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Abstract

We use ordinary differential equations to model populations of two interacting bio-
logical species, mainly focussing on predator-prey systems. Confining our discussion
to predator-prey systems with limit cycle behaviour, we subsequently add a spatial
dimension to consider reaction-diffusion equations. This models spatial migration
of the two populations. We observe the emergence of spatial waves as a result of
the population dynamics in combination with diffusion. Different boundary con-
ditions for rectangular domains as well as the surface of a torus are considered.
After shortly discussing an additonal convection term in the equation we turn our
attention to the sphere, which requires some more care to be directed towards the
numerical simulation. Many beautiful patterns arise from simulating different initial
conditions on the sphere, which concludes our discussion.
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1 Modelling of populations of two species with

ODE’s

A classic example of modelling with ordinary differential equations are population
sizes of biological species, just think of the classical bacterial growth u′ = a u with
solution u(t) = u0 exp(at). Differential equations are well suited to model these
types of systems since, at least after making some (more or less realistic) assump-
tions, the growth of a population is determined only by the current population
size and some environmental factors like for example the amount of food available.
From this one can often write down a differential equation describing a simplified
version of the mechanism of reproduction. A lot of information on this topic is
given in [Mur04a]. However even when considering just one species, a lot of drasti-
cally simplifying assumptions have to be made, to obtain a simple enough equation.
Therefore, as always in modelling, one has to constantly weigh mathematical sim-
plicity against realisticness.

1.1 Lotka-Volterra equations

The easiest type of model for biological populations is described by the well-known
Lotka-Volterra equations

du

dt
= u(1− v)

dv

dt
= αv(u− 1)

where u represents the population of a species of prey and v that of of predators
that eat the prey. One assumes that in absence of predation, the prey just repro-
duce exponentially. Additionally, the population of prey is controlled by predation
which is proportional to the prey population size as well as the predator population
size. The predators grow proportional to the predation term in the prey equation
and in absence of prey just die exponentially for lack of food.

To avoid confusion the system of equations is given in the so-called nondimension-
alized form. This means that through a series of subsitutions all variables have
been normed and parameters expressed in relation to each other to obtain a mini-
mal number of parameters. In this case the growth rate of the preys in absence of
predators is normed to be 1 and the only remaining parameter is α > 0 describing
the relative growth rate of the predators to that of the prey.

Characteristic for Lotka-Volterra equations is the periodicity of the solutions. For
some given initial condition, the solution in the phase plane plot is always a closed
curve on which the initial condition lies. At the same time, this is a major disad-
vantage of this model, since any small perturbation will move the trajectory onto
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some other orbit, which may differ much from the original orbit at some later time.
This is unrealistic since for real-world systems one would expect for the population
size to return to the same limit cycle after some small perturbation. We will see
later how to improve the model to incorporate this behavior.

We simulate the evolution of these and all subsequently described ordinary differ-
ential equations using Matlab’s built-in ODE solver ”ode23”. We plot both of the
populations over time as well as the prey-predator vector for all times in a two-
dimensional plot called a phase plane plot. This kind of plot is especially useful
when observing periodic behavior. We add some additional markers to indicate the
time.
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Figure 1.1: Population over time and phase plane plot for Lotka-Volterra equations
with α = 1, u(0) = 2, v(0) = 1.3

One sees that the solution is periodic since the phase plane plot is a closed curve.
In figure 1.2 we see that the initial condition always lies on the orbit curve that the
system runs through forever.
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Figure 1.2: Orbits in the phase plane plot for different initial conditions in the
Lotka-Volterra model
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1.2 Logistic growth

One step towards a more realistic model is to guarantee that no species can grow
unboundedly since this is obviously impossible in nature. For any species, the
environment has a natural carrying capacity which indicates how many individuals
organisms the environment can support sustainably. If the population size exeeds
this limit, we want our equation to reflect this by decreasing the population size
until it reaches again the carrying capacity where the population will stabilize.
This can be achieved by adding a quadratic term to the equation which will only
become significant once the population size is large. This kind of growth is called
logistic growth and has first been proposed by Pierre-François Verhulst in 1838, see
also [Mur04a, p. 3]. For one species, an equation modelling logistic growth with
carrying capacity K is given by

du

dt
= u

(
1− u

K

)
In the plots below one can see that this yields the desired behavior as the population
size always returns to the carrying capacity.
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Figure 1.3: Logistic growth for carrying capacity K = 3 and initial contitions
u(0) = 1 and u(0) = 5

In all subsequent models we will use logistic growth. As part of the nondimension-
alization for the sake of simplcity, the carrying capacities will always be normed to
be 1. This is equivalent to understanding all population sizes to be percentages of
the respective carrying capacities.

1.3 Symbiosis, competition and parasitic behavior

A simple extension of Lotka-Volterra equations are models of various relationships
between two species. We consider two species u and v which have now a general
relationship in the sense that the prevalence of one species will have a supportive
or destructive effect on the other species. The difference to the Lotka-Volterra
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equations is that both species can survive alone, while in the Lotka-Volterra model
the predators can not subsist without prey. We assume that each species to exhibit
a logistic growth behavior in absence of the other species. Taking the symbiotic or
competitive effect to be proportional to the population sizes of both species this
leads to the following equations:

du

dt
= u (1− u+ av)

dv

dt
= ρv (1− v + bu)

As discussed before, the system is nondimensionalized with both carrying capacities
normed to 1. The remaining parameters are:

ρ relative growth rate of species v in relation to growth rate of species u
a coefficient determining the effect of species v on u
b coefficient determining the effect of species u on v

For a, b > 0 we have symbiosis while for a, b < 0 we have competition. The cases
with mixed signs a < 0, b > 0 and a > 0, b < 0 could be interpreted as describing
two species with one beeing a parasite to the other where one species is beneficial
to the other species while having a negative effect on the other species.
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Figure 1.4: Competition with (ρ, a, b) = (1, -0.4, -0.6) and symbiosis with (ρ, a, b)
= (0.4, 0.4, 0.6) and in both cases u(0) = 1.5, v(0) = 0.1

In these models, there is typically no perodic behavior as in the Lotka-Volterra equa-
tions, instead the populations tend to stabilize after some time. One can clearly
see the effect of the interaction of the species on the steady states is to raise the
limit population in case of a positive effect and decrease it in case of a negative
effect. In the parasitic case we see that if the negative effect that the parasite has
on the other species is too great (b > 1), this species will die out and just leave the
parasite which will then alone just behave in a logistic way.

It is not very hard to see how one can generalize this system of two species to a
system of n interacting species. On these types of systems with n > 3, not much
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Figure 1.5: Weak parasitic behavior with (ρ, a, b) = (0.4, 0.4, -0.6) and strong para-
sitic behavior with (ρ, a, b) = (0.4, 0.4, -1.7) and in both cases u(0) = 0.6, v(0) = 1.3

research has been done. For some, yet limited, more information see [Mur04a, p.
101].

1.4 Realistic predator-prey equations

We now want to develop a system of more realistic equations for predator-prey
systems. Of course there are generally many options and no one model can be
definitively praised as better than all others, instead we need to decide where to
make trade-offs between realisticness and simplicity. A major disadvantage of the
Lotka-Volterra we saw before is the fact that small perturbations alter the orbit in
ways that can have large effects later in time and will cause the model to jump to
another orbit and never return to its state before the perturbation. We now want
to get rid of this problem and have a model with a periodic solution which is robust
to small perturbations, i.e. always returns to the same limit cycle, no matter what
initial condition we choose.

For some constant environment, i.e. some constant food source we want both
populations to exhibit logistic growth since this kind of growth is, as we have
seen above, simple to model in a mathematical way and at the same time shows
reasonably realistic behavior. As in the Lotka-Volterra equations we assume the
food source of the prey to be constant such that in absence of predators the prey just
grow logistically. The two factors limiting the growth of the prey is overpopulation
(modelled by logistic growth) and predation. In the Lotka-Volterra equations as well
as our model for competition we assumed this negative effect to be proportional to
the population size of the prey as well as the predators. However this is unrealistic
since for a small predator population with a large number of prey, one can expect
the effect of predation on the prey to saturate and not grow any further, even if
the prey increase, until the predators reproduce and therefore eat more prey. There
are different options for how to model this saturation, see [Mur04a, p. 88] for some
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options. We use the term a uv
u+d with some a, d > 0 to describe the predation. The

parameter a expresses the negative effect the predation has on the prey population
in relation to the positive effect the predation has on the predator population. This
is, for large a the predators need to eat many prey to reproduce some amount
while for small a the predators only need to eat few prey to experience the same
growth. The parameter d prevents the predation from becoming infinitely large
for small prey population and additionally makes the equation more numerically
stable. For the predators we want them to exhibit logistic growth for a constant
environment, i.e. for a constant prey population. This is actually the same as saying
the predators grow logistically with a carrying capacity depending monotonically
on the prey population. We take the carrying capacity to be proportional and even
equal to the prey population.
This leads to the following system of equations:

du

dt
= u

(
(1− u)− a v

u+ d

)
dv

dt
= bv

(
1− v

u

)
The parameter b > 0 expresses the linear growth rate of the predators in relation to
that of the prey, at least while being away from limiting factors to the population
like overpopulation and large predation. With b > 1 the predators reproduce faster
that the prey while for b < 1 it is the other way around.

