraph, u is Lebesgue measurable if and
only if the set {z ∈ Q| u (z) > c} is Lebesgue measurable for any c ∈ R. To show this fact, notice
that the following holds

{z ∈ Q| u (z) > c} =
(
{z ∈ Q| u1 (z) > c} ∩

{
z ∈ Q| K̃ε (z, u1 (z)) ≤ K̃ε (z, u2 (z))

})
∪
(
{z ∈ Q| u2 (z) > c} ∩

{
z ∈ Q| K̃ε (z, u1 (z)) > K̃ε (z, u2 (z))

})
.

(25)

Thus u is Lebesgue measurable, as the intersection and union of finite Lebesgue measurable
sets is Lebesgue measurable, see [5, IX Theorem 5.1, Remark 1.1], if and only if the single
sets are measurable. Now, we have that the sets {z ∈ Q| u1 (z) > c} and {z ∈ Q| u2 (z) > c}
are Lebesgue measurable for any c ∈ R as u1 and u2 are Lebesgue measurable; further the set{
z ∈ Q| K̃ε (z, u1 (z)) ≤ K̃ε (z, u2 (z))

}
is Lebesgue measurable, see [15, Proposition 2.1.3], and{

z ∈ Q| K̃ε (z, u1 (z)) > K̃ε (z, u2 (z))
}

= Q\
{
z ∈ Q| K̃ε (z, u1 (z)) ≤ K̃ε (z, u2 (z))

}
is Lebesgue measurable according to [5, IX Remark 1.1].

Next, having completed the theoretical discussion, we perform the first set of experiments
using Algorithm 4.1 to solve our optimal control problem. The SQH algorithm converges in 29
iterations and we obtain the state and control functions depicted in Figure 1. The plot of the
control function shows clearly the action of the discontinuous cost of the control given by g0,1 and
the presence of the control’s upper bound at 10.
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Figure 1: Optimal solution for the first experiment setting.

With the second experiment, we present results to investigate how well the solution of the
SQH method satisfies the optimality condition given by the PMP. For this purpose, in Table 1 we
report the values of

∆H = max
(x,t)∈Qh,4t

(
H (x, t, ȳ, ū, p̄)− min

w∈KU
H (x, t, ȳ, w, p̄)

)
.

The value of ∆H gives a measure of optimality of the SQH solution (ȳ, ū, p̄) and the results
reported in Table 1 demonstrate how ∆H decreases as we refine the mesh size and the value of κ,
thus demonstrating an improvement in accuracy of the PMP solution by refinement.

In Table 2, we report results that aim at showing the ratio of numbers of grid points (x, t) ∈
Qh,4t where the optimality condition is satisfied to machine precision. For this purpose, in Table
2, we give the ratio of grid points where the following holds

H (x, t, ȳ, ū, p̄)− min
w∈KU

H (x, t, ȳ, w, p̄) ≈ eps,
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with eps the machine precision given by 2.2 · 10−16 in our case. We see that, independently of the
mesh size, at almost all grid points the PMP condition is fulfilled to machine precision, already
for κ = 10−6.

Nt ×N
κ

10−1 10−3 10−6 10−11 10−16

100× 200 3.43 9.00 · 10−3 5.68 · 10−3 1.27 · 10−3 7.29 · 10−4

200× 400 3.42 5.34 · 10−3 5.17 · 10−4 5.17 · 10−4 5.17 · 10−4

400× 800 3.41 1.06 · 10−2 6.89 · 10−3 6.70 · 10−4 6.70 · 10−4

800× 1600 3.41 1.13 · 10−2 3.93 · 10−7 1.82 · 10−10 7.08 · 10−11

Table 1: Values of ∆H of the SQH solution with different choices of the value of κ.

Nt ×N
κ

10−1 10−3 10−6 10−11 10−16

100× 200 0 0.9973 0.9988 0.9995 0.9998
200× 400 6.28 · 10−5 0.9966 0.9998 0.9998 0.9998
400× 800 6.70 · 10−4 0.9934 0.9981 0.9998 0.9998
800× 1600 1.59 · 10−3 0.9868 0.9998 0.9998 0.9998

Table 2: Ratio of grid points at which the Pontryagin maximum principle is fulfilled to machine
precision to the total number of grid points.

In the third experiment, we investigate the computational performance of Algorithm 4.1 with
respect to different choices of the optimisation parameters. In Table 3, we report the total number
of iterations and corresponding CPU times for convergence with different values of α and γ. Notice
that a similar computational effort is required in all cases. Further, we see that the value of the
cost functional decreases if α and γ decrease, and this is also true for ‖y − yd‖L2(Q).

