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1 Introduction

In these short Lecture Notes we describe the modern class of algorithms

named multigrid methods. While these methods are well defined and

classified in a mathematical sense, they are still source of new insight

and of unexpected new application fields. In this respect, to name

the methodology underneath these methods, we use the term multi-

grid strategy. Before we start considering multigrid methods, for the

purpose of intuition, we give a few examples of ‘multigrid phenom-

ena’. A first example is percolation (Orig. Latin: to filter through).

Percolation deals with effects related to the varying of the richness of

interconnections in a infinite network system. For example, consider

the electric network of Figure 1. If the fraction of links is higher than

some transition value p∗, the net is conducting. Below this value, the

net is insulating.

Figure 1: Electric network.

To have an insight on this transition phenomenon, consider the sim-
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ple case of vertical percolation. In a 2 × 2 box there is vertical per-

colation in the cases depicted in Figure 2, which correspond to the

occurrence of a continuous dark column. Assume that a single square

in the box percolates (is dark) with probability p. Then the probability

that the 2× 2 cell percolates is

p′ = R(p) = 2p2(1− p2) + 4p3(1− p) + p4

The mapping p → R(p) has a fixed point, p∗ = R(p∗), which is the

Figure 2: Vertical percolation in a 2× 2 box.

critical value p∗ to have percolation; in our case p∗ = 0.6180. Now

define a coarsening procedure, applied to a n×n (ideally infinite) box,

which consists in replacing a 2 × 2 percolating box with a percolat-

ing square, otherwise a non percolating square. If the original box is

characterized by p < p∗, the repeated application of the coarsening

procedure results in a ‘visible’ non percolating box; see Figure 3. In the

other case of p > p∗, a repeated application of the coarsening process

reveals percolation as illustrated in Figure 4. At p = p∗ the distribution

of connections is such that we have ‘coarsening invariance’.

A second example that provides algebraic insight in the multigrid ap-

proach is cyclic reduction. Consider the finite-difference discretization

of −u′′ = f on some interval and with homogeneous Dirichlet boundary

conditions. On a uniform grid with 7 interior points the corresponding
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Figure 3: One coarsening step: No percolation (p < p∗).

algebraic problem is given by the following linear system

E1

E2

E3

E4

E5

E6

E7




2 −1 0 0 0 0 0

−1 2 −1 0 0 0 0

0 −1 2 −1 0 0 0

0 0 −1 2 −1 0 0

0 0 0 −1 2 −1 0

0 0 0 0 −1 2 −1

0 0 0 0 0 −1 2




·




u1

u2

u3

u4

u5

u6

u7




= h2




f1

f2

f3

f4

f5

f6

f7




Let us call the equation corresponding to the row i as Ei. We define

the following coarsening steps

E ′
i = R(Ei) = Ei−1 + 2 Ei + Ei+1, i = 2, 4, 6.

The result of one coarsening is


2 −1 0

−1 2 −1

0 −1 2


 ·




u2

u4

u6


 = H2




f̃2

f̃4

f̃6


 (H = 2h),
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Figure 4: Four coarsening steps: Percolation (p > p∗).

thus obtaining a smaller algebraic system with the same structure. In

this sense we have ‘coarsening invariance’. We can start appreciate the

advantage of a system possessing coarsening invariance. In this case in

fact, we can re-solve properties of the system considering its coarsened

version. In the first example, we can state the percolation property of

the network by examining a coarsened version of the network. In the

second example, we can compute part of the entire solution solving a

system of 3 unknowns instead of a system of 7 unknowns. And this

process can be repeated recursively.

Moving a step further towards the use of multigrid methods as

solvers of physical models, we encounter the concept of computational

complexity. Consider a system described by n unknowns defining the



Introduction to multigrid methods 7

solution of an algebraic system. The best possible (optimal) solver is

one that provides this solution requiring a number of operations which

is linearly proportional to n. In a multigrid context this concept is some-

what refined by the following two remarks [7]: The amount of com-

putational work should be proportional to the amount of real physical

changes in the computed system; and the solution of many problems is

made of several components with different scales, which interact with

each other. Therefore, in the discretization of a continuous problem,

one should require that the number of unknowns representing the so-

lution should be proportional to the number of the physical features to

be described. So, for example, a smooth function can be represented

by a few of its values, whereas high resolution is required for highly

oscillating functions. As a consequence, to describe a solution of a

given problem the use of many scales of discretization is appropriate to

represent all components of the solution. This is one essential aspect

of the multigrid strategy.

For the purpose of this introduction we now focus on multigrid (MG)

methods for solving discretized partial differential equations and make

some historical remarks. Already in the sixties R.P. Fedorenko [15, 16]

developed the first multigrid scheme for the solution of the Poisson

equation in a unit square. Since then, other mathematicians extended

Fedorenko’s idea to general elliptic boundary value problems with vari-

able coefficients; see, e.g., [1]. However, the full efficiency of the multi-

grid approach was realized after the works of A. Brandt [3, 4] and

W. Hackbusch [18]. These Authors also introduced multigrid meth-

ods for nonlinear problems like the multigrid full approximation stor-

age (FAS) scheme [4, 21]. Another achievement in the formulation

of multigrid methods was the full multigrid (FMG) scheme [4, 21],

based on the combination of nested iteration techniques and multigrid

methods. Multigrid algorithms are now applied to a wide range of

problems, primarily to solve linear and nonlinear boundary value prob-
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lems. Other examples of successful applications are eigenvalue problems

[6, 19], bifurcation problems [33, 37], parabolic problems [10, 20, 41],

hyperbolic problems [13, 34], and mixed elliptic/hyperbolic problems,

optimization problems [38], etc.. For additional references see, e.g.,

[23, 24, 25, 27, 32, 36, 42] and references therein. Most recent develop-

ments of solvers based on the multigrid strategy are algebraic multigrid

(AMG) methods [35] that resemble the geometric multigrid process uti-

lizing only information contained in the algebraic system to be solved.

In addition to partial differential equations (PDE), Fredholm’s integral

equations can also be efficiently solved by multigrid methods [9, 22, 26].

These schemes can be used to solve reformulated boundary value prob-

lems [21] or for the fast solution of N -body problems [2, 11]. Another

example of applications are lattice field computations and quantum

electrodynamics and chromodynamics simulations [12, 14, 17, 29, 31].

Also convergence analysis of multigrid methods has developed along

with the multitude of applications. In these Lecture Notes we only

provide introductory remarks. For results and references on MG con-

vergence theory see the Readings given below.

An essential contribution to the development of the multigrid com-

munity is the MGNet of Craig C. Douglas. This is the communication

platform on everything related to multigrid methods;

see http://www.mgnet.org.

