
Die Transportgleichung

Dieter Glaser 9630590
Peter Janach 9912935
Susanne Koch 9911414

Markus Sölkner 9973027

Februar 2004

1

1 Einleitung

Praktische Probleme in vielen Bereichen können auf die Lösung von partiellen Dif-
ferentialgleichungen zurückgeführt werden. Die einfachsten Beispiele erscheinen in
klassischen Bereichen der Physik, so zum Beispiel die Wärme-, die Wellen- oder die
Transportgleichung.
In unserer Arbeit werden wir zunächst allgemein eine partielle Differentialgleichung
definieren und dann eine typische Klassifikationsmöglichkeit für diese Gleichungen
vorstellen. Im Anschluss daran beschäftigen wir uns im Speziellen mit der linearen
Transportgleichung, wobei wir sowohl den homogenen als auch den inhomogenen Fall
behandeln. Einen sehr wichtigen Teil unserer Arbeit nimmt die Numerische Lösung
der Transportgleichung ein, wobei wir zuerst die Stabilität der Transportgleichung
nachweisen und dann eine Fehlerabschätzung angeben werden. Abschließend werden
wir die unterschiedlichen Ergebnisse verschiedener numerischer Algorithmen genauer
untersuchen. In diesem Zusammenhang fügen wir unserer Arbeit auch den Source-
Code eines von uns implementierten Programms bei. Im Speziellen behandeln wir
zwei numerische Algorithmen, nämlich das Verfahren der Finiten Differenzen und
das Upwind-Verfahren.

2

2 Definition

Eine partielle Differentialgleichung (PDE) ist eine Gleichung für eine Funkti-
on von zwei oder mehreren Variablen und einige ihrer Ableitungen.

Der Ausdruck
F (Dku, Dk−1u, ..., Du, u, x) = 0, x ∈ U ⊂ Rn (1)

ist eine PDE der Ordnung k.

F : (Rn)k × (Rn)k−1...× (Rn)× R× U → R (2)

Wir lösen (1), wenn wir ein u bestimmen, das (1) verifiziert und möglicherweise
gegebene Bedingungen auf Γ ⊂ ∂U erfüllt.
Dabei kann ’eine Lösung finden’ folgendes bedeuten:

1. u in expliziter Form angeben

2. die Existenz von u zeigen

Auch die Eigenschaften der Lösungen sind für uns von großer Bedeutung.

3 Klassifizierung

Es gibt einige Möglichkeiten PDEs zu klassifizieren:

1. PDEs können an Hand ihrer Struktur klassifiziert werden: Sie sind

(a) linear, wenn sie von der Form∑
|α|≤k

aα(x)(Dα)u(x) = f(x)

sind, wobei aα, die Abbildung f : U → R und |α| ≤ k gegeben sind. Falls
f = 0 ist, nennt man die PDE homogen.

(b) semilinear, wenn sie von der Form∑
|α|=k

aα(x)Dαu(x) + G0(D
k−1u(x), ...Du(x), u(x), x) = 0

sind.

3

(c) quasilinear, wenn sie von der Form∑
|α|=k

aα(Dk−1u(x), ..., Du(x), u(x), x)Dαu(x)+G0(D
k−1u(x), ..., Du(x), u(x), x) = 0

sind.

(d) nicht linear, wenn G0 eine nichtlineare Funktion ist.

2. Die meisten partiellen Differentialgleichungen, mit denen wir uns beschäftigen
sind PDEs der zweiten Ordnung:

n∑
i,j=1

aij(x)uxixj
(x) +

n∑
i=1

ai(x)uxi
(x) + a0(x)u(x) = f(x), x ∈ U

Da uxixj
= uxjxi

für alle u ∈ C2(u) gilt, können wir auch vermuten, dass
aij(x) = aji(x) für alle i,j = 1,. . . ,n gilt. Daher bilden die Koeffizienten aij(x)
eine symmetrischen Matrix A(x) = (aij)1≤i,j≤n.
Eine sehr brauchbare Klassifizierung kann durch die Eigenschaften der qua-
dratischen Form ξ ∈ Rn → (ξt)A(x)ξ =

∑n
i,j=1 aij(x)ξiξj erreicht werden.

(a) Die lineare PDE zweiter Ordnung nennt man elliptisch, falls A(x) positiv
oder negativ definit ist.