For the right parameter values, this system posesses a stable limit cycle. One can
actually carry out a detailed analysis to determine precisely for which parameters
the system is unstable or admits a stable limit cycle. In the case of the system
having a stable limit cycle there is always an unstable equilibrium point encircled
(in the phase plane plot) by the limit cycle. This kind of analysis however is not our
main focus since we are mostly concerned with modelling and numerical simulation.
For a detailed treatment of exactly our model equations see [Mur04a, p.88]. For us,
it suffices to summarize that the system is always stable for a < 1

2 and for any larger

a we need b and d to be large enough, for example b > 1
a or d > (a2 + 4a)

1
2 − (1 +a)

always suffices (see [Mur04a, p.91]).

We see numerically in the plots 1.7 and 1.6 that our system behaves as we would
like it to.
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Figure 1.6: Realistic predator-prey equation with a = 1, b = 0.5, d = 0.02 and
u(0) = 0.5, v(0) = 0.5

In plot 1.7, we see that the system always tends to the same limit cycle, regardless
of the initial condition. For different initial conditions it may however take longer
to stabilize.
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Figure 1.7: Realistic predator-prey equation with a = 1, b = 0.5, d = 0.02 for
different initial conditions

One problem of our model is the singularity in the predator equation for u = 0,
such that we cannot actually compute the behavior of the predators without prey.
For small u, the term u

v relates to the fact that we want the predators to die out
quicker, the less prey and therefore the less food is available. This problem does
not really occur when just looking at one-dimensional models since the model is
uninteresting without prey anyway. However when studying spatial models it may
very well be the case that through diffusion or just directly from certain initial
conditions one gets predators in areas where there are no prey. One could try to

regularize the equation with some small ε in the form bv
(

1− v
u+ε

)
but this has

the disadvantage that then without prey, the predators do not die out completely
but rather tend to some small limit population. Also we found in our simulations
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this ε having to be rather large in order to have any regularizing effect if we did
not want to make the time step dt unresonably small. A more practical solution
is to program the simulation to set the predator population instantly to zero once
the prey population falls below some small threshold. This does introduce some
discontinuity in the model but gets around the problem of residual populations and
makes it possible to work with initial conditions where there are no prey in some
areas.
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2 Spatial Diffusion

After analyzing the local interaction of population dynamics, we want to extend
our model and add a spatial component. Since we assume that each animal of a
population moves around in a random way we can think of the movement as a
diffusion process. Equations that describe processes in which local interaction and
additional diffusion are linked, are called reaction diffusion systems. Mathematically
seen such systems take the form of a parabolic partial differential equation of second
order. We consider a two-dimensional spatial domain. The system of reaction
diffusion equations is given by

∂u
∂t (x, y, t) = F (u(x, y, t), v(x, y, t)) +σprey (∆u)(x, y, t)
∂v
∂t (x, y, t) = G(u(x, y, t), v(x, y, t)) +σpredator (∆v)(x, y, t)

The functions u and v depend on the two space variables x, y and time t. They
describe the population dynamic of a predator-prey system. As before, u represents
the prey population and v the predator population.

The functions F and G describe the reaction and are given by the previously dis-
cussed realistic predator-prey equations from chapter 1.4

F (u, v) = u

(
(1− u)− a v

u+ d

)
G(u, v) = bv

(
1− v

u

)
whose parameters have already been explained there.

The terms σprey ∆u and σpredator ∆v describe the diffusion with diffusion coeffi-
cients σspecies specific to the species. The diffusion coefficients indicate how fast the
dispersion from a high to a low density takes place.

2.1 Discretization and numerical method

To solve our PDE numerically the function must be discretized. Consider a two-
dimensional quadratic space of length L. Then the step size h is given by h =
L

N−1 with N being the number of grid points. At each grid point (xi, yj) a value
is assigned that represents the population of the species. This value is denoted
by u(xi, yj) respectively v(xi, yj). As time step size we use dt = T

M with T the
total simulation time and M the number of time steps. From now on we discuss
everything only for the preys u since everything goes analogous for the predators v
anyway.
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As an approximation for the derivative we use the explicit Euler method

∂

∂t
u(x, y, t)

∣∣∣∣
tk

≈ u(x, y, tk + dt)− u(x, y, tk)

dt

The second derivative can be approximated by

∂2

∂x2
u(x, y, t) ≈ u(x+ h, y, t)− 2u(x, y, t) + u(x− h, y, t)

h2

This leads to

4u|(xi,yj) ≈
u(xi+1, yj) + u(xi−1, yj)− 4u(xi, yj) + u(xi, yj+1) + u(xi, yj−1)

h2

Combined with the notation of u(xi, yj , tk) by uki,j the discrete reaction diffusion
equation is then given by

uk+1
i,j − uki,j

dt
= F (uki,j , v

k
i,j) + σprey 4 u|(xi,yj)

with k ∈ {1, ...,M} and i, j ∈ {1, ..., N}. Conversion leads to the iteration formula

uk+1
i,j = uki,j + dt F (uki,j , v

k
i,j) + dt σprey 4 u|(xi,yj)

As we have seen in the previous chapter, for the right parameter values the system
of realistic predator-prey equations possesses a stable limit cycle. By maintaining
these parameters for the reaction diffusion equation the question arises, what kind
of spatial pattern formation can possibly occur. Of course this depends on the
chosen initial conditions, for which one can for instance pick a Gaussian distribu-
tion. This choice is particularly reasonable since the special case of no preys, whose
problems were discussed above, does not arise. But of course other choices for the
initial conditions are possible.

In order to obtain a stable algorithm, it is important to analyze which stability
conditions must be satisfied to get a well-conditioned problem. Since our main
focus is not on the derivation of the stability condition, we only want to state that
such a condition is relevant and in our case it must hold σ dt

h2 < 1. However this
condition is merely necessary and by no means sufficient, since even for very small
values of σ dt

h2 the numerical computation can fail due to numerical errors.
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2.2 Boundary conditions

In the interior of the grid, the values uk+1
i,j are well-defined by the above method

with given initial conditions, but not at the boundaries. These grid points must
be manually adjusted and are called boundary conditions for which different values
can be chosen. In the following three different possibilities for the prey population
are presented, which can be applied analogously to the predators.

2.2.1 Dirichlet boundary condition

In case of Dirichlet boundary conditions, the boundary values are set equal to zero,
this means

u(x1, yj) = 0, u(xN , yj) = 0 for all j = 1, ..., N

u(xi, y1) = 0, u(xi, yN ) = 0 for all i = 1, ..., N

The figure 2.1 shows a simulation with Dirichlet boundary conditions. As initial
values for both populations a Gaussian distribution with the position of the center
cprey = (0.3, 0.3) and cpredator = (0.2, 0.2), height hprey = 0.5 and hpredator = 0.25,
and standard deviation dprey = 0.1 and hpredator = 0.1 is chosen. As diffusion
coefficient we choose σ = 0.0001 for both populations.
An advantage of Dirichlet boundary conditions is that they are easy to compute.
One could say, that this model illustrates island populations, that can not leave the
island, or other szenarios where the species propagation is limited by untraversable
boundaries.