Readings

1. J.H. Bramble, Multigrid Methods, Pitman research notes in math-

ematical series, Longman Scientific & Technical, 1993.

2. A. Brandt, Multi-grid techniques: 1984 guide with applications

to fluid dynamics, GMD-Studien. no 85, St. Augustin, Germany,

1984.

http://www.mgnet.org�
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3. W.L. Briggs, A Multigrid Tutorial, SIAM, Philadelphia, 1987.

4. W. Hackbusch, Multi-Grid Methods and Applications, Springer-

Verlag, Heidelberg, 1985.

5. S.F. McCormick, Multigrid Methods, Frontiers in Applied Mathe-

matics, vol. 3, SIAM Books, Philadelphia, 1987.

6. U. Trottenberg, C. Oosterlee, and A. Schüller, Multigrid, Aca-

demic Press, London, 2001.

7. P. Wesseling, An introduction to multigrid methods, John Wiley,

Chichester, 1992.

2 Multigrid methods for linear problems

In this section, the basic components of a multigrid algorithm are pre-

sented. We start with the analysis of two standard iterative techniques:

the Jacobi and Gauss-Seidel schemes. These two methods are charac-

terized by global poor convergence rates, however, for errors whose

length scales are comparable to the grid mesh size, they provide rapid

damping, leaving behind smooth, longer wave-length errors. These

smooth components are responsible for the slow global convergence.

A multigrid algorithm, employing grids of different mesh sizes, allows

to solve all wave-length components and provides rapid convergence

rates. The multigrid strategy combines two complementary schemes.

The high-frequency components of the error are reduced applying itera-

tive methods like Jacobi or Gauss-Seidel schemes. For this reason these

methods are called smoothers. On the other hand, low-frequency error

components are effectively reduced by a coarse-grid correction proce-

dure. Because the action of a smoothing iteration leaves only smooth

error components, it is possible to represent them as the solution of

an appropriate coarser system. Once this coarser problem is solved, its
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solution is interpolated back to the fine grid to correct the fine grid

approximation for its low-frequency errors.

2.1 Iterative methods and the smoothing property

Consider a large sparse linear system of equations Au = f , where A is a

n×n matrix. Iterative methods for solving this problem are formulated

as follows

u(ν+1) = Mu(ν) + Nf , (1)

where M and N have to be constructed in such a way that given an

arbitrary initial vector u(0), the sequence u(ν), ν = 0, 1, . . . , converges

to the solution u = A−1f . Defining the solution error at the sweep ν

as e(ν) = u − u(ν), iteration (1) is equivalent to e(ν+1) = Me(ν). M

is called the iteration matrix. We can state the following convergence

criterion based on the spectral radius ρ(M) of the matrix M .

Theorem 1 The method (1) converges if and only if ρ(M) < 1.

A general framework to define iterative schemes of the type (1) is

based on the concept of splitting. Assume the splitting A = B − C

where B is non singular. By setting Bu(ν+1) − Cu(ν) = f and solving

with respect to u(ν+1) one obtains

u(ν+1) = B−1Cu(ν) + B−1f .

Thus M = B−1C and N = B−1. Typically, one considers the regular

splitting A = D − L − U where D = diag(a11, a22, . . . , ann) denotes

the diagonal part of the matrix A, and −L and −U are the strictly

lower and upper parts of A, respectively. Based on this splitting many

choices for B and C are possible leading to different iterative schemes.

For example, the choice B = 1
ωD and C = 1

ω [(1− ω)D + ω(L + U)],

0 < ω ≤ 1, leads to the damped Jacobi iteration

u(ν+1) = (I − ωD−1A)u(ν) + ωD−1f . (2)
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Choosing B = D − L and C = U , one obtains the Gauss-Seidel

iteration

u(ν+1) = (D − L)−1Uu(ν) + (D − L)−1f . (3)

Later on we denote the iteration matrices corresponding to (2) and (3)

with MJ(ω) and MGS, respectively.

To define and analyze the smoothing property of these iterations

we introduce a simple model problem. Consider the finite-difference

approximation of a one-dimensional Dirichlet boundary value problem:

{
−d2u

dx2 = f(x), in Ω = (0, 1)

u(x) = g(x), on x ∈ {0, 1} .
(4)

Let Ω be represented by a grid Ωh with grid size h = 1
n+1 and grid points

xj = jh, j = 0, 1, . . . , n + 1. A discretization scheme for the second

derivative at xj is h−2[u(xj−1)− 2u(xj) + u(xj+1)] = u
′′
(xj) + O(h2).

Set fh
j = f(jh), and uh

j = u(jh). We obtain the following tridiagonal

system of n equations

2

h2 uh
1 −

1

h2 uh
2 = fh

1 +
1

h2 g(0)

− 1

h2 uh
j−1 +

2

h2 uh
j −

1

h2 uh
j+1 = fh

j , j = 2, . . . , n− 1 (5)

− 1

h2 uh
n−1 +

2

h2 uh
n = fh

n +
1

h2 g(1)

Let us omit the discretization parameter h and denote (5) by Au = f .

We discuss the solution to this problem by using the Jacobi iteration.

Consider the eigenvalue problem for the damped Jacobi iteration, given

by MJ(ω)vk = µkv
k. The eigenvectors are given by

vk = (sin(kπhj))j=1,n , k = 1, . . . , n , (6)

and the corresponding eigenvalues are

µk(ω) = 1− ω(1− cos(kπh)) , k = 1, . . . , n . (7)
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We have that ρ(MJ(ω)) < 1 for 0 < ω ≤ 1, guaranteeing convergence.

In particular, for the Jacobi iteration with ω = 1 we have ρ(MJ(1)) =

1− 1
2πh2+O(h4), showing how the convergence of (2) deteriorates (i.e.

ρ tends to 1) as h → 0. However, the purpose of an iteration in a MG

algorithm is primarily to be a smoothing operator. In order to define

this property, we need to distinguish between low- and high-frequency

eigenvectors. We define

• low frequency (LF) vk with 1 ≤ k < n
2 ;

• high frequency (HF) vk with n
2 ≤ k ≤ n;

We now define the smoothing factor µ as the worst factor by which

the amplitudes of HF components are damped per iteration. In the

case of the Jacobi iteration we have

µ = max{|µk|, n

2
≤ k ≤ n} = max{1− ω, |1− ω(1− cos(π)|}

≤ max{1− ω, |1− 2ω|}.
Using this result we find that the optimal smoothing factor µ = 1/3 is

obtained choosing ω∗ = 2/3.

Now suppose to apply ν times the damped Jacobi iteration with ω =

ω∗. Consider the following representation of the error e(ν) =
∑

k e
(ν)
k vk.