(b) Sie ist parabolisch, wenn A(x) singulär ist, und sie ist

(c) hyperbolisch, wenn ein Eigenwert von A(x) ein anderes Vorzeichen hat,
als alle anderen Eigenwerte dieser Matrix.

Zu den elliptischen Gleichungen gehört die Laplace-Gleichung ux1x1 = + . . . +
uxnxn = 0, da A(x) = I.

Zu den parabolischen Gleichungen zählt die Wärmeleitgleichung ut−∆u = 0,

da A(t, x) =

(
0 0
0 −I

)
.

Zu den hyperbolischen Gleichungen zählen die Wellengleichung utt − Λu = 0
und die Transportgleichung ut + bDu = 0.

Wir wollen uns in unserer Arbeit auf hyperbolische Gleichungen, im Spezi-
ellen auf das Lösen des Transportproblems konzentrieren.

4

4 Die lineare Transportgleichung

1. Der homogene Fall

Eine der einfachsten partiellen Differentialgleichungen ist die lineare Trans-
portgleichung mit konstanten Koeffizienten

ut(t, x) +
n∑

i=1

biuxi
(t, x) = 0 ∀(t, x) ∈ (0,∞)× Rn, (3)

wobei b = (b1, . . . , bn)T ∈ Rn ein fixer Vektor ist. In kompakter Notation
können wir das schreiben als:

ut + b · (Du) = 0 auf(0,∞)× Rn, (4)

wobei Du der von x abhängige Gradient ist, und · ein Euklidisches Skalar-
produkt darstellt. Üblicherweise beschreibt t die Zeit und x einen Punkt im
Raum.
In der Physik wird die Transportgleichung bei den verschiedensten Transpor-
ten von Stoffen verwendet, wie zum Beispiel Gase in einem Auspuff oder das
Versickern von Wasser im Erdreich. Da Messungen in vielen Bereichen schwie-
rig bis unmöglich sind, kann die Transportgleichung sehr hilfreich sein, um
zum Beispiel die Qualität des Grundwassers abzuschätzen. Durch die Komple-
xität der meisten Transportprobleme muss man meistens auf ein numerisches
Verfahren zurück greifen.
Um eine Formel zur Lösung dieser PDE abzuleiten, beobachten wir, dass
ut + b · (Du) die direkte Ableitung von u in Richtung (1, b)T ist.
Sei nun u irgendeine Lösung von (4) und sei (t, x) ∈ (0,∞)×Rn ein beliebiger
Punkt. Dann definieren wir eine Funktion ν

ν(s) := u(t + s, x + sb), s > −t.

Mit Hilfe der Kettenregel ergibt sich

d

ds
ν(s) =

d

ds
u(t + s, x + sb) = ut(t + s, x + sb) +

n∑
i=1

uxi
(t + s, x + sb)bi = 0,

wobei wir (3) in der letzten Gleichung verwendet haben.

Daraus folgt:

ν(s) = u(t + s, x + sb) = const ∀s > −t.

5

Das heißt: Der Wert u(t,x) wird entlang der Linie (t + s, x + sb), s > −t
durch (t,x) transportiert.
Daher gilt, wenn ein u ∈ C1((0,∞)× Rn) ∩ C((0,∞)× Rn) zusätzlich zu (4)
auch die Bedingung u(0, x) = u0(x) ∀x ∈ Rn mit den Daten u0 ∈ C1(Rn)
erfüllt, dann erhalten wir:

u(t, x) = u(0, x− tb) = u0(x− tb) ∀(t, x) ∈ (0,∞)× Rn. (5)

Dies führt uns zu folgendem Resultat:

Theorem 1: Wenn man die Gleichung ut + bDu = 0 mit konstanten Koeffizi-
enten b ∈ Rn betrachtet, gelten folgende zwei Behauptungen:

(a) Ist u eine klassische Lösung von (4), dann erfüllt diese Lösung die Glei-
chung:

u(t + s, x + sb) ≡ const, s > −t ∀(t, x) ∈ (0,∞)× Rn. (6)

(b) Seien u0 ∈ C1(Rn) gegebene Daten (Anfangswerte). Dann hat das An-
fangswertproblem{

ut + bDu = 0 auf (0,∞)× Rn

u(0, x) = u0(x) ∀x ∈ Rn (7)

eine eindeutige Lösung u ∈ C1((u,∞)×Rn)∩C((0,∞)× Rn), die durch

u(t, x) = u0(x− tb), (t, x) ∈ (0,∞)× Rn

gegeben ist.