2.2.2 Neumann boundary condition

A similar idea like Dirichlet boundary conditions is to consider smoother boundary
values. So instead of setting them to zero, in case of Neumann boundary conditions,
the boundary values are set as the next inner point value, this means not the
function values are predefined, but the derivative on the boundary of the grid is set
to zero, i.e.

u(x1, yj) = u(x2, yj), u(xN , yj) = u(xN−1, yj) for all j = 1, ..., N

u(xi, y1) = u(xi, y2), u(xi, yN ) = u(xi, yN−1) for all i = 1, ..., N − 1

The value of the corner points u(x1, y1), u(x1, yN ), u(xN , y1), u(xN , yN ) doesn’t
matter, because for the computation of uk+1

i,j by the approximated reaction diffusion
method the corner points are not involved.
Figure 2.2 shows a simulation with Neumann boundary conditions. As initial con-
ditions and diffusion coefficient the same values as in the Dirichlet case are chosen.
If you compare the Neumann simulation to the Dirichlet simulation one can see,
that they are not very different from each other in the interior.
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2.2.3 Torus boundary condition

Until now we considered a bounded rectangular with untraversable boundaries. To
ensure a propagation in every direction the idea is to build a torus by folding the
origin plane along the x and y axis. This means that plotted in two dimensions the
left and right boundary are the same and equivalently the bottom an top boundary.
In conclusion in case of torus boundary conditions for the initial values holds

u(xi, y1) = u(xj , yN ) ∀ i = 1, ..., N

u(x1, yj) = u(xN , yj) ∀ j = 1, ..., N

To ensure that the initial condition satisfies the voundary condition the initial values
are set as the mean value between the two nearest points, i.e.

u(xi, y1) =
1

2
(u(xi, y2) + u(xi, yN−1)) ∀ i = 1, ..., N

u(x1, yj) =
1

2
(u(x2, yj) + u(xN−1, yj)) ∀ j = 1, ..., N

This means that the initial corner points must be equal. It follows

u(x1, y1) =
1

8
(u(x2, y1) + u(x1, y2) + u(xN − 1, y1) + u(xN , y2)

+ u(x1, yN−1) + u(x2, yN ) + u(xN−1, yN ) + u(xN , yN−1))

u(x1, y1) = u(x1, yN ) = u(xN , y1) = u(xN , yN )

Figure 2.3 shows a simulation with Torus boundary conditions. As initial conditions
and diffusion coefficient the same values as in the Dirichlet and Neumann case
are chosen. One can see, that the waves are spreading over the edge, creating a
completely different pattern as in the first two cases.
Since in the case of Torus boundary conditions the populations are considered on a
torus, this of course leads to the idea of plotting the populations on a torus. To this
end we implemented by another plot function. The disadvantage of such a plot style
is that a large part is not visible and the propagation can not be comprehended so
well. The next figure 2.4 shows a simulation on a torus and figure 2.5 shows the
same simulation in a two dimensional plane plot as before.
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Figure 2.1: Simulation over time of reaction diffusion system and Dirichlet boundary
conditions

13



Figure 2.2: Simulation over time of reaction diffusion system and Neumann bound-
ary conditions

14



Figure 2.3: Simulation over time of reaction diffusion system and Torus boundary
conditions
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Figure 2.4: Simulation over time on a torus of reaction diffusion system and Torus
boundary conditions plotted on a torus
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Figure 2.5: Simulation over time on a plane of reaction diffusion system and Torus
boundary conditions as a planar plot
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3 Convection

So far our only spatial effect was diffusion, which, as we saw, can be regarded as a
constant drive in the system to equalize the population density in space. Another
physical possibility is a force acting (constant in time) on the species. This can be
isotropic, meaning the force vector field is constant in space, or anisotropic. Objects
subjected to force of course resist this force in a way proportional to their mass.
Here we interpret the population density as mass. If we imagine an isotropic con-
vection to be similar to wind blowing things in some direction, then this basically
just means that low concentrations are blown away easily while larger amounts are
harder to displace.

If the convection force is represented by a vector field ϕ : Ω → R2, then the effect
of convection can be modelled by adding the convection term ϕ · ∇u to the par-
tial differential equation. We thus obtain a system of reaction-diffusion-convection
equations:

∂u
∂t = F (u, v) − cprey ϕ · ∇u +σprey∆u
∂v
∂t = G(u, v) − cpredator ϕ · ∇v +σpredator∆v

We always take the same convection force to act on both predators and prey, but
we allow for different convection speeds for the species, i.e. we rescale ϕ by a fac-
tor cspecies. One could also consider completely different convection fields for the
different species.

For the numerical simulation we take the forward Euler method to approximate the
derivative. This leaves us with the choice to take the forward difference ∂u

∂x

∣∣
(i,j)
≈

1
h(u(i+1,j) − u(i,j)) or the backward difference ∂u

∂x

∣∣
(i,j)

≈ 1
h(u(i,j) − u(i−1,j)). To

increase stability, we always take the one, in which the convection direction for the
x-component ϕx goes, i.e. for ϕx > 0 we take the forward difference and for ϕx < 0
we take the backward difference. We use the expression

∂u

∂x

∣∣∣∣
(i,j)

≈ max(0, ϕx)

(
1

h
(u(i,j) − u(i−1,j))

)
+ min(0, ϕx)

(
1

h
(u(i+1,j) − u(i,j))

)
to encapsulate this behavior. Everything goes analogous for ∂u

∂y , ∂v
∂x and ∂v

∂y of course.

Concerning the numerical simulation, it is very noticable, how the simulation be-
comes significantly less stable. Even for moderate convection speeds one has to
reduce the time step dt by a large factor. Of course this has the consequence of
increasing the computation time considerably and only allowing small simulation
times T. But for too large time steps the numerics is so inaccurate that in areas
where there are only small populations the population becomes negative, which
makes no sense. If decreasing dt is not an option one could always counteract this
problem by cutting the solution at 0 in every step, which means to always assign at
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least 0 as population everywhere. While this significantly increases stability it also
distorts the solution in ways not intended by the model and generates numerical
solutions which may deviate from actual solutions to the PDE arbitrarily much.
Therefore we refrain from cutting and instead use small time steps and initial con-
ditions that are easier to simulate.

We consider two examples, both with Neumann boundary condition. As an example
for isotropic convection we take the constant convection direction (−1, 0)T , convec-
tion speeds cprey = 1, cpredator = 0.01 and diffusion speeds σprey = 0.00001, σpredator =
0.02. This results in the dynamics shown in figure 3.1. Notice how the movement
of the prey is almost exclusively driven by convection due to their high convection
and low diffusion speed.

For anisotropic convection we consider a circular swirl around the center (L2 ,
L
2 )

of the domain. This means that the center remains fixed while any point (i, j)
experiences convection with the vector field

ϕ(i, j) =

(
−j + L

2

i− L
2

)
.

The parameters we use here are convection speeds cprey = 1, cpredator = 0.1 and
diffusion speeds σprey = 0.00001, σpredator = 0.02. We see nicely in figure 3.2 how
the prey, due to their high convection speed, get pulled in a swirl around the center.
The predators have a significantly lower convection speed but we can still make ot
the deformation the convection has on the predator population.
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Figure 3.1: Isotropic convection with convection direction ϕ = (−1, 0)T and con-
vection speeds cprey = 1, cpredator = 0.01
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Figure 3.2: Circular convection with convection speeds cprey = 1, cpredator = 0.1
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4 Simulation on the Sphere

We will now disregard convection and return to our reaction-diffusion equation

∂u
∂t = F (u, v) +σprey∆u
∂v
∂t = G(u, v) +σpredator∆v

with

F (u, v) = u

(
(1− u)− a v

u+ d

)
G(u, v) = bv

(
1− v

u

)
.

for u, v : Ω× [0, T ]→ R. So far, we discussed a quadratic spatial domain Ω = [0, L]2

with different boundary conditions. Now, we want to take the sphere Ω = r S2 ⊆ R3

for some fixed radius r > 0 as spatial domain.

4.1 Discretization and numerical method

The natural choice for coordinates are spherical coordinates with latitude ϑ ∈ [0, π),
longitude ϕ ∈ [0, 2π) and radius r. To write the equation in spherical coordinates
we need to transform the Laplace operator from the usual cartesian coordinates to
spherical coordinates. Using the transformation

x = r sinϑ cosϕ

y = r sinϑ sinϕ

z = r cosϑ

we obtain the Laplacian in spherical coordinates

∆u =
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2
=

=
1

r2
∂

∂r

(
r2
∂u

∂r

)
+

1

r2 sinϑ

∂

∂ϑ

(
sinϑ

∂u

∂ϑ

)
+

1

r2(sinϑ)2
∂2u

∂ϕ

To discretize the sperical coordinates we define a N1 ×N2 grid by discretizing the
longitude ϕ ∈ [0, 2π) into N1 − 1 and the latitude ϑ ∈ [0, π) into N2 − 1 steps, i.e.
we set

ϕi :=
(i− 1)2π

(N1 − 1)
∀i = 1, ..., N1

ϑj :=
(j − 1)π

(N2 − 1)
∀j = 1, ..., N2
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resulting in step sizes

dϕ =
2π

(N1 − 1)
dϑ =

π

(N2 − 1)
.

Note that this way of discretizing the sphere has the disadvantage of distorting
areas and lengths, since in very high or very low latitudes, one step in the longi-
tude or the latitude direction constitutes a significantly shorter distance than at the
equator. For the same reason one square in the grid near the poles has a smaller
area than one square around the equator. We treat it though, as if every step in the
discretization has the same physical length by treating every gridpoint equally in
the diffusion. This has the effect of slowing diffusion around the poles and speeding
it up near the equator. There are better ways of discretizing a sphere. It is how-
ever really simple to work with this discretization, which is why we prefer it for now.

