A (conditional) Generative Adversarial Network

Bastian Dittrich*

October 11, 2021

Abstract

In this report a Generative Adversarial Network (GAN) and a conditional Gen-
erative Adversarial Network (cGAN) are implemented with PyTorch and trained
on MNIST and FashionMNIST. One focus is on explaining the implementation to
give the reader some guidance in trying to implement their own GAN-project. In
this context some tips and tricks from the literature are mentioned and evaluated
through the experiments and tests within this project with the evaluation measures
GAN-test and GAN-train.

1 Introduction

Machine Learning is one of the hot topics of todays research. One of its main big
successes are the so called discriminative models which map high-dimensional data
like pictures to low-dimensional data like words or numbers. The perhaps most
popular version might be a classifier which sorts pictures into predefined classes like
‘tree’, ‘cat’, ‘dog’, ‘house’ etc. [23]. For a small number of classes which look very
different, like dog and table, this is a very easy task for a classifier but for a huge
number of partly similar looking classes this can be very hard. Popular databases
for classification or other machine learning tasks are for example Cifar10/Cifar100
[22] and ImageNet [I].

In practice one often struggles to find enough data to train a classifier, i.e. with
medical images [2I]. The approach to increase the number of data is called data
augmentation. One main technique is to slightly change the data one has, i.e.
rotating a picture, changing some pixels etc. [23].

In 2014 Ian Goodfellow et al. [I4] proposed a network structure which was not
explicitly built for data augmentation but can be very well used for it, e.g. [5]. The
network they invented is the so called Generative Adversarial Network (GAN), a
pair of two networks working against each other. The goal of the first network, the
generator, is to imitate data of the given data set while the second network, the
discriminator, tries to distinguish between the fake data of the generator and the
real data from the data set, hence the discriminator is a classifier with the two given
classes real and fake.

During the learning process the generator tries to fool the discriminator into classi-
fying the generated data as real while the discriminator continuously learns to differ

*Universitat Wiirzburg, bastian.dittrich@stud-mail.uni-wuerzburg.de, Project for the AG “Theory and
Implementation of Deep Learning Algorithms”, Supervisor: Prof. Dr. Alfio Borzi. All codes are available
at: https://github.com/b-dittrich/cGAN

mailto: bastian.dittrich@stud-mail.uni-wuerzburg.de
https://github.com/b-dittrich/cGAN

between fake and real data. One difficulty lies in balancing the training process
such that they rise together during training and in the end it would be the ideal
case that the generator produces indistinguishable but new fake data.

Besides data augmentation this network structure has many different possible

applications, i.e. generating music [10] or art [I1], completing pictures, generating
all kind of fake data like photo-realistic portraits of non-existing humans, etc. [§],
the examples are nearly endless.
Due to the wide variety of applications in the following years this approach gained
huge popularity and many different kinds of GANs were proposed (overview of
some selected: [9]). Today this is "one of the most popular method[s| for generating
images" [32], which does not mean it does not have problems. I will discuss some of
them and explain how I tried to solve them in my implementation.

In this report I first explain in section [2] the structure of a GAN as well as of a
cGAN, a slight modification of the original GAN structure. After that I describe
in section [3| the basis of my experiments hence which data set I use and why, how
I evaluate my experiments and how I choose my hyperparameters. Additionally
I mention some problems that occurred to me during training a GAN and how I
tried to solve them. In section [4] I walk you through the most important parts of a
GAN implementation trying to give some indication. Lastly in section [5] I evaluate
different GAN- but mainly ¢GAN-models based on the measures ‘GAN-test’ and
‘GAN-train’.

In this paper I am not going to reach state-of-the-art performance but will give
an insight into working with GANs as sort of proof of the concept and hopefully
motivate the reader to implement their own GAN-project.

2 What is a (c)GAN?
2.1 GAN

A GAN consists of the two networks generator G and discriminator D. In one
training step (with batch-size=1) a random input is fed into the generator and
processed by the layers of the generator to produce an output which is called fake
data, see Figure Il Then this fake data, which in my case is one image, is fed into
the discriminator and is processed by the layers to produce an output between 0
and 1. 0 stands for fake and 1 stands for real, hence the output can be interpreted
as the certainty of the discriminator that the data is fake (closer to zero) or real
(closer to 1).

Additionally for each fake data one real data piece from the data set the generator
has to imitate is fed directly into the discriminator and gives another output between
0 and 1. With these two numbers the standard backpropagation-algorithm can be
used to determine the weight updates for the generator and the discriminator by

Generator
Loss
Real o e Value between label 1 Discriminato
D::f data > Diseniminator - —— 5 o1 (real)@

Figure 1: Structure of a GAN.

Random Fake e Value between |abel 1
input — Generator —> diita — Discriminator _>0(fake),1 (real

2.2

cGAN

Figure 2: Functionparts of the gener-
ator and discriminator loss. Relevant
is only the interval [0, 1], because the
output of the discriminator is always
in this interval. T 0 1 2

calculating the respective loss functions. The loss for the generator (GLoss) and for
the discriminator (DLoss) are defined by

GLoss(z) = —log(D(G(z))
DLoss(z, z) = —log(D(z)) —log(1 — D(G(%))),

where x is some real data and z is some random input, cf. [13].

The motivation of these loss functions is simple: As the generator G has to fool
the discriminator D into classifying the fake data as real its goal is D(G(z)) = 1
which is equivalent to minimizing GLoss(z), see Figure
The loss for the discriminator consists of two parts because he has to perform on
two different data. Minimizing the first part is equivalent to the goal of getting
D(z) = 1 which corresponds to classifying the real data x as real, while minimizing
the second part is equivalent to the goal 1 — D(G(z)) = 1 respectively D(G(z)) = 0,
see Figure 2, which corresponds to classifying the fake data G(z) as fake.

