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1 Introduction and notations

Introduction

For centuries, mankind has been fascinated by the beauty and complexity of our universe.
As part of the scientific revolution, the exploration of our solar system, stars and outer
space has started, and the universe has been examined from a scientific perspective.
Nowadays, there are endless examples of how scientists of various disciplines explore
the depth of our cosmos. Along with this development, mathematics has been forming
the basis, and precise mathematical models have become essential. A well-known topic
arising in astrophysics is the N -body problem. Using this model, one can describe our
solar system, which comprises the eight planets, dwarf planets and other small solar
system bodies orbiting the sun, interacting by Newton’s law of gravity. When it comes
to galaxies, N is of the order 1010-1012 and a different, statistical approach is favourable.
A galaxy is described by a distribution function f = f(t, x, v), where t ∈ R denotes the
time and the phase space element (x, v) ∈ R3 × R3 denotes the position and velocity
of a star. Integrating over some phase space region dx dv yields the numbers of stars
contained in this region at the time t. In this thesis we make the reasonable assumption
that stars only interact by their self-generated gravitational field F = F (t, x), neglecting
the existence of relativistic or thermodynamic effects, the expansion of the universe,
electromagnetic fields of galaxies or other local phenomena like supernovas. Hence, any
trajectory of a star with unit mass only obeys Newton’s law of motion

ẋ = v, v̇ = F (t, x).

Collisions of stars are to be neglected and no stars are born or die in our model. Hence,
the distribution function f is constant along orbits of stars, and satisfies a first-order
conservation law on phase space, which yields the Vlasov equation

∂tf + v · ∂xf + F · ∂vf = 0.

The gravitational potential U = U(t, x) induced by the stars is given by the Poisson
equation

∆U = 4πρ, lim
|x|→∞

U(t, x) = 0,

and is coupled with the Vlasov equation via

F = −∂xU, ρ(t, x) =

∫
f(t, x, v) dv.
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The Vlasov-Poisson system is well understood for smooth initial data. In order to
understand a differential equation it is important to consider its steady states, especially
to analyse the stability under certain perturbations. There is a whole class of different
types of steady states. Mathematicians and physicists are most interested in those,
which are somehow profit-yielding to analyse, and which are more or less close to real
galaxies. This immediately leads us to the class of compactly supported steady states
with finite mass. One family of such steady states was constructed by Kurth, cf. [1].
One specific feature is the singularity of the phase space distribution at the boundary
and the discontinuity of the corresponding mass density. Hence, one cannot talk about
Kurth-type steady states as solutions of the Vlasov-Poisson system in the classical sense;
one needs to find a more general solution concept. It is the motivation of Chapter 2 to
do this and to give a global existence result.
Despite the astrophysical motivation, a more general solution concept is also interest-

ing in a theoretical mathematical aspect. For all differential equations, one can easily
introduce a weak formulation of the problem. Our more general formulation is special for
kinetic equations and can be seen somewhere between the weak and classical formulation
of the Vlasov-Poisson system.
In Chapter 3, we investigate flat galaxies, which are modelled by density functions

f = f(t, x, v)δ(x3)δ(v3), which are delta distributed in the x3 and v3-axis. Hence, all stars
have to be in the (x1, x2, 0) plane with velocity v = (v1, v2, 0). However, they still create
a 3-dimensional gravitational potential collectively, causing the so-called flat Vlasov-
Poisson system to differ significantly from the 2-dimensional Vlasov-Poisson system. In
particular, we want to model certain flat steady states numerically, which are functions
of the energy and the angular momentum. We will elaborate on our numerical algorithm
and discuss the numerical observations.

Notations

The natural numbers are here defined without zero, i.e., N = N \ {0}, and we write N0

to add zero. For x, y ∈ Rn we denote by

x · y :=

n∑
k=1

xkyk, |x| :=
√
x · x

the Euclidean scalar product and norm. The term “R > 0” always induces that R ∈ R.
For any R > 0 and x ∈ Rn, the n-dimensional open ball is denoted by

Bn
R(x) := BR(x) := {y ∈ Rn : |x− y| < R}, BR := BR(0).

If I is an interval, we always demand that I̊ is non-empty, where I̊ denotes the interior
of I. For any differentiable function f = f(t, x, v), t ∈ R, x ∈ R3, v ∈ R3, the partial
derivatives are denoted by

∂tf :=
∂

∂t
f, ∂xf := ∇xf, ∂vf := ∇vf.
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For t ∈ R, we denote by f(t) the function f(t) : R3×R3 → R with (x, v) 7→ f(t, x, v). In
estimates the letter C is used as any positive constant, where the dependency is obvious
from the context. C may also change from line to line. To emphasise any dependency
on for example a function f or number n, we write, often just one time:

C[f ], C[n] or C[f, n].

If the constant is fixed during this thesis, we will use subscripts. For k ∈ N, the space
of k times continuously differentiable functions is denoted by Ck(Rn), where a subscript
”c” indicates compactly supported functions. As usual, the support of a function is
denoted by supp f . For any p ∈ [1,∞], we denote by Lp(Rn) the Lebesgue space and
by ∥ · ∥p := ∥ · ∥Lp(Rn) the corresponding norm. For any set M ⊂ Rn, 1M denotes its
indicator function,

1M (x) = 1 if x ∈ M, 1M (x) = 0 if x /∈ M.

For any measurable set M , the Lebesgue measure is denoted by vol(M). In Chapter
2, the variables x, x̃ and v, ṽ are always in R3 and z := (x, v), z̃ := (x̃, ṽ) ∈ R6. Any
integral

∫
without domain of integration always extends over R3 or R6, depending on

what makes sense in the context.
By Lip(Rn) we denote the space of locally Lipschitz-continuous functions, i.e, for all

R > 0 there exists some L > 0 such that |f(y) − f(ỹ)| ≤ L|y − ỹ| for all |y − ỹ| < R.
From now on, Lipschitz-continuous always means locally Lipschitz-continuous.
The following definition of spherical symmetry is fundamental. Some functions ρ =

ρ(t, x) or some functions on phase space f = f(t, x, v) are spherically symmetric if

ρ(t, x) = ρ(t, Ax), f(t, x, v) = f(t, Ax,Av), A ∈ SO(3);

note that the latter symmetry differs from the symmetry on R6. The spaces

B(R3) := {ρ : R3 → R : ρ is measureable and bounded},
Bc(R3) := {ρ ∈ B(R3) : ρ has compact support},
Bs(R3) := {ρ ∈ B(R3) : ρ is spherically symmetric},
Bs
c(R3) := Bc ∩ Bs(R3)

are of great interest in this thesis as well; for phase space functions f̊ = f̊(x, v), they
are defined analogously with the corresponding definition of spherical symmetry given
above. If a variable of time is involved, we will just write

ρ ∈ B(I × R3), . . . ,Bs
c(I × R3),

which means that ρ(t) ∈ B(R3), . . . ,Bs
c(R3) for all t ∈ I. Note that the support of some

ρ ∈ Bc(I ×R3) may depend on t ∈ I. Finally, for ρ ∈ Bs(R3) its radial function exists
and is denoted by ρ̄, i.e,

ρ̄ : [0,∞[→ R, ρ(x) = ρ̄(|x|), x ∈ R3.
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2 The spherically symmetric Vlasov-Poisson
system with a new solution concept

2.1 Classical solutions and results

We want to introduce the classical gravitational Vlasov-Poisson system

∂tf + v · ∂xf − ∂xU · ∂vf = 0, (2.1)

∆U = 4πρ, lim
|x|→∞

U(t, x) = 0, (2.2)

ρ(t, x) =

∫
f(t, x, v) dv, (2.3)

where the initial distribution function f̊ = f(0, x, v) is given. For any interval I, where
I̊ is non-empty, we say that f : I × R3 × R3 → R is a classical solution of this system if
the following holds:

i) f ∈ C1(I ×R3 ×R3), U, ρ ∈ C1(I ×R3) and U is twice continuously differentiable
with respect to x.

ii) f, ρ, U solve (2.1)-(2.3) on I × R3 × R3 and I × R3 respectively.

iii) For all compact subintervals J ⊂ I, the force field −∂xU is bounded on J × R3.

For smooth initial data, the following classical global existence result is known:

Theorem 2.1.
For every non-negative initial data f̊ ∈ C1

c (R6), there exists a unique classical solution
f with f(0) = f̊ on R6 which is global in time, i.e. I = [0,∞[.

This result was established over a long period of time and we will briefly say a few
words about the milestones, on which this thesis is based. In 1952 the astronomer
Rudolf Kurth [2] established a local existence and uniqueness result. Jürgen Batt [3]
found in 1977 a criterion under which a solution is global in time and established a global
existence result for spherically symmetric data. In 1989 two different proofs of Theorem
2.1 were independently found by Klaus Pfaffelmoser [4] and by Pierre-Louis Lions and
Benoit Perthame [5], based on the above mentioned results.
In order to understand the Vlasov-Poisson system, we want to analyse both the Vlasov

equation (2.1) and the Poisson equation (2.2).
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2.2 The Poisson equation

For some function ρ : R3 → R, we say that U ∈ C2(R3) is the solution of the Poisson
equation if

∆U(x) = 4πρ(x), x ∈ R3,

lim
|x|→∞

U(x) = 0.

We collect some well known results about potential theory.

Lemma 2.2.
Let ρ ∈ L1 ∩ L∞(R3) and define U(x) := Uρ(x) := −

∫
R3 ρ(y)/|x− y| dy. Then

a) U ∈ C1(R3) and

∂xU(x) =

∫
x− y

|x− y|3
ρ(y) dy, lim

|x|→∞
U(x) = 0.

b) For all p ∈ [1, 3[, there exists constants Cp > 0 such that

∥∂xU∥∞ ≤ Cp∥ρ∥p/3p ∥ρ∥1−p/3
∞ .

Especially, we have for p = 1 that C1 = 3(2π)2/3.

c) If ρ ∈ C1
c (R3), then Uρ ∈ C2(R3) solves the Poisson equation on R3.

Proof. We refer to [6] for a proof.

Later, we will consider spherically symmetric initial data. As we will see in Section
2.4, this property is preserved by the Vlasov-Poisson system. Thus, the Poisson equation
with spherically symmetric mass density ρ is of great interest.

Lemma 2.3.
Let ρ ∈ C1

c (R3) be spherically symmetric, U := Uρ and let ρ̄ : [0,∞[→ R be the radial
function of ρ, i.e., ρ̄(| · |) = ρ on R3. Then

a) U is spherically symmetric and for its radial function Ū and r > 0 it holds that

1

r2
(r2Ū ′(r))′ = 4πρ̄(r), lim

r→∞
Ū(r) = 0, (2.4)

b)

Ū(r) = −4π

r

∫ r

0
η2ρ̄(η) dη − 4π

∫ ∞

r
ηρ̄(η) dη,

Ū ′(r) =
4π

r2

∫ r

0
η2ρ̄(η) dη, r > 0, (2.5)

∂xU(x) =
x

r
Ū ′(r), |x| = r > 0,

Ū ′(0) = lim
r→0

Ū ′(r) = 0 and Ū(0) = lim
r→0

Ū(r) exists in R.
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Proof. Since any A ∈ SO(3) is length-preserving, we have

U(Ax) =

∫
ρ(y)

|Ax− y|
dy =

∫
ρ(Ay)

|A(x− y)|
dy =

∫
ρ(y)

|x− y|
dy = U(x).

Using Lemma 2.2 c), we know that ∆U = 4πρ on R3. The Laplace operator in spherical
coordinates reads

∆· = 1

r2
∂r(r

2∂r·) +
1

r2 sin θ
∂θ(sin θ∂θ·) +

1

r2 sin2 θ
∂2
φ · .

Using the symmetry of U , we obtain with r = |x| that

1

r2
(r2Ū ′(r))′ = ∆U(x) = 4πρ(x) = 4πρ̄(r).

To verify part b), we simply show that Ū solves the radial Poisson equation (2.4).
The uniqueness of the Poisson equation then yields the uniqueness of Ū . Using the
fundamental theorem of calculus and the compact support of ρ, we get

Ū ′(r) =
4π

r2

∫ r

0
η2ρ̄(η) dη − 4π

r
r2ρ̄(r)− 0 + 4πrρ̄(r)

=
4π

r2

∫ r

0
η2ρ̄(η) dη,

and hence

(r2Ū ′(r))′ = 4πr2ρ̄(r),

i.e., Ū is a solution of the radial Poisson equation (2.4).