Beweis:

(a) Wurde bereits gezeigt.

(b) Eindeutigkeit:
Wie wir schon gezeigt haben, erfüllt jede klassische Lösung von (7) die
Gleichung u(t, x) = ut(x− tb) Für diese Gleichung ist u eindeutig.

Existenz:

6

Sei u definiert durch u(t, x) = ut(x − tb). Da u0 ∈ C1(Rn) ist, gilt:
u ∈ C1((u,∞)× Rn) ∩ C((0,∞)× Rn). Weiters erfüllt u u(0, x) = u0(x)
und wir haben:

ut(t, x) = −b ·Du0(x− tb), und Du(t, x) = Du0(x− tb).

Dies zeigt, dass ut + b ·Du = 0.

2. Der inhomogene Fall

Wir betrachten nun das allgemeine inhomogene Problem:{
ut + b ·Du = f auf (0,∞)× Rn

u(0, ·) = u0 auf Rn,
(8)

wobei f ∈ C1((0,∞)× Rn).
Wie vorhin, ist die linke Seite in (8) die Ableitung in Richtung (1, b)T . Daher
erfüllt die Funktion ν(s) := u(t + s, x + sb), s > −t für jeden Punkt (t, x) ∈
(0,∞)× Rn die Gleichung

d

ds
ν(s) = ut(t + s, x + sb) +

n∑
i=1

uxi
(t + s, x + sb)bi = f(t + s, x + sb). (9)

Integration von (9) für s ∈ [−t, 0] ergibt mit (8)

u(t, x)−u0(x−tb) = ν(0)−ν(−t) =

∫ 0

−t

f(t+s, x+sb)ds =

∫ t

0

f(s, x+(s−t)b)ds.

(10)

Daraus folgt das folgende Theorem:

Theorem 2:
Für alle b ∈ Rn, f ∈ C1((0,∞)× Rn) und u0 ∈ C1(Rn) hat das Problem{

ut + b ·Du = f auf (0,∞)× Rn

u(0, ·) = u0 auf Rn

7

eine klassische Lösung u ∈ C1((u,∞)×Rn)∩C((0,∞)× Rn), die gegeben ist
durch:

u(t, x) = u0(x− tb) +

∫ 1

0

f(s, x + (s− t)b)ds, (t, x) ∈ (0,∞)× Rn (11)

Beweis:
Eindeutigkeit:
Wir haben gezeigt, dass jede klassische Lösung u von (8) die Gleichung (10),
und somit auch (11) erfüllt. Daher bietet (11) die eindeutige Lösung von (8)
und (10).

Existenz:
Es seien f ∈ C1((0,∞)×Rn) und u0 ∈ C1(Rn). Das u in (11) ist offensichtlich
∈ C1((u,∞)× Rn) ∩ C((0,∞)× Rn) und erfüllt (8).
Weiters haben wir:

ut = −b ·Du0(x− tb) + f(t, x)−
∫ t

0

b ·Dxf(s, x + (s− t)b)ds

Du(t, x) = Du0(x− tb) +

∫ t

0

Dxf(s, x + (s− t)b)ds

und daher gilt ut + b ·Du = f , wie notwendig.

Wir haben somt gezeigt:

• Wir können (8) in ein System von gewöhnlichen Differentialgleichungen
umwandeln. Diese Technik nennt man: ’Methode der Charakteristik’.

• Die Gleichung (11) macht auch Sinn für nicht-differenzierbare, ja sogar
unstetige Daten. Dies führt zu einer sinnvollen Definition der sogenannten
’schwachen Lösungen’ für (8), welche eine Ausbreitung der Konzepts der
klassischen Lösungen hin zum Fall der weniger regulären Daten führt.

8

5 Numerische Lösung der Transportgleichung

Ein numerisches Verfahren zur Lösung der Transportgleichung ist unumgänglich,
da man zwar in der Theorie exakte Lösungen angeben kann, jedoch in der Praxis
Integrale auftreten können die nicht lösbar sind. Also möchten wir in diesem Ab-
schnitt zunächst eine Lösung approximieren, und diese Approximation dann auch
abschätzen, um eine bestimmte Genauigkeit der Lösung zu erreichen.

