Die Transportgleichung

Dieter Glaser 9630590

Peter Janach 9912935
Susanne Koch 9911414
Markus Solkner 9973027

Februar 2004

1 Einleitung

Praktische Probleme in vielen Bereichen kénnen auf die Losung von partiellen Dif-
ferentialgleichungen zuriickgefithrt werden. Die einfachsten Beispiele erscheinen in
klassischen Bereichen der Physik, so zum Beispiel die Warme-, die Wellen- oder die
Transportgleichung.

In unserer Arbeit werden wir zunéchst allgemein eine partielle Differentialgleichung
definieren und dann eine typische Klassifikationsmoglichkeit fiir diese Gleichungen
vorstellen. Im Anschluss daran beschéftigen wir uns im Speziellen mit der linearen
Transportgleichung, wobei wir sowohl den homogenen als auch den inhomogenen Fall
behandeln. Einen sehr wichtigen Teil unserer Arbeit nimmt die Numerische Lésung
der Transportgleichung ein, wobei wir zuerst die Stabilitdt der Transportgleichung
nachweisen und dann eine Fehlerabschéitzung angeben werden. Abschliefend werden
wir die unterschiedlichen Ergebnisse verschiedener numerischer Algorithmen genauer
untersuchen. In diesem Zusammenhang fiigen wir unserer Arbeit auch den Source-
Code eines von uns implementierten Programms bei. Im Speziellen behandeln wir
zwei numerische Algorithmen, nédmlich das Verfahren der Finiten Differenzen und
das Upwind-Verfahren.

2 Definition

Eine partielle Differentialgleichung (PDE) ist eine Gleichung fiir eine Funkti-
on von zwei oder mehreren Variablen und einige ihrer Ableitungen.

Der Ausdruck
F(D*u, D', ..., Du,u,2) =0, r € U C R" (1)
ist eine PDE der Ordnung k.

F:R)Y xR 1. xRYxRxU—=R (2)

Wir 16sen (1), wenn wir ein u bestimmen, das (1) verifiziert und moglicherweise
gegebene Bedingungen auf I' C JU erfiillt.
Dabei kann ’eine Losung finden’ folgendes bedeuten:

1. u in expliziter Form angeben
2. die Existenz von u zeigen

Auch die Eigenschaften der Losungen sind fiir uns von grofler Bedeutung.

3 Klassifizierung

Es gibt einige Moglichkeiten PDEs zu klassifizieren:

1. PDEs konnen an Hand ihrer Struktur klassifiziert werden: Sie sind

(a) linear, wenn sie von der Form
> aa(@)(D)ulz) = f(z)
lal <k

sind, wobei a,, die Abbildung f : U — R und |a| < k gegeben sind. Falls
f =0 ist, nennt man die PDE homogen.

(b) semilinear, wenn sie von der Form
> aa(z)Du(z) + Go(D*u(x), .. Du(z), u(z),) =
|a|=k

sind.

(¢) quasilinear, wenn sie von der Form

Z ao(DFtu(x), ..., Du(z), u(z), 2) D*u(x)+Go(D* u(z), ..., Du(x), u(r), r) =

|a|=k

sind.

(d) nicht linear, wenn G eine nichtlineare Funktion ist.

2. Die meisten partiellen Differentialgleichungen, mit denen wir uns beschéftigen
sind PDEs der zweiten Ordnung;:

n

D @)ty (@) + 3 (@)t (0) + ao(@)ue) = f(@), @ €U

ij=1

a;j(x) = a;(x) fir alle i,j = 1,... n gilt. Daher bilden die Koeffizienten a;;(z)
eine symmetrischen Matrix A(z) = (ai;)1<ij<n-

Eine sehr brauchbare Klassifizierung kann durch die Eigenschaften der qua-
dratischen Form £ € R" — (§")A(2)§ = >, aij(7)&&; erreicht werden.

Da g, = Ug,q, fir alle u € C?*(u) gilt, kénnen wir auch vermuten, dass

(a) Die lineare PDE zweiter Ordnung nennt man elliptisch, falls A(x) positiv
oder negativ definit ist.