We want to extend part b) to ρ ∈ Bs
c(R3) by a density argument. We can choose some

(ρn) ⊂ C1
c (R3) spherically symmetric with ρn → ρ in L2(R3) and ∥ρn∥∞ ≤ C, where C

only depends on ∥ρ∥∞. By Lemma 2.2, U is in C1(R3) and

∥∂xUn − ∂xU∥∞ ≤ C2∥ρn − ρ∥2/32 ∥ρn − ρ∥1/3∞ → 0.

Given that (2.5) holds for ρ ∈ Bs
c(R3), we have the very important fact that Ū ′ ∈

Lip([0,∞[) and hence F := −∂xU ∈ Lip(R3), cf. (2.20). This so-called force field F
couples the Poisson equation with the Vlasov equation (2.1), which is analysed in the
following section:

2.3 The characteristic system and solutions in the
characteristic sense

Imagine a galaxy, whereX(t) ∈ R3 is the position of a star at some time t ≥ 0. According
to Newton’s laws of motion, the trajectory of the star and the force field are related by

Ẋ(t) = V (t), V̇ (t) = F (t,X(t)). (2.6)
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A proven method of solving many kinetic equations, like the transport equation, the
Vlasov-Maxwell system or the Vlasov-Poisson system, is the method of characteristics.
Simply speaking, we want to solve (2.6) for “all” particles at “every” starting point
(X(t = 0), V (t = 0)) = (x, v). If we know the position and velocity of all particles for
all times, we can merge them together to a solution f of the original kinetic equation.
Newton’s equations (2.6) will be named the characteristic system, and a trajectory will
be named characteristic. Strictly speaking, we have the following definition:

Definition and Remark 2.4.
Let F : I × R3 → R3 be continuous, Lipschitz-continuous with respect to x and bounded
on J × R3 for every compact subinterval J ⊂ I. Then the following holds:

a) For every t ∈ I and z := (x, v) ∈ R3 × R3, there exists a unique solution

I ∋ s 7→ (X,V )(s, t, x, v) ∈ R6

of the characteristic system

Ẋ = V, V̇ = F (s,X), (X,V )(t, t, x, v) = (x, v). (2.7)

We call s 7→ (X,V )(s, t, x, v) = (X,V )(s) the characteristics of the system and
we will sometimes suppress the (t, x, v) argument. The characteristic flow Z :=
(X,V ) is continuous on I × I × R6 and Lipschitz-continuous with respect to z.

b) For every s, t ∈ I, the mapping Z(s, t, ·) : R6 → R6 is a homeomorphism with
inverse Z−1(s, t, ·) = Z(t, s, ·), and for all τ ∈ I, Z(s, t, z) = Z(s, τ, Z(τ, t, z))
holds.

c) For every s, t ∈ I, Z(s, t, ·) is measure preserving, i.e.,

|det ∂zZ(s, t, ·)| = 1, almost everywhere on R6.

d) For any Φ ∈ Bc(R6) and any measurable subset D ⊂ R6, the integral transformation
rule holds: ∫

D
Φ(Z(s, t, z)) dz =

∫
Z(s,t,D)

Φ(z) dz, s, t ∈ I.

It is worth comparing this remark to the analogous result in the classical setup, cf. [6].
There, one additionally demands that F is continuously differentiable with respect to x.
In return, Z(s, t, ·) : R6 → R6 is a C1-diffeomorphism and is measure preserving for all
z ∈ R6. However, since we want to investigate characteristics from some discontinuous
distribution function f , we have to work with a discontinuous mass density ρ, which
generally does not induce a continuously differentiable force field F . On the other
hand, a Lipschitz-continuous force field seems to be just enough to have well-defined
characteristics, which is, as we will see throughout this thesis, all we need.
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Proof. In the following we will write G(s, z) := (v, F (s, x)) for the right side of (2.7).
a) We fix some (t, z) ∈ I × R6 and write Z(s) := Z(s, t, z), s ∈ I. Note that G is
Lipschitz-continuous with respect to z. By Picard-Lindelöf, there exists some δ > 0
and a unique solution (X,V ) : [t − δ, t + δ] → R3 × R3 of (2.7) with (X,V )(t) = (x, v).
In order to extend the solution to I × R3, we need to bound (X,V ). Integrating the
characteristic equations yields

|V (s)| ≤ |V (t)|+
∣∣∣ ∫ s

t
F (τ,X(τ)) dτ

∣∣∣ ≤ |v|+ δ∥F∥∞ and

|X(s)| ≤ |X(t)|+
∣∣∣ ∫ s

t
V (τ) dτ

∣∣∣ ≤ |x|+ |v|δ + δ2∥F∥∞, s ∈ [t− δ, t+ δ].

Since F|J×R3 is bounded for every compact subinterval J ⊂ I, the solution can be
extended to I × R6. Let us consider the characteristic flow Z. To show the Lipschitz-
continuity, we fix some s and t to obtain with the Lipschitz-continuity of F

|Z(s, t, z)− Z(s, t, z̃)| ≤ |z − z̃|+ C[F ]

∫ t

s
|Z(τ, t, z)− Z(τ, t, z̃)| dτ,

and hence, by Gronwall,

|Z(s, t, z)− Z(s, t, z̃)| ≤ eC|t−s||z − z̃| = C|z − z̃|.

b) For a start, we want to show that Z(s, t, z) = Z(s, τ, Z(τ, t, z)) for all s, τ ∈ I. For
this purpose we fix some τ ∈ I and use the initial condition to see that we have equality
at the time s = τ :

Z(τ, τ, Z(τ, t, z)) = Z(τ, t, z) = Z(s, t, z), t ∈ I, z ∈ R6.

Since both s 7→ Z(s, t, z) and s 7→ Z(s, τ, Z(τ, t, z)) solve (2.7), equality follows by
uniqueness. In particular, we have Z(s, t, Z(t, s, z)) = Z(t, t, z) = z and Z−1(s, t, ·) =
Z(t, s, ·).
c) The idea to verify c) is the following: We need to construct some smooth Zε, which
approximates our flow Z and where the classical result holds. Since our assertion only
needs to hold almost everywhere and the Integral transformation does work for Z due to
Lemma 2.5, it seems reasonable to show equality with a Du-Bois-Reymond argument.
To this end let J ∈ C∞

c (R3) be a mollifier with J ≥ 0, supp J ⊂ B3
1 and

∫
R3 J = 1.

For any small ε > 0, we define

Jε(x) :=
1

ε3
J
(x
ε

)
, x ∈ R3

and define the smooth forces

Fε(t, x) :=
(
Jε ∗ F (t)

)
(x), (t, x) ∈ I × R3,
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where ∗ denotes the convolution on R3. Obviously, for R > 0 and x, x̃ ∈ B3
R we find that

|Fε(t, x)− Fε(t, x̃)| ≤
∫

Jε(y)|F (t, x− y)− F (t, x̃− y)| dy ≤ C[R]|x− x̃|, (2.8)

|Fε(t, x)− F (t, x)| ≤
∫
Bε(x)

Jε(x− y)|F (t, y)− F (t, x)| dy ≤ C[R]ε. (2.9)

By s 7→ Z(s, t, z) and s 7→ Zε(s, t, z) we denote the solutions of

Ẋ = V, V̇ = F (s,X) with Z(t, t, z) = z

and Ẋε = Vε, V̇ε = Fε(s,X) with Zε(t, t, z) = z

respectively. With (2.8), (2.9) and a Gronwall argument similar to the one appearing in
the proof of a), we obtain

Zε → Z, as ε → 0, uniformly on J × J ×B6
R, (2.10)

for any R > 0 and any compact interval J ⊂ I. Next, we denote H(s) := det ∂zZε(s, t, z)
for s, t ∈ I, z ∈ R6. As we can now interchange the order of taking partial derivatives of
Zε ∈ C1(I × I × R6;R6), we have by Jacobi’s formula

d

ds
H(s) = H(s) trace

(
(∂zZε(s, t, z))

−1∂z∂sZε(s, t, z)
)

= H(s) trace
(
(∂zZε(s, t, z))

−1∂zGε(s, Zε(s, t, z))∂zZε(s, t, z)
)

= H(s) divzGε

(
s, Zε(s, t, z)

)
= 0.

In the last step we used that Gε is a divergence-free vector field. Hence, det ∂zZε(·, t, z)
is constant on I. With Zε(t, t, z) = z, it follows that

det ∂zZε(s, t, z) = 1, s ∈ I, (2.11)

which is just the classical result. Next, we pick any test function φ ∈ C∞
c (R6) and

observe, using Lemma 2.5 with Z(s, t, ·) = Z−1(t, s, ·) and (2.11), that∫
φ(z)|det ∂zZ(s, t, z)| dz =

∫
φ(Z(t, s, z)) dz = lim

ε→0

∫
φ(Zε(t, s, z)) dz

= lim
ε→0

∫
φ(z)|∂zZε(s, t, z)|dz =

∫
φ(z) dz.

Note that we can go to the limit simply utilising Lebesgue’s dominated convergence
theorem since suppφ(Zε(s, t, ·)) = Zε(t, s, suppφ) is uniformly compact and Zε → Z
pointwise. Hence, | det ∂zZ(s, t, ·)| = 1 almost everywhere, where the null set may depend
on s, t. This proves c), and combining c) with Lemma 2.5 immediately yields d).

The following integral transformation rule was used in the latter proof:
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Lemma 2.5. (Transformation rule for Lipschitz functions)
Let n ∈ N, D ⊂ Rn be a measurable set, f ∈ Bc(Rn) and let Φ : Rn → Rn be (locally)
Lipschitz-continuous and bijective. Then Φ is differentiable almost everywhere, and both
of the following integrals exist:∫

D
f(Φ(y)) dy =

∫
Φ(D)

f(y)| det∇Φ(y)| dy.

Proof. We refer to [7], *263F Corollary.

It is the main task of this chapter to expand the solution concept. To this end, we
make the following important consideration: Let f ∈ C1(I × R6) and let s 7→ (X,V )(s)
be any characteristics. Then

d

ds
f(s,X(s), V (s)) = (∂tf + ∂xf · Ẋ + V̇ · ∂vf)(s,X(s), V (s))

= (∂tf + ∂xf · V + F · ∂vf)(s,X(s), V (s)).

The first term describes the change of f along characteristics, and is 0 if f is constant
along characteristics. The last term is 0 if f solves the classical Vlasov equation (2.1)
with F = −∂xU . By Remark 2.4 b), we know that through each point (t, x, v) there
passes a characteristic curve. Hence, we get the following equivalence, which will be the
motivation for our more general solution concept:

Lemma 2.6.
Let f ∈ C1(I ×R6) and let F ∈ C(I ×R3;R3) be continuously differentiable with respect
to x. Then f(s, Z(s)) is constant for every characteristic s 7→ Z(s) of (2.7) if and only
if ∂tf + v · ∂xf + F · ∂vf = 0 on I × R6.

By reducing the regularity of f , ” ⇐⇒ ” becomes obviously wrong, since the partial
derivatives of f do not exist. The left side, however, remains well-defined even for
discontinuous functions f . This leads to the following generalisation of the solution
concept:

Definition 2.7.
A measurable function f : I ×R6 → R solves the Vlasov-Poisson system in the charac-
teristic sense if the following holds:

(i) The mass density ρ and the force field F

ρf (t, x) := ρ(t, x) :=

∫
f(t, x, v) dv, Ff (t, x) := F (t, x) := −

∫
x− y

|x− y|3
ρf (t, y) dy,

exist for all (t, x) ∈ I × R3.

(ii) For all (t, z) ∈ I ×R6, there exists a unique solution s 7→ Zf (s, t, z) = Z(s, t, z) of

Ẋf = Vf , V̇f = Ff (s,X), Zf (t, t, z) = z.

with the properties of Remark 2.4.
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(iii) f is constant along its induced characteristics, i.e., for all (t, z) ∈ I × R6, the
mapping s 7→ f(s, Zf (s, t, z)) is constant on I.