1. Stabilität
Zuerst analysieren wir die Transportgleichung:

∂u
∂t

+ b∂u
∂x

= f in Ut

u = 0 auf ∂U
u = g auf U × {t = 0}

(12)

wobei b > 0 und ∂U− = {x ∈ ∂U |b · ν < 0}, was man üblicherweise auch als
’boundary’ bezeichnet. Im Gegensatz dazu bezeichnet ∂U+ den ’outflow’.
Man kann also durch die Randbedingung sagen, wieviel hineinströmt, aber
nicht wieviel herausströmt.

In einer Dimension gilt also: U = (0, 1) bzw. ∂U− = {0} und somit U(0, t) = 0.
Die Finite Differenzen Diskretisierung von (12) liefert:


um+1

i −um
i

δt
+ b

um
i −um

i−1

h
= f(xi, tm)

um
0 = 0
u0

i = g

(13)

Somit haben wir:

um+1
i − um

i + (
bδt

h
)(um

i − um
i−1) = δtf(xi, tm)

Sei nun µ = bδt
h

und nehmen wir an, dass 0 ≤ µ ≤ 1 ist, dann bezeichnet µ die
COURANT-Number (garantiert die Stabilität für dieses Schema)

Also gilt:
um+1

i = um
i − µum

i + µum
i−1 + δtf(xi, tm)

9

Daraus folgt:

|um+1
i | ≤ (1− µ)|um

i |+ µ|um
i−1|+ δtmaxi|fm

i |
≤ (1− µ) maxi|um

i |+ µ maxi|um
i−1|+ δt maxi|fm

i |
≤ maxi|um

i |+ δt maxi|fm
i |

=⇒ maxi|um+1
i | ≤ maxi|um

i |+ δt max
i
|fm

i | (14)

Definieren wir nun: ‖um
i ‖∞ = max0≤i≤N |um

i |, dann gilt:
‖um+1‖∞ ≤ ‖um‖∞ + δt‖f(·, tm)‖∞

Mit Rekursion: ‖um+1‖∞ ≤ ‖u0‖∞ +
∑M−1

k=0 δt‖f(·, tm)‖∞
also: max1≤m≤M‖um‖∞ ≤ ‖u0‖∞ +

∑M−1
k=0 δt‖f(·, tm)‖∞

Somit haben wir die Stabilität für δt ≤ h
b

gezeigt.

2. Fehlerabschätzung
Für die Fehlerabschätzung für

em
i = u(xi, tm)− um

i

haben wir

em+1
i − em

i

δt
+ bD−

x em
i = ϕm

i (15)

Wobei aus der Taylor Entwicklung folgt:

ϕm
i = 1

2
δt∂2u

∂t2
(xi, τm) + 1

2
bh∂2u

∂x2 (ξi, tm),
mit τm ∈ (tm, tm+1) und ξi ∈ (xi−1, xi)

Dann gilt:
|ϕm

i | ≤ 1
2
δtMt + b

2
hMx

wobei Mt = maxxi
|∂2u

∂t2
| und Mx = maxxi

|∂2u
∂x2 |,

also ‖ϕm‖∞ ≤ 1
2
M(δt + bh)

Wir definieren nun noch: M = max(Mt, Mx).

10

Jetzt wenden wir (14) auf (15) an und nehmen weiters an, dass
‖e0‖∞ = maxi|g(xi)− u0| = 0.

Dann gilt: max1≤m≤M‖em‖∞ ≤ MT
2

(δt + bh) also:

max1≤m≤M‖u(·, tm)− um‖∞ ≤ MT

2
(δt + bh) (16)

Somit ist der Fehler: 0 (δt + bh)

3. System von Transportgleichungen

Sei A ∈ Rk×k eine Matrix mit k reellen Eigenwerten {λi}k
i=1 und k linear

unabhängigen Eigenvektoren. Das System

∂u

∂t
+ A

∂u

∂x
= 0 u = (u1, ..., uk) (17)

ist hyperbolisch.
Unter diesen Voraussetzungen existiert eine nicht singuläre Matrix P, sodass
PAP−1 = D, wobei D eine Diagonalmatrix ist: D = diag(λ1...λk).

δ
δt

(Pu) + PAP−1︸ ︷︷ ︸ P δu
δx

= 0
δ
δt

(Pu) + D(δ
δx

)(Pu) = 0
v = Pu

4.
δv
δt

+ D δv
δx

= 0
δvi

δt
v + λi

δvi

δx
= 0 i = 1, ..., k

Dies entspricht ut + bux = 0; das heißt man hat hier mehrere Transportglei-
chungen.