The application of ν-times the damped Jacobi iteration on the initial

error e(0) results in e(ν) = MJ(ω∗)νe(0). This implies for the expansion

coefficients that e
(ν)
k = µk(ω

∗)νe
(0)
k . Therefore a few sweeps of (2)

give |e(ν)
k | << |e(0)

k | for high-frequency components. For this reason,

although the global error decreases slowly by iteration, it is smoothed

very quickly and this process does not depend on h.

Most often, instead of a Jacobi method other iterations are used

that suppress the HF components of the error more efficiently. This is

the case, for example, of the Gauss-Seidel iteration (3). The smoothing

property of this scheme is conveniently analyzed by using local mode

analysis (LMA) introduced by Brandt [4]. This is an effective tool for
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analyzing the MG process even though it is based on certain idealized

assumptions and simplifications: Boundary conditions are neglected and

the problem is considered on infinite grids Gh = {jh, j ∈ Z}. Notice

that on Gh, only the components eiθx/h with θ ∈ (−π, π] are visible,

i.e., there is no other component with frequency θ0 ∈ (−π, π] with

|θ0| < θ such that eiθ0x/h = eiθx/h, x ∈ Gh.

In LMA the notion of low- and high-frequency components on the

grid Gh is related to a coarser grid denoted by GH . In this way eiθx/h

on Gh is said to be an high-frequency component, with respect to the

coarse grid GH , if its restriction (projection) to GH is not visible there.

Usually H = 2h and the high frequencies are those with π
2 ≤ |θ| ≤ π.

We give an example of local mode analysis considering the Gauss-

Seidel scheme applied to our discretized model problem. A relaxation

sweep starting from an initial approximation u(ν) produces a new ap-

proximation u(ν+1) such that the corresponding error satisfies

Bhe
(ν+1)(x)− Che

(ν)(x) = 0 , x ∈ Gh , (8)

where Bh = Dh−Lh and Ch = Uh. To analyze this iteration we define

the errors in terms of their θ components e(ν) =
∑

θ E (ν)
θ eiθx/h and

e(ν+1) =
∑

θ E (ν+1)
θ eiθx/h. Where E (ν)

θ and E (ν+1)
θ denote the error am-

plitudes of the θ component, before and after smoothing, respectively.

Then, for a given θ, (8) reduces to

(2− e−iθ)E (ν+1)
θ − eiθE (ν)

θ = 0 .

In the LMA framework, the smoothing factor is defined by

µ = max{|E
(ν+1)
θ

E (ν)
θ

| ,
π

2
≤ |θ| ≤ π} , (9)

For the present model problem we obtain

|E
(ν+1)
θ

E (ν)
θ

| = | eiθ

2− e−iθ
|,
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and µ = 0.45. Similar values are obtained by LMA for the Gauss-Seidel

iteration applied to the two- and three-dimensional version of our model

problem. For the two dimensional case the effect of smoothing can be

seen in Figure 5.
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Figure 5: Smoothing by Gauss-Seidel iteration.

Another definition of smoothing property of an iterative scheme is

due to Hackbusch [21]. Let M be the iteration matrix of a smoothing

procedure and recall the relation e(ν) = M νe(0). One can measure the

smoothness of e(ν) by a norm involving differences of the value of this

error on different grid points. A natural choice is to take the second-

order difference matrix Ah above. Then the following smoothing factor

is defined

µ(ν) = ‖AhM
ν‖/‖Ah‖. (10)
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The iteration defined by M is said to possess the smoothing property if

there exists a function η(ν) such that, for sufficiently large ν, we have

‖AhM
ν‖ ≤ η(ν)/hα,

where α > 0 and η(ν) → 0 as ν → ∞. For our model problem using

the damped Jacobi iteration, α = 2 and η(ν) = νν/(ν + 1)(ν+1). For

the Gauss-Seidel iteration we have α = 2 and η(ν) = c/ν with c a

positive constant.

2.2 The twogrid scheme and the approximation property

After the application of a few smoothing sweeps, we obtain an ap-

proximation ũh whose error ẽh = uh − ũh is smooth. Then ẽh can be

approximated on a coarser space. We need to express this smooth error

as solution of a coarse problem, whose matrix AH and right-hand side

have to be defined. For this purpose notice that in our model problem,

Ah is a second-order difference operator and the residual rh = fh−Ahũh

is a smooth function if ẽh is smooth. Obviously the original equation

Ahuh = fh and the residual equation Ahẽh = rh are equivalent. The

difference is that ẽh and rh are smooth, therefore we can think of rep-

resenting them on a coarser grid with mesh size H = 2h. We define

rH as the restriction of the fine-grid residual to the coarse grid, that is,

rH = IH
h rh, where IH

h is a suitable restriction operator (for example, in-

jection). This defines the right-hand side of the coarse problem. Since

ẽh is the solution of a difference operator which can be represented

analogously on the coarse discretization level, we define the following

coarse problem

AH ẽH = rH , (11)

with homogeneous Dirichlet boundary conditions as for ẽh. Here AH

represents the same discrete operator but relative to the grid with mesh

size H. Reasonably one expects that ẽH be an approximation to ẽh on
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the coarse grid. Because of its smoothness, we can apply a prolon-

gation operator Ih
H to transfer ẽH to the fine grid. Therefore, since

by definition uh = ũh + ẽh, we update the function ũh applying the

following coarse-grid correction (CGC) step

ũnew
h = ũh + Ih

H ẽH .

Notice that ẽh was a smooth function and the last step has amended

ũh by its smooth error. In practice, also the interpolation procedure

may introduce HF errors on the fine grid. Therefore it is convenient

to complete the twogrid process by applying ν2 post-smoothing sweeps

after the coarse-grid correction.

We summarize the twogrid (TG) procedure with the following al-

gorithm. To emphasize that the iteration u
(l)
h = Mu

(l−1)
h + Nfh is a

smoothing procedure, we denote it by u
(l)
h = Sh(u

(l−1)
h , fh). When no

confusion may arise, we also use S to denote the iteration matrix M .

Algorithm 1 (TG scheme)

• Twogrid method for solving Ahuh = fh.

1. Pre-smoothing steps on the fine grid: u
(l)
h = S(u

(l−1)
h , fh),

l = 1, . . . , ν1;

2. Computation of the residual: rh = fh − Ahu
(ν1)
h ;

3. Restriction of the residual: rH = IH
h rh;

4. Solution of the coarse-grid problem eH = (AH)−1rH ;

5. Coarse-grid correction: u
(ν1+1)
h = u(ν1) + Ih

HeH ;

6. Post-smoothing steps on the fine grid: u
(l)
h = S(u

(l−1)
h , fh),

l = ν1 + 2, . . . , ν1 + ν2 + 1;

A TG scheme starts at the fine level with pre-smoothing, performs a

CGC correction solving a coarse-grid auxiliary problem, and ends with

post-smoothing. A pictorial representation of this process where ‘fine’
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is a high level and ‘coarse’ is a low level looks like a ‘V’ workflow. This

is called V cycle. To solve the problem to a given tolerance, we have to

apply the TG V-cycle repeatedly (iteratively). Actually, the TG scheme

can be written in the form (1) as stated by the following

Lemma 1 The iteration matrix of the twogrid scheme is

MTG = Sν2

h (Ih − Ih
H(AH)−1IH

h Ah)S
ν1

h , (12)

where Ih is the identity and Sh is the smoothing iteration matrix.