(b) Sie ist parabolisch, wenn A(x) singulér ist, und sie ist
(¢) hyperbolisch, wenn ein Eigenwert von A(x) ein anderes Vorzeichen hat,

als alle anderen Eigenwerte dieser Matrix.

Zu den elliptischen Gleichungen gehort die Laplace-Gleichung uy ., =+ ... +
Uy, z, = 0, da A(x) = 1.

Zu den parabolischen Gleichungen zéahlt die Wérmeleitgleichung u, — Au = 0,

da A(t,z) = (8 _0])

Zu den hyperbolischen Gleichungen zéhlen die Wellengleichung u;; — Au = 0
und die Transportgleichung u; + bDu = 0.

Wir wollen uns in unserer Arbeit auf hyperbolische Gleichungen, im Spezi-
ellen auf das Losen des Transportproblems konzentrieren.

Die lineare Transportgleichung

. Der homogene Fall

Eine der einfachsten partiellen Differentialgleichungen ist die lineare Trans-
portgleichung mit konstanten Koeffizienten

u(t, x) + iblux (t,z) =0 VY(t,z) € (0,00) x R", (3)

=1

wobei b = (by,...,b,)T € R™ ein fixer Vektor ist. In kompakter Notation
konnen wir das schreiben als:

u+b-(Du) =0 auf(0,00) x R", (4)

wobei Du der von x abhéngige Gradient ist, und - ein Euklidisches Skalar-
produkt darstellt. Ublicherweise beschreibt t die Zeit und x einen Punkt im
Raum.

In der Physik wird die Transportgleichung bei den verschiedensten Transpor-
ten von Stoffen verwendet, wie zum Beispiel Gase in einem Auspuff oder das
Versickern von Wasser im Erdreich. Da Messungen in vielen Bereichen schwie-
rig bis unméglich sind, kann die Transportgleichung sehr hilfreich sein, um
zum Beispiel die Qualitdt des Grundwassers abzuschétzen. Durch die Komple-
xitdt der meisten Transportprobleme muss man meistens auf ein numerisches
Verfahren zuriick greifen.

Um eine Formel zur Losung dieser PDE abzuleiten, beobachten wir, dass
u; + b - (Du) die direkte Ableitung von u in Richtung (1,0)7 ist.

Sei nun u irgendeine Losung von (4) und sei (¢,x) € (0,00) x R™ ein beliebiger
Punkt. Dann definieren wir eine Funktion v

v(s) :=u(t+ s,z + sb),s > —t.

Mit Hilfe der Kettenregel ergibt sich

disl/(s) = diiu(t + 8,2+ sb) = u(t + s,x + sb) + z211,%(15 + s,x + sb)b; = 0,

wobei wir (3) in der letzten Gleichung verwendet haben.

Daraus folgt:

v(s) =u(t + s,x + sb) = const Vs> —t.

5

Das heiBit: Der Wert u(t,x) wird entlang der Linie (¢t + s,z + sb), s > —t
durch (t,x) transportiert.
Daher gilt, wenn ein u € C*((0,00) x R") N C((0,00) x R") zusiitzlich zu (4)
auch die Bedingung u(0,z) = up(z) Vr € R™ mit den Daten uy € C*(R")
erfiillt, dann erhalten wir:

u(t,z) = u(0,x —tb) = up(x — tb) V(t,x) € (0,00) x R™. (5)
Dies fiihrt uns zu folgendem Resultat:
Theorem 1: Wenn man die Gleichung u; + bDu = 0 mit konstanten Koeffizi-
enten b € R™ betrachtet, gelten folgende zwei Behauptungen:

(a) Ist u eine klassische Losung von (4), dann erfiillt diese Losung die Glei-
chung:

u(t + s,z + sb) = const,s > -t V(t,z) € (0,00) x R". (6)

(b) Seien uy € C'(R") gegebene Daten (Anfangswerte). Dann hat das An-
fangswertproblem

u +bDu = 0 auf (0,00) x R 7
uw(0,z) = wup(x) Ve € R"

eine eindeutige Losung u € C'((u, 00) x R?) N C((0, 00) x R7), die durch
u(t, z) = uo(x —tb), (t,z) € (0,00) x R"
gegeben ist.
Beweis:
(a) Wurde bereits gezeigt.
(b) Eindeutigkeit:

Wie wir schon gezeigt haben, erfiillt jede klassische Losung von (7) die
Gleichung u(t, z) = w;(z — tb) Fiir diese Gleichung ist u eindeutig.