It can be seen relatively easy, that the loss functions can be written with the
Binary-Cross-Entropy-Loss

BCE(y, d) = —dlog(y) — (1 — d)log(1 — y),

where y is the output of a network and d its target label [19]. As the discriminator
is a classifier for real and fake data in our case d can be 0 or 1. For GLoss we have
fake data but the goal of the generator is to get the fake data classified as real hence
the target label is 1. This leads to

GLoss(z) = —log(D(G(z)) = —1 -log(D(G(z)) — 0 = BCE(D(G(2)),1).

For DLoss this works analogously but there are now two parts. At first we have real
data which the discriminator wants to classify as real and secondly fake data which
the discriminator wants to classify as fake. This leads to

DLoss(z, z) = —log(D(z)) —log(1 — D(G(z))) = BCE(D(z),1) + BCE(D(G(2)),0).

2.2 cGAN

A cGAN is a simple modification of a GAN and was introduced shortly after the
GAN by Mirza and Osindero [27]. It just uses labels too, hence the generator
in the end does not only generate fake representatives of the data set but fake
representatives of specific classes.

Random

input Fake o \alue between label 1 Generator
REfdoH Generator O Discriminator | —— (fake),1 (real

Real

data o Value between label 1 Discriminato
Data set . —> Discriminator — 0 (fake) 1 (real)@
label

Figure 3: Structure of a cGAN.

For this purpose additionally to the random input a random (or fixed) label is fed
into the generator to produce fake data related to this label, see Figure Then
both the fake data and the label are given to the discriminator to decide if it is real
or fake. Obviously now besides real data the label from the data set belonging to
this real data is given to the discriminator.

Practically the loss functions are the same as for the GAN, but theoretically
written they now depend on the labels y, of the random input and ¥, of the real
data too:

GLoss(z,y,) = —log(D(G(z,y.),yz)
DLoss(x, 2, Yz, y.) = — log(D(x,y,)) — log(1 — D(G(z,92),y.)),

These loss functions can be written in form of the Binary-Cross-Entropy in the same
way as for the GAN.

3 Setting of the Experiments
3.1 The Real Data

Most of the experiments in this report are done with MNIST [25], which consists of
pictures of handwritten digits, hence 10 classes, and is the most standard data set
for machine learning often used as a benchmark and is easy to handle [34]. As I do
this project without a GPU it is important to have comparably small data which
MNIST perfectly fits.

It contains 70.000 (splitted in 60.000 for training and 10.000 for testing) greyscale
pictures with 28x28 pixels. Since a main problem of MNIST is that it is very easy
for todays neural networks I use FashionMNIST too which was built to lessen this
issue [34], [30]. It has the exact same structure as MNIST, but contains pictures of
shoes, T-shirts etc., which makes it perfect to use with MNIST because one does
not have to change any parameters but has significantly more complex pictures [34].

3.2 The Evaluation

Evaluating a GAN is one problem of this network structure and is discussed in many
papers, i.e. [32], [7], [6], [26], [24]. There are many different measures that were
proposed from which the most popular ones may be the Inception score (IS) and
the Frechet-Inception-Distance (FID) with their variants, but nevertheless of the
popularity they get criticized a lot for not measuring different aspects of a GAN
like diversity and quality of the data well [7], [32], [26], [6], [24]. Additionally the
computation is comparably expensive which does not fit my equipment.

3.3 Problems and Possible Solutions

The evaluation strategy proposed by Shmelkov et al. [32] gives a good insight
in diversity and quality of the generated data which is why I choose this measure.
They recommend to determine the two numbers GAN-test and GAN-train with an
external classifier.

GAN-train is the accuracy of the external classifier trained on the fake data produced
by the generator and tested on real data. If the accuracy is significantly lower than
the accuracy of the classifier on real data trained on real data that means that the
fake data can not train the classifier well enough to have a good performance on
real data hence the fake data does not represent the real data well. This can be
due to lack of diversity in the produced fake data or the fake data not being similar
enough to real data, cf. [32].

GAN-test is the accuracy of a classifier trained on the real data and tested on the
fake data produced by the generator. This accuracy can measure how close the
fake data is to the real data regarding the quality. If the accuracy of the classifier
is significantly lower than on the real data the fake data lacks in quality because
to the classifier they have few similarity. If the accuracy is significantly higher the
generator did only ‘copy’ some of the real data hence overfitted, cf. [32].

Therefore regarding both measures the GAN is better the closer GAN-train and
GAN-test are to the accuracy of the classifier trained and tested on real data. As
a proof of concept Shmelkov et al. [32] showed on the MNIST data set that it is
possible to train a GAN such that it scores what you can name perfect in both GAN-
train and GAN-test. A model like this would hence be perfect for data augmentation
because it can generate data that is indistinguishable from the real data and not
identical to the real data hence can actually enlarge the data set.

One disadvantage of this evaluation procedure is that one needs to have labels

for the generated data as the accuracy of the external classifier is decisive. Hence it
is literally not possible to evaluate a GAN with this measure but at least a cGAN
is needed.
In section [5] I evaluate my ¢cGAN models with GAN-test and GAN-train, for which
I implemented an additional classifier. Obviously the comparison to other reports
and papers is not possible unless they used the same external classifier. As I do not
want to implement a state-of-the-art model and compare to others’ performances
but only compare my different models this is not a problem. Of course in general
this is another disadvantage of this evaluation procedure.

3.3 Problems and Possible Solutions

In this subsection I will shortly explain some more or less typical problems when
working with GANs and roughly present my solution approaches in this very special
case.

For the cGAN evaluation in section [f|I first implemented a fully-connected classifier
similar to the discriminator in the cGAN reaching about 97% accuracy on MNIST.
When determining GAN-test and GAN-train it turns out classifying nearly ev-
erything as one number (mostly 5, 4 or 3) resulting in GAN-test and GAN-train
accuracies of 9% to 20%. As this is not consistent with human eye perception, it
seems that the classifier does not recognize the shape of the digits but only uses a
few pixel values for classification which the cGAN accidentally sets similar for all
classes.