δu
δt

+ b δu
δx

= f in Ut

u = 0 auf δU
u = g auf U × {t = 0}

ut + bDu = f
u = 0

11

Abbildung 1: Kreis

δu− = {x ∈ δu|bv < 0}
δut.....outflow

Man kann also sagen wieviel hineinströmt, aber nicht weiviel herausströmt.

Dx− :
um+1

i −um
i

δt
+ b

um
i −um

i−1

h
= f(xi, tm)

um+1
i − um

i + (bδt
h

)(um
i − um

i−1) = δtf(xi, tm)

u = bδt
h

...COURANT Number (garantiert die Stabilität für dieses Schema)

um+1
i = um

i − µum
i + µum

i−1 + δtf(xi, tm) 0 < µ ≤ 1

|um+1
i | ≤ (1− µ)|um

i |+ µ|um
i−1|+ δt|fm

i |
≤ (1− µ) maxi|um

i |+ µ maxi|um
i−1|+ δt maxi|fm

i |
≤ maxi|um

i |+ δt maxi|fm
i |

=⇒ maxi|um+1
i | ≤ maxi|um

i |+ δt maxi |fm
i |

‖um
i ‖∞ = max|um

i |
‖um+1‖∞ ≤ ‖um‖∞ + δt‖f(·, tm)‖∞

Rekursiv: ‖um+1‖∞ ≤ ‖u0‖∞ +
∑m

k=0 δt‖f(·, tm)‖∞
max1≤m≤M‖um‖∞ ≤ ‖u0‖∞ +

∑M−1
k=0 δt‖f(·, tm)‖∞

12

Abbildung 2: Raster

1. System von Transportgleichungen

∂u

∂t
+ A

∂u

∂x
= 0 u = (u1, ..., uk)

A ∈ Rk×k, ß; {λi}k
i=1, λi ∈ R, i = 1, ..., k Eigenwerte. Die k Eigenwerte sind

linear unabhängig und es existiert eine Matrix P, die nicht singulär ist, mit
folgender Eigenschaft:
∃P, P−1, sodass PAP−1 = D, mit D = diag(λ1, ...λk)

δ
δt

(Pu) + PAP−1︸ ︷︷ ︸ P δu
δx

= 0
δ
δt

(Pu) + D(δ
δx

)(Pu) = 0
v = Pu

2.
δv
δt

+ D δv
δx

= 0
δvi

δt
v + λi

δvi

δx
= 0 i = 1, ..., k

Dies entspricht ut + bux = 0; das heißt man hat hier mehrere Transportglei-
chungen.

13

Abbildung 3: xi

6 Unterschiedliche Ergebnisse numerischer Algo-

rithmen

6.1 Das Verfahren der Finiten Differenzen

Zur numerischen Ermittlung der Lösung einer partiellen Differentialgleichung ver-
wendetn wir das Verfahren der Finiten Differenzen: Dabei wird ein Gitter über den
zu behandelnden Raum U ⊆ R gelegt. Dadurch wird erreicht, dass nur mehr mit
endlich vielen Werten gerechnet werden muss. Je feiner man das Netz wählt, das
heißt je kleiner die räumliche Schrittweite 4xi gewählt wird, desto näher wird die
numerische an der exakten Lösung liegen.
Mit Hilfe der Taylor-Reihen-Entwicklung erhält man eine Approximation der Ablei-
tungen:

u(xi+1) = u(xi) + u′(xi) · h +
1

2
u′′(xi) · h2 +

1

6
u′′′(xi) · h3 + . . .

u(xi+1)− u(xi)

h
= u′(xi) +

1

2
u′′(xi) · h +

1

6
u′′′(xi) · h2 + . . .

D+
x =

u(xi+1)− u(xi)

h

und in weiterer Folge kann man etwa ∂
∂xi

bzw. ∂
∂t

durch die Funktionen D±
x bzw. d±t

ersetzen.

6.2 Lösung mit Hilfe des Upwind-Verfahrens

Wir werden in der Folge das zweiparametrige Transportproblem

14

u(x, y)t + λ · u(x, y)x = 0 (18)

des dreidimensionalen Raums mit Hilfe der im vorigen Kapitel vorgestellten Metho-
de der Finiten Differenzen lösen.