Existenz:

Sei u definiert durch u(t,z) = w;(x — tb). Da uy € CHR") ist, gilt:
u € C'((u,00) x R") N C((0,00) x R™). Weiters erfiillt u u(0, z) = ug(z)

und wir haben:
w(t,x) = —=b- Dug(x — tb), und Du(t,x) = Dug(xz — tb).

Dies zeigt, dass u; +b- Du = 0.

2. Der inhomogene Fall

Wir betrachten nun das allgemeine inhomogene Problem:

u+b-Du = f auf (0,00) x R” (8)
w(0,-) = wg auf R™

wobei f € C'((0,00) x R™).

Wie vorhin, ist die linke Seite in (8) die Ableitung in Richtung (1,)”. Daher
erfiilllt die Funktion v(s) := u(t + s,z + sb),s > —t fiir jeden Punkt (¢,z) €
(0,00) x R™ die Gleichung

(s) = us(t + s,z + sb) —I—Zuxi(t%—s,xjtsb)bi = f(t+ s,z +sb). (9)

—v
ds
i=1

Integration von (9) fir s € [—t, 0] ergibt mit (8)

u(t, z)—ug(x—tb) = v(0)—v(—t) = /_tf(t—i-s,a:—{—sb)ds = /Otf(s,x—l—(s—t)b)ds.
(10)

Daraus folgt das folgende Theorem:

Theorem 2:
Fiir alle b € R", f € C'((0,00) x R™) und ug € C*(R") hat das Problem

u+b-Du = f auf (0,00) x R”
u(0, -) U auf R"

eine klassische Losung u € C((u, 00) x R*) N C((0,00) x R"), die gegeben ist
durch:

u(t, z) = ug(x — tb) + /0 f(s,z+ (s —t)b)ds, (t,x) € (0,00) x R" (11)

Beweis:

Eindeutigkeit:

Wir haben gezeigt, dass jede klassische Losung u von (8) die Gleichung (10),
und somit auch (11) erfiillt. Daher bietet (11) die eindeutige Losung von (8)
und (10).

Existenz:

Es seien f € C1((0,00) x R") und ug € C'(R"). Das u in (11) ist offensichtlich
€ C'((u,0) x R") N C((0,00) x R™) und erfiillt (8).

Weiters haben wir:

ug = —b- Dug(x — tb) + f(t,x) — /tb~Dxf(s,a:—|— (s —t)b)ds
0

t
Du(t,z) = Dug(z — tb) + / D, f(s,x + (s —t)b)ds
0
und daher gilt u; + b - Du = f, wie notwendig.

Wir haben somt gezeigt:

e Wir konnen (8) in ein System von gewohnlichen Differentialgleichungen
umwandeln. Diese Technik nennt man: 'Methode der Charakteristik’.

e Die Gleichung (11) macht auch Sinn fiir nicht-differenzierbare, ja sogar
unstetige Daten. Dies fithrt zu einer sinnvollen Definition der sogenannten
'schwachen Losungen’ fiir (8), welche eine Ausbreitung der Konzepts der
klassischen Losungen hin zum Fall der weniger regulédren Daten fiihrt.

5 Numerische Losung der Transportgleichung

Ein numerisches Verfahren zur Losung der Transportgleichung ist unumgénglich,
da man zwar in der Theorie exakte Losungen angeben kann, jedoch in der Praxis
Integrale auftreten konnen die nicht 16sbar sind. Also moéchten wir in diesem Ab-
schnitt zunéchst eine Losung approximieren, und diese Approximation dann auch
abschétzen, um eine bestimmte Genauigkeit der Losung zu erreichen.