We discretize time by specifying a simulation time T and a number of time steps
M , resulting in a time step

dt :=
T

M
.

We treat only the prey function u : rS2 × [0, T ]→ R but handle the predators v in
exactly the same way. We set

ui,j,k := u(r, ϕi, ϑj , k dt) for k = 1, ...,M

for abbreviation since u depends on both space dimensions as well as time but the
radius is constant anyway.

Using the forward Euler method with forward differences in space we proceed to
discretize the Laplacian in spherical coordinates

∆u|(i,j,k) =
1

r2 sinϑ

∂

∂ϑ

(
sinϑ

∂u

∂ϑ

)∣∣∣∣
(i,j,k)

+
1

r2(sinϑ)2
∂2

∂ϕ2

∣∣∣∣
(i,j,k)

=

=
1

r2 sinϑi,j,k dϑ

(
sinϑ

∂u

∂ϑ

∣∣∣∣
(i,j+ 1

2
,k)

− sinϑ
∂u

∂ϑ

∣∣∣∣
(i,j− 1

2
,k)

)
+

+
1

r2(sinϑj)2(dϕ)2
(ui+1,j,k − 2ui,j,k + ui−1,j,k) =

=
1

r2 sinϑj (dϑ)2

(
ui,j+1,k sinϑi,j+ 1

2
,k − ui,j,k(sinϑi,j+ 1

2
,k + sinϑi,j− 1

2
,k)+

+ui,j−1,k sinϑi,j− 1
2
,k

)
+

1

r2(sinϑj)2(dϕ)2
(ui+1,j,k − 2ui,j,k + ui−1,j,k)

by using

sinϑ
∂u

∂ϑ

∣∣∣∣
(i,j+ 1

2
,k)

≈ sinϑj+ 1
2

uj+1 − uj
dϑ

sinϑ
∂u

∂ϑ

∣∣∣∣
(i,j− 1

2
,k)

≈ sinϑj− 1
2

uj − uj−1
dϑ
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Since we work on a sphere where the radius is constant, we have ∂u
∂r = 0 and thus

can omit the first term in the spherical Laplacian.

For time differentiation we use the explicit Euler method

ui,j,k+1 − ui,j,k
dt

= F (ui,j,k) + σ ∆u|i,j,k

In summary, the update formula for the simulation is

ui,j,k+1 = ui,j,k + dt F (ui,j,k) + dt σ ∆u|i,j,k ∀i = 1, ..., N1 − 1, j = 2, ..., N2 − 1

with ∆u|i,j,k given above. Since the longitudes ϕ = 0 and ϕ = 2π both correspond
to zero-meridian, we have to set

uN1,j,k := u1,j,k ∀ j = 1, ..., N2

at every time step. Note also that for i = 1 we have to replace ui−1,j,k in the discrete
laplacian by uN1−1,j,k in the discrete laplacian since ui−1,j,k is not well-defined for
i = 1.

This leaves only the update behavior for the poles (j = 1 and j = N2) to be
discussed. At the north pole for example, i.e. j = N2, we can not meaningfully say
what an ”eastern” neighbour ui+1,j,k should be, since at the north pole we can go
nowhere but south. Since all points with j = N2−1 are neighbours, it is reasonable
to instead of the four adjacent neighbour we consider all points with j = N2− 1 for
the diffusion and take the mean of all those values as replacement for the laplacian.
This means, we update the north pole via

ui,N2,k+1 = F (u1,N2,k) + dt σ

N1∑
i=1

ui,N2,k

N2

and analogously the south pole j = 1.

This concludes the description of our numerical method for the simulation of reaction-
diffusion equations on the sphere. Additional information concerning the numerical
solution of differential equations on the sphere with more advanced methods can
also be found in [Bar89].

4.2 Results

With the method described above, we can generate many beautiful pictures. As ini-
tial conditions we limit ourselves to taking two Gauss curves with different centers
and standard deviations. As already in the planar case, we see the emergence of
spatial waves as a result of the population dynamics in combination with diffusion.
But now, the waves traverse aroung the globe and interact with themselves. This
can be nicely seen in figure 4.2.
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Another example is given in figure 4.3. In this simulation, we chose the diffusion
speeds by a factor of 10−2 lower than in figure 4.2. Therefore, the waves have much
more defined edges and travel slower. If one looks closely, one can see how the wave
front of the preys is always a little bit ahead of the wave of predators, which follows
them. It is rather astonishing to see this behavior of pursuit emerging from only a
few partial differential equations.

It is a little counterintuitive to plot data that represents a spherical surface on a
planar map. We mainly prefer to plot the projection, since this allows us to see
the entire surface in one picture. However, some effects can be visualized better on
the surface of a sphere. In figure 4.4 we plot the same data as in figure 4.3, but
on a sphere. In figure 4.1 we focus on the last two plots of figure 4.4 for t = 80
and rotate the spheres appropriately. This allows us to observe how the wave front
interacts with itself after travelling around the globe and shrinks to a point near
the north pole. The next wave is already closing in to repeat the process.

Figure 4.1: The wave front after travelling around the globe
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Figure 4.2: Simulation of two Gauss curves on the sphere with σprey = 0.001,
σpredator = 0.0001
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Figure 4.3: Simulation of two Gauss curves on the sphere with σprey = 0.00001,
σpredator = 0.000001
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Figure 4.4: Simulation of two Gauss curves on the sphere with σprey = 0.00001,
σpredator = 0.000001 as a spherical plot
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4.3 Conclusion and outlook

One could argue that choosing a sphere as spatial domain is a natural choice, con-
sidering that we and every form of life we know about lives on the spherical surface
of the earth. Yet, the realisticness is still doubtful since no organism let alone a sys-
tem of predators and prey could possibly diffuse around the entire globe due to for
example oceans or landmasses and other environmental factors like different climate
zones. An attempt could be made to incorporate effects like these by, for example
taking the diffusivities σ dependant on space to model areas like oceans, where no
migration is possible or areas like mountains where migration is aggravated. Also
the parameters in the reaction term could be taken to depend on space to model
different climate zones where animals reproduce differently or can not survive at all
like for example deserts. With all these effects incorporated, the numerical effort
to simulate such a model on an at least somewhat realistic map of the earth would
be enormous. And even then is the real world much, much to complicated to be
squeezed into a handful of equations. There is after all still an unresolvable conflict
between realisticness and computability. Nevertheless the pictures generated above
are very beautiful and the techniques could be used for some other equation on the
sphere with more practical value.
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Appendix

To help readers reproduce our results, we collected here some representative Matlab
- codes for our simulations. Any plot we presented above can be generated by some
straightforward modifications of the following code.

Chapter 1

Since we use Matlab’s buit-in solver for ODE’s, the codes for the entire chapter are
really simple and can all be derived from the following example.

”codes/ODEs/simPredPreyReal.m”

% Numerical ly s o l v e s r e a l i s t i c predator−prey equat ions and
% d i sp l a y s populat ion over time and phase plane p l o t

% so l v e d i f f e r e n t i a l equat ion numer i c a l l l y
[ t , so lxy ] = ode23(@predPreyRealEq , [ 0 : 0 . 0 1 : 1 0 0 ] , [ 0 . 5 ; 0 . 5 ] ) ;
f i g u r e ( ' Pos i t i on ' , [ 0 0 700 250 ] )
newplot

% d i sp l ay populat ion over time p l o t
subplot (1 , 2 , 1)
p l o t ( t , so lxy )
x l ab e l ( 'Time ' )
y l ab e l ( ' Populat ion ' )
l egend ( 'Prey ' , ' Predators ' )
yl im ( [ 0 0 . 7 1 ] )

% d i sp l ay phase plane p l o t
subplot (1 , 2 , 2)
p l o t ( so lxy ( : , 1 ) , so lxy ( : , 2 ) )
x l ab e l ( 'Prey Populat ion ' ) ;
y l ab e l ( ' Predator Populat ion ' ) ;
hold on
ylim ( [ 0 0 . 5 5 ] )

% add time l a b e l s to phase plane p l o t
s t a r t t ime = 1 ;
s tep = round ( l ength ( so lxy ) / 5) ;
t ex t ( so lxy ( s t a r t t ime : s tep : end , 1 ) , so lxy ( s t a r t t ime : s tep : end , 2 ) , ...

num2str ( t ( s t a r t t ime : s tep : end ) ) ) ;
s c a t t e r ( so lxy ( s t a r t t ime : s tep : end , 1 ) , so lxy ( s t a r t t ime : s tep : end , 2 ) , ...