Zunächst wählen wir einen geeigneten Unterraum Uxy der xy-Ebene des kartesischen
Normalkoordinatensystems. Für jeden Punkt dieses Raums Uxy ist die z-Koordinate
einer Ausgangsfläche Φ =̂ f(x, y) definiert. In weiterer Folge wird ein Gitter über
Uxy gelegt, die Gitterpunkte (x, y) definieren eine endliche Anzahl von Punkten
(x, y, f(x, y)) der Ausgangsfläche Φ mit deren Hilfe die Lösung der partiellen Diffe-
rentialgleichung approximiert wird.

Ersetzt man, wie im vorigen Kapitel vorgestellt, die partiellen Ableitungen in (18)
durch die Approximationen d+

t bzw. D+
x , so erhält man:

d+
t ui + λiD

+
x ui = 0 i = 1, 2 (19)

bzw. für t ∈ [0, T]

ut+δt
i − ut

i

δt
+ λi

ut
i+1 − ut

i

δxi

= 0 i = 1, 2 (20)

Definiert man das für die Stabilität des Algorithmus wesentliche Verhältnis µ := δt
δxi

erhält man schließlich nach kurzen Umformungen

ut+δt
i = ut

i − pλi(u
t
i+1 − ut

i) (21)

Es ist also möglich, mit Hilfe der für jede Koordinate entsprechenden ’rechten’ Part-
nerpunkte (→ Upwindverfahren) die neuen Koordinaten eines Punktes nach einem
vorgegebenen Zeitintervall zu bestimmen.
Abbildung 4 zeigt die Lage bzw. Gestalt eines zu bewegenden Quaders zu angegebe-
nen Zeitpunkten. Dabei ist zu beachten, dass wir den Algorithmus so implementiert
haben, dass der bewegte Körper periodisch wiederkehrt und nicht verschwindet. Der
folgende Text zeigt den Source-Code des von uns implementierten Programms:

%function [time]=trans_equ(u0,l,r,delta_x,delta_t,tmax,vers)

% Gruppe Transportgleichung, PDE, Februar 2004

%

% Eingabeparameter:

15

% u0.........Anfangsbedingung (Ausgangsfunktion)

% l..........linke Intervallgrenze

% r..........rechte Intervallgrenze

% delta_x....raeuumliche Schrittweite

% delta_t....zeitliche Schrittweite

% tmax.......Zeit, bis zu der iteriert wird

% vers.......gibt an, welche Diskretisierung verwendet werden soll

%

% Ausgabeparamter:

% time.......benoetigte CPU-time

u0 = ’quader’; l = 0.1; r = 10; delta_x = 0.1; delta_t = 0.05;

tmax = 10; vers = ’periodisch’; paus=0;

figure(1) time=cputime; t=0; p=delta_t / delta_x; weite=r-l;

gitter_x=l:delta_x:r; % Gitterpunktematrix

gitter_y=l:delta_x:r;

for i=1:length(gitter_x) % Startmatrix wird erstellt

for j=1:length(gitter_y)

valt(i,j)=feval(u0,gitter_x(i),gitter_y(j),weite);

end

end

vneu=valt; colormap(’winter’); surf(vneu); title(t);

axis([0,100,0,100,0,30]); pause(2); valt = valt;

%--

% forward forward periodisch Diskretisierung

if vers==’periodisch’

while t<tmax

t = t + delta_t;

for i=1:length(gitter_x)

for j=1:length(gitter_y)

if i==length(gitter_x)

vneu(i,j)=valt(i,j)+p*(valt(1,j)-valt(i,j));

else

16

vneu(i,j) = valt(i,j) + p*(valt(i+1,j) - valt(i,j));

end

end

end

valt=vneu;

for i=1:length(gitter_x)

for j=1:length(gitter_y)

if j==length(gitter_y)

vneu(i,j)=valt(i,j)+p*(valt(i,1)-valt(i,j));

else

vneu(i,j) = valt(i,j) + p*(valt(i,j+1) - valt(i,j));

end

end

end

valt=vneu;

surf(valt);

title(t);

axis([0,100,0,100,0,30]) ;

pause(paus);

end

end

%--

time=cputime-time;

Wie man nur unschwer erkennen kann, ist dieser Algorithmus nur eingeschränkt
verwendbar, da sich der zu bewegende Körper bereits nach kurzer Zeit sehr stark
verformt, was nicht unbedingt dem erwarteten Ergebnis eines Transports entspricht.
Außerdem ist der Algortithmus nicht für beliebige Werte stabil und in Abbildung
ist ein solcher Fall dargestellt.