This possibly demonstrates a problem both of fully-connected neural networks for
image classification and MNIST. MNIST seems to be classifiable by a few pixel val-
ues [12] and especially by fully-connected neural networks, which only use the pixel

3.4

The Base Model

values and not the structure of the picture like convolutional neural networks. It
may be possible to adapt and tune the fully-connected classifier to generalize bet-
ter and solve this problem another way but implementing a convolutional external
classifier for this purpose solved the problem for me.

A typical problem of GANSs is called mode collaps. It describes the szenario
that the generator has very few diversity in its outputs and hence produces only
a few modes of the real data. For the MNIST case this would be if e.g. every 5
the generator produces mainly looks the same. In the worst case it outputs just
one picture per class every time. The reasons for this problem are not very well
understood [I3] which results in that there is no unique solution formula when this
problem shows up.

Mode collaps occurred to me when adding labels to my GAN structure hence when
implementing my first cGAN. This could possibly be expected because I was adding
new information (the label) to both generator and discriminator. Somehow it was
too much weight on this new information during training such that the generator
ended up mainly just taking the label and outputting nearly the same picture for
each class every time.

I solved this problem by using an idea by Isola et al. [I8] where they used dropout
and batch normalization in the generator even when not training it, see section
for more details. Other possible solutions could be to get more randomness into
the fake data generation or making the discriminators job harder by introducing
random noise into the layers of the generator [I6] or maybe having more random
input nodes.

Another problem I stumbled on is a PyTorch problem. There are mainly two pos-
sibilities to use dropout in a network: torch.nn.Dropout or torch.nn.functional.drop-
out. The by PyTorch predefined evaluation mode eval() is designed to turn off
layers like dropout and batch normalization during evaluation mode. This works
fine with torch.nn.Dropout but does NOT work with torch.nn.functional.dropout
which is not mentioned in the PyTorch documentation, cf. [4]. If one wants to use
torch.nn.functional.dropout one has to manually set the parameter training=False
when one wants to deactivate dropout.

3.4 The Base Model

Oriented at some models in the literature I choose some hyperparameters for the
GAN and the ¢cGAN I never change during my experiments, see Table Also
the basic architecture of the GAN and the cGAN stays roughly the same during
experiments and is explained in section [, see Figure [4]

Following [28], [9], [18], [29], [33], [13] I use the Adam optimizer [20] with $; = 0.5
[28], [9], [29], [33] and a learning rate of 0.0002 [28], [29], [33] and close to [9].
The parameter (1 influences the exponential moving average of the gradient of the
objective function [20]. Furthermore the batch-size is set to 100 [28], the scale for
the leaky ReLU activation function is defined as 0.2 [28], [18], [29] and the dropout
percentage is fixed to 0.5 [28], [27], [I8]. The scale for leaky ReLU sets the slope
for the line for negative values of the normal ReLLU activation function, hence for a
scale of 0 leaky ReLU and ReLU are the same function.

optimizer ‘ o5t ‘ learning rate ‘ batch size ‘ scale ‘ dropout
Adam |05 | 00002 | 100 | 02 | 05

Table 1: Fixed hyperparameters for every experiment.

4 Implementation

Only main points of the implementation of the GAN are explained in this sec-
tion. The complete implementation of the GAN as well as the cGAN and all other
necessary files and already trained models are attached to this report. All the
implementations are very basic and not designed to be as efficient as possible.

At first the hyperparameters of the GAN have to be set. Doing this right at the
top makes it easier to change them when you want to tune your parameters.
Then I load the data for which I used the datasets/dataloader of PyTorch. A
good explanation can be found in the tutorials [2]. There are some popular data
sets inbuilt like MNIST and FashionMNIST. The Dataloader just groups as many
tensors from the data as the batch size to one tensor. Another option is for example
that it shuffles the data each epoch which is not chosen here.

1 training data = datasets .MNIST(
2 root="data" ,

3 train=True,

4 download=True,

5 transform=ToTensor ()

6)

7

8 test_data = datasets .MNIST(

9 root="data",

10 train=False

11 download=True,

12 transform=ToTensor ()

13)

14

15 train_dataloader = DataLoader(training data, batch_size=

batch_size)
16 test_dataloader = DatalLoader(test_data, batch_size=
batch_size)

The weight initialization is done automatically by PyTorch too, but He et al. [I5]
proposed the now called Kaiming-Initialization for neural networks with mostly
ReLU-activation to prevent it from vanishing or exploding gradients. As I want to
use the leaky ReLLU activation function I use this weight initialization.

17 def init__weights(layer):
18 if type(layer) = nn.Linear:
19 torch.nn.init.kaiming normal (layer.weight)

Now I define the generator and the discriminator as classes, which are both fully-
connected neural networks. The very similar cGAN-architecture can be found in
Figure [4. The generator has 100 input nodes, which are mapped to 512 nodes with
leaky ReLU activation function. A second layer with 512 nodes and leaky ReLLU
activation function is then followed by the output-layer with 784 nodes and tanh
activation function. Alternatively one can use sigmoid activation function in the
output layer too, but experience of many implementations seems to propose tanh

for better results [28], [9], [I8], [29]. Additionally I add batch normalization and
dropout, which is suggested for better results [28], [9], [27], [18], [29], [13], [17].

20 class Gen(nn.Module):

21 def __init__ (self):

22 super (Gen, self).__init__ ()

23 self.architecture = nn.Sequential (
24 nn. Linear (100, 512),

25 nn . BatchNorm1d (512) ,

26 nn.LeakyReLU(scale) ,

27 nn . Dropout (p=pDropout) ,

28 nn. Linear (512, 512),

29 nn . BatchNorm1d (512) ,

30 nn.LeakyReLU(scale) ,

31 nn . Dropout (p=pDropout) ,

32 nn. Linear (512, 784),

33 nn . BatchNorm1d (784) ,

34 nn . Tanh ()

35)

36

37 def forward(self, input):

38 output = self.architecture (input)
39 return output

Now as I defined the class Gen for the generator I have to define one instance of
this class to which I apply the predefined weight initialization. If one wants to use
the automatic initialization from PyTorch one can omit the second line.