5 , ”marker ” , ' o ' , ”marke r f aceco l o r ” , ' black ' , ”markeredgeco lor ” , ...
' black ' ) ;

”codes/ODEs/predPreyRealEq.m”

% Rea l i s t i c predator−prey equat ions
func t i on dxdy = predPreyRealEq ( t , xy )
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a = 1 ;
b = 0 . 5 ;
d = 0 . 0 2 ;
dxdy=[((1−xy (1 ) )−a∗xy (2 ) /( xy (1 )+d) ) ∗xy (1 ) ; ( b∗(1−xy (2 ) /xy (1 ) ) ) ∗xy (2 ) ] ;
end

Chapter 2

The simulation is implemented as described above. To visualize the results, we use
Matlab’s surf function for both plot cases, the planar plot and the torus plot.

”codes/Spatial/simulationWithDirichlet.m”

f unc t i on s imu la t i onWithDi r i ch l e t ( )
s imulat ionLotkaGenera l (@ comput eD i r i c h l e t I n i t i a l , ...
@computeDirichletBoundary ) ;

end

”codes/Spatial/simulationWithNeumann.m”

f unc t i on simulationWithNeumann ( )
s imulat ionLotkaGenera l (@computeNeumannInitial , ...
@computeNeumannBoundary ) ;

end

”codes/Spatial/simulationWithTorus.m”

f unc t i on simulationWithTorus ( )
s imulat ionLotkaGenera l (@computeTorusIn i t ia l ,@computeTorusBoundary ) ;

end

”codes/Spatial/simulationLotkaGeneral.m”

f unc t i on s imulat ionLotkaGenera l ( compute In i t i a l , computeBoundary )
T = 50 ; % Simulat ion Time
M = 1000 ; % Number o f Time s t ep s
N = 50 ; % Mesh S i z e
L = 1 ; % Space S i z e
h = L/(N−1) ; % Spa t i a l Step
dt = T/M; % Time Step
sigma = 0 . 0001 ; % D i f f u s i on c o e f f i c i e n t ( f o r both s p e c i e s )
plotNumber = 3 ; % Number Of Plot s

% Generate I n i t i a l Condit ion
u = ze ro s (N,N, 2 ) ;
uplus = ze ro s (N,N, 2 ) ;
uSavePlot = ze ro s (N,N, plotNumber , 2 ) ;

f o r i = 1 :N
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f o r j = 1 :N
u( i , j , 1 ) = 1/(2) ∗ exp(−1/2 ∗ ( ( ( i ∗h−0.3) /0 . 1 ) ˆ2 +...
( ( j ∗h−0.3) /0 . 1 ) ˆ2) ) ;
u ( i , j , 2 ) = 1/(4) ∗ exp(−1/2 ∗ ( ( ( i ∗h−0.2) /0 . 1 ) ˆ2 +...
( ( j ∗h−0.2) /0 . 1 ) ˆ2) ) ;

end
end

%I n i t i a l boundary cond i t i on
u = compute In i t i a l (u ) ;

uSavePlot ( : , : , 1 , : ) = u ( : , : , : ) ;

% Time loop
f o r k = 1 :M

% Loop along x ax i s
f o r i = 2 :N−1

% Loop along y ax i s
f o r j = 2 :N−1

D i f f = squeeze ( ( u( i +1, j , : )+u( i −1, j , : )−4∗u( i , j , : )+...
u ( i , j +1 , : )+u( i , j −1 , : ) ) /(h . ˆ 2 ) ) ;
Reac = lotka2D ( squeeze (u( i , j , : ) ) ) ;
uplus ( i , j , : )=squeeze (u( i , j , : ) )+dt∗Reac+dt∗ sigma∗Di f f ;
i f ( i snan ( uplus ( i , j , 1 ) ) | | i snan ( uplus ( i , j , 2 ) ) )
d i sp ( ' e r r o r nan ' ) ;
r e turn

end

end

end
% Computation o f Boundary va lue s
uplus = computeBoundary (u , uplus , dt , sigma , h) ;

u = uplus ;

f o r p = 1 : plotNumber −1
i f k == f l o o r (p∗M/( plotNumber −1) )

uSavePlot ( : , : , p+1 , : ) = u ( : , : , : ) ;
end

end

end

% Plot r e s u l t
%plotGenera l (h , L , T, uSavePlot ) ;
p lotTorus (T, uSavePlot ) ;

end

”codes/Spatial/computeDirichletInitial.m”

f unc t i on u = compu t eD i r i c h l e t I n i t i a l (u)
[N,m, n ] = s i z e (u) ;
u ( 1 , : , : ) = ze ro s (1 ,m, n) ;
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u(N, : , : ) = u ( 1 , : , : ) ;
u ( : ,N, : ) = u ( 1 , : , : ) ;
u ( : , 1 , : ) = u ( 1 , : , : ) ;

end

”codes/Spatial/computeDirichletBoundary.m”

f unc t i on uplus = computeDirichletBoundary (u , uplus , dt , sigma , h)
uplus = compu t eD i r i c h l e t I n i t i a l ( uplus ) ;

end

”codes/Spatial/computeNeumannInitial.m”

f unc t i on u = computeNeumannInitial (u )
[N, ˜ , ˜ ] = s i z e (u) ;

u (N, : , : ) = u(N−1 , : , : ) ;
u ( : ,N, : ) = u ( : ,N−1 , : ) ;
u ( 1 , : , : ) = u ( 2 , : , : ) ;
u ( : , 1 , : ) = u ( : , 2 , : ) ;

end

”codes/Spatial/computeNeumannBoundary.m”

f unc t i on uplus = computeNeumannBoundary (u , uplus , dt , sigma , h)
uplus = computeNeumannInitial ( uplus ) ;

end

”codes/Spatial/computeTorusInitial.m”

f unc t i on u = computeTorus In i t ia l (u)
[N, ˜ , ˜ ] = s i z e (u) ;
f o r j = 2 :N−1

% Convolution around y ax i s
midval = 0 .5 ∗ (u (2 , j , 1 )+u(N−1, j , 1 ) ) ;
u (1 , j , 1 ) = midval ;
u (N, j , 1 ) = midval ;
midval = 0 .5 ∗ (u (2 , j , 2 )+u(N−1, j , 2 ) ) ;
u (1 , j , 2 ) = midval ;
u (N, j , 2 ) = midval ;

% Convolution around x ax i s
midval = 0 .5 ∗ (u( j , 2 , 1 )+u( j ,N−1 ,1) ) ;
u ( j , 1 , 1 ) = midval ;
u ( j ,N, 1 ) = midval ;
midval = 0 .5 ∗ (u( j , 2 , 2 )+u( j ,N−1 ,2) ) ;
u ( j , 1 , 2 ) = midval ;
u ( j ,N, 2 ) = midval ;

end
% Corner computation
u ( 1 , 1 , : ) = 1/8 ∗ (u ( 2 , 1 , : )+u(N−1 ,1 , : )+u ( 1 , 2 , : )+u (1 ,N−1 , : )+...
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u (2 ,N, : )+u(N−1,N, : )+u(N,N−1 , : )+u(N, 2 , : ) ) ;
u (1 ,N, : ) = u ( 1 , 1 , : ) ;
u (N, 1 , : ) = u ( 1 , 1 , : ) ;
u (N,N, : ) = u ( 1 , 1 , : ) ;

end

”codes/Spatial/computeTorusBoundary.m”

f unc t i on uplus = computeTorusBoundary (u , uplus , dt , sigma , h)
[N, ˜ , ˜ ] = s i z e (u) ;
% Torus boundary computation
i = 1 ;
f o r j = 2 :N−1

uplus = computeUPlus ( uplus , i , j ) ;
end
j = 1 ;
f o r i = 2 :N−1

uplus = computeUPlus ( uplus , j , i ) ;
end
% Corner computation
i = 1 ;
j = 1 ;
D i f f = squeeze ( ( u( i +1, j , : )+u(N−1, j , : )−4∗u( i , j , : )+u( i , j +1 , : )+...
u ( i ,N−1 , : ) ) /(h . ˆ 2 ) ) ;
Reac = lotka2D ( squeeze (u( i , j , : ) ) ) ;
uplus ( i , j , : ) = squeeze (u( i , j , : ) ) + dt ∗ Reac + dt ∗ sigma ∗ Di f f ;

uplus (N, : , : ) = uplus ( 1 , : , : ) ;
uplus ( : ,N, : ) = uplus ( : , 1 , : ) ;

uplus (1 ,N, : ) = uplus ( 1 , 1 , : ) ;
uplus (N, 1 , : ) = uplus ( 1 , 1 , : ) ;
uplus (N,N, : ) = uplus ( 1 , 1 , : ) ;