For the model problem considered here, it is possible to estimate the

spectral radius of MTG. Consider the damped Jacobi smoother with

ω = 1/2, assume that Ih
H is piecewise linear interpolation [21], and IH

h

is restriction by weighting such that rH(xj) = (rh(xj−1) + 2 rh(xj) +

rh(xj+1))/4, j = 2, 4, . . . , n− 1. In this case the following theorem is

proved [21] using discrete Fourier analysis

Theorem 2 Let the TG scheme 1 with ν = ν1 + ν2 ≥ 1. The spectral

radius of the iteration matrix MTG given by (12) is bounded by

ρ(MTG) ≤ max{χ(1−χ)ν +(1−χ)χν : 0 ≤ χ ≤ 1/2} =: ρν < 1 ,

uniformly with respect to the mesh size h. Hence (12) is a convergent

iteration.

In the framework of LMA, a simple and effective way to predict the

convergence factor of the TG scheme, for usually moderate values of

ν, is to assume that the coarse-grid correction step solves ‘exactly’ the

LF error components, and there is no interaction between high- and

low-frequency components. This can be considered an ‘ideal’ situation.

Then the reduction of a suitable norm of the error (e.g., discrete L2-

norm) by one V cycle of the TG method is determined by the reduction

of the HF components on the fine grid. For this reason the reduction

(convergence) factor, denoted by ρLMA, can be estimated by

ρLMA = µν1+ν2 . (13)
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A sharper bound can be computed by twogrid local mode analysis [8].

In Table 1, we report estimates of ρLMA as given by (13) and estimates

of ρν by Theorem 2. Notice that the estimate ρLMA approximates well

the bound ρν provided that ν1 + ν2 is small. For large ν, ρLMA has an

exponential behavior whereas ρν ' 1/eν.

ν ρLMA ρν

1 0.5 0.5

2 0.25 0.25

3 0.125 0.125

4 0.0625 0.0832

5 0.03125 0.0671

Table 1: Comparison of error reduction factors as given by LMA and by Theorem 2.

Notice that measuring ρ requires the knowledge of the exact so-

lution. Because this is usually not available, ρ is measured as the

asymptotic value of the reduction of a suitable norm of the residuals

after consecutive TG cycles.

Together with the definition of the smoothing property (10), Hack-

busch introduces the approximation property to measure how good the

coarse-grid solution approximates the fine grid solution. This is ex-

pressed by the following estimate

‖A−1
h − Ih

H A−1
H IH

h ‖ ≤ cA hβ. (14)

Notice that this estimate actually measures the accuracy between uh =

A−1
h fh and Ih

HuH where uH = A−1
H IH

h fh.

In our model problem we have β = 2. Using the estimates of the

smoothing and approximation properties, one can prove convergence of

the TG scheme as follows. Consider, for simplicity, ν2 = 0, i.e. only
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pre-smoothing is applied. Then for our model problem we have

‖MTG‖ = ‖(Ih − Ih
H(AH)−1IH

h Ah)S
ν1

h ‖
= ‖(A−1

h − Ih
H(AH)−1IH

h )AhS
ν1

h ‖
≤ ‖A−1

h − Ih
H(AH)−1IH

h ‖‖AhS
ν1

h ‖
≤ cA η(ν1), (15)

where cA η(ν1) < 1 for sufficiently large ν1. Notice that the coarse-

grid correction without pre- and post-smoothing is not a convergent

iteration, in general. In fact, IH
h maps from a fine- to a coarse-

dimensional space and Ih
H(AH)−1IH

h is not invertible. We have ρ(Ih −
Ih
H(AH)−1IH

h Ah) ≥ 1.

2.3 The multigrid scheme

In the TG scheme the size of the coarse grid is twice larger than the fine

one, thus the coarse problem may be very large. However, the coarse

problem has the same form as the residual problem on the fine level.

Therefore one can use the TG method to determine ẽH , i.e. equation

(11) is itself solved by TG cycling introducing a further coarse-grid

problem. This process can be repeated recursively until a coarsest grid

is reached where the corresponding residual equation is inexpensive

to solve. This is, roughly speaking, the qualitative description of the

multigrid method.

For a more detailed description, let us introduce a sequence of grids

with mesh size h1 > h2 > · · · > hL > 0, so that hk−1 = 2 hk. Here

k = 1, 2, . . . , L, is called the level number. With Ωhk
we denote the set

of grid points with grid spacing hk. The number of interior grid points

will be nk.

On each level k we define the problem Akuk = fk. Here Ak is a

nk × nk matrix, and uk, fk are vectors of size nk. The transfer among

levels is performed by two linear mappings. The restriction Ik−1
k and
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the prolongation Ik
k−1 operators. With uk = Sk(uk, fk) we denote a

smoothing iteration. The following defines the multigrid algorithm

Algorithm 2 (MG scheme)

• Multigrid method for solving Akuk = fk.

1. If k = 1 solve Akuk = fk directly.

2. Pre-smoothing steps on the fine grid: u
(l)
k = S(u

(l−1)
k , fk),

l = 1, . . . , ν1;

3. Computation of the residual: rk = fk − Aku
(ν1)
k ;

4. Restriction of the residual: rk−1 = Ik−1
k rk;

5. Set uk−1 = 0;

6. Call γ times the MG scheme to solve Ak−1uk−1 = rk−1;

7. Coarse-grid correction: u
(ν1+1)
k = u

(ν1)
k + Ik

k−1uk−1;

8. Post-smoothing steps on the fine grid: u
(l)
k = S(u

(l−1)
k , fk),

l = ν1 + 2, . . . , ν1 + ν2 + 1;

The multigrid algorithm involves a new parameter (cycle index) γ

which is the number of times the MG procedure is applied to the coarse

level problem. Since this procedure converges very fast, γ = 1 or γ = 2

are the typical values used. For γ = 1 the multigrid scheme is called

V-cycle, whereas γ = 2 is named W-cycle. It turns out that with a

reasonable γ, the coarse problem is solved almost exactly. Therefore in

this case the convergence factor of a multigrid cycle equals that of the

corresponding TG method, i.e., approximately ρ = µν1+ν2. Actually in

many problems γ = 2 or even γ = 1 are sufficient to retain the twogrid

convergence.