40 G = Gen()
41 G.apply(init__weights)

The discriminator has 784 nodes as inputs which are mapped to 512 nodes with,
like in the generator, leaky ReLLU activation. After a second 512 node leaky ReLLU
layer there is only one output node with sigmoid activation. I use dropout in the
discriminator as well but no batch normalization. As for the generator I create one
instance of this class and apply the Kaiming initialization.

42 class Dis(nn.Module):

43 def __init__ (self):

44 super (Dis, self).__init__ ()

45 self.flatten = nn.Flatten ()

46 self.architecture = nn.Sequential (
47 nn. Linear (784, 512),

48 nn.LeakyReLU(scale) ,

49 nn . Dropout (p=pDropout) ,

50 nn. Linear (512, 512),

51 nn.LeakyReLU(scale) ,

52 nn . Dropout (p=pDropout) ,

53 nn. Linear (512, 1),

54 nn. Sigmoid ()

55)

56

57 def forward(self, input):

58 input = self.flatten (input)

59 output = self.architecture (input)
60 return output

61

62 D = Dis ()
63 D.apply(init_weights)

The reason why there are 784 nodes is that I will train the GAN on MNIST-
and FashionMNIST-dataset which contains pictures with 28x28 pixels, hence 784
numbers. The numbers 100 for the input size of the generator and 512 for the
size of the hidden layers can be changed/tuned if wanted but were used about this
size in other implementations [27], [9], [29]. As the discriminator has to distinguish
between real and fake images there is only one output here. The sigmoid activation
function takes care of the scaling between 0 and 1.

Generator Discriminator
e B
. 1) R
—
< ©
100
£ fe 784
—
10 fo
&L
fc: fully-connected N
Leaky ReLU
Tanh 10
Sigmoid

Figure 4: Basic architecture of my ¢cGAN. I use one hot encoding for the labels which explains
the input dimension. The GAN-architecture is the same except that there is no label input for
G and D such that the first hidden layer is normally fully-connected with 512 nodes. Only some
details of this architecture get changed during the experiments.

Next I choose the optimizer for the training. As previously discussed I use the
Adam-optimizer for both generator and discriminator with 81 = 0.5; 82 = 0.999 is
the default setting.

64 G_optimizer = torch.optim.Adam(G. parameters(), lr=
learning_rate, betas=(0.5, 0.999))

65 D_optimizer = torch.optim.Adam(D.parameters(), lr=
learning_rate, betas=(0.5, 0.999))

The loss is simply implemented in form of the BCE-Loss as discussed previously.
Additionally a trick for training a GAN comes in at this point which is called one-
sided label smoothing or one-sided softlabel [13], [31I]. In case of the discriminator
the labels of the real data get lowered hence instead of 1 the label of a real image
is now for example 0.85. In this implementation it is a random number between 1
and 0.85. One-sided label smoothing has the effect that the discriminator learns to
be not so sure about classifying real data as real [I3]. In section I show in my
special case that this could indeed have a positive effect on GAN performance.

66 BCELoss = nn.BCELoss ()

67

68 def GenLoss(fake_perc):

69 real_label = torch.ones(batch_size, 1, dtype=torch. float

70 loss = BCELoss(fake_perc, real_label)

71 return loss

72

73 def DisLoss(real perc, fake_ perc):

74 real_label = torch.ones(batch_size, 1, dtype=torch. float
) — softlabel % torch.rand(batch_size, 1, dtype=torch
.float)

75 fake label = torch.zeros(batch_size, 1, dtype=torch.
float)

76 loss = BCELoss(real perc, real label) + BCELoss(
fake perc, fake_ label)

7 return loss

Now I implement the training loop for the GAN in which I iterate through the whole
given data set respectively the real data. Because I use the tanh activation function
in the generator and this function has the range | — 1, 1[I have to rescale the real
data to this range too. As the pixels of the pictures in MNIST and FashionMNIST
are scaled between 0 and 1 the given code satisfies this goal.

78 def TrainingLoop(dataloader, D, G, epoch):
79 for real data, _ in dataloader:
80 real data = 2xreal data — 1

A general thing which should not be forgotten is the command zero__grad() which
prevents PyTorch to average over the history of the gradients which is default [3].

81 D.zero_grad ()

So at first I evaluate the discriminator on real data. Then I let the generator produce
fake data out of random input and evaluate the discriminator on this fake data. Out
of these I compute the loss of the discriminator with which I do a backward pass
and the optimization step.

82 D_real = D(real data)

83

84 x_rand = torch.randn(batch_size, 100, dtype=torch.
float)

85 fake data = G(x_rand)

86 D_fake = D(fake_ data)

87 D_loss = DisLoss(D_real, D_fake)

88

89 D_loss.backward ()

90 D_optimizer.step ()

For the generator do not forget zero grad() and then do analogous steps. Take
random input and let the generator produce fake data, evaluate the discriminator
on the fake data, compute the loss for the generator, do the backward pass and
optimize.

91 G.zero_grad ()

92 x_rand = torch.randn(batch_size, 100, dtype=torch.
float)

93 fake data = G(x_rand)

10

94 D_fake = D(fake_data)

95 G_loss = GenLoss(D_ fake)
96

97 G_loss. backward ()

98 G_optimizer.step ()

For actually training the GAN I now just have to call the implemented functions in
each epoch. PyTorch has the predefined functions train() and eval() which set the
networks into train and evaluation mode. This has the effect that in evaluation mode
layers like dropout and batch normalization get deactivated because one normally
does not want them to be active when testing the already trained network. As
during generator training the discriminator is not trained one normally puts the
discriminator into evaluation mode and vice versa. In the next section I show that
it could be advantageous to change this, e.g. like here, based on [18].

99 for epoch in range(l, max_epochs + 1):

100 G.train ()

101 D.train ()

102 TrainingLoop (train_dataloader , D, G, epoch)
103 G.eval ()

104 D.eval()

105 TestLoop(test_dataloader, D, G, epoch)

5 Results

I determine the GAN-test accuracy as the average GAN-test accuracy of 10 runs
with the sample standard deviation. For the GAN-train accuracy the external
convolutional classifier is trained only once which gives only one accuracy on the
real data test set. It scores a 99.11% test-accuracy on MNIST. If not explicitly
mentioned otherwise the experiments were done with the MNIST data set.