α γ k CPU time/s J ||y − yd||L2(Q)

10−1 10−5 14 0.5 1.64 1.766037
10−3 10−5 43 1.5 1.33 1.621753
10−5 10−5 57 2.0 1.31 1.621513

0 10−5 63 2.2 1.31 1.621513
0 0 62 2.1 1.31 1.621513

10−5 0 57 1.9 1.31 1.621513
10−5 10−3 51 2.0 1.32 1.621521
10−5 10−2 39 1.3 1.34 1.622160
10−5 10−1 29 1.0 1.52 1.661420

Table 3: Computational performance of Algorithm 4.1 with respect to different choices of values
of the optimisation parameters.

The fourth numerical experiment deals with the complexity of Algorithm 4.1. Let Ngp ∈ N
denote the total number of space-time grid points. We solve the same optimisation problem as in
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Figure 1 using different meshes. The resulting CPU times are reported in Figure 2 and detailed
in Table 4. In Figure 2, on the abscissa, we have the number of total grid points Ngp and on the
ordinate the CPU time (sec) required for convergence. Notice that the data points are fitted by a
linear model.

N
100
× Nt

100
1× 2 2× 2 2× 4 4× 4 4× 8 8× 8 8× 16 16× 16

CPU time/s 0.9 2.6 5.3 12.0 18.3 40.6 96.5 186.9

Table 4: Data points for Figure 2.

500 000 1.0×10
6

1.5×10
6

2.0×10
6

2.5×10
6

50

100

150

Figure 2: Computational complexity of Algorithm 4.1. The data points (dots) are fitted by a
linear model.

Now in the fifth experiment, we use the same setting as for the investigation of the computa-
tional complexity of our algorithm, but choosing γ = 0. With this choice the discontinuity in the
cost of the control is removed and we can compare our SQH scheme with the well-known projected
Hager-Zhang-NCG (pNCG) method with Wolfe-Powell step-size strategy [11]. Additionally, we
perform the comparison with a projected gradient method with Armijo step-size strategy (pGM).
The minimum of the augmented Hamiltonian Kε (x, t, y, u, v, p) is given by u = 2εv−p

α+2ε
. Further-

more, in the attempt to have the same convergence criterion for all methods, we stop the different
iterative procedures if the square of the discrete L2-norm of the difference of the control function
u between two iterations is less than 10−6.

The purpose of this comparison is to address the question of how the SQH scheme performs in
the case of continuous cost functionals with respect to a standard optimisation strategy. In Table
5, we see that the pNCG method in most cases outperforms our SQH method. On the other hand,
one can see in Table 6 that the SQH method performs better than the pGM scheme.

For the case of α = 10−1, we take σ = 2.1 and ζ = 0.9 in Algorithm 4.1 instead of σ = 50 and
ζ = 3

20
. We remark that the convergence performance of Algorithm 4.1 depends on the choice of

σ and ζ whose convenient choice of values may result from numerical experience, as in the setting
of different linesearch methods.
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α Ngp = N ×Nt
SQH pNCG

CPU time/s number iteration CPU time/s number iteration

10−1 200× 400 0.7 23 1.6 15
10−1 400× 800 2.8 23 3.6 15
10−1 800× 1600 11.6 23 12.2 15
10−3 200× 400 1.0 33 1.1 8
10−3 400× 800 3.9 33 2.6 8
10−3 800× 1600 18.6 40 8.6 8
10−5 200× 400 1.4 44 1.1 7
10−5 400× 800 6.8 58 2.5 7
10−5 800× 1600 24.5 54 30.1 49
10−7 200× 400 1.7 61 1.0 7
10−7 400× 800 7.2 60 2.4 7
10−7 800× 1600 19.2 42 7.9 7

Table 5: Comparison of the SQH scheme with the pNCG method.

α Ngp = N ×Nt
SQH pGM

CPU time/s number iteration CPU time/s number iteration

10−1 200× 400 0.7 23 1.8 40
10−1 400× 800 2.8 23 3.6 40
10−1 800× 1600 11.6 23 12.7 40
10−2 200× 400 0.8 23 8.5 272
10−2 400× 800 2.9 24 23.9 272
10−2 800× 1600 11.9 24 86.6 272
10−3 200× 400 1.0 33 20.3 679
10−3 400× 800 3.9 33 58.6 675
10−3 800× 1600 18.6 40 214.6 675

Table 6: Comparison of the SQH scheme with the pGM method.