1. Stabilitét
Zuerst analysieren wir die Transportgleichung;:

Poyplt = f iU
u = 0 auf oU (12)
u =g auf U x {t =0}

wobei b > 0 und OU_ = {x € U|b- v < 0}, was man {iblicherweise auch als
’boundary’ bezeichnet. Im Gegensatz dazu bezeichnet U, den ’outflow’.
Man kann also durch die Randbedingung sagen, wieviel hineinstrémt, aber
nicht wieviel herausstromt.

In einer Dimension gilt also: U = (0, 1) bzw. OU_ = {0} und somit U(0,¢) = 0.
Die Finite Differenzen Diskretisierung von (12) liefert:

m+1l_, m um u’.nl
i 4 i—

u; - Uy + b _h — f(x“tm)
ugt = 0 (13)
uo= g
Somit haben wir:
bot

m—41 m
u™ =+

@ = uty) = 0t (@i,)

Sei nun p = b%t und nehmen wir an, dass 0 < p < 1 ist, dann bezeichnet p die

COURANT-Number (garantiert die Stabilitit fiir dieses Schema)

Also gilt:

Daraus folgt:
< (U= | + pluiy |+ Stmaz| £
< (1 — p) maz;|u?| + p max;|u™ || + 6t max;| [
< max;|ul*| + 8t max;| f]
= maz;u™| < maz;|u| + 0t max |f;"] (14)

Definieren wir nun: [|u}*|| = mazo<i<y|u’|, dann gilt:
™ oo < Jlu™ lloo + SE1f (- tm) lloo

Mit Rekursion: [[u” o < [[10]|oe + Sons 0t £ (- tm) |l oo
also: mazi<ment U™]|oo < 110]loo + Sarg! S F (s t) [l

Somit haben wir die Stabilitéat fiir ot < % gezeigt.

. Fehlerabschitzung
Fiir die Fehlerabschéatzung fiir
el = u(wi, tym) — u;
haben wir
emtl _ em
2+ bD_el" =" 15
5t + €T el SOZ ()

Wobei aus der Taylor Entwicklung folgt:

ot = %(51582“ (i, Tm) + %bha% (s tm),

. o a
mit 7, € (ty, tims1) und & € (z;-1, ;)

Dann gilt:
m 1 b
| < 50tM; + 5hM,

92%u

0%u 9%u ’
Ot2)

Ox2

wobei M; = max,, |54 | und M, = mazx,,

also [l¢™ e < $M (0t + bh)
Wir definieren nun noch: M = max(M;, M,).

10

Jetzt wenden wir (14) auf (15) an und nehmen weiters an, dass
1]l = ma;|g(z:) — uo| = 0.

Dann gilt: mazi<m<n|e™||oo < 255(0t + bh) also:

MT
ma$1§m§M||u(-, tm) — UmHoo S T((St + bh) (16)

Somit ist der Fehler: 0 (§t + bh)

. System von Transportgleichungen

Sei A € R*** eine Matrix mit k reellen Eigenwerten {\;}¥ ; und k linear
unabhéngigen Eigenvektoren. Das System

ou ou
— +A—=0 u=(uy,...,u 17
ot T or u = (U,) (17)
ist hyperbolisch.

Unter diesen Voraussetzungen existiert eine nicht singulare Matrix P, sodass

PAP!' = D, wobei D eine Diagonalmatrix ist: D = diag(\;...\g).

) —1 ou
ﬁ(;(Pg)jLPAP& P% =0
5 (Pu) + D(3;)(Pu)
v = Pu

I
o

v v —
DY = 0
vy p A = 0 =1,k

Dies entspricht u; + bu, = 0; das heiit man hat hier mehrere Transportglei-
chungen.

ppln = f in U
u = 0 auf oU
g auf U x {t =0}

u =

us +bDu = f
u = 0

11

Abbildung 1: Kreis

du_ = {x € dulbv < 0}

Oty.....outflow

Man kann also sagen wieviel hineinstrémt, aber nicht weiviel herausstromt.
m+1__

Da= St 4 b=l = f (3t

=+ (B (U —) = Ot (@i, tm)

u =t COURANT Number (garantiert die Stabilitéit fiir dieses Schema)