5.1 GAN

Because the evaluation method with GAN-test and GAN-train requires labels there
were not done many experiments with the GAN-architecture. In Table[2]an overview
about some experiments with their settings is given while the Figures [}, [6] [7] and
show the outputs of these GAN-models.

The output of the model 1 is not shown here because this model does not learn
to output more than black background with some noise on it. The reason possibly
is that after about one third of the training process the discriminator manages to
classify nearly every fake and real data right giving the generator nothing to learn
from.

Putting the generator in evaluation mode for image generation has a positive effect
on the smoothness of the generated numbers but also makes the images a bit blurry
compared to Figure [5] Comparing Figure [6] and [7] training the discriminator twice
seems to improve quality of the images while there seems to be no big difference
between random input from a normal or uniform distribution, cf. Figures [7]
Overall it seems that the GAN develops a favor for certain numbers. For example
in the Figures [6] and [7] especially the numbers 0 and 3 are overrepresented while in
Figure [§] this is the case for 0, 1 and 9. The sample size is of course too small but
it is definitely noticable that maybe more difficult numbers like a 4 appear hardly
ever.

11

5.2 cGAN

| prob. distr. | train D | D-training | G-training | image generation
1 normal once G.eval() D.eval() G.eval()
2 normal once G.train() D.eval() G.train()
3 normal once G.train() | D.train() G.eval()
4 normal twice G.train() | D.train() G.eval()
5 uniform twice G.train() | D.train() G.eval()

Table 2: Settings of the GAN-experiments. Each GAN was trained with the hyperparameters
epochs: 100, soft label: 0.15 + random.

Figure 7: Outputs of model 4. Figure 8: Outputs of model 5.

5.2 cGAN

No evaluation mode: A very interesting idea for training GANs was used by
Isola et al. in [I8] when they never put the generator in evaluation mode hence used
dropout and batch normalization at all times. I already used this method earlier
for training the GAN-model 2 but adapting this method by, inter alia, putting the
generator in evaluation mode for generating images after the training lead to better
results for the GAN.

From Table [3] it is very clear that using this technique for the ¢GAN does not
work and is leading to mode collaps, cf. GAN-test and GAN-train of model 6.
Additionally putting the generator in evaluation mode during discriminator training
leads to the same result as for the GAN. The reason is possibly the same too thus
the discriminator being too good, see Figures [J] and which does not allow the
generator to learn properly.

It is of course possible to solve this issue with other techniques but never putting
the generator in evaluation-mode (picking up the idea from Isola et al. [I8] again)
works kind of well for the cGAN and in my opinion has a positive effect on the

12

5.2 cGAN

| epochs | label | prob. distr. soft label eval()? | train D GAN-test GAN-train
6 100 64 normal 0.15 4+ random | GAN once 99.55 + 0.08% 55.29%
7 100 64 normal 0.15 + random Yes once 0.00 £+ 0.00% -

8 100 64 normal 0.15 + random No once 86.83 4 0.34% 91.70%
9 100 64 normal 0.15 4+ random No twice | 89.40 + 0.29% 94.49%
10 100 256 normal 0.15 + random No once 90.93 + 0.30% 92.94%
11 100 256 normal 0.15 + random No twice 92.54 + 0.30% 87.00%

Table 3: Experiments on never using eval(), the number of neurons in the first hidden layer
connected to the label and how often the discriminator is trained.

#: Model number; label: Number of nodes the input label gets mapped to in both G and D;
prob. distr.: Probability distribution the random input for G gets sampled from; eval()?: If the
generator gets set in evaluation mode during inference (GAN means using the technique from
training the GAN); train D: How often the discriminator gets trained per generator training.

1,04 I ‘i“n T 1.0 1.0 g | TV k' Trmpepee e 1.0
‘
s I s 1
T 08+ [08 & 08 il | i ‘ 08
8 8 U !
o 3 il | ‘
$ 06 Los & 06- Tl ‘)I‘ "' it ‘V “' AR o.6
c c A | L Al ‘
5 5 i n H"M«“ ‘Hlm'"
g 04 Loa & 04 i Il " ‘ m o..
LA —— model 7 ’ g ’ | I "
§ —— model 8 3
< 02 —— model 9 Loo < g, [T model7 los
’ ’ ’ —— model 8 ’
—— model 9
0,0 Loo 0,0 400
T T . T T r . T T .
0 10000 20000 30000 40000 50000 60000 0 10000 20000 30000 40000 50000 60000
step step

Figure 9: Discriminator performance of Figure 10: Discriminator performance of
models 7, 8 and 9 during training on fake models 7, 8 and 9 during training on real
data. data.

diversity of the images due to active dropout during inference.

Interestingly the model outputs higher quality numbers when dropout is reduced af-
terwards, see Figure even though it was trained completely with active dropout.
But on the other side this then leads to mode collaps, see Figure [I2] where the
diversity of the images is very small when dropout is completely deactivated.

Training D more often, cGAN architecture: Secondly it can be stated that
when training the discriminator only once having the label mapped to 256 nodes
instead of 64 leads to higher GAN-test and GAN-train accuracies indicating higher
quality and more diversity in the generated images, see Table [3] Interestingly the
effect of training the discriminator in the models twice instead of once is different.
While the 64-model improves in both GAN-test and GAN-train, indicating an over-
all better GAN-performance, the 256-model improves only in GAN-test while rather
drastically worsen in GAN-train. The improvement in GAN-test indicates that the
image quality increases, because the external Classifier performs better than before,
but the lower GAN-train accuracy indicates that the image diversity is poorer, be-
cause the external classifier can not learn to classify MNIST-digits that well based
on this generated data. Figures |13|and [14]illustrate that there is not much visual
difference compared to the relatively large difference in GAN-test and GAN-train.
As the only difference between these models is the number of nodes the label gets
mapped to it seems that in the 256 case there is more focus on the label resulting

13

5.2 cGAN

l

/
/
/
|

{

¢
[

I

{

(SEVEVS IR CRENPAREE
o O W) @ W W e
LitLtaLagwlfocg
in WA=
0q o 0g 00 Oy) ~u 29 O
DO D0 J0oW-D

o
!