For further illustration of our optimisation framework, we perform the sixth experiment with
g (z) := g1 (z) = |z| 12 , which is a lower semi-continuous non-convex function. Moreover, we choose
a discrete KU = {−30,−15,−5, 0, 5, 15, 30} that models the fact that the control function u may
take only a finite set of values. This is intended to demonstrate the easy applicability of the SQH
scheme to this kind of optimal control problems. In this experiment, the desired state is given by

yd (x, t) = 5 sin

(
2π

t

T

)
;

see Figure 3.
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Figure 3: Desired function yd = 5 sin
(
2π t

T

)
.

Further, we take α = 5 · 10−3, γ = 1 · 10−3, N = 200 and Nt = 200. The parameters of
Algorithm 4.1 are set as follows. We have σ = 1.1, ζ = 0.5, η = 10−9, κ = 10−6, u0 = 0 and the
initial guess for ε is given by 3

5
· 10−7. The results are depicted in Figure 4, where we clearly see

how the admissible control values are taken by the control function.
An analogous numerical test of optimality, as the one related to Table 2, provides the following

result. We have that the inequality 0 ≤ H (x, t, ȳ, ū, p̄)−minw∈KU H (x, t, ȳ, w, p̄) ≤ 10−l is fulfilled
at 100% of the grid points for l = 2 and at 99.19% of the grid points for l = 12 with the returned
values (ȳ, ū, p̄) of the SQH method method, where the minimum of H over KU is determined with
a secant method. We remark that, for α = 0, the cost functional consists only of the control cost
| · | 12 , which promotes sparse bang-bang solutions. For this reason, the L2 (Q)-cost is included to
ensure that the control also takes intermediate values in KU .
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Figure 4: Results with Algorithm 4.1 for the cost functional (3) with g (·) := | · | 12 and KU =
{−30,−15,−5, 0, 5, 15, 30}.

To conclude our series of experiments, we choose the following lower semi-continuous step
function

g (z) := g2 (z) =


7
2

for |z| > 6

1 for 3 < |z| ≤ 6

0 otherwise

and KU = [−10, 10]. In this case, while the control function may take a continuous set of values,
the cost of the control is piecewise constant. The augmented Hamiltonian is minimised by a secant
method as mentioned in Section 4. The problem’s parameters are set N = 200 and Nt = 200,
α = 0, β = 10−1, σ = 50, ζ = 3

20
, η = 10−9, κ = 10−6, u0 = 0 and the initial guess for ε = 3

5
.

The results for this case are depicted in Figure 5 where one can see the stepwise structure of the
control.

Besides the reduction of the functional to an observed minimum value, an analogous numerical
test of optimality, as the one related to Table 2, provides the following result. We have that the
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inequality 0 ≤ H (x, t, ȳ, ū, p̄) − minw∈KU H (x, t, ȳ, w, p̄) ≤ 10−l is fulfilled at 100% of the grid
points for l = 2 and at 99.53% of the grid points for l = 12 with the returned values (ȳ, ū, p̄) of
the SQH method, where the minimum of H over KU is determined with a secant method.

(a) The state y
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(b) The control function u as a contour plot

(c) The control function u (d) The control function u viewed from above

Figure 5: Results with Algorithm 4.1 for the cost functional (3) with g = g2 and KU = [−10, 10].

6 Conclusion

This paper was devoted to the investigation of a sequential quadratic Hamiltonian (SQH) scheme
for solving parabolic optimal control problems with discontinuous and non-convex cost functionals.
The formulation of this scheme was inspired by the earlier works [26, 27] and [38, 40] that were
proposed for solving smooth ODE control problems. However, while these methods cannot be
applied in a PDE context because of a lack of robustness or prohibitive computational costs, it
was shown that the SQH method is robust and has a computational performance that is typical
of pointwise iterative schemes.

At the core of the SQH formulation was the characterisation of optimal controls by means
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of the Pontryagin’s maximum principle. Within this framework and in a general setting that
included discontinuous and non-convex cost functionals, it was proved that the SQH method is
well-defined. However, convergence to an optimal solution was proved only in the smooth case.

The efficiency and robustness of the proposed SQH scheme was successfully demonstrated by
results of numerical experiments and the unmatched large applicability of the SQH method was
illustrated considering different settings.