f unc t i on [ uplus ] = computeUPlus ( uplus , i , j )
D i f f = squeeze ( ( u( i +1, j , : )+u(N−1, j , : )−4∗u( i , j , : )+...
u ( i , j +1 , : )+u( i , j −1 , : ) ) /(h . ˆ 2 ) ) ;
Reac = lotka2D ( squeeze (u( i , j , : ) ) ) ;
uplus ( i , j , : ) = squeeze (u( i , j , : ) )+dt∗Reac+dt∗ sigma ∗ Di f f ;

end
end

”codes/Spatial/plotGeneral.m”

f unc t i on p lotGenera l (h , L , T, uSavePlot )
[X Y] = meshgrid ( 0 : h : L , 0 : h :L) ;
[ ˜ , ˜ , plotNumber , ˜ ] = s i z e ( uSavePlot ) ;
newplot
f o r s p e c i e s = 1 :2

f o r i = 1 : plotNumber
subplot ( plotNumber , 2 , 2∗ ( i −1)+sp e c i e s ) ;
hold on ;
s u r f (X,Y, uSavePlot ( : , : , i , s p e c i e s ) , ' FaceColor ' , ' i n t e rp ' ) ;
shading i n t e rp
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hold o f f ;
c = co l o rba r ;
ax i s ( [ 0 L 0 L 0 1 ] ) ;
ax i s square ;
ax i s o f f ;

t = ( i −1)∗T/( plotNumber−1) ;
i f ( s p e c i e s == 1)

t i t l e ( [ ' \ f o n t s i z e {6}Prey t = ' , num2str ( t ) ] )
e l s e

t i t l e ( [ ' \ f o n t s i z e {6}Predator t = ' , num2str ( t ) ] )
end
s e t ( c , ' FontSize ' , 5 ) ;

view (2) ;
end

end
end

”codes/Spatial/plotTorus.m”

f unc t i on plotTorus (T, uSavePlot )

aminor = 1 . ; % Torus minor rad iu s
Rmajor = 3 . ; % Torus major rad iu s
[ s1 , s2 , plotNumber , ˜ ] = s i z e ( uSavePlot ) ;

theta = l i n s p a c e (−pi , pi , s1 ) ; % Po lo ida l ang le
phi = l i n s p a c e ( 0 . , 2 .∗ pi , s2 ) ; % Toro ida l ang le

[ t , p ] = meshgrid ( phi , theta ) ;

X = (Rmajor + aminor .∗ cos (p) ) .∗ cos ( t ) ;
Y = (Rmajor + aminor .∗ cos (p) ) .∗ s i n ( t ) ;
Z = aminor .∗ s i n (p) ;

newplot
f o r s p e c i e s = 1 :2

f o r i = 1 : plotNumber
subplot ( plotNumber , 2 , 2∗ ( i −1)+sp e c i e s ) ;
hold on ;
s u r f (X,Y, Z , uSavePlot ( : , : , i , s p e c i e s ) ' , ' LineSty l e ' , ' none ' ) ;
hold o f f ;
c = co l o rba r ;
ax i s square ;

ax i s o f f ;

t = ( i −1)∗T/( plotNumber−1) ;
i f ( s p e c i e s == 1)

t i t l e ( [ ' \ f o n t s i z e {6}Prey t = ' , num2str ( t ) ] )
e l s e

t i t l e ( [ ' \ f o n t s i z e {6}Predator t = ' , num2str ( t ) ] )
end
s e t ( c , ' FontSize ' , 5 ) ;
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view (2) ;

end
end

end

Chapter 3

The code for convection is similar to the codes used in chapter 2 with an added
convection term. The convection force field is given as a function, allowing for easy
switching between different fields. For display, we additionally plot the convection
vector field using Matlab’s quiver3 plot.

”codes/Convection/main.m”

% Parameters
plot number = 3 ; % Number o f P lo t s

% I s o t r o p i c Convection
% M = 20000; % Number o f Time Steps
% T = 1 . 1 ; % Simulat ion Time
% N = 100 ; % Mesh S i z e
% L = 1 ; % Space s i z e
% sigma = [ 0 . 0 0 0 0 1 ; 0 . 0 1 ] ; % D i f f u s i on Speeds [ Prey , Predator ]
% c = [ 1 , 0 . 0 1 ] ; % Convection speed [ Prey , Predator ]
% %I n i t i a l Condit ion parameters
% preyCenter = [ round (N/2)+10, round (N/2) ] ;
% preySdtDev = 0 . 8 ;
% preyM = 0 . 4 5 ;
% predCenter = [ round (N/2)+5, round (N/2) ] ;
% predSdtDev = 0 . 2 ;
% predM = 1 ;
% convec t i onF i e ld = @i so t r op i cConvec t i on ;

%Ci r cu l a r Convection
M = 1000 ; % Number o f Time Steps
T = 1 . 1 ; % Simulat ion Time
N = 30 ; % Mesh S i z e
L = 1 ; % Space s i z e
sigma = [ 0 . 0 0 0 0 1 ; 0 . 0 2 ] ; % D i f f u s i on Speeds [ Prey , Predator ]
c = [ 1 , 0 . 1 ] ; % Convection speed [ Prey , Predator ]
%I n i t i a l Condit ion parameters
preyCenter = [ round (N/2)+10, round (N/2) ] ;
preySdtDev = 0 . 8 ;
preyM = 0 . 4 5 ;
predCenter = [ round (N/2)+15, round (N/2) ] ;
predSdtDev = 0 . 2 ;
predM = 1 ;
convec t i onF i e ld = @c i r cu l a rConvec t i on ;

% Generate I n i t i a l Condit ion
h = L/(N−1) ;
u = ze ro s (N, N, 2) ;
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f o r i = 2 :N−1
f o r j = 2 :N−1

u( i , j , 1 )=preyM∗exp(−(power (norm(h ∗ ( [ i , j ]−preyCenter ) ) /...
preySdtDev , 2 ) ) ) ;

u ( i , j , 2 )=predM∗exp(−(power (norm(h ∗ ( [ i , j ]−predCenter ) ) /...
predSdtDev , 2 ) ) ) ;

end
end
% Neumann boundary cond i t i on f o r i n i t i a l c ond i t i on
u ( : , 1 , : ) = u ( : , 2 , : ) ;
u ( : ,N, : ) = u ( : ,N−1 , : ) ;
u ( 1 , : , : ) = u ( 2 , : , : ) ;
u (N, : , : ) = u(N−1 , : , : ) ;
% I n i t i a l Condit ion done

p l o t s = simConvection (u ,T,M,L ,N, convect ionFie ld , c , sigma , plot number ) ;

p laneConvect ionPlot ( p lo t s , T,L , convec t i onF i e ld ) ;

”codes/Convection/simConvection.m”

f unc t i on p l o t s = simConvection (u , T, M,L , ...
N, convect ionFie ld , c , sigma , plot number )

dt = T / M;
h = L/(N) ;

un = ze ro s (N, N, 2) ;
uo = u ;

p l o t s = ze ro s (N,N, 2 , plot number ) ;
p l o t s ( : , : , : , 1 ) = u ;

f o r k = 1 :M
f o r i = 2 :N−1

f o r j = 2 :N−1
D i f f = squeeze ( ( uo ( i +1, j , : ) + uo ( i −1, j , : ) −...

4∗uo ( i , j , : ) + uo ( i , j +1 , : ) + uo ( i , j −1 , : ) ) /(h∗h) ) ;
Reac = lotka2D ( squeeze ( uo ( i , j , : ) ) ) ;

phi = convec t i onF i e ld ( i , j , L , N) ;

% f o r phi (1 ) < 0 take (u( i +1, j , : ) − u( i , j , : ) ) ∗(1/h) and
% f o r phi (1 ) > 0 take (u( i , j , : ) − u( i −1, j , : ) ) ∗(1/h)
Conv = max(0 , phi (1 ) ) ∗ (u( i , j , : ) − u( i −1, j , : ) ) ∗(1/h)...