2
3
o
s
[
7
4
9

DN e Iwu=0

DN st wa~0
DNl eyt wu~0

0
Q
0
(6]
o
O
0
o
(o)
0

Figure 11: Outputs of model 9. Starting Figure 12: Outputs of model 9 with deac-
from standard dropout percentage of 0.5 at tivated dropout (dropout percentage of 0).
the top row, the dropout percentage is re-
duced 0.05 each row till 0.05 at the bottom

row.

oboeOoOoDdODLS 0 CQUdROC
[SR AR A A A / S N Y A A
2432082032 3 222123
33357833332 c 3533%453
JAdI S Ly eY 5 y 4y g4y
SEr568555 § sr555E
bt élLbbbbbd b 4 e {64t ¢
"T7TT7TA772737 2 7 777277
yevyéisiez8g i} ye8587
74979989943 3 ¢9999a

Figure 13: Outputs of model 10. Figure 14: Outputs of model 11.

in a decrease in image diversity when the discriminator is trained twice and hence
has better performance during training.

Uniform vs. normal distribution: Sampling the random input from a uni-
form distribution instead of a normal distribution increases the GAN-test accuracy
slightly, see Table The GAN-train accuracy instead lowers quite considerably.
Judging overall GAN-performance it seems that the normal distribution is to be

preferred in this special case but this of course can depend on the intended goal for
which the cGAN is used.

‘ epochs ‘ label ‘ prob. distr. ‘ soft label ‘ eval()? ‘ train D ‘ GAN-test ‘ GAN-train ‘
9 100 64 normal 0.15 4+ random No twice 89.40 £ 0.29% 94.49%
12 100 64 uniform 0.15 4+ random No twice | 90.37 £ 0.22% 91.77%

Table 4: Using random input from a normal vs. a uniform probability distribution.

Whereas Tran et al. [33] state that the distribution the prior noise gets sampled
from “is often Uniform or Gaussian distribution” in my sources only [27], [29] and
[33] explicitly said that they used a uniform distribution. To my knowledge none of
my sources explicitly wrote that they were using a normal distribution and I found
nothing about how they reached this decision.

One-sided label smoothing: It seems that the one-sided label smoothing has
no or a very small positive effect on GAN-test as the accuracies increase steadily but

14

5.2

cGAN

very little the more the label gets lowered respectively the variable soft label gets
increased, see Table [5] Choosing the label as a random number between the original
label 1 and the smoothed label (here 0.85) seems to have no effect on GAN-test and
GAN-train in this setting. The changes in GAN-train depending on the value of
soft label are relatively big compared to GAN-test, where the highest GAN-train

accuracy was scored with softlabel = 0.15.

epochs | label

prob. distr.

soft label

eval()?

train D

GAN-test

GAN-train

13
14
15
16

Figure 15: Discriminator performance of
models 13 and 16 during training on fake

100
100
100
100
100

64
64
64
64
64

normal
normal
normal

normal

normal

0.15 4+ random

0.1
0.15
0.2

No
No
No
No
No

twice
twice
twice

twice

twice

89.40 £ 0.29%
89.31 £ 0.38%
89.69 + 0.29%
89.89 £+ 0.26%
90.04 £ 0.43%

94.49%
92.81%
93.76%
94.50%
92.83%

Accuracy on Fake Data

Table 5: Experiments on using one-sided label smoothing.

One effect of the label-smoothing is directly seen when looking at the discriminator
performance during training, see Figures [15] and Because of the huge variance
and the basically same development of the discriminator performance during train-
ing only two exemplary runs are shown. The difference in performance can, because
of the same development, well judged by looking at the average, see Table [6]

The more the original label gets lowered the better is the discriminator performance
on fake data and the poorer is the discriminator performance on real data. Adding
randomness seems to lower the performance on real data and increase the perfor-
mance on fake data, cf. models 9 and 15, whereas this changed nothing with respect
to GAN-test and GAN-train.

It is noticeable that the standard deviation of model 13 and especially 16 are big
compared to the other standard deviations. This means the accuracy of the external
convolutional classifier is relatively strongly fluctuating and hence the cGAN is not
as stable in generating good pictures as in the other models. Therefore it seems
that especially too much label smoothing but also no label smoothing destabilizes
the cGAN.

1,0 ~wymmyme

I ’MWM*‘IMﬂl'm.ﬁﬂ"rl*\l'ﬂ’lfwl’"W :

0,6 || 0,6

1,0 1,04

0,8

®

0,8+
0

1 W

—— model 13 — model 13
0211 model 16 02 02+ mode| 16

T T T T T i !
0 10000 20000 30000 40000 50000 60000 0 10000 20000 30000 40000 50000 60000
step step

Accuracy on Real Data
(]
1

Figure 16: Discriminator performance of
models 13 and 16 during training on real

data. data.

Tanh vs. sigmoid: Most papers in my sources use tanh activation function
in the output layer, e.g. [9], [28], [29] and [I8], but some use the sigmoid function,

15

5.2 cGAN

data | 9 (0.151) | 13 (-) | 14 (0.1) | 15 (0.15) | 16 (0.2)
84.29% | 79.43% | 85.66% | 88.87% | 92.02%
67.00% | 72.73% | 63.94% | 60.14% | 55.39%

real
fake

Table 6: Average discriminator performance of different model settings on fake and real data
during training. Next to the model number the value of the variable soft label is written.

e.g. [33], including Goodfellow et al. in [14] and Mirza, Osindero in [27], where
they originally introduced the GAN respectively the cGAN architecture. Especially
newer publications seem to use tanh more often which maybe is a good hint that
tanh works better in practice.