These encouraging results suggest further development and improvement of the SQH scheme.
On the one hand, the investigation of this scheme to solve PDE control problems with state
constraints and nonlinear control mechanisms. On the other hand, the acceleration of the SQH
method by a multigrid strategy in order to obtain fast solvers for discontinuous and non-convex
PDE control problems.
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Appendix

6.1 A L∞ estimate

For our governing PDE model, we prove a L∞ result that is essential in the Pontryagin maximum
principle framework. However, we prove this estimate in a more general model setting as follows

(y′ (·, t) , v) +B (y, v; t) = (h (·, t) , v) in Ω× (0, T )

y = 0 on ∂Ω× [0, T ]

y = y0 on Ω× {0} ,
(26)

with bounded Ω ⊆ Rn, T > 0 and y′ (·, t) := ∂
∂t
y (·, t) where B (y, v; t) : H1

0 ×H1
0 × R+

0 → R is a
bilinear map with the coercivity condition β‖y (·, t) ‖2

H1
0 (Ω)
≤ B (y, y; t), β > 0 and B (−k, v; t) ≤ 0

for k ≥ 0 if v ≥ 0 for any t ∈ [0, T ]. Furthermore, we require that h ∈ Lq (Q), q > n
2

+ 1,
y0 ∈ L∞ (Ω) and that (26) has a unique solution fulfilling y ∈ L2 (0, T ;H1

0 (Ω))∩L∞ (0, T ;L2 (Ω))
and y′ ∈ L2 (0, T ;H−1 (Ω)), such that (26) holds for almost all t ∈ [0, T ] and all v ∈ H1

0 (Ω),
see [19, Chapter 7] for details. With the following lemma, we prepare for the proof of Theorem
6.1 below. This result and a similar proof can be found in [34] or [28, Chapter 7 Theorem 7.1,
Corollary 7.1]. For the notation see [1].

Lemma 6.1. Let y ∈ Lq
(
0, T ;W 1,q

0 (Ω)
)
∩ L∞ (0, T ;Lρ (Ω)), with q ≥ 1, ρ ≥ 1. Then y ∈ Lσ (Q)

with σ = q n+ρ
n

and there exists a constant c > 0 with∫
Q

|y (x, t) |σdxdt ≤ c‖y‖
ρq
n

L∞(0,T ;Lρ(Ω))

∫
Q

|∇y (x, t) |qdxdt.
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Proof. By applying the Gagliardo-Nirenberg theorem for σ := q ρ+n
n

> 1, see [33, Lecture II], we
have (∫

Ω

|y (x, t) |σdx
) 1

σ

≤ C‖∇y (·, t) ‖
q
σ

Lq(Ω)‖y (·, t) ‖(1− q
σ )

Lρ(Ω) ,

for all t ∈ [0, T ] and thus equivalently(∫
Ω

|y (x, t) |σdx
)
≤ Cσ‖∇y (·, t) ‖qLq(Ω)‖y (·, t) ‖(1− q

σ )σ
Lρ(Ω) .

By integrating over t, we obtain∫ T

0

∫
Ω

|y (x, t) |σdxdt ≤ Cσ

∫ T

0

‖∇y (·, t) ‖qLq(Ω)‖y (·, t) ‖(1− q
σ )σ

Lρ(Ω) dt.

Since y ∈ L∞ (0, T ;Lρ (Ω)), we have∫ T

0

∫
Ω

|y (x, t) |σdxdt ≤ Cσ‖y‖
ρq
n

L∞(0,T ;Lρ(Ω))

∫ T

0

‖∇y (·, t) ‖qLq(Ω)dt.

Inserting the definition of σ on the right hand-side of this inequality, we obtain the statement of
the lemma from the identity∫ T

0

‖∇y (·, t) ‖qLq(Ω)dt =

∫ T

0

∫
Ω

|∇y (x, t) |qdxdt =

∫
Q

|∇y (x, t) |qdxdt,

and c := Cσ.

The next lemma is also used in the proof of Theorem 6.1. This lemma is proved in [46, Lemma
4.1.1].

Lemma 6.2. Let ϕ (t) be a nonnegative and nonincreasing function on [k0,∞) satisfying

ϕ (m) ≤
(

M

m− k

)α
(ϕ (k))β , ∀m > k ≥ k0,

for some constants M > 0, α > 0 and β > 1. Then there exists a d > 0 such that ϕ (m) = 0 for

all m ≥ k0 + d. It is sufficient for this statement to choose d := M2
β
β−1 (ϕ (k0))

β−1
α .

Theorem 6.1. The solution to (26) is essentially bounded with

‖y‖L∞(Q) ≤ C‖h‖Lq(Q) + ‖y0‖L∞(Ω),

where C > 0.