17

7 TVD (Total variation diminishing) Verfahren

Wie man in unserer Graphik sehen kann, liefert das Upwind Verfahren schon nach
kurzer Zeit einen großen Fehler. Um den geringer zu halten kann man das TVD
Verfahren verwenden. Das TVD Verfahren braucht dafür um einiges mehr an Rech-
nerleistung.

um+1
i − um

i

δt
= − b

δx
(1 +

1

2
χ(r+

i− 1
2

)− 1

2

χ(r+
i− 3

2

)

r+
i− 3

2

)(ui − ui−1)

mit r+
i− 1

2

=
(ui+1 − ui)

ui − ui−1)
, r+

i− 3
2

=
(ui − ui−1)

(ui−1 − ui−2)

und χ(r) = max[0, min(2r, 1), min(r, 2)]

Der folgende Text zeigt den Source-Code des von uns implementierten Programms:

% TVD - Verfahren periodisch

% Gruppe Transportgleichung, PDE, Februar 2004

%

% Eingabeparameter:

% u0.........Anfangsbedingung (Ausgangsfunktion)

% l..........linke Intervallgrenze

% r..........rechte Intervallgrenze

% delta_x....raeuumliche Schrittweite

% delta_t....zeitliche Schrittweite

% tmax.......Zeit, bis zu der iteriert wird

% vers.......gibt an, welche Diskretisierung verwendet werden soll

%

% Ausgabeparamter:

% time.......benoetigte CPU-time

u0 = ’quader’; l = 0.1; r = 10; delta_x = 0.1; delta_t = 0.05;

tmax = 0.4;

figure(1)

bx=1;

by=1;

18

t=0;

p=delta_t / delta_x;

weite=r-l;

gitter_x=l:delta_x:r; % Gitterpunktematrix

gitter_y=l:delta_x:r;

for i=1:length(gitter_x) % Startmatrix wird erstellt

for j=1:length(gitter_y)

valt(i,j)=feval(u0,gitter_x(i),gitter_y(j),weite);

end

end

vneu=valt; colormap(’winter’); surf(vneu); title(t);

axis([0,100,0,100,0,30]); pause(0); valt = valt; dieter=0;

%--

% TVD - Scheme

while t<tmax

t = t + delta_t;

for i=1:(length(gitter_x))

for j=1:(length(gitter_y))

if i==1

rpim12=(valt(i+1,j)-valt(i,j)) / (0.00001 + valt(i,j)-

valt(length(gitter_x),j));

rpim32=(valt(i,j)-valt(length(gitter_x),j)) / (0.00001 +

valt(length(gitter_x),j)-valt((length(gitter_x)-1),j));

vneu(i,j)=valt(i,j)-delta_t/delta_x * bx*(1+1/2*chi(rpim12)-

1/2*chi(rpim32)/(rpim32 + 0.00001)) * (valt(i,j)-valt(length(gitter_x),j));

else

if i==2

rpim12=(valt(i+1,j)-valt(i,j)) / (0.00001 + valt(i,j)-valt(i-1,j));

rpim32=(valt(i,j)-valt(i-1,j)) / (0.00001 + valt(i-1,j)

-valt(length(gitter_x),j));

19

vneu(i,j)=valt(i,j)-delta_t/delta_x * bx*(1+1/2*chi(rpim12)

-1/2*chi(rpim32)/(rpim32 + 0.00001)) * (valt(i,j)-valt(i-1,j));

else

if i==(length(gitter_x))

rpim12=(valt(1,j)-valt(i,j)) / (0.00001 + valt(i,j)-valt(i-1,j));

rpim32=(valt(i,j)-valt(i-1,j)) / (0.00001 + valt(i-1,j)-valt(i-2,j));

vneu(i,j)=valt(i,j)-delta_t/delta_x * bx*(1+1/2*chi(rpim12)

-1/2*chi(rpim32)/(rpim32 + 0.00001)) * (valt(i,j)-valt(i-1,j));

else

rpim12=(valt(i+1,j)-valt(i,j)) / (0.00001 + valt(i,j)-valt(i-1,j));

rpim32=(valt(i,j)-valt(i-1,j)) / (0.00001 + valt(i-1,j)-valt(i-2,j));

vneu(i,j)=valt(i,j)-delta_t/delta_x * bx*(1+1/2*chi(rpim12)