In my experiment tanh performs way better compared to sigmoid based on GAN-
train and GAN-test, see Table[7] But these numbers are a bit misleading. Looking at
the generated pictures and some example classifications of the external convolutional
classifier reveals that the main problem is the number seven and partly the eight.
Somehow the generator produces only pictures with a white background and some
black pixels for the label seven and about half of the pictures look like this for
the label eight. I can not explain why there is this problem with only these two
numbers.

The difference between the sigmoid and the
tanh function is that the tanh function is
closer to a step function than sigmoid, see T |
Figure and hence for numbers close to
zero the outputs are further apart than
for the sigmoid function. The effect that

the cGAN has problems with the numbers -05f 1

2*sigmoid(x)-1 tanh()

- sigmod(x) |-~
0,0 p-===7= 1

seven and eight remains unchanged if the

dropout percentage gets reduced for gen- .o i A S S T S

erating images afterwards. For the other T«
numbers the same effect as in Figure [11] for

Figure 17: For better comparison the
tanh is observed.

sigmoid function is rescaled.

‘ activ. ‘ label ‘ prob. distr. ‘ soft label ‘ eval()? ‘ train D ‘ GAN-test ‘ GAN-train ‘
9 tanh 64 normal 0.15 + random No twice | 89.40 + 0.29% 94.49%
17 | sigmoid 64 normal 0.15 4+ random No twice 75.50 + 0.63% 82.32%

Table 7: Having tanh activation function vs. sigmoid activation function in the output layer of
the generator. The epochs are set to 100 as in the last experiments. activ.: Activation function
of the last generator layer.

Number of epochs: Increasing the number of training epochs from 100 to 200
leads to an relatively clear improvement in GAN-test accuracy, see Table [§ while
GAN-train decreases only slightly which could also be due to stochastic reasons.
This can be interpreted as that the image quality increases while the image diversity
roughly stays the same. One has to mention that the difference in image quality is
not really visible by eye, see Figures [I§ and [I9} One possible explanation could be
that not really the quality of the pictures increases but that there are fewer really

16

5.2 cGAN
‘ epochs ‘ label ‘ prob. distr. ‘ soft label ‘ eval()? ‘ train D ‘ GAN-test ‘ GAN-train ‘
9 100 64 normal 0.15 4 random No twice | 89.40 £ 0.29% 94.49%
18 200 64 normal 0.15 4 random No twice | 93.04 £ 0.20% 93.99%
Table 8: Effect of number of training epochs on the GAN performance.
bad pictures which the classifier has nearly no chance of classifying right. This
seems to be reasonable when improving the number of training epochs. This is also
consistent with the size of the standard deviation as it is much smaller than for
model 9 and also the smallest of all working cGAN-models depicted in this section.
The quality of the images can possibly be further improved by training the cGAN
even longer for which my technical equipment is not adequate. For example in [9]
the models for MNIST are trained for 10.000 epochs. This number seems very high
to me especially when comparing their generated images with mine.
o 009D
/1
> 272
3 353
s 4 <
=3 58
6 &
7 71
°$ > &
9 79

Figure 18: Outputs of model 9.

FashionMNIST: The external convolutional classifier scores a 89.96% test-
accuracy on FashionMNIST. This and the results in Table [9] compared to [§] clearly
show that FashionMNIST is way more complex than MNIST. Interestingly the
GAN-train performance of the models is still very good which seems to highlight
the good diversity in the images generated by a model with this parameters. On
the downside the low GAN-test accuracy seems to emphasize that the models lack
quality of the images compared to the diversity.

Strangely enough the cGAN does not improve when training 200 epochs. This can

have many reasons so that more experiments would be necessary. Figures and

show well why FashionMNIST is much more difficult than MNIST as the objects

are very noisy whereas the original images have slight patterns or designs.
+# ‘ epochs ‘ label ‘ prob. distr. ‘ soft label ‘ eval()? ‘ train D ‘ GAN-test ‘ GAN-train ‘
19 100 64 normal 0.15 + random No twice | 43.29 £ 0.40% 80.24%
20 200 64 normal 0.15 4+ random No twice | 43.57 + 0.57% 78.46%

Table 9: Models from Table |8 trained on FashionMNIST.

17

References

BaaniBARA.
Figure 20: Outputs of model 19. Figure 21: Outputs of model 20.

Summary

In this report the GAN framework was explained and some problems of GAN train-
ing were discussed with possible solutions. An indication for further implementa-
tions was given by explaining a PyTorch implementation used in this report and
clarifying the choice of the hyperparameters, architecture and GAN-tricks based on
the literature. The experiments confirmed that using dropout and batch normal-
ization in the generator also for inference works well for a cGAN and in particular
seems to support image diversity. Furthermore the tests especially showed that in
this case one-sided label smoothing directly influences the discriminator performance
during training and can, correctly chosen, improve overall GAN-performance based
on GAN-test and GAN-train. Additionally some strange effects occurred when us-
ing sigmoid instead of tanh in the output layer of the generator which seems to
verify the preferred usage of tanh in the literature.

References
[1] ImageNet. https://image-net.org/.
[2] Pytorch Tutorials. https://pytorch.org/tutorials/.

[3] Zeroing out gradients in PyTorch. https://pytorch.org/tutorials/
recipes/recipes/zeroing_out_gradients.html.

[4] Using Dropout in Pytorch: nn.Dropout wvs. F.dropout, 2018. https:
//stackoverflow.com/questions/53419474/using-dropout-in-pytorch-
nn-dropout-vs—-f-dropout|

[5] A. ANTONIOU, A. STORKEY, AND H. EDWARDS, Data Augmentation Gener-
ative Adversarial Networks, (2018).

[6] S. BARRATT AND R. SHARMA, A Note on the Inception Score, (2018).

[7] A. BOrJli, Pros and Cons of GAN Ewvaluation Measures: New Developments,
(2021).

[8] J. BROWNLEE, 18 Impressive Applications of Generative Adversarial Networks
(GANs), June 2019. https://machinelearningmastery.com/impressive-
applications-of-generative-adversarial-networks/.