Proof. We choose k > ‖y0‖L∞(Ω) ≥ 0. As y (·, t) − k ∈ H1 (Ω) for any t ∈ [0, T ], it holds that
(y − k)+ (·, t) := max (y (·, t)− k, 0) ∈ H1

0 (Ω) for any t ∈ [0, T ], see [16, Chapter 4, Proposition
6]. Then, we choose v = (y − k)+ (·, t) in (26) and obtain(

y′ (·, t) , (y − k)+ (·, t)
)

+B
(
y − k, (y − k)+ ; t

)
≤
(
h (·, t) , (y − k)+ (·, t)

)
,
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for any t ∈ [0, T ], where we use

B
(
y, (y − k)+ ; t

)
≥ B

(
y, (y − k)+ ; t

)
+B

(
−k, (y − k)+ ; t

)
= B

(
y − k, (y − k)+ ; t

)
,

for any t ∈ [0, T ] and thus with the coercivity condition(
(y − k)′+ , (y − k)+

)
+ β‖ (y − k)+ (·, t) ‖2

H1
0 (Ω) ≤

(
h (·, t) , (y − k)+ (·, t)

)
, (27)

for any t ∈ [0, T ]. Notice that (y − k)+ (·, t) = 0 if y−k ≤ 0 and therefore B
(
y − k, (y − k)+ ; t

)
=

B
(
(y − k)+ , (y − k)+ ; t

)
and y′ (·, t) = (y (·, t)− k)′ = (y − k)′+ (·, t) due to the bilinearity and

also in the case y − k > 0 as (y − k)+ (·, t) = (y (·, t)− k). Next, as (y − k)+ is measurable, see
[15, page 46] and∫ T

0

‖ (y − k)+ (·, t) ‖2
H1

0 (Ω)dt ≤
∫ T

0

‖ (y − k) (·, t) ‖2
H1

0 (Ω)dt =

∫ T

0

‖y‖2
H1

0 (Ω)dt <∞,

and ∫ T

0

(
(y − k)+ (·, t) , v

)2

H1
0 (Ω)

dt ≤
∫ T

0

((y − k) (·, t) , v)2
H1

0 (Ω) dt =

∫ T

0

(y (·, t) , v)2
H1

0 (Ω) <∞,

for all v ∈ H1
0 (Ω), we obtain with [19, 5.9 Theorem 3] the following

(
(y − k)′+ , (y − k)+

)
=

1

2

d

dt
‖ (y − k)+ (·, t) ‖2

L2(Ω).

Thus with (27) we get

1

2

d

dt
‖ (y − k)+ (·, t) ‖2

L2(Ω) + β‖ (y − k)+ (·, t) ‖2
H1

0 (Ω) ≤
(
h (·, t) , (y − k)+ (·, t)

)
, (28)

for any t ∈ [0, T ]. By taking the absolute value of the right hand-side of (28), renaming the
variable t into t̃ and integrating over it from 0 to t, we obtain

1

2
‖ (y − k)+ (·, t) ‖2

L2(Ω) + β

∫ t

0

‖ (y − k)+

(
·, t̃
)
‖2
H1

0 (Ω)dt̃ ≤
∫ t

0

∫
Ω

|h
(
x, t̃
)

(y − k)+

(
x, t̃
)
|dxdt̃

≤
∫ T

0

∫
Ω

|h
(
x, t̃
)

(y − k)+

(
x, t̃
)
|dxdt̃,

(29)

where, because of the definition of k, we have ‖ (y − k)+ (·, 0) ‖2
L2(Ω) = 0. From (29), it follows

that

1

2
‖ (y − k)+ (·, t) ‖2

L2(Ω) ≤
∫ T

0

∫
Ω

|h
(
x, t̃
)

(y − k)+

(
x, t̃
)
|dxdt̃, (30)

β

∫ t

0

‖ (y − k)+

(
·, t̃
)
‖2
H1

0 (Ω)dt̃ ≤
∫ T

0

∫
Ω

|h
(
x, t̃
)

(y − k)+

(
x, t̃
)
|dxdt̃. (31)
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By the monotonicity of the square root and taking the supremum, we obtain from (30) that√
1

2
‖ (y − k)+ ‖L∞(0,T ;L2(Ω)) ≤

√∫ T

0

∫
Ω

|h
(
x, t̃
)

(y − k)+

(
x, t̃
)
|dxdt̃.

