

Übungen zur Optimale Steuerung (A. Borzì), Blatt 2 SoSe 2019 1 St., Mi 13-14, SE 30

(Calculus of Variation ODE, Optimal Control ODE, Optimal Control PDE)

(1) To approximate a function $g(x) = \sin(\pi x)$ over the interval $[0, \pi]$ by a polynomial p of degree 2, we minimize the criterion

$$f(a) = \frac{1}{2} \int_0^1 (g(x) - p(x))^2 dx,$$

where $p(x) = a_0 + a_1x + a_2x^2$. Find the equations satisfied by the optimal coefficients $a = (a_0, a_1, a_2)$, and solve them.

(2) Let $f: \mathbb{R}^n \to \mathbb{R}$ be given by

$$f(x) = \frac{1}{2} x^T Q x + b^T x + \gamma$$

where $Q \in \mathcal{S}_n$ (the vector space of all symmetric $(n \times n)$ -matrices), $b \in \mathbb{R}^n$, and $\gamma \in \mathbb{R}$. Prove the following statements:

- (a) f is convex if and only if Q is positive semi-definite.
- (b) f is uniformly convex if and only if Q is positive definite.
- (c) Determine the gradient of f.
- (3) Let $X \subseteq \mathbb{R}^n$ be an open set, $f: X \to \mathbb{R}$ be continuously differentiable, $x \in X$ and $d \in \mathbb{R}^n \setminus \{0\}$ given. Show that

$$\lim_{t \to 0^+} \frac{f(x+t\,d) - f(x)}{t} = \nabla f(x) \cdot d.$$

Apply this result to $f(x) = ||Ax - b||_{\mathbb{R}^m}^2$, $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$.

(4) Solve the following optimization problem with constraints in \mathbb{R}^2

$$\min f(x) := x_1^2 - x_2^2$$
s.t. $x_1 + 2x_2 + 1 = 0$
 $x_1 - x_2 < 3$.

Write the Lagrange function and derive the first- and second-order optimality conditions.

(5) Let $Q \in \mathcal{S}_n$, $q \in \mathbb{R}^n$, and $A \in \mathbb{R}^{m \times n}$ (rank(A) = m), $b \in \mathbb{R}^m$. Consider the following optimization problem in \mathbb{R}^n .

$$\min f(x) := x^T Q x + q^T x$$
s.t. $Ax = b$

Write the KKT optimality system and discuss its solution.