Lehrstuhl für MATHEMATIK IX

Übungen zur Optimale Steuerung (A. Borzì), Blatt 3
SoSe 20191 St., Mi 13-14, SE 30
(Calculus of Variation ODE, Optimal Control ODE, Optimal Control PDE)

(1) A chain is suspended from two thin hooks that are 16 meters apart on a horizontal line. The chain itself consists of 20 links of stiff steel. Each link is one meter in length. Determine the equilibrium shape of the chain.
(Hint: the link i spans an x distance of x_{i} and a y distance of y_{i} such that $x_{i}^{2}+y_{i}^{2}=1$, consider the minimization of the gravitational potential energy.)
(This and the next example are taken from the book: Luenberger, David G., Ye, Yinyu, Linear and Nonlinear Programming, Springer, 2016.)
(2) Consider a discrete probability density corresponding to a measured value taking one of n values $x_{1}, x_{2}, \ldots, x_{n}$. The probability associated to x_{i} is p_{i}. The p_{i} 's satisfy the conditions $p_{i} \geq 0$ and $\sum_{i=1}^{n} p_{i}=1$. The entropy of such a density is given by

$$
H=-\sum_{i=1}^{n} p_{i} \log \left(p_{i}\right)
$$

With the probability density, we can compute the mean value: $m=\sum_{i=1}^{n} p_{i} x_{i}$.
If the value of mean is known to be m, find the density $p_{i}, i=1, \ldots, n$, that maximizes H.
(3) Discuss the extremal points of this problem

$$
\begin{gathered}
\min f\left(x_{1}, x_{2}\right):=x_{1}^{3}-x_{1}^{2} x_{2}+2 x_{2}^{2} \\
\text { s.t. } \quad x_{1} \geq 0, \quad x_{2} \geq 0 .
\end{gathered}
$$

(4) Consider a linear system of two equations $A x=0$ given by

$$
\begin{aligned}
& a x_{1}+b x_{2}+x_{3}=0 \\
& c x_{1}+d x_{2}+x_{3}=0
\end{aligned}
$$

where $a d-b c \neq 0$. Consider $\left(x_{1}, x_{2}, x_{3}\right)$ in two sets of variables $y=\left(x_{1}, x_{2}\right)$ and $u=x_{3}$. Determine the mapping $u \mapsto y$ and its first derivative.

Discuss the minimization of the function $f\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}$, subject to the equality constraint $A x=0$, in terms of the variable u.
(5) Investigate the optimization problem

$$
\begin{aligned}
\min f\left(x_{1}, x_{2}\right) & :=x_{1}+x_{2}+x_{3} \\
\text { s.t. } & c
\end{aligned}=g\left(x_{1}, x_{2}, x_{3}\right):=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}-1, ~ \$
$$

where $c \in \mathbb{R}$ represents a perturbation of the equality constraint $g(x)=0$. Find the global minimizer of this problem, and the corresponding Lagrange multiplier. Discuss the sensitivity of the minimizing solution with $c=0$.