Also the multigrid scheme can be expressed in the form (1) as stated

by the following lemma
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Lemma 2 The iteration matrix of the multigrid scheme is given in

recursive form by the following.

For k = 1 let M1 = 0. For k = 2, . . . , L:

Mk = Sν2

k (Ik − Ik
k−1(Ik−1 −Mγ

k−1)A
−1
k−1I

k−1
k Ak)S

ν1

k (16)

where Ik is the identity, Sk is the smoothing iteration matrix, and Mk

is the multigrid iteration matrix for the level k.

To derive (16) consider an initial error e
(0)
k . The action of ν1 pre-

smoothing steps gives ek = Sν1

k e
(0)
k and the corresponding residual rk =

Akek. On the coarse grid, this error is given by ek−1 = A−1
k−1I

k−1
k rk.

However, in the multigrid algorithm we do not invert Ak−1 (unless

on the coarsest grid) and we apply γ multigrid cycles instead. That is,

denote with v
(γ)
k−1 the approximation to ek−1 obtained after γ application

of Mk−1, we have

ek−1 − v
(γ)
k−1 = M

(γ)
k−1(ek−1 − v

(0)
k−1).

Following the MG Algorithm 2, we set v
(0)
k−1 = 0 (Step 5.). Therefore

we have ek−1 − v
(γ)
k−1 = M

(γ)
k−1ek−1 which can be rewritten as v

(γ)
k−1 =

(Ik−1 −M
(γ)
k−1)ek−1. It follows that

v
(γ)
k−1 = (Ik−1 −M

(γ)
k−1)ek−1 = (Ik−1 −M

(γ)
k−1) A−1

k−1I
k−1
k rk

= (Ik−1 −M
(γ)
k−1) A−1

k−1I
k−1
k Akek.

Correspondingly, the coarse-grid correction is u
(ν1+1)
k = u

(ν1)
k +Ik

k−1v
(γ)
k−1.

In terms of error functions this means that

e
(ν1+1)
k = ek − Ik

k−1v
(γ)
k−1,

substituting the expression for v
(γ)
k−1 given above, we obtain

e
(ν1+1)
k = [Ik − Ik

k−1(Ik−1 −M
(γ)
k−1) A−1

k−1I
k−1
k Ak]ek.

Finally, consideration of the pre- and post-smoothing sweeps proves the

Lemma.

A picture of the multigrid workflow is given in Figure 6.
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Figure 6: Multigrid setting.

3 Multigrid methods for nonlinear problems

Many problems of physical interest are nonlinear in character and for

these problems the multigrid strategy provides new powerful algorithms.

Roughly speaking there are two multigrid approaches to nonlinear prob-

lems. The first is based on the generalization of the MG scheme de-

scribed above. The second is based on the Newton method and uses

the multigrid scheme as inner solver of the linearized equations. In this

respect the latter approach does not belong, conceptually, to the class

of multigrid methods. The well known representative of the former

approach is the full approximation storage (FAS) scheme [4].

An interesting comparison between the FAS and the MG-Newton

schemes is presented in [28]. First, it is shown that, in terms of com-

puting time, the exact Newton approach is not a viable method. In the

case of multigrid-inexact-Newton scheme it is shown that this approach

may have similar efficiency as the FAS scheme. However, it remains

an open issue how many interior MG cycles are possibly needed in the

MG-Newton method to match the FAS efficiency. In this sense the FAS

scheme is more robust and we discuss this method in the following.
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In the FAS scheme the global linearization in the Newton process

is avoided and the only possible linearization involved is a local one in

order to define the relaxation procedure, e.g., Gauss-Seidel-Newton. To

illustrate the FAS method, consider the nonlinear problem A(u) = f ,

and denote its discretization by

Ak(uk) = fk , (17)

where Ak(·) represents a nonlinear discrete operator on Ωhk
.

The starting point for the FAS scheme is again to define a suitable

smoothing iteration. We denote the corresponding smoothing process

by u = S (u, f). Now suppose to apply a few times this iterative

method to (17) obtaining some approximate solution ũk. The desired

exact correction ek is defined by Ak(ũk + ek) = fk. Here the coarse

residual equation (11) makes no sense (no superposition). Nevertheless

the ‘correction’ equation can instead be written in the form

Ak(ũk + ek)− Ak(ũk) = rk , (18)

if we define rk = fk − Ak(ũk). Assume to represent ũk + ek on the

coarse grid in terms of the coarse-grid variable

ûk−1 := Îk−1
k ũk + ek−1 . (19)

Since Îk−1
k ũk and ũk represent the same function but on different grids,

the standard choice of the fine-to-coarse linear operator Îk−1
k is the

straight injection. Formulating (18) on the coarse level by replacing

Ak(·) by Ak−1(·), ũk by Îk−1
k ũk, and rk by Ik−1

k rk = Ik−1
k (fk−Ak(ũk)),

we get the FAS equation

Ak−1(ûk−1) = Ik−1
k (fk − Ak(ũk)) + Ak−1(Î

k−1
k ũk) . (20)

This equation is also written in the form

Ak−1(ûk−1) = Ik−1
k fk + τ k−1

k , (21)
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where

τ k−1
k = Ak−1(Î

k−1
k ũk)− Ik−1

k Ak(ũk).

Observe that (21) without the τ k−1
k term is the original equation rep-

resented on the coarse grid. At convergence ûk−1 = Îk−1
k uk, because

fk − Ak(uk) = 0 and Ak−1(ûk−1) = Ak−1(Î
k−1
k uk). The term τ k−1

k is

the fine-to-coarse defect or residual correction. That is, the correction

to (21) such that its solution coincides with the fine grid solution. This

fact allows to reverse the point of view of the multigrid approach [7].

Instead of regarding the coarse level as a device for accelerating con-

vergence on the fine grid, one can view the fine grid as a device for

calculating the correction τ k−1
k to the FAS equation. In this way most

of the calculation may proceed on coarser spaces.

The direct use of ûk−1 on fine grids, that is, the direct interpolation

of this function by Ik
k−1ûk−1 cannot be used, since it introduces the

interpolation errors of the full (possibly oscillatory) solution, instead of

the interpolation errors of only the correction ek−1, which in principle

is smooth because of the application of the smoothing iteration. For

this reason the following coarse-grid correction is used

uk = ũk + Ik
k−1(ûk−1 − Îk−1

k ũk) . (22)

The complete FAS scheme is summarized below

Algorithm 3 (FAS scheme)

• Multigrid FAS method for solving Ak(uk) = fk.