Further with this inequality and (31), we obtain the following

C̃
(
‖ (y − k)+ ‖

2
L∞(0,T ;L2(Ω)) + ‖∇ (y − k)+ ‖

2
L2(Q)

)
≤
∫ T

0

∫
Ω

|h (x, t) (y − k)+ (x, t) |dxdt, (32)

for C̃ := min
{

1
4
, β

2

}
> 0 and renaming t̃ into t. Then we can apply Young’s inequality, see [7,

(3.4)] and obtain

‖ (y − k)+ ‖
4

n+2

L∞(0,T ;L2(Ω))‖∇ (y − k)+ ‖
2n
n+2

L2(Q)

≤ 2n+ 4

4

(
‖ (y − k)+ ‖

4
n+2

L∞(0,T ;L2(Ω))

) 2n+4
4

+
2n

2n+ 4

(
‖∇ (y − k)+ ‖

2n
n+2

L2(Q)

) 2n+4
2n

≤ 2n+ 4

4

(
‖ (y − k)+ ‖

2
L∞(0,T ;L2(Ω)) + ‖∇ (y − k)+ ‖

2
L2(Q)

)
.

This result and (32) imply the following(
4C̃

2n+ 4

)n+2
n (
‖ (y − k)+ ‖

4
n

L∞(0,T ;L2(Ω))‖∇ (y − k)+ ‖
2
L2(Q)

)
≤
(∫

Q

|h (x, t) (y − k)+ (x, t) |dxdt
)n+2

n

.

(33)
Then by Lemma 6.1, we have that∫

Q

(y − k)
2n+2

n
+ dxdt ≤ c‖ (y − k)+ ‖

4
n

L∞(0,T ;L2(Ω))‖∇ (y − k)+ ‖
2
L2(Q),

with c > 0. This inequality and (33) imply the following

C

∫
Q

(y − k)
2n+2

n
+ (x, t) dxdt ≤

(∫
Q

|h (x, t) (y − k)+ (x, t) |dxdt
)n+2

n

dxdt, (34)

where C̄ :=
(

4C̃
c(2n+4)

)n+2
n
> 0. Consequently, we have

C̄

∫
Ak

(y − k)
2n+2

n
+ (x, t) dxdt ≤

(∫
Ak

|h (x, t) (y − k)+ (x, t) |dxdt
)n+2

n

dxdt, (35)

where Ak := {(x, t) ∈ Q| y (x, t) > k}. The set Ak is measurable, see [15, Proposition 2.1.1 and
page 42]. By estimating the right hand-side of (35) with Hölder’s inequality, see [19, page 622],
we obtain

C̄

∫
Ak

(y − k)
2n+2

n
+ (x, t) dxdt ≤

((∫
Ak

|h (x, t) |
2n+4
n+4 dxdt

) n+4
2n+4

(∫
Ak

| (y − k)+ (x, t) |
2n+4
n dxdt

) n
2n+4

)n+2
n

=

(∫
Ak

|h (x, t) |
2n+4
n+4 dxdt

)n+4
2n
(∫

Ak

| (y − k)+ (x, t) |2
n+2
n dxdt

) 1
2

.

(36)
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If
∫
Ak
| (y − k)+ (x, t) |2n+2

n dxdt > 0, then (36) implies

C̄

∫
Ak

(y − k)
2n+2

n
+ (x, t) dxdt ≤

(∫
Ak

|h (x, t) |
2n+4
n+4 dxdt

)n+4
n

. (37)

This is also true in the case of
∫
Ak
| (y − k)+ (x, t) |2n+2

n dxdt = 0. We use Hölder’s inequality again

for the right hand-side of (37), see [19, page 622], and obtain the following

C̄

∫
Ak

(y − k)
2n+2

n
+ (x, t) dxdt ≤

(∫
Ak

|h (x, t) |
2n+4
n+4 dxdt

)n+4
n

≤

((∫
Ak

1
q(4+n)

n(q−2)+4(q−1)dxdt

)n(q−2)+4(q−1)
q(4+n)

(∫
Ak

(
|h (x, t) |

2n+4
n+4

)q n+4
2n+4

dxdt

) 2n+4
q(n+4)

)n+4
n

=

((∫
Ak

|h (x, t) |qdxdt
) 1

q

) 2n+4
n

|Ak|
n+4
n
− 2n+4

qn ‖h‖
2n+4
n

Lq(Ak) ≤ |Ak|
n+4
n
− 2n+4

qn ‖h‖
2n+4
n

Lq(Q),

(38)

where |Ak| is the measure of Ak. Now, if we take m > k, then we have Am ⊆ Ak. Additionally,
we have that y > m on Am and thus y ≥ y − k > m− k on Am since k > ‖y0‖L∞(Ω) ≥ 0. Due to
y − k = (y − k)+ on Am, we obtain∫
Ak

(y − k)
2n+2

n
+ (x, t) dxdt ≥

∫
Am

(y − k)
2n+2

n
+ (x, t) dxdt =

∫
Am

(y − k)2n+2
n (x, t) dxdt ≥ (h− k)2n+2

n |Am|.