The terminology “Zf is induced by f” comes from the fact, that the force field Ff

is exactly the Newtonian gravitational force induced by the mass density ρf of the
distribution function f . Note that Definition 2.7 is a successful generalisation in the
following sense:

• Being a classical solution implies being a characteristic solution due to Lemma
2.2 a).

• Being a smooth characteristic solution implies being a classical solution due to
Lemma 2.6.

• Steady states of the well-known type Φ(E,L) for reasonable Φ satisfy (i)-(iii) and
are therefore solutions in the characteristic sense. For details on Φ, E, L, we refer
to Section 3.3 or Chapter 2 in [6]. In particular, Kurth steady states solve the
Vlasov-Poisson system in the characteristic sense.

The following lemma, especially its proof, demonstrates how the Vlasov-Poisson system
can be entirely described by its initial datum and its characteristic system.

Lemma 2.8.
Let f̊ ∈ Bc(R6) and let Z be any characteristic flow like in Remark 2.4. Define f(t, z) :=
f̊(Z(0, t, z)) for all (t, z) ∈ I × R6 with 0 ∈ I. Then the following holds:

a) If Z = Zf in the sense of Definition 2.7 (i), (ii), then f is constant along its

induced characteristics with f(0) = f̊ on R6.

b) For every t ∈ I and p ∈ [1,∞], it holds that supp f(t) = Zf (t, 0, supp f̊) and

∥f(t)∥p = ∥f̊∥p. The latter property will be called the conservation of Lp-norms.

c) f ∈ C(I;L1(R6)), i.e., the mapping t 7→ f(t) is continuous with respect to the
L1(R6)-norm.

Proof. a) Let s 7→ Wf (s) be any characteristic induced by f . By Remark 2.4 b), there
exists some (t0, z0) ∈ I ×R6 such that Wf (s) = Zf (s, t0, z0) for all s ∈ I. Since

Zf (0, s, Zf (s, t0, z0)) = Zf (0, t0, z0),

we have

f(s,Wf (s)) = f̊(Zf (0, s,Wf (s))) = f̊(Zf (0, s, Zf (s, t0, z0))) = f̊(Zf (0, t0, z0)),

which implies that f(·,Wf (·)) is constant on I.
b) For t ∈ I, using Z−1(t, 0, ·) = Z(0, t, ·), we have

supp f(t) = supp f̊(Z(0, t, ·)) =
{
z ∈ R6 : Z(0, t, z) ∈ supp f̊

}
=
{
Z(t, 0, Z(0, t, z)) : Z(0, t, z) ∈ supp f̊

}
=
{
Z(t, 0, z) : z ∈ supp f̊

}
= Z(t, 0, supp f̊).
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By Remark 2.4 b) and d), we have for all p ∈ [1,∞[

∥f(t)∥pp =
∫

|f̊(Z(0, t, z))|p dz =

∫
Z(0,t,R6)

|f̊(z)|p dz = ∥f̊∥pp,

∥f(t)∥∞ = sup
z∈R6

|f̊(Z(0, t, z))| = sup
z∈R6

|f̊(z)| = ∥f̊∥∞.

c) For any ε > 0, we can find some g ∈ C∞
c (R6) such that

∥f̊ − g∥1 < ε. (2.12)

For any t, t′ ∈ I, using the compact support and (2.12) with Remark 2.4 d), we find that

∥f(t)− f(t′)∥1 ≤
∫

|f̊(Z(0, t, z))− g(Z(0, t, z))|dz +
∫

|f̊(Z(0, t′, z))− g(Z(0, t′, z))|dz

+

∫
|g(Z(0, t, z))− g(Z(0, t′, z))| dz

≤ 2ε+

∫
B6

R

|g(Z(0, t, z))− g(Z(0, t′, z))| dz

≤ 2ε+ ∥∂zg∥∞
4π

3
R3 sup

z∈B6
R

|Z(0, t, z)− Z(0, t′, z)|.

Since Z is continuous, the last term tends to zero as t → t′ and the assertion follows.

2.4 Local existence

Before diving into the local existence result, let us comment on why a characteristic
solution was defined for all measurable functions, whereas the following local existence
result additionally needs boundedness and spherical symmetry for the initial data. In
Definition 2.7 a characteristic solution requires unique characteristics, which suggests a
Lipschitz-continuous right side F . As we will see in the proof, this is accomplished by
the spherical symmetry of f̊ . The crucial point is, that spherical symmetry is preserved
by the Vlasov-Poisson system, ensuring the right side F to stay Lipschitz-continuous.
However, with regard to steady states of Kurth type [1], we allow in Definition 2.7
distribution functions to become singular, as long as the force fields and characteristics
are well-defined. Note that it is easy to check that Kurth type steady states are indeed
solutions in the characteristic sense, even though our existence result does not apply,
since they are not bounded.

Theorem 2.9.
Let f̊ ∈ Bs

c(R6) be non-negative. Then there exists some T > 0 and a unique character-
istic solution f ∈ Bs

c([0, T [×R6) with f(0) = f̊ on R6.

Due to Lemma 2.6 and 2.8 and the definition of characteristic solutions, the Vlasov-
Poisson system can be fully treated by considering the characteristic flow. Thereby, we
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need to find for any given initial datum f̊ ∈ Bs
c(R6) some T > 0 and for all (t, z) ∈

[0, T [×R6 a unique solution [0, T [∋ s 7→ Z(s, t, z) of

Ẋ = V, V̇ = −
∫∫

X(s, t, z)− x̃

|X(s, t, z)− x̃|3
f̊(Z(0, s, x̃, ṽ)) dx̃ dṽ, Z(t, t, z) = z, (2.13)

which enjoys the properties of Remark 2.4. In order to attack this differential equation
for Z, it is the first step of our proof to consider the following iterative scheme:
Step 1 We define the 0th iterate by

f0(t, z) := f̊(z), (t, z) ∈ [0,∞[×R6.

If the nth iterate is defined, we define the mass density and force field by

ρn(t, x) :=

∫
fn(t, x, v) dv, Fn(t, x) := −

∫
x− y

|x− y|3
ρn(t, y) dy, (t, x) ∈ [0,∞[×R3.

Next, we denote by s 7→ Zn(s, t, z) the unique solution of

Ẋ = V, V̇ = Fn(s,X), Zn(t, t, z) = z.

For all n ∈ N0, t ≥ 0, z ∈ R6, we can now define

fn+1(t, z) := f̊(Zn(0, t, z)).

For all n ∈ N0, t ≥ 0, the iterates are well-defined and have the following properties:

a) fn(t) ∈ Bs
c(R6), fn ∈ C([0,∞[ ;L1(R6)), ρn(t) ∈ Bs

c(R3), Fn ∈ C([0,∞[×R3;R3),
Fn(t) is Lipschitz-continuous and, most importantly, again spherically symmetric.
Furthermore, all characteristic flows Zn have the properties of Remark 2.4.

b) Defining R̊, P̊ > 0 such that supp f̊ ⊂ B3
R̊
×B3

P̊
, we have

fn(t, x, v) = 0 for |v| ≥ Pn(t) or |x| ≥ R̊+

∫ t

0
Pn(s) ds,

where Pn(t) := sup
{
|Vn−1(s, 0, z)| : z ∈ supp f̊ , 0 ≤ s ≤ t

}
and P0(t) := P̊ .

c)

∥ρn(t)∥∞ ≤ 4π

3
∥f̊∥∞Pn(t)

3. (2.14)

d)

∥Fn(t)∥∞ ≤ Cf̊Pn(t)
2, where Cf̊ is given in (2.18).
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With the exception of the spherical symmetry, assertion a) follows by induction with
Lemma 2.2, Lemma 2.8 and rewriting

Fn(t, x) = − x

r3

∫
|y|≤r

∫
fn(t, y, v) dv dy.

We want to show spherical symmetry by induction: Note that f0(t) is spherically sym-
metric by definition. Now assume that fn(t) is spherically symmetric for any n ∈ N0.
Hence, ρn(t) and Fn(t) are spherically symmetric. We need to make sure that this prop-
erty is transferred to Zn in such way that the next iterate fn+1(t) is again spherically sym-
metric. Therefore, let A ∈ SO(3) and let B ∈ R6×6 such that Bz = B(x, v) = (Ax,Av).
Recall that

fn+1(t, Bz) = f̊(Zn(0, t, Bz)).

We want to show that the characteristics are invariant under simultaneous rotation in x
and v in the sense that

Zn(0, t, Bz) = BZn(0, t, z). (2.15)

To this end we use the spherical symmetry of fn(t) and Lemma 2.3 to rewrite the
characteristic system:

d2

ds2
Xn(s, t, z) = −Xn(s, t, z)

r

4π

r2

∫ r

0
η2ρ̄n(t, η) dη, (2.16)

d

ds
Xn(s, t, z) = Vn(s, t, z), (2.17)

where r := |Xn(s, t, z)|. By no means, z 7→ Zn(0, t, z) is linear, as equation (2.15)
may mislead us. The same holds for (2.16), where the nonlinearity in Xn is beautifully
hidden in r. Nevertheless, since A is some rotation and vanishes under the norm, (2.16)
is “linear” in the following sense: If

s 7→ Xn(s, t, z), Xn(t, t, z) = x

is a solution of (2.16), then

s 7→ AXn(s, t, z), AXn(t, t, z) = Ax

is a solution of (2.16), too. Involving the linear equation (2.17) to our consideration, we
have Zn(s, t, Bz) = BZn(s, t, z) by uniqueness, which finally proves (2.15) and hence

fn+1(t, Bz) = f̊(BZn(0, t, z)) = fn+1(t, z).

We prove b) by induction: n = 0 is trivial. Now pick any n ∈ N. Using Lemma 2.8 b),
i.e. supp fn(t) = Zn−1(t, 0, supp f̊), we can rewrite

Pn(t) = sup
{
|Vn−1(s, 0, z)| : z ∈ supp f̊ , 0 ≤ s ≤ t

}
= sup

{
|v| : z ∈ Zn−1(s, 0, supp f̊), 0 ≤ s ≤ t

}
= sup

{
|v| : z ∈ supp fn(s), 0 ≤ s ≤ t

}
.
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If |v| ≥ Pn(t), then fn(t, x, v) = 0 for all x ∈ R3. If on the other hand

|x| ≥ R̊+

∫ t

0
Pn(s) ds,

we have

|Xn−1(0, t, z)| = |x+

∫ t

0
Vn−1(0, s, z) ds| ≥ |x| −

∫ t

0
|Vn−1(0, s, z)| ds

≥ |x| −
∫ t

0
Pn(s) ds ≥ R̊.

By definition of R̊, we have f̊(x, ·) = 0 for x ≥ R̊, and hence

fn(t, x, v) = f̊(Xn−1(0, t, z), Vn−1(0, t, z)) = 0, v ∈ R3.

Assertion c) follows immediately with b) and Remark 2.4 d):

∥ρn(t, ·)∥∞ =
∥∥∥∫ f̊(Zn−1(0, t, ·, v))1{|v|≤Pn(t)}(v) dv

∥∥∥
∞

≤ vol{|v| ≤ Pn(t)}∥f̊∥∞ =
4π

3
Pn(t)

3∥f̊∥∞, t ≥ 0.

In the last step we only applied the formula of the volume of a ball with radius Pn(t).
To verify d), we simply use Lemma 2.2 and the conservation of Lp-norms to obtain

∥Fn(t)∥∞ ≤ (3(2π)2/3)∥ρn(t)∥1/31 ∥ρn(t)∥2/3∞

≤ (3(2π)2/3)
(
4π/3

)2/3∥f̊∥1/31 ∥f̊∥2/3∞ Pn(t)
2, t ≥ 0.

Hence,

Cf̊ := 4 · 31/3 · π4/3∥f̊∥1/31 ∥f̊∥2/3∞ (2.18)

only depends on f̊ and the properties of the iterates are proved.
Step 2 In this step we want to control the support of fn(t) and ρn(t) uniformly in n.

Using b) from Step 1, we discover that it is sufficient to bound Pn(t), i.e., we can find
some δ > 0 and some function Q : [0, δ[→ [0,∞[ such that

Pn(t) ≤ Q(t), n ∈ N0, t ∈ [0, δ[.