1. If k = 1 solve Ak(uk) = fk directly.

2. Pre-smoothing steps on the fine grid: u
(l)
k = S(u

(l−1)
k , fk),

l = 1, . . . , ν1;

3. Computation of the residual: rk = fk − Aku
(ν1)
k ;

4. Restriction of the residual: rk−1 = Ik−1
k rk;

5. Set uk−1 = Îk−1
k u

(ν1)
k ;
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6. Set fk−1 = rk−1 + Ak−1(uk−1)

7. Call γ times the FAS scheme to solve Ak−1(uk−1) = fk−1;

8. Coarse-grid correction: u
(ν1+1)
k = u

(ν1)
k +Ik

k−1(uk−1−Îk−1
k u

(ν1)
k );

9. Post-smoothing steps on the fine grid: u
(l)
k = S(u

(l−1)
k , fk),

l = ν1 + 2, . . . , ν1 + ν2 + 1;

4 The full multigrid method

When dealing with nonlinear problems it is sometimes important to

start the iterative procedure from a good initial approximation. The

multigrid setting suggests a natural way of how to get this approxi-

mation cheaply. Suppose to start the solution process from a coarse

working level (present fine grid) ` < M where the discretized problem

A`(u`) = f` is easily solved. We can usually interpolate this solution

to the next finer working level as initial approximation for the iterative

process to solve A`+1(u`+1) = f`+1. We apply the interpolation

u`+1 = Ĩ`+1
` u` , (23)

and then start the FAS (or MG) solution process at level `+1. The idea

of using a coarse-grid approximation as a first guess for the solution

process on a finer grid is known as nested iteration. The algorithm

obtained by combining the multigrid scheme with nested iteration is

called full multigrid (FMG) method; see Figure 7. The interpolation

operator (23) used in the FMG scheme is called FMG interpolator.

Because of the improvement on the initial solution at each starting level,

the FMG scheme results to be cheaper than the iterative application of

the multigrid cycle without FMG initialization.

Algorithm 4 (FMG scheme)

• FMG method for solving AL(uL) = fL.
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1. Set (compute) u` on the working level `;

2. If ` < L then FMG interpolate to the next finer working level:

u`+1 = Ĩ`+1
` u`;

3. Apply FAS (or MG) scheme to A`+1(u`+1) = f`+1, starting

with u`+1;

4. If ` + 1 < L set ` := ` + 1 go to 2.

On each current working level one applies N FAS cycles and then the

algorithm is called N -FMG scheme. With the N -FMG algorithm an

estimate of the degree of accuracy can be obtained by comparison of

solutions on different levels. Denote with u` the solution on the level

` after N FAS (or MG) cycles. Then in the FMG method this solution

is interpolated to level ` + 1 to serve as a first approximation for this

working level. At the end of N cycles on this level, one obtains u`+1.

An estimate of the solution error on level ` can be defined as

E` = max
Ωh`

|u` − Î`
`+1u`+1| , (24)

and so on finer levels.

In order to show the efficiency of the full multigrid approach we

consider a three dimensional Poisson equation with Dirichlet boundary

conditions:{
−(∂2u

∂x2 + ∂2u
∂y2 + ∂2u

∂z2 ) = 3 sin(x + y + z) in Ω = (0, 2)3

u(x, y, z) = sin(x + y + z) for (x, y, z) ∈ ∂Ω

(25)

Finite difference approximations to (25) are obtained in much the same

way as was done in the one-space variable case. If on each level `, we

choose a uniform mesh with grid size h` = 2
n`+1 , n` = 2` − 1, a direct

application of the discretization scheme used in the 1D case gives

−(
u`

i+1jk − 2u`
ijk + u`

i−1jk

h2
`

+
u`

ij+1k − 2u`
ijk + u`

ij−1k

h2
`

+
u`

ijk+1 − 2u`
ijk + u`

ijk−1

h2
`

)
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= 3 sin(ih`, jh`, kh`) , i, j, k = 1, . . . , n` . (26)

This is the 7-point stencil approximation which is O(h2) accurate. To

solve this problem we employ the FAS scheme with γ = 1 and L =

7. The smoothing iteration is the lexicographic Gauss-Seidel method,

applied ν1 = 2 times for pre-smoothing and ν2 = 1 times as post-

smoother. Its smoothing factor estimated by local mode analysis is

µ = 0.567. Hence, by this analysis, the expected reduction factor is

ρ∗ = µν1+ν2 = 0.18. The observed reduction factor is ≈ 0.20.

Here Îk−1
k is simple injection and Ik−1

k and Ik
k−1 are the full weighting

and (tri-)linear interpolation, respectively. Finally, the FMG operator

Ĩ`+1
` is cubic interpolation [7, 21]. Now let us discuss the optimality of

the FMG algorithm constructed with these components.

To show that the FMG scheme is able to solve the given discrete

problem at a minimal cost, we compute E` and show that it behaves

like h2
` , demonstrating convergence. This means that the ratio E`/E`+1

at convergence should be a factor h2
`/h

2
`+1 = 4. Results are reported in

Table 2. In the 10-FMG column of we actually observe the h2 behavior

which can also be seen with smaller N = 3 and N = 1 FMG schemes.
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Figure 7: The FMG scheme.
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In fact, as reported in Table 2, the 1-FMG scheme gives the same order

of magnitude of errors as the 10-FMG scheme. Therefore the choice

N = 1 in a FMG cycle is suitable to solve the problem to second-order

accuracy.

level 10-FMG 3-FMG 1-FMG

3 6.75 10−4 6.79 10−4 9.44× 10−4

4 1.73 10−4 1.75 10−4 2.34× 10−4

5 4.36 10−5 4.40 10−5 5.92× 10−5

6 1.09 10−5 1.10 10−5 1.48× 10−5

Table 2: The estimated solution error for various N -FMG cycles.

To estimate the amount of work invested in the FMG method, let

us define the work unit (WU) [4], i.e. the computational work of one

smoothing sweep on the finest level M . The number of corresponding

arithmetic operations is linearly proportional to the number of grid

points. On the level ` ≤ M the work involved is (1
2)

3(M−`)WU , where

the factor 1
2 is given by the mesh size ratio h`+1/h` and the exponent 3

is the number of spatial dimensions. Thus a multigrid cycle that uses

ν = ν1 + ν2 relaxation sweeps on each level requires

Wcycle = ν

L∑

k=1

(
1

2
)3(L−k)WU <

8

7
νWU ,

ignoring transfer operations. Hence the computational work employed

in a N -FMG method is roughly

WFMG = N
L∑

`=2

(
1

2
)3(L−`)Wcycle ,

ignoring the FMG interpolation and work on the coarsest grid. This

means that, using the 1-FMG method, we solve the discrete 3D Poisson

problem to second-order accuracy with a number of computer opera-

tions which is proportional to the number of unknowns on the finest

grid. In the present case we have FMG Work ≈ 4WU .
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5 Appendix: A multigrid code

The following is a FORTRAN 77 multigrid algorithm for the solution

of the Poisson equation on a rectangle subject to Dirichlet boundary

conditions; see [3, 4] for details.