(39)

We combine (38) and (39) and obtain the following (m− k)2n+2
n |Am| ≤ Ĉ‖h‖

2n+4
n

Lq(Q)|Ak|
n+4
n
− 2n+4

qn ,

Ĉ := 1
C̄

. Therefore we have

|Am| ≤

(
Ĉ

n
2n+4‖h‖Lq(Q)

m− k

) 2n+4
n

|Ak|
n+4
n
− 2n+4

qn . (40)

Now, we consider the case that ‖h‖Lq(Q) > 0. We have that 2n+4
n

> 0 for n ≥ 1 and n+4
n
− 2n+4

qn
> 1

since q > n
2

+1. Therefore, we apply Lemma 6.2 and obtain that |Am| = 0 for all m ≥ C‖h‖Lq(Q) +

‖y0‖L∞(Ω), C := Ĉ
n

2n+4 2
4+2n−4q−nq

4+2n−4q |Q|
2q−n−2
2q+nq where |Q| is the measure of Q. If ‖h‖Lq(Q) = 0, then

we have from (40) that Am = 0 for any m > k and any k > ‖y0‖L∞(Q). Therefore in the limit
for m → k and k → ‖y0‖L∞(Ω), we have that |Am| = 0 for m ≥ ‖y0‖L∞(Ω). Summarizing,
this means that the set Am where the function y is such that y > C‖h‖Lq(Q) + ‖y0‖L∞(Q) has
measure zero. In the same way, if we follow the reasoning above for (y + k)− := min (y + k, 0)
and Ak := {(x, t) ∈ Q| y < −k}, we obtain that the set Am = {(x, t) ∈ Q| y < −m} where the
function y is such that y < −

(
C‖h‖Lq(Q) + ‖y0‖L∞(Q)

)
has measure zero. Therefore, we obtain

‖y‖L∞(Q) ≤ C‖h‖Lq(Q) + ‖y0‖L∞(Ω).

6.2 Existence of a minimiser

Next, we give a proof of existence of a minimiser to the optimal control problem (2) on a compact
set U of Lq (Q). A compact set can, in general, be constructed with the Kolmogorov-M. Riesz-
Fréchet theorem; see [12, Theorem 4.26] or [20]. Beyond the fact that a compact control set
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may not be satisfactory in applications, we remark that the PMP characterisation of an optimal
solution on such a set U is difficult. In fact, a needle variation can cause a smaller value of the
cost functional than its optimal value on U . Thus the proof of Theorem 3.3 is not valid in this
case.

Theorem 6.2. Let U be a compact set. Then the optimal control problem (2) admits an optimal
solution ū ∈ U .

Proof. For the proof, we follow the reasoning in [31, 44]. First, the objective functional J (y, u) is
bounded from below. Therefore, there exists an infimum

J̄ := inf
u∈U

Ĵ (u) := J (S (u) , u) ,

and a minimizing sequence (un)n∈N with limn→∞ Ĵ (un) = J̄ , see [3, II Theorem 4.1]. As U is
compact and (un)n∈N ⊆ U , there exists a subsequence, still denoted by (un)n∈N and ū ∈ U with
||un − ū||Lq(Ω) → 0 for n→∞.

Now, we consider
Ĵ (u) = Ĵc (u) +G (u) ,

where G (u) is given by (5) and Ĵc (u) is the continuous part of Ĵ(u). We have

J̄ = lim inf
n→∞

Ĵ (un) = lim inf
n→∞

(
Ĵc (un) +G (un)

)
≥ lim inf

n→∞
Ĵc (un) + lim inf

n→∞
G (un) ,

see for example [18, Theorem 3.127] for basic properties of the lim inf. As the control-to-state
operator S : Lq (Ω) → L2 (Ω) is continuous, the functional Ĵc (u) is continuous from Lq (Ω) to R,
see [3, III Theorem 1.8]. Therefore we have

lim inf
n→∞

Ĵc (un) = lim
n→∞

Ĵc (un) = Ĵc (ū) .