For this purpose remember P̊ and Cf̊ from Step 1. We define δ := (P̊Cf̊ )
−1 and

Q : [0, δ[→ [0,∞[, t 7→ P̊

1− P̊Cf̊ t
=

Cf̊

δ − t
. (2.19)

19



It is easy to check that Q is the maximal solution of the integral equation

Q(t) = P̊ + Cf̊

∫ t

0
Q2(s) ds.

We want to prove that Q is the desired bound of Pn on [0, δ[ by induction:
For n = 0, we obviously have P0(t) = P̊ ≤ Q(t). From here on, assume that the assertion
holds for n ∈ N0, i.e., Pn(t) ≤ Q(t) for t ∈ [0, δ[. In order to bound Pn+1(t), we need to
consider |Vn(s, 0, z)| for s ∈ [0, t], z ∈ supp f̊ . With d) from Step 1 and the induction
hypothesis we obtain

|Vn(s, 0, z)| =
∣∣Vn(0, 0, z) +

∫ s

0
V̇n(τ, 0, z) dτ

∣∣ ≤ |v|+
∫ s

0
∥Fn(τ)∥∞ dτ

≤ P̊ + Cf̊

∫ s

0
P 2
n(τ) dτ ≤ P̊ + Cf̊

∫ t

0
Q2(τ) dτ = Q(t)

for all z = (x, v) ∈ supp f̊ , 0 ≤ s ≤ t < δ. Thereby, we have Pn+1(t) ≤ Q(t) for t ∈ [0, δ[,
and the proof is completed. Accordingly, for every positive δ0 < δ, there exists a radius
R > 0 such that

supp fn(t) ⊂ B6
R ⊂ R6 and supp ρn(t) ⊂ B3

R ⊂ R3

for all t ∈ [0, δ0], n ∈ N0. With this uniform radius R and the length of the time interval
δ in mind, we are ready for the next step.

Step 3 In order to expect convergence of the iterates, we need to control the difference
of two consecutive iterates. To be successful, estimates may only depend on f̊ and δ0
but not on n ∈ N or t ∈ [0, δ0]. In this step we want to find a uniform Lipschitz-bound
of the force fields in the sense that

|Fn(t, x)− Fn(t, y)| ≤ C[δ0, f̊ , R]|x− y|, R > 0 and x, y ∈ B3
R. (2.20)

In the classical setup, this can be done by finding a uniform bound on ∂2
xUn. In [6], the

entire regularity of the characteristics and the mass density was exploited to obtain this
estimate, using a Gronwall argument. However, we have to find another way, since ∂xZ
or ∂xρ do not exist in our case. Once again, we rely on the spherical symmetry of the
iterates and use the special formula of our force field

Fn(t, x) =
x

r
F̄n(t, r), F̄n(t, r) = −4π

r2

∫ r

0
η2ρ̄n(t, η) dη.

Recall that C or C[δ0, f̊ , R] may change from line to line and that any dependencies are
often denoted just once. First of all, we want to show that F̄n(t) is Lipschitz-continuous
uniformly in n and t. For any R > 0 and t ∈ [0, δ0], 0 < u < r ≤ R, we obtain with
(2.14) and Q from (2.19) that

|F̄n(r)− F̄n(u)| ≤ C
∣∣∣ 1
r2

∫ r

u
η2ρ̄n(t, η) dη

∣∣∣+ C
∣∣∣( 1

r2
− 1

u2

)∫ u

0
η2ρ̄n(t, η) dη

∣∣∣
≤ C[δ0, f̊ ]

( 1

r2
|r3 − u3|+ |r − u|u

3(u+ r)

u2r2

)
≤ C[R]|r − u|. (2.21)
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Deriving (2.20) from (2.21) is straight forward: First, we fix some x, y ∈ B3
R and assume

that x, y ̸= 0; the case x ̸= 0 and y = 0 is trivial. If |x| = |y| = r, then

|Fn(t, x)− Fn(t, y)| =
∣∣x
r
F̄n(t, r)−

y

r
F̄n(t, r)

∣∣ ≤ |x− y|
∣∣∣ F̄n(t, r)

r

∣∣∣ ≤ C|x− y|.

If x = λy for some λ > 0 and writing u = |y|, we use (2.21) to obtain

|Fn(t, x)− Fn(t, y)| =
∣∣λy
λu

F̄n(t, λu)−
y

u
F̄n(t, u)

∣∣ ≤ C
∣∣|λy| − |y|

∣∣ ≤ C|x− y|.

The general case x, y ̸= 0 follows immediately by inserting the term Fn(t, |x|/|y| y), which
completes Step 3. Due to the fact that Fn(t, x) = x∥f̊∥/|x|3 for all x ∈ R3\B3

R and
t ∈ [0, δ0], n ∈ N0, the local Lipschitz-continuity immediately implies global Lipschitz-
continuity.

Step 4 This is the main component to prove the local existence. In the classical
setup, one can show that fn is a Cauchy sequence, then prove the necessary regularity of
the induced potential U to obtain uniform convergence of the characteristic flow Zn → Z.
This approach does not seem to work in our setup for several reasons; the difference of the
regularity of f ∈ C1

c in the classical and f ∈ Bs
c in our setup is too much. On the other

hand, the regularity of our characteristic flow is much closer to the classical characteristic
flow. As we have seen at the beginning of this proof, the Vlasov-Poisson system can be
completely treated by investigating its characteristic flow and it seems reasonable to
focus on this. The idea to show convergence is the following: Taking advantage of the
spherical symmetry, we start by estimating the difference of two iterates of the force
by the difference of two iterates of the corresponding characteristic flow. On the other
hand, the characteristic flow can easily be estimated by the force field. Exploiting this
Gronwall loop will show that Fn is a Cauchy sequence. Accordingly, we obtain a limiting
field F , which hopefully has the necessary regularity to obtain a limiting characteristic
flow Z with the properties of Remark 2.4.
Firstly, we fix any t ∈ [0, δ0], z ∈ R6 and write Zn(s, t, z) = Zn(s). By (2.20), we have

|V̇n+1(s)−V̇n(s)| ≤ C|Xn+1(s)−Xn(s)|+ |Fn+1(s,Xn(s))−Fn(s,Xn(s))|, (2.22)

and hence, we have to consider the second term. For |x| = r ≤ R, s ∈ [0, δ0], simply
observe that

F ∗
n := |Fn+1(s, x)− Fn(s, x)| =

4π

r2

∣∣∣ ∫ r

0
η2
(
ρ̄n+1(s, η)− ρ̄n(s, η)

)
dη
∣∣∣ ≤ Cr. (2.23)

On the other hand, since

{Zn(0, s, z) : |y| ≤ r} = {z̃ ∈ R6 : ∃ z ∈ B3
r × R3 such that Zn(s, 0, z̃) = z}

= {z̃ ∈ R6 : |Xn(s, 0, z̃)| ≤ r},

and denoting z = (y, v), we can rewrite the force

−F̄n(s, r) =
1

r2

∫
|y|≤r

ρn(s, y) dy =
1

r2

∫
{z∈R6:|y|≤r}

f̊(Zn−1(0, s, z)) dz

=
1

r2

∫
{Zn−1(0,s,z):|y|≤r}

f̊(z) dz =

∫
{z∈R6:|Xn−1(s,0,z)|≤r}

f̊(z) dz (2.24)

21



to obtain

F ∗
n ≤ 1

r2

∣∣∣ ∫
{z∈R6:|Xn(s,0,z)|≤r}

f̊(z) dz −
∫
{z∈R6:|Xn−1(s,0,z)|≤r}

f̊(z) dz
∣∣∣

≤ 1

r2
∥f̊∥∞ vol(Dn), (2.25)

where we defined

Dn := {z ∈ supp f̊ :|Xn(s, 0, z)| ≤ r < |Xn−1(s, 0, z)|
∨ |Xn−1(s, 0, z)| ≤ r < |Xn(s, 0, z)|}.

Next, defining

dn := sup
z ∈ supp f̊

|Xn(s, 0, z)−Xn−1(s, 0, z)|,

we easily observe that

vol(Dn) ≤ vol{z ∈ supp f̊ : |Xn(s, 0, z)| ≤ r < dn + |Xn(s, 0, z)|
∨ |Xn−1(s, 0, z)| ≤ r < dn + |Xn−1(s, 0, z)|}

≤ vol{z ∈ supp f̊ : |Xn(s, 0, z)| ≤ r < dn + |Xn(s, 0, z)|}
+ vol{z ∈ supp f̊ : |Xn−1(s, 0, z)| ≤ r < dn + |Xn−1(s, 0, z)|}

=: vol(D1
n) + vol(D2

n).

Our aim is to get rid of the Xn-terms and obtain an estimate of the form

F ∗
n ≤ C

r2
(
vol(D1

n) + vol(D2
n)
)
≤ Cdn.

To do so, we will use the fact that our characteristic flow is measure preserving to
eliminate the Xn-terms in the following way:

vol(D1
n) = vol(Zn(s, 0, D

1
n))

= vol{Zn(s, 0, z) : z ∈ supp f̊ ∧ |Xn(s, 0, z)| ≤ r < dn + |Xn(s, 0, z)|}
= vol{(y, v) ∈ Zn(s, 0, supp f̊) : |y| ≤ r < dn + |y|}

≤ vol
(
{y ∈ B3

R : r − dn < |y| < r} ×B3
R

)
≤ C[R]

(
r3 − (r − dn)

3
)
≤ C(d3n + 3d2nr + 3dnr

2),

Obviously, the same result holds for D2
n; we just have to insert Zn−1 instead of Zn and

hence

vol(Dn) ≤ C(d3n + 3d2nr + 3dnr
2). (2.26)

We remove the powers of dn as follows: If r ≤ dn, we make use of (2.23) to obtain

F ∗
n ≤ Cr ≤ Cdn.
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If r > dn, (2.25) with (2.26) yields

F ∗
n ≤ C

r2
(r2dn + 3r2dn + 3r2dn) ≤ Cdn.

After combining both results, we see our first success:

∥Fn+1(s)− Fn(s)∥∞ ≤ C sup
z ∈ supp f̊

|Xn(s, 0, z)−Xn−1(s, 0, z)|

≤ C sup
z ∈ supp f̊

|Zn(s, 0, z)− Zn−1(s, 0, z)|. (2.27)

The other way around, i.e, estimating the difference of the flows by the difference of the
forces, can be easily obtained with the characteristic system and (2.22):

|Zn+1(s, 0, z)− Zn(s, 0, z)| =
∣∣∣ ∫ s

0

(
Żn+1(τ, 0, z)− Zn(τ, 0, z)

)
dτ
∣∣∣

≤ C

∫ s

0
|Zn+1(τ, 0, z)− Zn(τ, 0, z)|dτ + C

∫ s

0
∥Fn+1(τ)− Fn(τ)∥∞ dτ,

and by Gronwall

|Zn+1(s, 0, z)− Zn(s, 0, z)| ≤ C

∫ s

0
∥Fn+1(τ)− Fn(τ)∥∞ dτ. (2.28)

After combining (2.27) and (2.28), we can conclude the convergence as follows. First,

∥Fn+1(τ)− Fn(τ)∥∞ dτ ≤ C

∫ s

0
∥Fn(τ)− Fn−1(τ)∥∞ dτ.

Applying this estimate n-times, then using ∥F1(τ)− F0(τ)∥∞ ≤ C[f̊ , δ0], yields

∥Fn+1(t)− Fn(t)∥∞ ≤ Cn

∫ t

0

∫ τn

0
· · ·
∫ τ2

0
∥F1(τ1)− F0(τ1)∥∞ dτ1 dτ2 . . . dτn ≤ C

Cntn

n!
.