+ min (0 , phi (1 ) ) ∗ (u( i +1, j , : ) − u( i , j , : ) ) ∗(1/h) + ...
max(0 , phi (2 ) ) ∗ (u( i , j , : ) − u( i , j −1 , : ) ) ∗(1/h)...
+ min (0 , phi (2 ) ) ∗ (u( i , j +1 , : ) − u( i , j , : ) ) ∗(1/h) ;

f o r g = 1 :2
un( i , j , g ) = uo ( i , j , g ) + dt ∗ Reac ( g ) +...

dt∗ sigma ( g ) ∗ Di f f ( g ) − dt∗c ( g ) ∗Conv( g ) ;
i f ( i snan (un( i , j , g ) ) | | un( i , j , g ) <0)

f p r i n t f ( s t r c a t (” Error at k = ” , num2str ( k ) , ...
” / t = ” , num2str ( k∗dt ) , ”\n”) ) ;

r e turn ;
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end
end

end
end

%Neumann−Randbedingung
un ( : , 1 , : ) = un ( : , 2 , : ) ;
un ( : ,N, : ) = un ( : ,N−1 , : ) ;
un ( 1 , : , : ) = un ( 2 , : , : ) ;
un (N, : , : ) = un(N−1 , : , : ) ;

uo = un ;
f o r p = 1 : plot number−1

i f ( k == f l o o r (p∗M/( plot number−1) ) )
p l o t s ( : , : , : , p+1) = un ;

end
end

end
end

”codes/Convection/lotka2D.m”

f unc t i on dxdy = lotka2D (xy )
a = 1 ;
b = 0 . 5 ;
d = 0 . 0 2 ;
dxdy = [((1−xy (1 ) )−a∗xy (2 ) /( xy (1 )+d) ) ∗xy (1 ) ; ( b∗(1−xy (2 ) /xy (1 ) ) ) ∗xy (2 ) ] ;
end

”codes/Convection/circularConvection.m”

f unc t i on phi = c i r cu l a rConvec t i on ( i , j , L , N)
h = L/N;
phi = [ − ( j ∗h − L/2) ; ( i ∗h − L/2) ] ;

end

”codes/Convection/isotropicConvection.m”

f unc t i on phi = i s o t r op i cConvec t i on ( i , j , L , N)
phi = [ −1 ,0 ] ;

end

”codes/Convection/planeConvectionPlot.m”

f unc t i on planeConvect ionPlot ( p lo t s , T,L , convec t i onF i e ld )

S = s i z e ( p l o t s ) ;
N = S (1) ;
plot number = S (4) ;

h = L/(N−1) ;

38



[X,Y] = meshgrid ( h ∗ ( 0 : 1 :N−1) ,h ∗ ( 0 : 1 :N−1) ) ;
maxprey = max(max(max(max( p l o t s ( : , : , 1 , : ) ) ) ) ,1 e−99) ∗ 1 . 1 ;
minprey = min (min (min (min ( p l o t s ( : , : , 1 , : ) ) ) ) , 0 ) ∗ 0 . 9 ;
maxpred = max(max(max(max( p l o t s ( : , : , 2 , : ) ) ) ) ,1 e−99) ∗ 1 . 1 ;
minpred = min (min (min (min ( p l o t s ( : , : , 2 , : ) ) ) ) , 0 ) ∗ 0 . 9 ;

extrema = [ minprey , maxprey , minpred , maxpred ] ;

f i g u r e ( ' Pos i t i on ' , [ 0 0 750 150+225∗plot number ] )
hold o f f

K = 5 ; % Take every Kth gr id po int to draw convect ion speed arrow
% save convect ion d i r e c t i o n s as matr i ce s
NK = f l o o r (N/K) ;
xConvDirs = ze ro s (NK,NK) ;
yConvDirs = ze ro s (NK,NK) ;
f o r a=1:NK

f o r b=1:NK
phi = convec t i onF i e ld ( a∗K, b∗K, L , N) ;
xConvDirs ( a , b ) = phi (2 ) ;
yConvDirs ( a , b ) = phi (1 ) ;

end
end

f o r s p e c i e s = 1 :2
f o r j = 1 : plot number

% sp e c i e s ho r i z on t a l
% subplot (2 , plot number , j+(plot number ∗( sp e c i e s −1) ) )
% sp e c i e s v e r t i c a l
subplot ( plot number , 2 , 2∗( j−1)+sp e c i e s )
hold on
su r f (X,Y, p l o t s ( : , : , s p e c i e s , j ) , ”FaceColor ” , ” i n t e rp ”) ;
shading i n t e rp
% p lo t convect ion vec to r f i e l d
qu iver3 (X( 1 :K:N−1 ,1:K:N−1)∗NK/(NK−1) ,Y( 1 :K:N−1 ,1:K:N−1)...

∗NK/(NK−1) , ones (NK,NK) ∗ extrema (2 + 2∗( sp e c i e s −1) )+...
ones (NK,NK) ,0 . 9∗ xConvDirs , 0 . 9 ∗ yConvDirs , z e r o s (NK,NK) , ...
”Color ” , ”white ”) ;

hold o f f
view (2)
i f ( s p e c i e s == 1)

spName = ”Prey t= ” ;
e l s e i f ( s p e c i e s ==2)

spName = ”Predator t= ” ;
end
t i t l e ( s t r c a t ( spName , num2str ( ( j−1)∗T/( plot number−1) ) ) ) ;
ax i s ( [ 0 , L , 0 ,L , extrema (1 + 2∗( sp e c i e s −1) ) , ...

extrema (2 + 2∗( sp e c i e s −1) ) ] )
ax = gca ;
ax . Cl ipp ing = ' o f f ' ;
x t i c k s ({} )
y t i c k s ({} )
%cax i s manual ;
%cax i s ( [ 0 extrema (2 + 2∗( sp e c i e s −1) ) ] ) ;
c o l o rba r
view (2)
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end
end

end

Chapter 4

The basic structure for the simulation on the sphere is the same as before. However
the computation of the diffusion is more complicated and we need to handle the
computation for the zero-meridian and the poles separately in every step. For the
visualization we implement both the planar plot as well as the plot on the sphere.

”codes/Sphere/main.m”

% Parameters
plot number = 3 ; % Number o f P lo t s
M = 5000 ; % Number o f Time Steps
T = 50 ; % Simulat ion Time
N = 50 ; % Mesh S i z e
N1 = N; % X = Longitude Mesh S i z e
N2 = N; % Y = Lat i tude Mesh S i z e
r = 1 ; % Radius
sigma = [ 0 . 0 1 ; 0 . 0 1 ] ; % D i f f u s i on Speeds [ Prey , Predator ]
%I n i t i a l cond i t i on parameters
preyCenter = [ round (N1/2) , round (N2/2) ] ;
preySdtDev = 1 ;
preyM = 1 ;
predCenter = [ round (5∗N1/6) , round (N2/2) ] ;
predSdtDev = 0 . 5 ;
predM = 1 ;

% Generate I n i t i a l Condit ion
u = ze ro s (N1 , N2 , 2) ;
dth = pi /N2 ;
dph = 2∗ pi /N1 ;
% ro ta t e g lobe to get n i c e i n i t i a l cond i t i on i f the gauss curves
% are c l o s e to the zero−meridian
f o r i = 1 :N1

f o r j = 1 :N2
prey = 0 ;
pred = 0 ;
f o r k = −1:1

preyCandidate = preyM∗exp(−( power (norm( dth∗ ...
( [ i +(N1−1)∗k , j ]−preyCenter ) ) / preySdtDev , 2 ) ) ) ;

i f ( preyCandidate > prey )
prey = preyCandidate ;

end
predCandidate = predM∗exp(−( power (norm( dth∗ ...

( [ i +(N1−1)∗k , j ]−predCenter ) ) / predSdtDev , 2 ) ) ) ;
i f ( predCandidate > pred )

pred = predCandidate ;
end
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end
u( i , j , 1 ) = prey ;
u( i , j , 2 ) = pred ;

end
end

% Take mean on zero−meridian so that the data s a t i s f i e s
% the sphere boundary cond i t i on
% Donut f o r Meridian
f o r q = 1 :N2

Zmean = 0 .5∗ ( u (2 , q , : ) + u(N1−1,q , : ) ) ;
u (1 , q , : ) = Zmean ;
u(N1 , q , : ) = Zmean ;

end
%Set po l e s to mean o f ad jacent l ong i tude s
f o r q = 1 :N1

u(q , N2 , : ) = squeeze (mean(u ( 1 :N1−1,N2−1 , : ) ) ) ;
u (q , 1 , : ) = squeeze (mean(u ( 1 :N1−1 ,2 , : ) ) ) ;

end
% I n i t i a l Condit ion done

p l o t s = s imSpher i ca l (u , T, M, N1 , N2 , r , sigma , plot number ) ;

p lanePlot ( p lo t s , T) ;
spherePlot ( p lo t s , T, r ) ;

”codes/Sphere/simSpherical.m”

f unc t i on p l o t s = s imSpher i ca l (u , T, M, N1 , N2 , r , sigma , plot number )

dt = T / M;
dth = pi /N2 ;
dph = 2∗ pi /N1 ;

un = ze ro s (N1 , N2 , 2) ;
uo = u ;

p l o t s = ze ro s (N1 ,N2 , 2 , plot number ) ;
p l o t s ( : , : , : , 1 ) = u ;

f o r k = 1 :M
f o r i = 1 :N1−1

f o r j = 2 :N2−1
i f ( i == 1)

e = squeeze ( uo (N1−1, j , : ) ) ;
e l s e

e = squeeze ( uo ( i −1, j , : ) ) ;
end
D i f f = Ca l cD i f f ( ( j−1)∗dth , ( i −1)∗dph , squeeze ( uo ( i , j , : ) ) ,

squeeze ( uo ( i , j +1 , : ) ) , squeeze ( uo ( i , j −1 , : ) ) , squeeze ( uo
( i +1, j , : ) ) , e , dth , dph , r ) ;