Next, we investigate the term lim infn→∞G (un). From the strong Lq (Ω) convergence, we have
that there is a subsequence of (un)n∈N, still denoted with (un)n∈N, which converges to ū almost

everywhere; i.e. there is a set Ω̊ with Ω\Ω̊ being a set of measure zero such that un (x) → ū (x)
for all x ∈ Ω̊ and n→∞, see [7, Proposition 3.6, Remark 3.7].

As lower semi-continuous functions are measurable and the composition of measurable func-
tions is measurable [7, Proposition 2.2], we can consider the composition fn := g ◦ un and using
the Lemma of Fatou (see [7, Lemma 2.15]), we have

lim inf
n→∞

∫
Ω̊

g (un (x)) dx = lim inf
n→∞

∫
Ω̊

fn (x) dx ≥
∫

Ω̊

lim inf
n→∞

fn (x) dx =

∫
Ω̊

lim inf
n→∞

g (un (x)) dx. (41)

If we define axn := un (x) → ū (x) := āx for n → ∞ for every x ∈ Ω̊, then (axn)n∈N is a converging

sequence in R for every x ∈ Ω̊ converging to āx for n→∞ and thus we have∫
Ω̊

lim inf
n→∞

g (un (x)) dx =

∫
Ω̊

lim inf
n→∞

g (axn) dx ≥
∫

Ω̊

g (āx) dx =

∫
Ω̊

g (ū (x)) dx,

because of the lower semi-continuity of g. This gives

lim inf
n→∞

∫
Ω̊

g (un (x)) dx ≥
∫

Ω̊

g (ū (x)) dx,
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and

lim inf
n→∞

∫
Ω

g (un (x)) dx ≥
∫

Ω

g (ū (x)) dx,

as both
∫

Ω\Ω̊ g (un (x)) dx = 0 and
∫

Ω\Ω̊ g (ū (x)) dx = 0; see [5, X Remark 4.4]. This proves the

following result
lim inf
n→∞

G (un) ≥ G (ū) .

Therefore we have J̄ ≥ Ĵc (ū) +G (ū). Thus, the control ū ∈ U is optimal.

6.3 Measurability of composite functions

The next lemma states that the composition of a Lebesgue measurable function u : Q → R,
Q ⊆ Rn, n ∈ N, with a lower semi-continuous function g : R→ R is Lebesgue measurable.

Lemma 6.3. Let u : Z → R be Lebesgue measurable and g : R→ R lower semi-continuous. Then
the composition g ◦ u : Z → R is Lebesgue measurable.

Proof. By [15, Example 2.6.3], we have that u is Lebesgue measurable if and only if u : (Z,M)→
(R,B) is measurable where (Z,M) is a measurable space, M is the σ-algebra of the Lebesgue
measurable subsets of R and (R,B) is a measurable space where B is the σ-algebra generated by
the collection of open subsets of R.

Next, we show that g : (R,B) → (R,B) is measurable, i.e. Borel measurable. We define
for any constant c ∈ R the set A := {z ∈ R| g (z) ≤ c}. Let (zn)n∈N ⊆ A be a sequence with
limn→∞ zn = z̄, then c ≥ lim infn→∞ g (zn) ≥ g (z̄), see [18, Theorem 3.127] for calculation rules of
lim inf. This means that z̄ ∈ A and thus A is closed. By [15, Proposition 1.1.4] we know that A
belongs to B and thus by [15, Proposition 2.1.1 and page 42], we have that g is Borel measurable.
Then with [15, Proposition 2.6.1], we have that g ◦ u : (Z,M) → (R,B) is measurable, which
means g ◦ u is Lebesgue measurable.
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1995.

[31] J.-L. Lions. Optimal Control of Systems Governed by Partial Differential Equations.
Grundlehren der mathematischen Wissenschaften. Springer-Verlag, 1971.

[32] J. M. Mart́ınez. Minimization of discontinuous cost functions by smoothing. Acta Applicandae
Mathematica, 71(3):245–260, 2002.

[33] L. Nirenberg. On elliptic partial differential equations. In Il principio di minimo e sue
applicazioni alle equazioni funzionali, pages 1–48. Springer, 2011.

[34] F. Petitta. A Not So Long Introduction to the Weak Theory of Parabolic Problems with
Singular Data. 2007. Lecture nodes of a course held in Granada October-December. University
of Roma 1, http://www1.mat.uniroma1.it/people/orsina/EDP/EDP02.pdf.
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