PROGRAM CYCLEV

C

C MULTI-GRID ALGORITHM FOR THE SOLUTION OF THE POISSON PROBLEM:

C DELTA(U)=F

C

C EXPLANATIONS OF PARAMETERS:

C----------------------------

C

C NX1- NUMBER OF INTERVALS INX-DIRECTION ON THE COARSEST GRID

C NY1- NUMBER OF INTERVALS IN Y-DIRECTION ON THE COARSEST GRID

C H1- LENGTH OF EACH INTERVAL

C M- NUMBER OF LEVELS

C NU1- NUMBER OF RELAXATION SWEEPS IN EACH CYCLE BEFORE TRAN-

C SFER TO THE COARSER GRID

C NU2- NUMBER OF SWEEPS IN EACH CYCLE AFTER COMING BACK FROM

C THE COARSER GRID

C NCYC- NUMBER OF CYCLES

C IFAS- IFAS=1 FAS SCHEME, IFAS=0 MG SCHEME

C

C G(X,Y)- BOUNDARY VALUES AND INITIAL APPROXIMATION

C FOR THE SOLUTION U(X,Y) ARE GIVEN BY THE C FUNCTION G(X,Y)

C

C CORRECTION SCHEME BEGINS FROM THE FINEST GRID TO COARSEST GRID.

C

C

implicit real*8 (a-h,o-z)

EXTERNAL G,F,Z

COMMON Q(18000)

DIMENSION IST(200)

DATA NX1/2/,NY1/2/,H1/0.5/,M/5/,NU1/2/,NU2/2/,NCYC/10/

c

c-----set method IFAS=1 nonlinear method, IFAS=0 linear method c

IFAS=1
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c

c-----set up: the grid

c

DO 1 K=1,M

K2=2**(K-1)

CALL GRDFN(K,NX1*K2+1,NY1*K2+1,H1/K2)

CALL GRDFN(K+M,NX1*K2+1,NY1*K2+1,H1/K2)

1 CONTINUE

WU=0.

c

c-----set up: the data (initial approx, rhs, bc, etc.) c

CALL PUTF(M,G,0)

CALL PUTB(M,G)

CALL PUTF(2*M,F,2)

ERRMX=1.0

IREL=0

c

c-----start cycling

c

DO 5 IC=1,NCYC

c-----store the previous relative error

ERROLD=ERRMX

c-----go up

DO 3 KM=1,M

K=1+M-KM

c-----pre-smoothing, NU1 times

DO 2 IR=1,NU1

2 CALL RELAX(K,K+M,WU,M,ERRM)

c-----store the relative error

IF(K.EQ.M) ERRMX=ERRM

c-----set initial zero approx. on the coarse grid

IF (K.NE.M.AND.IFAS.EQ.0) CALL PUTZ(K)

c-----compute residual res=b-Au (and transfer it to k-1)

c H H h h h

c r = I (f - L u )

c h

IF(K.GT.1) CALL RESCAL(K,K+M,K+M-1)

c
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c-----set initial approx. on the coarse grid

IF (K.NE.1.AND.IFAS.EQ.1) CALL PUTU(K,K-1)

c-----compute the right-hand side

c H H h h h H H h

c f = I (f - L u ) + L (I u)

c h h

IF(K.GT.1.AND.IFAS.EQ.1) CALL CRSRES(K-1,K+M-1)

3 CONTINUE

c

c-----go down

DO 5 K=1,M

DO 4 IR=1,NU2

4 CALL RELAX(K,K+M,WU,M,ERRM)

c-----interpolate the coarse solution (error function)

c to the next finer grid and add to the existing approximation

c

c h h h H H h

c u = u + I (u - I u )

c

IF(IFAS.EQ.1.AND.K.LT.M) CALL SUBTRT(K+1,K)

c

IF(K.LT.M) CALL INTADD(K,K+1)

c

c-----compute the convergence factor using the relative c error

IF(K.EQ.M) write(*,*) ’rho ’, errmx/errold

5 CONTINUE

C

C PRINT THE SOLUTION (FINEST GRID) C

999 CONTINUE

OPEN(UNIT=17,FILE=’TEST.DAT’,STATUS=’UNKNOWN’)

CALL KEY(M,IST,II,JJ,H)

JSTEP=17

IF(JJ.GT.9) JSTEP=INT(JJ/9.)+1

DO 90 I=1,II
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90 WRITE(17,100) (Q(IST(I)+J),J=1,JJ,JSTEP)

c

c calculate the L00 error c

difmx=0.0

do 95 i=1,ii

x=(i-1)*h

do 95 j=1,jj

y=(j-1)*h

err=abs(q(ist(i)+j)-g(x,y))

difmx=max(difmx,err)

95 continue

write(*,*) ’l00 norm of the error =’,difmx

100 FORMAT(1X,257(1X,E8.2))

STOP

END

C

REAL*8 FUNCTION F(X,Y)

implicit real*8 (a-h,o-z)

PI=4.0D0 * DATAN(1.0D0)

PI2=PI*PI

F=-(2.0*PI2)*SIN(PI*X)*SIN(PI*Y)

RETURN

END

C

REAL*8 FUNCTION G(X,Y)

implicit real*8 (a-h,o-z)

PI=4.0D0 * DATAN(1.0D0)

PI2=PI*PI

G=SIN(PI*X)*SIN(PI*Y)

RETURN

END

C

SUBROUTINE GRDFN(K,M,N,HH)

implicit real*8 (a-h,o-z)

COMMON/GRD/NST(20),IMX(20),JMX(20),H(20)

DATA IQ/1/

NST(K)=IQ

IMX(K)=M

JMX(K)=N

H(K)=HH

IQ=IQ+M*N
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RETURN

END

C

SUBROUTINE KEY(K,IST,M,N,HH)

implicit real*8 (a-h,o-z)

COMMON/GRD/NST(20),IMX(20),JMX(20),H(20)

DIMENSION IST(200)

M=IMX(K)

N=JMX(K)

IS=NST(K)-N-1

DO 1 I=1,M

IS=IS + N

1 IST(I)=IS

HH=H(K)

RETURN

END

C

SUBROUTINE PUTF(K,F,NH)

implicit real*8 (a-h,o-z)

COMMON Q(18000)

DIMENSION IST(200)

CALL KEY (K,IST,II,JJ,H)