18

https://image-net.org/
https://pytorch.org/tutorials/
https://pytorch.org/tutorials/recipes/recipes/zeroing_out_gradients.html
https://pytorch.org/tutorials/recipes/recipes/zeroing_out_gradients.html
https://stackoverflow.com/questions/53419474/using-dropout-in-pytorch-nn-dropout-vs-f-dropout
https://stackoverflow.com/questions/53419474/using-dropout-in-pytorch-nn-dropout-vs-f-dropout
https://stackoverflow.com/questions/53419474/using-dropout-in-pytorch-nn-dropout-vs-f-dropout
https://machinelearningmastery.com/impressive-applications-of-generative-adversarial-networks/
https://machinelearningmastery.com/impressive-applications-of-generative-adversarial-networks/

References

[9]

[10]

[11]

[12]

[13]

[14]

K. CHENG, R. TaHIR, L. K. Eric, AND M. LI, An analysis of generative
adversarial networks and variants for image synthesis on MNIST dataset, Mul-
timedia Tools and Applications, 79 (2020), pp. 13725-13752.

H.-W. DonaGg, W.-Y. Hsiao, L.-C. YANG, AND Y.-H. YANG, MuseGAN:
Demonstration of a convolutional GAN based model for generating multi-track
piano-rolls, (2017).

A. ELcaMMAL, B. Liu, M. ELHOSEINY, AND M. MAZZONE, CAN: Creative
Adversarial Networks, Generating "Art" by Learning About Styles and Deviating

from Style Norms, (2017).

L. FRANCESCHINI, Distinguishing pairs of classes on MNIST and Fashion-
MNIST with just one pixel, Apr. 2021. https://lucafrance.github.io/
2021/04/05/mnist-pairwise-one-pixel.html.

I. GoopreELLOW, NIPS 2016 Tutorial: Generative Adversarial Networks,
(2016).

I. J. GOODFELLOW, J. POUGET-ABADIE, M. MirzA, B. Xu, D. WARDE-
FARLEY, S. OzAIR, A. COURVILLE, AND Y. BENGIO, Generative Adversarial
Nets, (2014).

K. HE, X. ZHANG, S. REN, AND J. SUN, Delving Deep into Rectifiers: Sur-
passing Human-Level Performance on ImageNet Classification, (2015).

F. HUSzAR, Instance Noise: A trick for stabilising GAN training,
Oct. 2016. https://www.inference.vc/instance-noise-a-trick-for-
stabilising-gan-training/.

S. IoFFE AND C. SZEGEDY, Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift, (2015).

P. Isora, J.-Y. Zuu, T. ZHou, AND A. A. EFROS, Image-to-Image Trans-
lation with Conditional Adversarial Networks, (2016).

P. Kim, MATLAB Deep Learning, Apress, 2017.

D. P. KINGMA AND J. L. Ba, Adam: A Method for Stochastic Optimization,
(2017).

N. KirvaTi AND Y. LANDAU, Dataset Growth in Medical Image Analysis Re-
search, Journal of Imaging, 7 (2021), p. 155.

A. KRIZHEVSKY, Learning Multiple Layers of Features from Tiny Images,
(2009).

A. KRIZHEVSKY, I. SUTSKEVER, AND G. E. HINTON, ImageNet classifica-
tion with deep convolutional neural networks, Communications of the ACM, 60
(2017), pp. 84-90.

T. KYNKAANNIEMI, T. KARRAS, S. LAINE, J. LEHTINEN, AND T. AILA,
Improved Precision and Recall Metric for Assessing Generative Models, (2019).

Y. LECuN, C. CortEs, AND C. J. C. Burces, THE MNIST DATABASE.
http://yann.lecun.com/exdb/mnist/.

19

https://lucafrance.github.io/2021/04/05/mnist-pairwise-one-pixel.html
https://lucafrance.github.io/2021/04/05/mnist-pairwise-one-pixel.html
https://www.inference.vc/instance-noise-a-trick-for-stabilising-gan-training/
https://www.inference.vc/instance-noise-a-trick-for-stabilising-gan-training/
http://yann.lecun.com/exdb/mnist/

References

[26]

[27]

[28]

M. Lucic, K. KUuRACH, M. MICHALSKI, S. GELLY, AND O. BOUSQUET, Are
GANs Created Equal? A Large-Scale Study, (2018).

M. MirzA AND S. OSINDERO, Conditional Generative Adversarial Nets,
(2014).

A. ODENA, C. OLAH, AND J. SHLENS, Conditional Image Synthesis With
Auziliary Classifier GANs, Proceedings of the 34th International Conference
on Machine Learning, (2017).

A. RADFORD, L. METZ, AND S. CHINTALA, Unsupervised Representation
Learning with Deep Convolutional Generative Adversarial Networks, (2016).

K. Rasur, H. Xiao, AND R. VOLLGRAF, FashionMNIST. https://
research.zalando.com/project/fashion_mnist/fashion_mnist/.

T. SaLiMANS, I. GOODFELLOW, W. ZAREMBA, V. CHEUNG, A. RADFORD,
AND X. CHEN, Improved Techniques for Training GANs, (2016).

K. SHMELKOV, C. SCHMID, AND K. ALAHARI, How good is my GAN?, (2018).

N.-T. TraN, V.-H. TrAN, N.-B. NGuvYEN, T.-K. NGUYEN, AND N.-M.
CHEUNG, On Data Augmentation for GAN Training, (2020).

H. X1a0, K. RAsuL, AND R. VOLLGRAF, Fashion-MNIST: a Novel Image
Dataset for Benchmarking Machine Learning Algorithms, (2017).

20

https://research.zalando.com/project/fashion_mnist/fashion_mnist/
https://research.zalando.com/project/fashion_mnist/fashion_mnist/

	1 Introduction
	2 What is a (c)GAN?
	2.1 GAN
	2.2 cGAN

	3 Setting of the Experiments
	3.1 The Real Data
	3.2 The Evaluation
	3.3 Problems and Possible Solutions
	3.4 The Base Model

	4 Implementation
	5 Results
	5.1 GAN
	5.2 cGAN

	Bibliography