Using the power series of the exponential function and the Cauchy criterion finally implies

∥Fn+k(t)− Fn(t)∥∞ ≤
j=n+k−1∑

j=n

∥Fj+1(t)− Fj(t)∥∞ ≤ C

∞∑
j=n

(Ct)j

j!
−→ 0,

as n → ∞, for all t ∈ [0, δ0]. Consequently, Fn → F uniformly on [0, δ0]×R3. Moreover,
(2.20) implies that F is Lipschitz-continuous with respect to x, which yields well-defined
characteristics s 7→ Z(s, t, z) with

Ẋ = V, V̇ = F (s,X), Z(t, t, z) = z,

and hence Zn → Z uniformly on [0, δ0]× [0, δ0]×R6. Note that Z has the properties of
Remark 2.4. Next, we need to make sure that

f : [0, δ0]× R6 → R, f(t, z) := f̊(Z(0, t, z)) (2.29)
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is the desired local solution in the characteristic sense, i.e, we have to check (i)-(iii)
from Definition 2.7. Obviously, f is measureable and

∫
f(t, x, v) dv ∈ R for all (t, x) ∈

[0, δ0] × R3. Since Xn(t, 0, ·) → X(t, 0, ·) pointwise on R6, we obtain by Lebesgue’s
dominated convergence theorem and (2.24) that

F̄ (t, r) = lim
n→∞

F̄n(t, r) = − lim
n→∞

∫
{z∈R6:|Xn−1(t,0,z)|≤r}

f̊(z) dz

= −
∫
{z∈R6:|X(t,0,z)|≤r}

f̊(z) dz = − 1

r2

∫
{z∈R6:|y|≤r}

f̊(Z(0, t, z)) dz.

This implies

F (t, x) = −
∫∫

x− y

|x− y|3
f(t, y, v) dy dv,

which is the necessary relation between F, f and Z from (i) and (ii). Lastly, f is constant
along its induced characteristics due to Lemma 2.8, which proves (iii).
Since δ0 ∈ ]0, δ[ was arbitrary, our constructed solution (2.29) and all induced quan-

tities can at least be extended to [0, δ[. Next, we want to show uniqueness for the
characteristic solution we have just constructed.

2.5 Uniqueness in the space of spherically symmetric functions

We pick two characteristic solutions f, g ∈ Bs
c([0, T [×R6) with f̊ = f(0) = g(0) ∈ Bs

c(R6)
and want to show that f = g on [0, T [×R6. Therefore, we fix any (t, z) and use the fact
that there passes a characteristic curve through each point due to Definition 2.7 (ii). We
can define ξ := Zf (0, t, z) to get z = Zf (t, 0, ξ), where Zf is the characteristic according
to f . Since f is constant along its characteristics, we have

f(t, z) =f(t, Zf (t, 0, ξ)) = f(0, Zf (0, 0, ξ)) = f̊(Zf (0, 0, ξ)) = f̊(ξ) = f̊(Zf (0, t, z)).

We can do the same with g to obtain

g(t, z) = f̊(Zg(0, t, z)).

Once again, we pick some 0 < δ0 < T and only need to show uniqueness on the compact
time intervall [0, δ0]. First, we need to make sure that both mass densities ρf , ρg and
both force fields Ff , Fg have the necessary properties to go through Step 4 of our local
existence proof:
Since f, g ∈ Bs

c([0, δ0] × R6), we find for every t ∈ [0, δ0] some R(t) > 0 such
that supp f(t) ∪ supp g(t) ⊂ B6

R(t). Indeed, this function R : [0, δ0] → R can be de-

signed to be continuous by Lemma 2.8 b), simply using supp f(t) = Zf (t, 0, supp f̊) and

supp g(t) = Zg(t, 0, supp f̊) and the continuity of the characteristics. Note that Lemma
2.8 is applicable since Zf and Zg have the properties of Remark 2.4 by the definiton
of a characteristic solution. The uniform bound R := max{R(t) : t ∈ [0, δ0]} implies
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∥ρf (t)∥∞ + ∥ρg(t)∥∞ ≤ C[R, δ0]∥f̊∥∞ like in Step 1 and hence the global Lipschitz-
continuity of Ff and Fg like in (2.20) from Step 3 due to spherical symmetry.

Next, we want to show that Zf (0, t, z) = Zg(0, t, z) by going through the estimates of
Step 4, where we replace Fn, Fn−1 with Ff , Fg and Zn, Zn−1 with Zf , Zg: First, let us
define the well-known quantities

Df,g := {z ∈ supp f̊ :|Xf (s, 0, z)| ≤ r < |Xg(s, 0, z)|
∨ |Xg(s, 0, z)| ≤ r < |Xf (s, 0, z)|},

df,g := sup
z ∈ supp f̊

|Xf (s, 0, z)−Xg(s, 0, z)|.

Since Ff (s, ·) and Fg(s, ·) are spherically symmetric for all times s ∈ [0, T [, we find
analogously to Step 4 that

|Ff (s, x)− Fg(s, x)| ≤ Cr, |Ff (s, x)− Fg(s, x)| ≤
1

r2
∥f̊∥∞vol (Df,g) (2.30)

for (s, x) ∈ [0, δ0]× R3, r = |x|. Furthermore,

vol (Df,g) ≤ C(d3f,g + 3d2f,gr + 3df,gr
2),

which implies with (2.30) that

∥Ff (s)− Fg(s)∥∞ ≤ C sup
z ∈ supp f̊

|Zf (s, 0, z)− Zg(s, 0, z)|.

Analogously to (2.28) we conclude with Gronwall that

|Zf (s, 0, z)− Zg(s, 0, z)| ≤ C

∫ s

0
∥Ff (τ)− Fg(τ)∥∞ dτ

and obtain Zf (s, 0, z) = Zg(s, 0, z) for (s, z) ∈ [0, δ0] × R6. By Definition 2.7 (ii) both
Zf and Zg have the properties of Remark 2.4. Hence by the formula for the inverse of
the characteristic flow, we find that

Zf (0, s, ·) = Zf
−1(s, 0, ·) = Zg

−1(s, 0, ·) = Zg(0, s, ·), s ∈ [0, T [,

which finally implies f(t, z) = f̊(Zf (0, t, z)) = f̊(Zg(0, t, z)) = g(t, z) for (t, z) ∈ [0, δ0]×
R6. Since 0 < δ0 < T was arbitrary, uniqueness on [0, T [ follows.

2.6 The continuation criterion

For the desired global existence result we need to investigate the conditions under which
a solution can be extended. Vividly speaking, this is the case as long as the mass density
or the velocities of our particles remain bounded. To be specific, we want to prove the
following continuation criterion:
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Theorem 2.10.
Consider T ∈ ]0,∞] and let f : [0, T [×R6 → R be the maximal solution in the character-
istic sense, i.e., if f̃ : [0, T̃ [×R6 → R is another solution with f(0) = f̃(0), then T̃ ≤ T .
If

P ∗ := sup
{
|v| : (x, v) ∈ supp f(t), 0 ≤ t < T

}
< ∞, or

ρ∗ := sup
{
ρ(t, x) : x ∈ R3, 0 ≤ t < T

}
< ∞,

then T = ∞; the solution is global in time.

Proof. Let f : [0, T [×R6 → R be the maximal solution in the characteristic sense and
assume T < ∞. We have to check the two cases P ∗ < ∞ and ρ∗ < ∞. In Step 2 we
computed δ, which was the length of the time interval of our constructed solution.
The idea of the proof is the following: As a start, we pick some t0 ∈]0, T [ sufficiently
close to T . Then, we consider the initial value problem with f(t0) as initial datum,
and go through Step 1-4. If we manage to extend the solution beyond T and use the
uniqueness, we obtain the contradiction to the assumption that f is a maximal solution.

1) Let P ∗ < ∞:
Since the Lp-norms are preserved due to Lemma 2.8 b), we have

∥f(t0)∥∞ = ∥f̊∥∞, ∥f(t0)∥1 = ∥f̊∥1, 0 ≤ t0 < T,

and consequently Cf(t0) := 4 · 31/3 · π4/3∥f(t0)∥1/31 ∥f(t0)∥2/3∞ = Cf̊ , which was

defined in Step 1. For any t0 ∈ ]0, T [, we define δ∗ := (P ∗Cf(t0))
−1. The key idea

is to take advantage of the fact that Cf(t0) and δ∗ are independent of t0. Thus, we
can choose t0 sufficiently close to T such that t0 + δ∗ > T . Analogously to Step
2, we consider the maximal solution of the integral equation

Q̃(t) = P ∗ + Cf̊

∫ t

t0

Q̃2(s) ds.

We know that Q̃ exists on [t0, t0 + δ∗[. Due to our local existence result we have
f(t0) ∈ Bs

c(R6). Hence, we can consider f(t0) as the new initial datum and go
through Step 1-4: Step 1 is exactly the same, note that

f(t0, x, v) = 0 for all |v| ≥ P ∗, x ∈ R3

by definition of P ∗. In Step 2 we obtained the length of our time interval, and
hence the radius R, which bounded the support of fn(t) and ρn(t). We can bound
the crucial quantity

P̃n(t) := sup
{
|Vn−1(s, t0, z)| : z ∈ supp f(t0), t0 ≤ s ≤ t

}
, t ∈ [t0, t0 + δ∗[ ,
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once again by proving P̃n(t) ≤ Q̃(t) by induction. The case n = 0 is trivial, and
the induction step remains almost the same:

|Vn(s, t0, z)| ≤ |Vn(t0, t0, z)|+
∣∣∣ ∫ s

t0

V̇n(τ, t0, z) dτ
∣∣∣ ≤ |v|+

∫ s

t0

∥Fn(τ)∥∞ dτ

≤ P ∗ + Cf(t0)

∫ s

t0

P̃ 2
n(τ) dτ ≤ P ∗ + Cf̊

∫ t

t0

Q̃2(τ) dτ = Q̃(t).

The same procedures from Step 3 can now be conducted again to obtain a uniform
Lipschitz-bound of the force fields. Now we have all necessary estimates and can
go through Step 4. Thereafter, we obtain a solution f̃ ∈ Bs

c([t0, t0 + δ∗[×R6) with
f̃(t0) = f(t0). Since both f̃ and f exist on [t0, T [×R6, we have f̃ = f on [t0, T [×R6

by uniqueness. In particular, we extended f to [0, t0 + δ∗[×R6 which contradicts
the maximality of T .

2) Let ρ∗ < ∞:
This can be traced back to the first case P ∗ < ∞ as follows: By Lemma 2.2 b), we
have

∥F (t)∥∞ ≤ C∥ρ(t)∥1/31 ∥ρ(t)∥2/3∞ ,

and hence

sup
t∈[0,T [

∥F (t)∥∞ < C[f̊ , ρ∗] < ∞.

Using supp f(t) = Z(t, 0, supp f̊), we have

P ∗ = sup
{
|v| : (x, v) ∈ supp f(t), 0 ≤ t < T

}
= sup

{
|v| : (x, v) ∈ Z(t, 0, supp f̊), 0 ≤ t < T

}
= sup

{
|V (t, 0, z)| : z ∈ supp f̊ , 0 ≤ t < T

}
and since we can estimate

|V (t, 0, z)| ≤ |v|+
∫ t

0
∥F (τ)∥∞ dτ < C[R, f̊ , ρ∗, T ] < ∞,

P ∗ < ∞ follows and the proof is completed.

2.7 Global existence

Theorem 2.11.
For every non-negative f̊ ∈ Bs

c(R6) there exists a unique global solution f : [0,∞[×R6 → R
in the characteristic sense. Additionally, there exists some P0 > 0 such that

f(t, x, v) = 0, |v| ≥ P0, (t, x) ∈ [0,∞[×R3.

P0 depends only on ∥f̊∥1, ∥f̊∥∞ and P̊ .
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Proof. Let f̊ ∈ Bs
c(R6) and f ∈ Bs

c([0, T [×R6) be the corresponding local solution in the
characteristic sense. According to the continuation criterion, it is sufficient to limit

P (t) := sup
{
|v| : z ∈ supp f(s), 0 ≤ s ≤ t

}
, 0 ≤ t < T.

Lemma 2.2 b) and the conservation of the Lp-norms imply that

∥F (t)∥∞ ≤ C∥f(t)∥1/31 ∥f(t)∥2/3∞ P 2(t) ≤ Cf̊P
2(t).

Due to the spherical symmetry of f , Lemma 2.3 provides the estimate

|F (t, x)| ≤ ∥f̊∥1
r2

, (t, x) ∈ [0, T [×R3, |x| = r.

Assembling these estimates yields

|F (t, x)| ≤ C∗min

{
1

r2
, P 2(t)

}
. (2.31)

with the constant C∗ only depending on f̊ . We fix any t ∈ [0, T [, z ∈ supp f̊ and write
for the characteristics associated with f

(X,V )(s) = (X,V )(s, 0, z), 0 ≤ s ≤ t < T.

For any i ∈ {1, 2, 3} arbitrary but fixed and all r ∈ R, we define

ξ := Xi ∈ C2([0, t]) and g(r) := C∗min

{
1

r2
, P 2(t)

}
.