H2=H**NH

DO 1 I=1,II

DO 1 J=1,JJ

X=(I-1)*H

Y=(J-1)*H

1 Q(IST(I)+J)=F(X,Y)*H2

RETURN

END

C

SUBROUTINE PUTZ(K)

implicit real*8 (a-h,o-z)

COMMON Q(18000)

DIMENSION IST(200)

CALL KEY(K,IST,II,JJ,H)

DO 1 I=1,II

DO 1 J=1,JJ

1 Q(IST(I)+J)=0.

RETURN

END
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C

SUBROUTINE PUTU(KF,KC)

implicit real*8 (a-h,o-z)

COMMON Q(18000)

DIMENSION IUF(200), IUC(200)

CALL KEY(KF,IUF,IIF,JJF,HF)

CALL KEY(KC,IUC,IIC,JJC,HC)

DO 1 IC=1,IIC

IF=2*IC-1

IFO=IUF(IF)

ICO=IUC(IC)

JF=-1

DO 1 JC=1,JJC

JF=JF+2

Q(ICO+JC)=Q(IFO+JF)

1 CONTINUE

RETURN

END

C

SUBROUTINE PUTB(K,F)

implicit real*8 (a-h,o-z)

COMMON Q(18000)

DIMENSION IST(200)

CALL KEY (K,IST,II,JJ,H)

DO 1 I=1,II

X=(I-1)*H

Y=0.0

Q(IST(I)+1)=F(X,Y)

Y=(JJ-1)*H

Q(IST(I)+JJ)=F(X,Y)

1 CONTINUE

DO 2 J=1,JJ

Y=(J-1)*H

X=0.0

Q(IST(1)+J)=F(X,Y)

X=(II-1)*H

Q(IST(II)+J)=F(X,Y)

2 CONTINUE

RETURN

END

C
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SUBROUTINE SUBTRT(KF,KC)

implicit real*8 (a-h,o-z)

COMMON Q(18000)

DIMENSION IUF(200),IUC(200)

CALL KEY(KF,IUF,IIF,JJF,HF)

CALL KEY(KC,IUC,IIC,JJC,HC)

DO 1 IC=1,IIC

IF=2*IC-1

IFO=IUF(IF)

ICO=IUC(IC)

JF=-1

DO 1 JC=1,JJC

JF=JF+2

Q(ICO+JC)=Q(ICO+JC)-Q(IFO+JF)

1 CONTINUE

RETURN

END

C

SUBROUTINE INTADD(KC,KF)

implicit real*8 (a-h,o-z)

COMMON Q(18000)

DIMENSION ISTC(200),ISTF(200)

CALL KEY(KC,ISTC,IIC,JJC,HC)

CALL KEY(KF,ISTF,IIF,JJF,HF)

HF2=HF*HF

DO 1 IC=2,IIC

IF=2*IC-1

JF=1

IFO=ISTF(IF)

IFM=ISTF(IF-1)

ICO=ISTC(IC)

ICM=ISTC(IC-1)

DO 1 JC=2,JJC

JF=JF+2

A=.5*(Q(ICO+JC)+Q(ICO+JC-1))

AM=.5*(Q(ICM+JC)+Q(ICM+JC-1))

Q(IFO+JF) = Q(IFO+JF)+Q(ICO+JC)

Q(IFM+JF) = Q(IFM+JF)+.5*(Q(ICO+JC)+Q(ICM+JC))

Q(IFO+JF-1)=Q(IFO+JF-1)+A

1 Q(IFM+JF-1)=Q(IFM+JF-1)+.5*(A+AM)

RETURN
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END

C

SUBROUTINE RESCAL(KF,KRF,KRC)

implicit real*8 (a-h,o-z)

COMMON Q(18000)

DIMENSION IUF(200),IRF(200),IRC(200)

CALL KEY(KF,IUF,IIF,JJF,HF)

CALL KEY(KRF,IRF,IIF,JJF,HF)

CALL KEY(KRC,IRC,IIC,JJC,HC)

IIC1=IIC-1

JJC1=JJC-1

HF2=HF*HF

DO 1 IC=2,IIC1

ICR=IRC(IC)

IF=2*IC-1

JF=1

IFR=IRF(IF)

IF0=IUF(IF)

IFM=IUF(IF-1)

IFP=IUF(IF+1)

DO 1 JC=2,JJC1

JF=JF+2

S=Q(IF0+JF+1)+Q(IF0+JF-1)+Q(IFM+JF)+Q(IFP+JF)

1 Q(ICR+JC)=4.*(Q(IFR+JF)-S+4.*Q(IF0+JF))

RETURN

END

C

SUBROUTINE CRSRES(K,KRHS)

implicit real*8 (a-h,o-z)

COMMON Q(18000)

DIMENSION IST(200),IRHS(200)

CALL KEY(K,IST,II,JJ,H)

CALL KEY(KRHS,IRHS,II,JJ,H)

I1=II-1

J1=JJ-1

H2=H*H

DO 1 I=2,I1

IR=IRHS(I)

IO=IST(I)

IM=IST(I-1)

IP=IST(I+1)
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DO 1 J=2,J1

A=-Q(IR+J)-Q(IO+J+1)-Q(IO+J-1)-Q(IM+J)-Q(IP+J)

1 Q(IR+J)=-A-4.*Q(IO+J)

RETURN

END

C

SUBROUTINE RELAX(K,KRHS,WU,M,ERRM)

c-----Gauss-Seidel

implicit real*8 (a-h,o-z)

COMMON Q(18000)

DIMENSION IST(200),IRHS(200)

CALL KEY(K,IST,II,JJ,H)

CALL KEY(KRHS,IRHS,II,JJ,H)

I1=II-1

J1=JJ-1

ERR=0.

ERRQ=0.

ERRM=0.

H2=H*H

COEFF=4.

DO 1 I=2,I1

IR=IRHS(I)

IQ=IST(I)

IM=IST(I-1)

IP=IST(I+1)

DO 1 J=2,J1

A=Q(IR+J)-Q(IQ+J+1)-Q(IQ+J-1)-Q(IM+J)-Q(IP+J)

c-----residual norm L2

ERR=ERR+(A+COEFF*Q(IQ+J))**2

QOLD=Q(IQ+J)

Q(IQ+J)=-A/(COEFF)

ERRQ=ERRQ+(QOLD-Q(IQ+J))**2

c-----relative ’dynamic’ error norm max

Z=abs(QOLD-Q(IQ+J))

ERRM=MAX(ERRM,Z)

1 CONTINUE

ERR=SQRT(ERR)/H

ERRQ=SQRT(ERRQ)

WU=WU+4.**(K-M)

write(*,2) K,ERRQ,WU
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2 FORMAT(’ LEVEL’,I2,’ RESIDUAL NORM=’,E10.3,’ WORK=’,F7.3)

RETURN

END

C
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