

Übungen zur Optimale Steuerung (A. Borzì), Blatt 3 SoSe 2019 1 St., Mi 13-14, SE 30 (Calculus of Variation ODE, Optimal Control ODE, Optimal Control PDE)

(1) A chain is suspended from two thin hooks that are 16 meters apart on a horizontal line. The chain itself consists of 20 links of stiff steel. Each link is one meter in length. Determine the equilibrium shape of the chain.

(Hint: the link *i* spans an *x* distance of x_i and a *y* distance of y_i such that $x_i^2 + y_i^2 = 1$, consider the minimization of the gravitational potential energy.)

(This and the next example are taken from the book: Luenberger, David G., Ye, Yinyu, Linear and Nonlinear Programming, Springer, 2016.)

(2) Consider a discrete probability density corresponding to a measured value taking one of n values x_1, x_2, \ldots, x_n . The probability associated to x_i is p_i . The p_i 's satisfy the conditions $p_i \ge 0$ and $\sum_{i=1}^n p_i = 1$. The entropy of such a density is given by

$$H = -\sum_{i=1}^{n} p_i \log(p_i).$$

With the probability density, we can compute the mean value: $m = \sum_{i=1}^{n} p_i x_i$.

If the value of mean is known to be m, find the density p_i , i = 1, ..., n, that maximizes H.

(3) Discuss the extremal points of this problem

$$\min f(x_1, x_2) := x_1^3 - x_1^2 x_2 + 2 x_2^2$$

s.t. $x_1 \ge 0, \quad x_2 \ge 0.$

(4) Consider a linear system of two equations A x = 0 given by

$$a x_1 + b x_2 + x_3 = 0$$

 $c x_1 + d x_2 + x_3 = 0$

where $ad - bc \neq 0$. Consider (x_1, x_2, x_3) in two sets of variables $y = (x_1, x_2)$ and $u = x_3$. Determine the mapping $u \mapsto y$ and its first derivative.

Discuss the minimization of the function $f(x_1, x_2, x_3) = x_1^2 + x_2^2 + x_3^2$, subject to the equality constraint Ax = 0, in terms of the variable u.

(5) Investigate the optimization problem

$$\min f(x_1, x_2) := x_1 + x_2 + x_3$$

s.t. $c = g(x_1, x_2, x_3) := x_1^2 + x_2^2 + x_3^2 - 1,$

where $c \in \mathbb{R}$ represents a perturbation of the equality constraint g(x) = 0. Find the global minimizer of this problem, and the corresponding Lagrange multiplier. Discuss the sensitivity of the minimizing solution with c = 0.