Our first goal is to find an estimate for |ξ̇(t)− ξ̇(0)|. Since Ẍ(s) = F (s,X(s)), we have

|ξ̈(s)| ≤ g(ξ(s)), 0 ≤ s ≤ t.

1) We consider the case ξ̇(s) ̸= 0 for all s ∈ ]0, t[ :
Since ξ̇ is in C1([0, t]), we know that ξ̇ does not change sign:

|ξ̇(t)− ξ̇(0)|2 ≤ |ξ̇(t)− ξ̇(0)||ξ̇(t) + ξ̇(0)| = |ξ̇(t)2 − ξ̇(0)2|.

Using the fundamental theorem of calculus and after some straight forward com-
putations, we find that

|ξ̇(t)2 − ξ̇(0)2| =
∣∣∣ ∫ t

0

d

ds
(ξ̇(s)2) ds

∣∣∣ = 2
∣∣∣ ∫ t

0
ξ̈(s)ξ̇(s) ds

∣∣∣ ≤ 2

∫ t

0
g(ξ(s))|ξ̇(s)|ds

= 2

∫ ξ(t)

ξ(0)
g(s) ds ≤

∫ ∞

−∞
2C∗min

{ 1

s2
, P (t)2

}
ds

= 2C∗
(∫ −1/P (t)

−∞

1

s2
ds+

∫ +1/P (t)

−1/P (t)
P (t)2 ds+

∫ ∞

+1/P (t)

1

s2
ds
)

= 8C∗P (t).
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2) In the other case, there exists some s ∈ ]0, t[ such that ξ̇(s) = 0.
We define

s− := inf
{
s ∈ ]0, t[ : ξ̇(s) = 0

}
,

s+ := sup
{
s ∈ ]0, t[ : ξ̇(s) = 0

}
.

Obviously,

0 ≤ s− ≤ s+ ≤ t, ξ̇(s−) = 0 = ξ̇(s+).

We also know that there are no more zeros of ξ̇ on ]0, s−[ and ]0, s+[. Hence, we
can apply case 1) on these intervals and obtain

|ξ̇(t)− ξ̇(0)| ≤ |ξ̇(t)− ξ̇(s+)|+ 0 + |ξ̇(s−)− ξ̇(0)| ≤ 2
√

8C∗P (t).

Since P is nondecreasing and ξ̇ = Vi by definition, we get in both cases

|V (s)− V (0)| ≤
√
3 max
i∈{1,2,3}

|Vi(s)− Vi(0)| ≤ 2
√
3
√

8C∗P (t), s ∈ [0, t].

This yields the desired bound of P (t):

P (t) = sup
{
|v| : (x, v) ∈ supp f(s), 0 ≤ s ≤ t

}
= sup

{
|V (s, 0, x, v)| : (x, v) ∈ supp f̊ , 0 ≤ s ≤ t

}
≤ sup

{√
3 max
i∈{1,2,3}

|Vi(s, 0, x, v)− Vi(0, 0, x, v)| : (x, v) ∈ supp f̊ , 0 ≤ s ≤ t
}
+ P (0)

≤ 2
√
3
√
8C∗P (t)1/2 + P (0),

and hence

P (t) ≤ 4
√
6

√
24C∗2 + C∗P̊ + 48C∗ + P̊ , t ∈ [0, T [ ,

which completes the proof due to the continuation criterion. Note that both P (0) = P̊
and C∗ depend only on ∥f̊∥1 and ∥f̊∥∞.

2.8 Conservation of the energy and the Casimir functional

In the following we consider both local and global solutions, i.e. let T > 0 or T = ∞.
For any compactly supported characteristic solution f : [0, T [×R6 → R we introduce its
kinetic and potential energy

Ekin(f(t)) :=
1

2

∫∫
|v|2f(t, x, v) dx dv, Epot(f(t)) :=

1

2

∫∫
U(t, x)f(t, x, v) dx dv

for t ∈ [0, T [, where the potential induced by f is defined as

Uf (t, x) := U(t, x) := −
∫∫

f(t, y, v)

|x− y|
dy dv, (t, x) ∈ [0, T [×R3.
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For any continuous function Φ : R → R with Φ(0) = 0 we define theCasimir functional
as

C(f(t)) :=
∫∫

Φ
(
f(t, x, v)

)
dv dx, t ∈ [0, T [.

Note that both |Ekin(f(t))| and |Epot(f(t))| are finite, and Uf (t) ∈ C1(R3) with −∂xUf =
Ff due to the fact that ρf (t) ∈ L1 ∩ L∞(R3) for all times.

Theorem 2.12.
The total energy and the Casimir functional are preserved in time: For all t ∈ [0, T [, we
have

Etot := Ekin(f(t)) + Epot(f(t)) = Ekin(f̊) + Epot(f̊), C(f(t)) = C(f̊).

Proof. In order to prove this, it is essential that our characteristic flow is at least almost
everywhere measure preserving, which holds by Definition 2.7 (ii). Hence, the conser-
vation of the Casimir functional is a direct consequence of the Transformation rule for
Lipschitz functions:

C(f(t)) =
∫

Φ
(
f(t, z)

)
dz =

∫
Φ
(
f̊(Z(0, t, z))

)
dz =

∫
Φ
(
f̊(z)

)
dz = C(f̊).

There are several ideas in the literature to prove the conservation of energy. In the
classical Vlasov-Poisson setup, one can exploit the fact that f, ρ, U solve (2.1), (2.2) by
considering d

dt

(
Ekin(f(t)) + Epot(f(t))

)
.

However, our f is just a solution in the characteristic sense, and in general the Vlasov
and the Poisson equation do not hold since ∂tf, ∂xf, ∂vf or ∆U do not exist. Thus, we
have to find another approach that only uses s 7→ f(s, (Z(s, t, z)) being constant and
our characteristic flow Z = (X,V ) having the good properties of Remark 2.4. We will
exploit these properties by inserting a time derivative with the fundamental theorem of
calculus as follows:
Remember the notation z = (x, v) and dz = dx dv. Starting directly with the total
energy, using the measure preserving transformation z 7→ Z(t, 0, z) and the fundamental
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theorem of calculus, we have

2Etot =

∫
|v|2f(t, z) dz +

∫∫
f(t, z)f(t, z̃)

|x− x̃|
dz dz̃

=

∫
|V (t, 0, z)|2f

(
t, Z(t, 0, z)

)
dz −

∫∫
f
(
t, Z(t, 0, z)

)
f
(
t, Z(t, 0, z̃)

)
|X(t, 0, z)−X(t, 0, z̃)|

dz dz̃

=

∫∫ t

0

d

ds

(
|V (s, 0, z)|2f

(
s, Z(s, 0, z)

))
ds dz +

∫
|v|2f̊(z) dz

−
∫∫∫ t

0

d

ds

(
f
(
s, Z(s, 0, z)

)
f
(
s, Z(s, 0, z̃)

)
|X(s, 0, z)−X(s, 0, z̃)|

)
ds dz dz̃ −

∫∫
f̊(z)f̊(z̃)

|x− x̃|
dz dz̃

=2
(
Ekin(f̊) + Epot(f̊)

)
+ 2

∫∫ t

0
V (s, 0, z) · F (s,X(s, 0, z))f

(
s, Z(s, 0, z)

)
ds dz

+

∫∫∫ t

0

X(s, 0, z)−X(s, 0, z̃)

|X(s, 0, z)−X(s, 0, z̃)|3

×
(
V (s, 0, z)− V (s, 0, z̃)

)
f
(
s, Z(s, 0, z)

)
f
(
s, Z(s, 0, z̃)

)
ds dz dz̃.

In the last step we used that f is a characteristic solution:

d

ds
f(s, Z(s, 0, z)) = 0, s ∈ [0, T [.

Using Fubini and transforming back with z 7→ Z(0, s, z), z̃ 7→ Z(0, s, z̃), we obtain

Etot =Ekin(f̊) + Epot(f̊) +

∫ t

0

∫
v · F (s, x)f(s, z) dz ds

+

∫ t

0

∫∫
v · x− x̃

|x− x̃|3
f(s, z̃) f(s, z) dz̃ dz ds.

Since f is a characteristic solution, the formula

F (t, x) = −
∫

x− x̃

|x− x̃|3
f(t, z̃) dz̃

holds for all (t, x) ∈ [0, T [×R3. Therefore, the last two terms cancel each other and the
assertion Ekin(f(t)) + Epot(f(t)) = Ekin(f̊) + Epot(f̊) follows.

Obviously, this proof works in the classical setup as well since the regularity of f
immediately implies the necessary properties of the characteristic flow and the force
field.

Outlook

Let us give a brief overview of interesting problems that can be attacked based on the
concept of characteristic solutions and the given existence result. One exciting question
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is how any irregularities of a characteristic solution spread in phase space. For example
if f ∈ Bc([0, T [×R6) is a characteristic solution which is smooth on its support but
discontinuous at the boundary of its support, what can we say about the regularity of
f(t) for t > 0?
Another open question is whether we can weaken the requirements for f̊ in our local
existence result. It seems hard to get rid of the spherical symmetry assumption since
this ensures the Lipschitz-continuity of the force field which seems to be necessary for
well-defined characteristics. In view of the Kurth-type solutions, it is perhaps sufficient
to demand 0 ≤ f̊ ∈ L1(R6),

∫
f̊ dv ∈ L∞(R3) and f̊ being spherically symmetric and

compactly supported for a pointwise defined representative.
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3 The flat Vlasov-Poisson system

In this chapter, we want to analyse the flat axially symmetric Vlasov-Poisson system
numerically. For this purpose we need certain analytical results of the potential and the
force field. Before introducing the flat Vlasov-Poisson system, we want to point out how
it differs from the 2-dimensional Vlasov-Poisson system, where the distribution function
f is defined on R2×R2 and the Vlasov equation is coupled to the 2-dimensional Poisson
equation. For some reasonable f , the induced gravitational potential takes the form

U(x) =
1

2π

∫
R2

∫
R2

ln(|x− y|)f(y, v) dv dy, x ∈ R2,

which is just of mathematical interest and has no interpretation in the astrophysical
context known to the author. When it comes to flat galaxies, we need the 3-dimensional
Vlasov-Poisson system with flat phase space functions.
Flat phase space functions can be expressed by delta distributions and phase space

functions on R3 × R3 via

f̊(x1, x2, x3, v1, v2, v3) = f̊
¯
(x1, x2, v1, v2)δ(x3)δ(v3). (3.1)

Take into consideration that they do not fulfil f̊ ∈ C1
c (R6) or f̊ ∈ B(R6) from Chapter 2.

In the following, underlining a function f
¯
, ρ
¯
, F
¯
emphasises that it is defined on the flat

phase space R2×R2 and R2 respectively. This indicates whether x and v are elements
of R2 or R3. Once we insert (3.1) into the classical formula of the force, where formally

ρ(x) =

∫
R3

f(x1, x2, x3, v1, v2, v3) dv =

∫
R3

f
¯
(x1, x2, v1, v2)δ(x3)δ(v3) dv = ρ

¯
(x1, x2)δ(x3)

holds, we obtain the flat force

F
¯
(x1, x2) =

∫
R2

(x1, x2)− (y1, y2)

|(x1, x2)− (y1, y2)|3
ρ
¯
(y1, y2) dy.

This is the motivation to consider the flat Vlasov-Poisson system

∂tf
¯
(t, x, v) + v · ∂xf

¯
(t, x, v) + F

¯
(t, x) · ∂vf

¯
(t, x, v) = 0, (3.2)

F
¯
(t, x) = −

∫
R2

x− y

|x− y|3
ρ
¯
(t, y) dy, (3.3)

ρ
¯
(t, x) =

∫
R2

f
¯
(t, x, v) dv. (3.4)

We are only interested in the initial value problem, where f̊
¯
= f

¯|t=0
is given on R2×R2.

We call (f
¯
, ρ
¯
, F
¯
) a solution of the flat Vlasov-Poisson system or a flat solution if the

following holds:
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i) f
¯
∈ C1(I × R2 × R2) and F

¯
, ρ
¯
∈ C1(I × R2),

ii) f
¯
, ρ
¯
, F
¯
solve (3.2)-(3.4) on I × R2 × R2 and I × R2 respectively,

iii) for all compact subintervals J ⊂ I, the force field F
¯
is bounded on J × R2.