M = — g 4 gl 4 St f(zi) 0<p <1

1

Jui" | (1= p) || + pelui™ | + 0t £
(1 — w) max;|ul™| + p maz;|ul™ ;| + ot maz;| f|

max;|ul*| + 6t maz;| f™]

IA A IA

= max|ul| < max;|u| + 5t max; |f"]

45" [|o0 = maz|u;"|
[u™ oo < [[u™lloo + SIS (-) lloo

Rekursiv: [[u™ oo < [tu?loo + Do O £ (4 tm) oo
- M1
mazi<men ||U" oo < HUOHOO + Zk;:o Ot f (s tm) oo

12

Abbildung 2: Raster

1. System von Transportgleichungen

Ju ou

—+A—=0 =

ot + O u (ulv 7uk)
AeRMF B I\, N\ €Ri=1,.. k Eigenwerte. Die k Eigenwerte sind
linear unabhéngig und es existiert eine Matrix P, die nicht singulér ist, mit
folgender Eigenschaft:
AP, P71, sodass PAP™! = D, mit D = diag(\, ... \¢)

5i(Pu) + PAP PG = 0

5(Pw) + D(Z)(Pw) = 0
v Pu

%+D% 0

Wi N = 0 i=1,..k

Dies entspricht u; + bu, = 0; das heiit man hat hier mehrere Transportglei-
chungen.

13

=i=0 N‘:ﬂ

Abbildung 3: x;

6 Unterschiedliche Ergebnisse numerischer Algo-
rithmen

6.1 Das Verfahren der Finiten Differenzen

Zur numerischen Ermittlung der Losung einer partiellen Differentialgleichung ver-
wendetn wir das Verfahren der Finiten Differenzen: Dabei wird ein Gitter iiber den
zu behandelnden Raum U C R gelegt. Dadurch wird erreicht, dass nur mehr mit
endlich vielen Werten gerechnet werden muss. Je feiner man das Netz wéhlt, das
heifit je kleiner die rdumliche Schrittweite Ax; gewéahlt wird, desto ndher wird die
numerische an der exakten Losung liegen.

Mit Hilfe der Taylor-Reihen-Entwicklung erhélt man eine Approximation der Ablei-
tungen:

1 1
wwip) = ul(@;) +u'(2) - h+ §u”<$z‘) +h* Eum(xz’) hP 4

u(ziy1) — u(z;)
h

1 1
= u'(z;) + §u”(m,~) -h+ gu'"(wi) Ch? 4.

u(Ziy1) — u(w;)

D+
v h

und in weiterer Folge kann man etwa % bzw. % durch die Funktionen DF bzw. di
ersetzen.

6.2 Losung mit Hilfe des Upwind-Verfahrens

Wir werden in der Folge das zweiparametrige Transportproblem

14

des dreidimensionalen Raums mit Hilfe der im vorigen Kapitel vorgestellten Metho-
de der Finiten Differenzen 16sen.

Zunéchst wihlen wir einen geeigneten Unterraum U,, der xy-Ebene des kartesischen
Normalkoordinatensystems. Fiir jeden Punkt dieses Raums Uy, ist die z-Koordinate
einer Ausgangsflaiche ® = f(x,y) definiert. In weiterer Folge wird ein Gitter tiber
Uy gelegt, die Gitterpunkte (z,y) definieren eine endliche Anzahl von Punkten
(x,y, f(x,y)) der Ausgangsfliche ® mit deren Hilfe die Losung der partiellen Diffe-
rentialgleichung approximiert wird.