-1/2*chi(rpim32)/(rpim32 + 0.00001)) * (valt(i,j)-valt(i-1,j));

end

end

end

end

end

valt=vneu;

for i=1:(length(gitter_x))

for j=1:(length(gitter_y))

if j==1

rpim12=(valt(i,j+1)-valt(i,j)) / (0.00001 + valt(i,j)

-valt(i,length(gitter_y)));

rpim32=(valt(i,j)-valt(i,length(gitter_y))) / (0.00001 + valt(i,length(gitter_y))

-valt(i,(length(gitter_y)-1)));

20

vneu(i,j)=valt(i,j)-delta_t/delta_x * by*(1+1/2*chi(rpim12)

-1/2*chi(rpim32)/(rpim32 + 0.00001)) * (valt(i,j)-valt(i,length(gitter_y)));

else

if j==2

rpim12=(valt(i,j+1)-valt(i,j)) / (0.00001 + valt(i,j)-valt(i,j-1));

rpim32=(valt(i,j)-valt(i,j-1)) / (0.00001 + valt(i,j-1)-valt(i,length(gitter_y)));

vneu(i,j)=valt(i,j)-delta_t/delta_x * by*(1+1/2*chi(rpim12)

-1/2*chi(rpim32)/(rpim32 + 0.00001)) * (valt(i,j)-valt(i,j-1));

else

if j==length(gitter_y)

rpim12=(valt(i,1)-valt(i,j)) / (0.00001 + valt(i,j)-valt(i,j-1));

rpim32=(valt(i,j)-valt(i,j-1)) / (0.00001 + valt(i,j-1)-valt(i,j-2));

vneu(i,j)=valt(i,j)-delta_t/delta_x * by*(1+1/2*chi(rpim12)

-1/2*chi(rpim32)/(rpim32 + 0.00001)) * (valt(i,j)-valt(i,j-1));

else

rpim12=(valt(i,j+1)-valt(i,j)) / (0.00001 + valt(i,j)-valt(i,j-1));

rpim32=(valt(i,j)-valt(i,j-1)) / (0.00001 + valt(i,j-1)-valt(i,j-2));

vneu(i,j)=valt(i,j)-delta_t/delta_x * by*(1+1/2*chi(rpim12)

-1/2*chi(rpim32)/(rpim32 + 0.00001)) * (valt(i,j)-valt(i,j-1));

end

end

end

end

end

21

valt=vneu;

colormap=(’winter’);

surf(valt);

title(t);

axis([0,100,0,100,0,30]) ;

end

Die Funtion chi:

function [chi]=chivon(r)

a=[2*r,1]; b=[r,2];

m1=min(a); m2=min(b);

c=[0,m1,m2];

chi=max(c);

Die Anfangsbedingungen werden werden in diesem Fall über die Funktion ’quader’
geladen:

function [fij]=quader(i,j,l)

fij = 0;

if i > l * 0.3

if i < l * 0.6

if j > l * 0.4

if j < l * 0.7

fij = 30; % ändern, verallgemeinern

end

end

end

end

Wie man in den folgenden Graphiken sehen kann, ist die Glättung bzw. der nume-
rische Fehler wesentlich kleiner.

22

8 Berechnung des Fehlers

Um das Verhalten des Fehlers bezüglich der verschiedenen Verfahren, Zeitschritten
und Gitterschritten zu beobachten, haben wir ein kleines Programm geschrieben,
das die Werte der Transportgleichung berechnet und haben sie mit den numerisch
berechneten Werten verglichen.

Verfahren δ x δt Zeitpunkt Fehler (Maximumsnorm)
upwind 0,1 0,05 0,1 0,0070
upwind 0,05 0,025 0,1 0,0051
upwind 0,025 0,0125 0,1 0,0037
upwind 0,1 0,05 0,3 0,0013
upwind 0,05 0,025 0,3 0,0009
upwind 0,025 0,0125 0,3 0,0006
TVD 0,1 0,05 0,1 0,0012
TVD 0,05 0,025 0,1 0,0006
TVD 0,025 0,0125 0,1 0,0004
TVD 0,1 0,05 0,3 0,0032
TVD 0,05 0,025 0,3 0,0028
TVD 0,025 0,0125 0,3 0,0018

23

Abbildung 4: Quader wird transportiert

24

Abbildung 5: TVD Quader wird transportiert

25