The flat force F
¯

and the classical force F from Chapter 2 look similar but looks can
be deceiving: For n ∈ {2, 3}, R > 0, x ∈ Bn

R and some discontinuous mass density in
L1 ∩ L∞(Rn), for example ρ := 1Bn

R
, we have

|F (x)| =
∣∣∣ ∫

Bn
R

x− y

|x− y|3
dy
∣∣∣{= ∞, n = 2

< ∞, n = 3
. (3.5)

Hence, useful properties like Lemma 2.2 are lost as we go from the classical to the flat
case and it is fair to say that the flat Vlasov-Poisson system is more complicated. In the
dissertation of Svetlana Dietz [8], one can find a local existence result for initial data
f̊
¯
∈ C1,α

c (R2 ×R2), i.e, f̊
¯
and its first derivatives are Hölder-continuous to the exponent

α. However, we will not pursue this any further and assume from here on that our initial
datum shall always enjoy this regularity. The topic we are interested in is the axially
symmetric case:

3.1 The flat, axially symmetric Vlasov-Poisson system

We call some function f on the flat phase space R2 × R2 axially symmetric if

f
¯
(x, v) = f

¯
(Ax,Av), x, v ∈ R2, A ∈ SO(2).

For any axially symmetric initial datum f̊
¯
, we consider the unique local solution f

¯
.

Since f
¯
(·, A·, A·) is also a solution of the flat Vlasov-Poisson system with the same

initial datum, f
¯
= f

¯
(·, A·, A·) by uniqueness; thus axial symmetry is preserved. Before

we continue to compare the spherically and axially symmetric cases, we want to recall
and expand our notations: If anything is overlined or underlined, it is one dimensional
or two dimensional respectively. To differ functions in R2 or R3 depending only on the
radius, we write

U(r) = U
¯
(x), Σ(r) = ρ

¯
(x), r = |x| = |(x1, x2)|,

Ū(r) = U(x), ρ̄(r) = ρ(x), r = |x| = |(x1, x2, x3)|.

Next, we want to investigate the flat axially symmetric potential and the corresponding
force and compare the results to the spherically symmetric case.

3.2 Properties of the potential and the force field

Definition and Remark 3.1. (Complete elliptic integrals)
We denote by k 7→ K(k) and k 7→ E(k) the complete elliptic integrals of the first and of
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the second kind:

K(k) :=

∫ π/2

0

dϑ√
1− k2(sinϑ)2

, k ∈ [0, 1[ , (3.6)

E(k) :=
∫ π/2

0

√
1− k2(sinϑ)2 dϑ, k ∈ [0, 1]. (3.7)

These two functions have the following properties:

a) K(0) = π/2, K(k) → ∞, as k → 1, and K is strictly increasing on [0, 1[.

b) E(0) = π/2, E(1) = 1 and E is strictly decreasing on [0, 1].

c) K and E are continuously differentiable with

d

dk
K(k) =

1

k

( E(k)
1− k2

−K(k)
)
, (3.8)

d

dk
E(k) =

1

k

(
E(k)−K(k)

)
. (3.9)

d) E ∈ L1 ∩ L∞([0, 1]) and K ∈ L1 ∩ Lp([0, 1[ ) for all p ∈ [1,∞[ and

K(k) =
1

1 + k
K
( 2

√
k

1 + k

)
, k ∈ [0, 1[ . (3.10)

Proof. This is standard theory for elliptic integrals and we refer to [9], [10] for a proof.

Lemma 3.2.
Let ρ

¯
∈ C1,α

c (R2) be axially symmetric with supp ρ
¯

⊂ B2
R and let Σ(| · |) = ρ

¯
denote

its radial function. Then we have the following formulas for the potential and the force
field:

U(r) = −4

∫ R

0

sΣ(s)

r + s
K
(2√rs

r + s

)
ds (3.11)

= −4

r

∫ r

0
sΣ(s)K

(s
r

)
ds− 4

∫ R

r
Σ(s)K

(r
s

)
ds, (3.12)

U ′(r) =
4

r2

∫ r

0
sΣ(s)

E
(
s/r
)

1− s2/r2
ds− 4

r

∫ R

r
Σ(s)

(
E
(
r/s
)

1− r2/s2
−K

(r
s

))
ds, (3.13)

∂xU
¯
(x) = x/r U ′(r), for r = |x|, x ∈ R2. (3.14)

Before giving a proof, we want to recall Lemma 2.2 and compare the formulas of the
forces, as this might give us insight into the upcoming problems. First, note that the
axially symmetric potential U , written as (3.12), and the spherically symmetric potential
Ū look similar: Just multiply with π and replace K(·/r) and K(r/·) by the identity.
Unfortunately, this small difference destroys the similarity for the corresponding forces
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Ū ′ and U ′, where an entire
∫ R
r -term and the singularities (1−s2/r2)−1 and (1−r2/s2)−1

additionally appear. This has several physical and mathematical consequences:
Starting with the mathematical aspect, we have that U ′(R) can be infinite if Σ is not

Hölder-continuous in R. Of course, (3.5) was an indication for this to happen but there
was hope that the forces gain some regularity by the symmetry assumption, as it is the
case with spherical symmetry.
The physical aspect concerns the influence area of the force. In the spherically sym-

metric setting, one test particle located at r > 0 only experiences the mass, which is
closer to the origin than itself. Mathematically speaking, Ū ′(r) is independent of ρ̄ on
[r,∞[. On the other hand, the gravitational force is always attractive to the center of
mass, i.e., Ū ′(r) ≥ 0, where Ū ′(r) = 0 if and only if ρ̄ = 0 on [0, r[ almost everywhere.
Both of these properties vanish in the axially symmetric setting. Indeed, in Figure 3.6 we
numerically constructed a steady state (f

¯
,Σ,U) such that U ′ < 0 on some subinterval.

Proof. Using the symmetry of U
¯
, we can assume that (x1, x2) = (r, 0). Next, we intro-

duce polar coordinates and write y = (s sinα, s cosα) to obtain

|x− y|2 = (r − s cosα)2 + s2 sin2 α = r2 + s2 − 2rs cosα = (r + s)2 − 2rs(1 + cosα).

We use the well known trigonometric identity

cos a+ cos b = 2 cos
(a+ b

2

)
cos
(a− b

2

)
and define k := 2

√
rs/(r + s) to conclude

|x− y| =
(
(r + s)2 − 4rs cos2

α

2

)1/2
= (r + s)

(
1− k2 cos2

α

2

)1/2
.

Using this equation for our axially symmetric potential yields

U
¯
(x1, x2) = −

∫
R2

ρ
¯
(y)

|x− y|
dy = −2

∫ ∞

0

∫ π

0

sΣ(s)

r + s

dα ds√
1− k2 cos2(α/2)

,

where “
∫ 2π
0 = 2

∫ π
0 ” due to the symmetry at α = π. Upon substituting

t = cos(α/2), dt = −1

2

√
1− t2 dα,

and observing that

K(k) =

∫ 1

0

dt√
1− k2t2

√
1− t2

,

we can prove equation (3.11):

U
¯
(x1, x2) = −2

∫ ∞

0

∫ 1

0

sΣ(s)

r + s

1√
1− k2t2

−2√
1− t2

dt ds

= −4

∫ ∞

0

sΣ(s)

r + s
K(k) ds.
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As pointed out in [11], (3.12) can be easily derived by splitting the domain of integration
into [0, r] and [r,∞] and using (3.10) with k = s/r and k = r/s respectively; recall
that Σ = 0 on [R,∞[. Using (3.8) and the Hölder-continuity of Σ, (3.13) follows by
differentiating (3.12).

3.3 Flat axially symmetric steady states

For given x = (x1, x2), v = (v1, v2) let us introduce the following coordinates:

r := |x|, w :=
x · v
r

, Lz := x1v2 − x2v1,

u := |v|, α := ∢(x, v), L := |(x, 0)× (v, 0)|2 = L2
z = r2u2 − (x · v)2 = (ru sinα)2.

Hence, for any particle located at x with velocity v, w is the radial velocity, L is the
modulus of the angular momentum squared and α is the angle between x and v. In the
following exploration we assume that all appearing functions are sufficiently regular. It
is well known that both the axially and spherically symmetric Vlasov-Poisson systems
can be formulated in the (r, u, α) and (r, w, L) coordinates, i.e., with abuse of notation,

f(t, x, v) = f(t, r, u, α) = f(t, r, w, L), for x, v ∈ Rn with n = 2, 3.

Let us explain the benefits of solving the axially symmetric Vlasov-Poisson system nu-
merically in the (r, w, L) coordinates as opposed to the cartesian ones. In the former
case, the Vlasov equation takes the form

∂tf + w∂rf +
( L

r3
− ∂rU

)
∂wf = 0, (3.15)

where in the flat setup, the force ∂rU = U ′ is given by (3.13). For any r, L ≥ 0, w ∈ R,
we denote by [0, T [∋ s 7→ (R,W,L)(s, r, w, L) = (R,W,L)(s) the characteristics of
the flat, axially symmetric Vlasov-Poisson system in (r, w, L) coordinates as
the solutions of:

Ṙ = W, Ẇ =
( L

R3
− U ′(s,R)

)
, L̇ = 0, (3.16)

with (R,W,L)(0, r, w, L) = (r, w, L). The idea of our numerical algorithm is to find a
solution of (3.16) and assume that (t, r, w, L) 7→ f̊(t, R(t),W (t), L) solves (3.15). Note,
that the flat characteristic system in (x, v) coordinates involves four equations. The
property of axial symmetry, however, simplifies the characteristic system, since (3.16)
only contains two equations for r, w and the trivial equation for L.
Now we are ready to investigate steady states. For any particle located at (x, v) or

(r, w, L), we define its particle energy by

E = E(x, v) = E(r, w, L) =
1

2
|v|2 + U

¯
(x) =

1

2

(
w2 +

L2
z

r2

)
+ U(r). (3.17)
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Next, note that E and L are constant along solutions s 7→ (R,W,L)(s) of (3.16), which
implies that every reasonable function Φ depending only on E,L is a stationary solution
of the Vlasov-Poisson system. In this thesis we will focus on the ansatz function

f0(x, v) := Φ(E,Lz) := A(E0 − E)k+(1−Q|Lz|)l+ , (3.18)

where the subscript + denotes the positive part. E0 < 0 is the so called cut-off energy,
which allows the steady state to have finite mass and compact support.
For Q > 0, the quantity 1/Q can be seen as the cut-off angular momentum, where

Q = 0 lets the ansatz Φ be independent of Lz. In our numerical simulations later on, we
will fix some k,Q ≥ 0, l ∈ R and prescribe some R > 0 and M > 0, such that R is the
radius and M the mass of our galaxy, cf. Section 3.4. Fixing these quantities will then
determine E0 and A.

With this ansatz at hand, (3.4) and the change of variables (v1, v2) 7→ (E,Lz) yields
the formula for the mass density

Σ(r) = 2

∫ E0

U(r)

∫ √
2r2(E−U(r))

−
√

2r2(E−U(r))

Φ(E,Lz) dLz dE√
2r2(E − U(r))− L2

z

(3.19)

for all r ≥ 0 with U(r) < E0 and Σ(r) = 0 else. Hence, we can define R > 0 as the
smallest number such that suppΣ ⊂ [0, R]. Since Σ is additionally bounded, the steady
state has finite mass

MΣ := M := 2π

∫ ∞

0
rΣ(r) dr < ∞. (3.20)

Lastly, the formula for the potential and the force field are given by Lemma 3.2 and we
are ready to dive into a detailed description of the numerical algorithm.

3.4 The numerical algorithm

Our numerical algorithm has to perform several tasks: First of all, we insert reasonable
parameters k, l, Q of the ansatz function, as well as the desired mass M and radius R to
obtain a steady state.