Ersetzt man, wie im vorigen Kapitel vorgestellt, die partiellen Ableitungen in (18)
durch die Approximationen d;” bzw. D}, so erhiilt man:

bzw. fir t € [0, 7]
t+0t t t t
Ot it Uiy, — U
: L o =12 20
TR A v=14 (20)

Definiert man das fiir die Stabilitdt des Algorithmus wesentliche Verhéltnis p := %
erhélt man schliefllich nach kurzen Umformungen

ui ™ = f = pAi(ugsy —) (21)

Es ist also moéglich, mit Hilfe der fiir jede Koordinate entsprechenden 'rechten’ Part-
nerpunkte (— Upwindverfahren) die neuen Koordinaten eines Punktes nach einem
vorgegebenen Zeitintervall zu bestimmen.

Abbildung 4 zeigt die Lage bzw. Gestalt eines zu bewegenden Quaders zu angegebe-
nen Zeitpunkten. Dabei ist zu beachten, dass wir den Algorithmus so implementiert
haben, dass der bewegte Korper periodisch wiederkehrt und nicht verschwindet. Der
folgende Text zeigt den Source-Code des von uns implementierten Programms:

%hfunction [time]=trans_equ(u0,l,r,delta_x,delta_t,tmax,vers)
% Gruppe Transportgleichung, PDE, Februar 2004
pA

% Eingabeparameter:

15

houO......... Anfangsbedingung (Ausgangsfunktion)

h Lo inke Intervallgrenze

h1 linke Int 11lg

/3 S rechte Intervallgrenze

% delta_x....raeuumliche Schrittweite

% delta_t....zeitliche Schrittweite

% tmax....... Zeit, bis zu der iteriert wird

hovers....... gibt an, welche Diskretisierung verwendet werden soll
h

% Ausgabeparamter:

b time....... benoetigte CPU-time

u0 = ’quader’; 1 = 0.1; r = 10; delta_x = 0.1; delta_t = 0.05;
tmax = 10; vers = ’periodisch’; paus=0;

figure(l) time=cputime; t=0; p=delta_t / delta_x; weite=r-1;

gitter_x=l:delta_x:r; % Gitterpunktematrix
gitter_y=l:delta_x:r;

for i=1:length(gitter_x) % Startmatrix wird erstellt
for j=1:length(gitter_y)
valt(i,j)=feval(u0,gitter_x(i),gitter_y(j),weite);
end
end

vneu=valt; colormap(’winter’); surf(vneu); title(t);
axis([0,100,0,100,0,30]); pause(2); valt = valt;

% forward forward periodisch Diskretisierung
if vers==’periodisch’
while t<tmax
t =t + delta_t;

for i=1:length(gitter_x)
for j=1:length(gitter_y)
if i==length(gitter_x)
vneu(i,j)=valt(i,j)+px(valt(1l,j)-valt(i,j));
else

16

vneu(i,j) = valt(i,j) + px(valt(i+1l,j) - valt(i,j));
end
end
end

valt=vneu;

for i=1:length(gitter_x)
for j=1:length(gitter_y)
if j==length(gitter_y)
vneu(i,j)=valt(i,j)+px(valt(i,1)-valt(i,j));

else
vneu(i,j) = valt(i,j) + px(valt(i,j+1) - valt(i,j));
end
end
end

valt=vneu;

surf (valt);

title(t);
axis([0,100,0,100,0,30]) ;

pause (paus) ;
end

end

time=cputime-time;

Wie man nur unschwer erkennen kann, ist dieser Algorithmus nur eingeschrankt
verwendbar, da sich der zu bewegende Korper bereits nach kurzer Zeit sehr stark
verformt, was nicht unbedingt dem erwarteten Ergebnis eines Transports entspricht.
Auflerdem ist der Algortithmus nicht fiir beliebige Werte stabil und in Abbildung
ist ein solcher Fall dargestellt.