Reac = lotka2D ( squeeze ( uo ( i , j , : ) ) ) ;
f o r g = 1 :2

un( i , j , g ) = uo ( i , j , g ) + dt ∗ Reac ( g ) + dt∗ sigma ( g ) ∗
Di f f ( g ) ;
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% Set predator s to 0 i f preys very smal l
%i f uo ( i , j , 1 ) < 1e−10
% un( i , j , 2 ) = 0 ;
%end

i f ( i snan (un( i , j , g ) ) | | i s i n f (un ( i , j , g ) ) )
f p r i n t f ( s t r c a t (” Error at k = ” , num2str ( k ) , ” / t =

” , num2str ( k∗dt ) , ”\n”) ) ;
r e turn ;

end
end

end
end

% mirror nu l l−meridian in the ea s t
un(N1 , : , : ) = un ( 1 , : , : ) ;

% Ca lcu la t e Poles s t a r t
% North po le :
nDi f f = squeeze (mean( uo ( 1 :N1−1,N2−1 , : ) ) ) ;
nReac = lotka2D ( squeeze ( uo (1 ,N2 , : ) ) ) ;
f o r g = 1 :2

f o r q = 1 :N1
un(q , N2 , g ) = uo (1 ,N2 , g ) + dt∗nReac ( g ) + dt ∗ (1/( p i ∗( r ∗dth )

ˆ2) ) ∗ sigma ( g ) ∗ nDi f f ( g ) ;
end

end
% South Pole :
sD i f f = squeeze (mean(un ( 1 :N1−1 ,2 , : ) ) ) ;
sReac = lotka2D ( squeeze ( uo ( 1 , 1 , : ) ) ) ;
f o r g = 1 :2

f o r q = 1 :N1
un(q , 1 , g ) = uo (1 , 1 , g ) + dt∗ sReac ( g ) + dt ∗ (1/( p i ∗( r ∗dth ) ˆ2)

) ∗ sigma ( g ) ∗ sD i f f ( g ) ;
end

end
% Calc Poles done

uo = un ;
f o r p = 1 : plot number−1

i f ( k == f l o o r (p∗M/( plot number−1) ) )
p l o t s ( : , : , : , p+1) = un ;

end
end

end
end

func t i on d = Ca l cD i f f ( th , ph , prev , n , s , e ,w, dth , dph , r )
d = (n∗ s i n ( th + dth /2) − prev ∗( s i n ( th+0.5∗dth )+s i n ( th−0.5∗dth ) ) + ...

s ∗ s i n ( th−0.5∗dth ) ) /( r ˆ2∗ s i n ( th ) ∗dth ˆ2) + 1/( r ˆ2 ∗ s i n ( th ) ˆ2) ∗( e −
2∗prev + w) /(dphˆ2) ;

end

”codes/Sphere/lotka2D.m”
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f unc t i on dxdy = lotka2D (xy )
a = 1 ;
b = 0 . 5 ;
d = 0 . 0 2 ;
dxdy = [ ((1−xy (1 ) ) − a∗xy (2 ) /( xy (1 )+d) ) ∗ xy (1 ) ; (b∗(1− xy (2 ) /( xy (1 ) ) )

) ∗xy (2 ) ] ;
end

”codes/Sphere/planePlot.m”

f unc t i on p lanePlot ( p lo t s , T )

S = s i z e ( p l o t s ) ;
N1 = S (1) ;
N2 = S (2) ;
plot number = S (4) ;

dth = pi /N2 ;
dph = 2∗ pi /N1 ;

[X,Y]=meshgrid ( (N1/(N1−1) ) ∗dth ∗ ( 0 : 1 :N1−1) , (N2/(N2−1) ) ∗dph ∗ ( 0 : 1 :N2−1) ) ;
maxprey = max(max(max(max( p l o t s ( : , : , 1 , : ) ) ) ) ,1 e−99) ∗ 1 . 1 ;
minprey = min (min (min (min ( p l o t s ( : , : , 1 , : ) ) ) ) , 0 ) ∗ 0 . 9 ;
maxpred = max(max(max(max( p l o t s ( : , : , 2 , : ) ) ) ) ,1 e−99) ∗ 1 . 1 ;
minpred = min (min (min (min ( p l o t s ( : , : , 2 , : ) ) ) ) , 0 ) ∗ 0 . 9 ;

extrema = [ minprey , maxprey , minpred , maxpred ] ;

f i g u r e ( ' Pos i t i on ' , [ 0 0 750 150+225∗plot number ] )
hold o f f

f o r s p e c i e s = 1 :2
f o r j = 1 : plot number

% sp e c i e s ho r i z on t a l
% subplot (2 , plot number , j+(plot number ∗( sp e c i e s −1) ) )
%s
subplot ( plot number , 2 , 2∗( j−1)+sp e c i e s ) % sp e c i e s v e r t i c a l
s u r f (Y,X, p l o t s ( : , : , s p e c i e s , j ) , ”FaceColor ” , ” i n t e rp ”) ;
shading i n t e rp
view (2)
i f ( s p e c i e s == 1)

spName = ”Prey t= ” ;
e l s e i f ( s p e c i e s ==2)

spName = ”Predator t= ” ;
end
t i t l e ( s t r c a t ( spName , num2str ( ( j−1)∗T/( plot number−1) ) ) ) ;
ax i s ( [ 0 , 2∗ pi , 0 , pi , extrema (1 + 2∗( sp e c i e s −1) ) , ...

extrema (2 + 2∗( sp e c i e s −1) ) ] )
ax = gca ;
ax . Cl ipp ing = ' o f f ' ;
%cax i s manual ;
%cax i s ( [ 0 extrema (2 + 2∗( sp e c i e s −1) ) ] ) ;
x t i c k s ({} )
y t i c k s ({} )
c o l o rba r
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view (2)
end

end
end

”codes/Sphere/spherePlot.m”

f unc t i on spherePlot ( p lo t s , T, r )

S = s i z e ( p l o t s ) ;
N1 = S (1) ;
N2 = S (2) ;
plot number = S (4) ;

dth = pi /N2 ;
dph = 2∗ pi /(N1−1) ;

phs = ( 0 : 1 :N1−1)∗dph ;
ths = ( 0 : 1 :N2) ∗dth ;
[ ph , th ] = meshgrid ( phs , ths ) ;
X = r .∗ s i n ( th ) .∗ cos (ph) ;
Y = r .∗ s i n ( th ) .∗ s i n (ph) ;
Z = r ∗ cos ( th ) ;

maxprey = max(max(max(max( p l o t s ( : , : , 1 , plot number ) ) ) ) ,1 e−99) ∗ 1 . 1 ;
minprey = min (min (min (min ( p l o t s ( : , : , 1 , plot number ) ) ) ) , 0 ) ∗ 0 . 9 ;
maxpred = max(max(max(max( p l o t s ( : , : , 2 , plot number ) ) ) ) ,1 e−99) ∗ 1 . 1 ;
minpred = min (min (min (min ( p l o t s ( : , : , 2 , plot number ) ) ) ) , 0 ) ∗ 0 . 9 ;

extrema = [ minprey , maxprey , minpred , maxpred ] ;

f i g u r e ( ' Pos i t i on ' , [ 0 0 750 150+225∗plot number ] )
hold o f f

f o r s p e c i e s = 1 :2
f o r j = 1 : plot number

% sp e c i e s ho r i z on t a l
% subplot (2 , plot number , j+(plot number ∗( sp e c i e s −1) ) )
subplot ( plot number , 2 , 2∗( j−1)+sp e c i e s ) % sp e c i e s v e r t i c a l
s u r f (X,Y, Z , p l o t s ( 2 : end , : , s p e c i e s , j ) ' , ” L ineSty l e ” , ”none ”) ;
i f ( s p e c i e s == 1)

spName = ”Prey t= ” ;
e l s e i f ( s p e c i e s ==2)

spName = ”Predator t= ” ;
end
t i t l e ( s t r c a t ( spName , num2str ( ( j−1)∗T/( plot number−1) ) ) ) ;
ax = gca ;
ax . Cl ipp ing = ' o f f ' ;
%cax i s manual ;
%cax i s ( [ 0 extrema (2 + 2∗( sp e c i e s −1) ) ] ) ;
x t i c k s ({} )
y t i c k s ({} )
z t i c k s ({} )
c o l o rba r
g r id o f f
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end
end
end
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