17

7 TVD (Total variation diminishing) Verfahren

Wie man in unserer Graphik sehen kann, liefert das Upwind Verfahren schon nach
kurzer Zeit einen grofien Fehler. Um den geringer zu halten kann man das TVD
Verfahren verwenden. Das TVD Verfahren braucht dafiir um einiges mehr an Rech-
nerleistung.

umt — b 1 1 X0 s)
1 7 _ 1 - + - L .
5t 5T Xry) = g — i)
)
mit rr—= (Uig1 — Ui)7 rt = (u; — ui—1)

3w —) =2 (u—1 — ui—2)
und x(r) = mazx[0, min(2r, 1), min(r,2)]
Der folgende Text zeigt den Source-Code des von uns implementierten Programms:

% TVD - Verfahren periodisch

% Gruppe Transportgleichung, PDE, Februar 2004

h

% Eingabeparameter:

houO......... Anfangsbedingung (Ausgangsfunktion)
Y/ linke Intervallgrenze

hrooooo.. rechte Intervallgrenze

% delta_x....raeuumliche Schrittweite

% delta_t....zeitliche Schrittweite

% tmax....... Zeit, bis zu der iteriert wird

h vers....... gibt an, welche Diskretisierung verwendet werden soll
b

% Ausgabeparamter:

% time....... benoetigte CPU-time

u0 = ’quader’; 1 = 0.1; r = 10; delta_x = 0.1; delta_t = 0.05;
tmax = 0.4;

figure(1)
bx=1;
by=1;

18

t=0;
p=delta_t / delta_x;
weite=r-1;

gitter_x=l:delta_x:r; % Gitterpunktematrix
gitter_y=l:delta_x:r;

for i=1:length(gitter_x) % Startmatrix wird erstellt
for j=1l:length(gitter_y)
valt(i,j)=feval(u0,gitter_x(i),gitter_y(j),weite);
end
end

vneu=valt; colormap(’winter’); surf(vneu); title(t);
axis([0,100,0,100,0,30]); pause(0); valt = valt; dieter=0;

% TVD - Scheme
while t<tmax
t =t + delta_t;

for i=1:(length(gitter_x))
for j=1:(length(gitter_y))

if i==
rpim12=(valt(i+1,j)-valt(i,j)) / (0.00001 + valt(i,j)-
valt(length(gitter_x),j));
rpim32=(valt (i, j)-valt(length(gitter_x),j)) / (0.00001 +
valt(length(gitter_x),j)-valt((length(gitter_x)-1),j));

vneu(i,j)=valt(i,j)-delta_t/delta_x * bx*(1+1/2*chi(rpiml2)-
1/2%chi(rpim32)/(rpim32 + 0.00001)) * (valt(i,j)-valt(length(gitter_x),j));

else
if i==
rpim12=(valt(i+1,j)-valt(i,j)) / (0.00001 + valt(i,j)-valt(i-1,j));
rpim32=(valt(i,j)-valt(i-1,j)) / (0.00001 + valt(i-1,j)
-valt(length(gitter_x),j));

19

vneu(i,j)=valt(i,j)-delta_t/delta_x * bx*(1+1/2*chi(rpiml2)
-1/2*chi(rpim32) /(rpim32 + 0.00001)) * (valt(i,j)-valt(i-1,3j));

else

if i==(length(gitter_x))

rpim12=(valt(1,j)-valt(i,j)) / (0.00001 + valt(i,j)-valt(i-1,j));
rpim32=(valt(i,j)-valt(i-1,j)) / (0.00001 + valt(i-1,j)-valt(i-2,3));

vneu(i,j)=valt(i,j)-delta_t/delta_x * bx*(1+1/2xchi(rpiml2)
-1/2*%chi(rpim32) /(rpim32 + 0.00001)) * (valt(i,j)-valt(i-1,3j));

else
rpim12=(valt(i+1,j)-valt(i,j)) / (0.00001 + valt(i,j)-valt(i-1,j));
rpim32=(valt(i,j)-valt(i-1,j)) / (0.00001 + valt(i-1,j)-valt(i-2,3));

vneu(i,j)=valt(i,j)-delta_t/delta_x * bx*(1+1/2*chi(rpiml2)
-1/2*chi(rpim32) /(rpim32 + 0.00001)) * (valt(i,j)-valt(i-1,3j));

end
end
end
end
end
valt=vneu;

for i=1:(length(gitter_x))
for j=1:(length(gitter_y))
if j==
rpim12=(valt(i,j+1)-valt(i,j)) / (0.00001 + valt(i,j)
-valt(i,length(gitter_y)));
rpim32=(valt(i,j)-valt(i,length(gitter_y))) / (0.00001 + valt(i,length(gitter_y))
-valt (i, (length(gitter_y)-1)));

20

vneu(i, j)=valt(i,j)-delta_t/delta_x * by*(1+1/2*chi(rpiml2)
-1/2*xchi(rpim32) /(rpim32 + 0.00001)) * (valt(i,j)-valt(i,length(gitter_y)));

else

if j==

rpimi12=(valt(i,j+1)-valt(i,j)) / (0.00001 + valt(i,j)-valt(i,j-1));
rpim32=(valt(i,j)-valt(i,j-1)) / (0.00001 + valt(i,j-1)-valt(i,length(gitter_y)));

vneu(i,j)=valt(i,j)-delta_t/delta_x * by*(1+1/2xchi(rpiml2)
-1/2%chi(rpim32)/(rpim32 + 0.00001)) * (valt(i,j)-valt(i,j-1));

else

if j==length(gitter_y)

rpimi2=(valt(i,1)-valt(i,j)) / (0.00001 + valt(i,j)-valt(i,j-1));
rpim32=(valt(i, j)-valt(i,j-1)) / (0.00001 + valt(i,j-1)-valt(i,j-2));

vneu(i,j)=valt(i,j)-delta_t/delta_x * by*(1+1/2xchi(rpiml2)
-1/2*chi(rpim32)/(rpim32 + 0.00001)) * (valt(i,j)-valt(i,j-1));

else
rpim12=(valt (i, j+1)-valt(i,j)) / (0.00001 + valt(i,j)-valt(i,j-1));
rpim32=(valt (i, j)-valt(i,j-1)) / (0.00001 + valt(i,j-1)-valt(i,j-2));

vneu(i,j)=valt(i,j)-delta_t/delta_x * by*(1+1/2%chi(rpiml2)
-1/2%chi(rpim32) /(rpim32 + 0.00001)) * (valt(i,j)-valt(i,j-1));

end
end

end
end
end

21

valt=vneu;
colormap=(’winter’);

surf (valt);

title(t);
axis([0,100,0,100,0,30]) ;

end

Die Funtion chi:

function [chi]=chivon(r)
a=[2*r,1]; b=[r,2];
mi=min(a); m2=min(b);
c=[0,m1,m2];

chi=max(c);

Die Anfangsbedingungen werden werden in diesem Fall iiber die Funktion 'quader’
geladen:

function [fij]l=quader(i,j,1)
fij = 0;

if i >1 % 0.3
if i <1 % 0.6
if j >1 x0.4
if j <1 0.7
fij = 30; % é&ndern, verallgemeinern
end
end
end
end

Wie man in den folgenden Graphiken sehen kann, ist die Glittung bzw. der nume-
rische Fehler wesentlich kleiner.

22

8 Berechnung des Fehlers

Um das Verhalten des Fehlers beziiglich der verschiedenen Verfahren, Zeitschritten
und Gitterschritten zu beobachten, haben wir ein kleines Programm geschrieben,
das die Werte der Transportgleichung berechnet und haben sie mit den numerisch
berechneten Werten verglichen.

Verfahren | § x ot Zeitpunkt | Fehler (Maximumsnorm)
wpwind | 01 | 0,05 0,1 0,0070
upwind 0,05 | 0,025 0,1 0,0051
upwind | 0,025 | 0,0125 0,1 0,0037
upwind 0,1 0,05 0,3 0,0013
upwind 0,05 | 0,025 0,3 0,0009
upwind | 0,025 | 0,0125 0,3 0,0006

TVD 0,1 0,05 0,1 0,0012
TVD 0,05 | 0,025 0,1 0,0006
TVD 0,025 | 0,0125 0,1 0,0004
T™VD | 01 | 005 0,3 0,0032
TVD 0,05 | 0,025 0,3 0,0028
TVD 0,025 | 0,0125 0,3 0,0018

23

\\\ :
24

Abbildung 4: Quader wird transportiert

20.0 30.0

100

a0

25

Abbildung 5: TVD Quader wird transportiert