Constructing the steady state

The first task is to construct a steady state (Σ,U) on [0, R] in the sense that both (3.11)
and (3.19) hold. This is done by the following iterative scheme from [12]:

1) As a start, one can choose any ansatz parameter A0 > 0 and any non-negative mass
density Σ0 with mass M and support [0, R]. For faster convergence, it is useful
to define Σ0 somewhat close to the resulting mass density Σ. In the algorithm we
choose A0 := 1 and the simple linear function

Σ0(r) :=
3M

πR2

(
1− r/R

)
, r ∈ [0, R], Σ0 := 0, else.
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2) If the n-th iterate Σn and An > 0 are given, we can calculate Un using (3.11) or
(3.12). It turns out that the latter is numerically harder to deal with. However,
we use both formulas to keep track of numerical errors. We compute the com-
plete elliptic integrals efficiently using code from the GSL package, which uses an
arithmetic-geometric mean algorithm, cf. [13]. Next, we define the cut-off energy
by (E0)n := Un(R).

3) For any given Un, we calculate the corresponding mass density Σ̃n via (3.19).

4) We define the next iterate by Σn+1 := M/MΣ̃n
Σ̃n, hence, Σn+1 has the desired

mass M . Lastly, we update our ansatz function by An+1 := AnM/MΣ̃n
.

5) If ∥Σn+1 − Σn∥1 is small enough, we calculate Un+1 once again and obtain an
approximation of the desired steady state, else we return to Step 2).

It should be noted that in general the error ∥Σn+1 − Σn∥1 ≈ ε does not diminish after
a few loops. However, ε is highly dependent on the precision with which we calculate
the mass density in Step 3). Thus, in order to obtain better results, one should always
begin by increasing the numerical resolution of the appearing integrals in (3.19). On the
next page, Figure 3.1 shows some illustrative examples of different steady states with
the ansatz (3.18), where we fixed the mass and the radius M = 0.3, R = 3.0. For more
details on flat steady states, we refer to [12].

The particle-in-cell scheme and initializing numerical particles

The next step is evolving this system in time. As mentioned in Chapter 2, the Vlasov-
Poisson system can be reduced to its characteristic system, which has to be solved for
all points (x, v) in the phase space. In fact, this is exactly the idea of our numerical
approach, the so-called particle-in-cell scheme. In this procedure, we cover the phase
space according to our ansatz function with numerical particles and evolve them in time
according to the characteristic system. Let us go into detail.
Our plan is to initialize the particles in (r, u, α) coordinates. Therefore, we prescribe

numbers of steps Nr, Nu and Nα and define the step lengths

∆r :=
R

Nr
, ∆u :=

umax

Nu
, ∆α :=

π

Nα
,

where umax :=
√
2(E0 − U(0)) based on (3.17). This yields Nr ·Nu ·Nα particles, which

set up the grid of points

ri =
(
i− 1

2

)
∆r, uj =

(
j − 1

2

)
∆u, αk =

(
k − 1

2

)
∆α.

Every particle (ri, uj , αk) carries the weight fijk, which is according to the ansatz and
the volume element

fijk := Φ(Eijk, Lijk) 4πri∆r uj∆u∆α. (3.21)
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Figure 3.1: Steady states with U on the left, Σ on the right and the following parameters:

S1 S2 S3 S4 S5 S6

l -0.5 -0.5 0 -1.0 0 0.5
k 0.5 0 0.5 0.5 0 0
Q 0.5 2.0 2.0 1.0 2.0 0
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The particle energy and the modulus of angular momentum is denoted by

Eijk :=
1

2
u2j + U(ri), Lijk := |riuj sinαk|.

Particles with weight fijk = 0 will be deleted immediately, and we save the remaining
particles in (r, w, L) coordinates. We want to point out that this procedure is quite
similar to the more popular techniques in simulations of molecular dynamics. There,
one usually works with probability densities, where (up to normalizing) fijk gives the
probability of finding a particle in the area[

i∆r − 1/2, i∆r + 1/2
]
×
[
j∆u− 1/2, j∆u+ 1/2

]
×
[
k∆α− 1/2, k∆α+ 1/2

]
with energy Eijk ; the angular momentum is often not of interest.
Once the particles are initialized, we need to propagate them in time according to the

characteristic system.

Propagating the particles - solving the characteristic system

The propagation of particles is one of the advantages of using (r, w, L) coordinates, since
we only have to solve two differential equations

Ṙ = W, Ẇ =
( L

R3
− U ′(s,R)

)
, (3.22)

instead of three in the (r, u, α) coordinates or four in the cartesian coordinates. On the
other hand, (3.22) may cause numerical problems if we do not take care of particles
close to the origin, which is where r̈ ∝ r−3 becomes large. This is compensated by
choosing a time step ∆t accordingly to ∆r and by propagating the particles carefully. To
illustrate this, we compare three propagation methods: the simple Euler algorithm, the
so-called velocity Verlet algorithm and a fourth order symplectic algorithm, called 4th
Yoshida. Euler can be used for all kinds of differential equation, whereas velocity Verlet
and 4th Yoshida are specifically made for Hamiltonian systems of the form ẍ = F (x)
and ẍ = F (x, ẋ) respectively. (3.22) is of this form since our force field U ′ is not being
updated during one time step. Denoting xn = x(n∆t) and Fn = F (xn), F

i
n = F (xin),

these algorithms have the following schemes:

Euler velocity Verlet 4th Yoshida

xn+1 = xn + vn∆t xn+1 = xn + vn∆t+ 1
2Fn∆t2 xi+1

n = xin + ci+1v
i
n∆t

vn+1 = vn + Fn∆t vn+1 = vn + 1
2(Fn + Fn+1)∆t vi+1

n = vin + di+1F
i+1
n ∆t,

return xn+1, vn+1 return xn+1, vn+1, Fn+1 for i = 0, 1, 2, 3, x0n := xn, v
0
n := vn

return xn+1 := x4n, vn+1 := v4n
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(a) Euler, ∆t = 10−4, total time: T = 60 (b) 4th Yoshida, ∆t = 10−3, total time: T = 130

Figure 3.2: Comparison between Euler and velocity Verlet/4th Yoshida

The constants appearing in the Yoshida algorithm are defined as

c1 := c4 :=
1

2(2− β)
, c2 := c3 :=

1− β

2(2− β)
,

d1 := d3 :=
1

2− β
, d2 :=

−β

2− β
, d4 := 0, with β :=

3
√
2.

Note that
∑4

i=1 ci = 1 =
∑4

i=1 di; for more details we refer to [14, 15]. Figure 3.2 shows
the trajectories of three particles in each case, where the radius r is used for the x-axis
and the radial velocity ṙ = w for the y-axis. It is evident that in Figure 3.2 a) the two
trajectories closer to r = 0 do not form a closed curve. This should be impossible due to
the conservation of the particle energy and thus indicates serious numerical problems. On
the contrary, both the velocity Verlet and 4th Yoshida algorithm yield closed trajectories
as desired.

Since we know exactly which particles are troublesome, we can use a simple but
effective adaptive step size ∆t(r, w). For particles close to zero or particles approaching
zero at high speeds we choose small step sizes, whereas relatively large step sizes can be
used for all other particles.

Updating the induced quantities

After the particles have been propagated, we have to update the mass density and the
induced force field U ′

n at time t = n∆t on all grid points in space. In contrast to the
spherically symmetric case, the latter calculation is numerically expensive. Let us go
into detail on how the force field is obtained.
First, the mass density can be easily updated with updated values of (ri, wj , Lk) and

the corresponding weights of the particles fijk given in (3.21). Note that the weights do
not change due to the fact that the characteristic flow conserves phase space volume.
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The force field can be calculated after rewriting (3.13) as follows

U ′(r) = 4

(∫ r

0
sΣ(s)

E
(
s/r
)

r2 − s2
ds−

∫ R

r

s2

r
Σ(s)

E
(
r/s
)

s2 − r2
ds

)
+

4

r

∫ R

r
Σ(s)K

(r
s

)
ds

For the moment, let us assume that r is neither close to 0 nor close to R. The third
integral is easy to calculate precisely; the difficulty lies in handling the first two integrals,
where we have to deal with the nonintegrable singularities ±(r2 − s2)−1. We begin by
cutting out a small interval with length ∆x around r, assuming that the first and the
second integrand cancel each other for s ∈ [r − ∆x, r] and s ∈ [r, r + ∆x]. We can
calculate the remaining integrals∫ r−∆x

0
sΣ(s)

E
(
s/r
)

r2 − s2
ds−

∫ R

r+∆x

s2

r
Σ(s)

E
(
r/s
)

s2 − r2
ds

precisely with the fourth order Milne rule. Due to the nonintegrable singularities, it is
important to use the same resolution for both integrals. If r is on the other hand close
to zero or close to R, we can interpolate the force using U ′(0) = 0 and

U ′(r) = 4

∫ R

0
sΣ(s)

E
(
s/r
)

r2 − s2
ds, r > R.

3.5 Numerical errors, observations and outlook

Finally, we need to address the following important question: How do we make sure our
algorithm works correctly? To this end, let us go through the previous steps:
The construction of the steady state can be verified after the initialization of the particles.
For this purpose, remember that (Σ0,U0) is a steady state if (3.11) and (3.19) hold. The
initialization of the particles depends on the potential U0 but not on Σ0. Hence, we
can compute the mass density Σinit induced by the numerical particles and compare the
difference to Σ0. Note that even if (Σ0,U0) is an exact steady state, we get a small
initialization error Einit := ∥Σ0 − Σinit∥1/∥Σ0∥1 due to the fact that we only use a
finite number of particles. Nevertheless, this type of error is usually of higher order. Let
us briefly illustrate what both of these errors look like. In Figure 3.3, the parameters
k = 0 and Q = 0 were used which leads to a discontinuity of the ansatz

Φ(E,L) =

{
A, E ≤ E0,

0, E > E0

at the boundary of its support. In Figure 3.3 a), about 8 · 107 numerical particles were
used, which seems to be enough for the difficult k = 0 case. In b) we constructed
Σinit with only 107 particles in order to illustrate the discontinuity of Φ. Unless stated
otherwise, the following computations use about 15 loops for the fixpoint iteration and
about 108 numerical particles with an initialization error of the order Einit ≈ 10−2.
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(a) 4 loops, Einit ≈ 0.6 (b) 10 loops, Einit ≈ 0.04

Figure 3.3: Two types of initialization errors

Figure 3.4: Σ(t, r) and U ′(t, r) for k = 0.5, Q = 0.

Next, let us investigate the errors that occur by evolving the system in time. An
illustrative method is taking a steady state (Σ0,U0) as initial datum and checking if
our algorithm leaves these macroscopic quantities unchanged. To be more precise, we
have to investigate the difference of the particle distribution functions, the distribution
error Ef (t) := ∥f0 − f(t)∥L1/∥f0∥L1 , which is calculated using (3.21) and the updated
values of (ri, wj , Lk), to check if the solution is truly time independent. This was indeed
the case during the tests of several parameters in the range of l ∈ [−0.75, 0.5], k ∈ [0, 0.5]
and Q ∈ [0, 3]. In fact, the distribution error Ef (t) was in general of the same order as
the initialization error, which seems to be reasonable.
However, a popular approach for non-stationary solutions uses the conservation of the

total energy and considers the energy error Etot(t) := |Etot(0)−Etot(t)|/|Etot(0)|, where
we define the kinetic and potential energy analogously to Chapter 2. Figure 3.4 shows
the mass density and the force field for a steady state. All choices of time steps ∆t ∈
{10−5, 10−4, 10−3} and every number of numerical particles N ∈ {8 ·107, 10 ·107, 12 ·107}
lead to these pictures of Σ and U ′ with error Etot(t = 20) ≈ 5 · 10−4. This value seems
to be small, however, in the algorithm for the easier three dimensional Vlasov-Poisson
system the energy error is smaller and it becomes even smaller as one decreases ∆t from
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10−3 to 10−5, whilst increasing the numbers of numerical particles accordingly, cf. [16].
This is due to the fact, that the energy error in the three dimensional algorithm arises
mainly from small inaccuracies when propagating particles close to zero. This does not
seem to be the case here. It is still an open task to improve the conservation of the
energy for our algorithm. The author assumes that errors in the calculation of the force
field, especially for r close to the boundary R, play an important role.

Figure 3.5: Mass density Σ for (t, r) ∈ [0, 20]× [0, 3.5] with k = 0.5, l = −0.6, Q = 3.0

Figures 3.5 and 3.6 show the evolution of a certain steady state, in which the grav-
itational force pushes particles in a small region away from the origin. Note that this
scenario cannot occur in the three dimensional spherically symmetric Vlasov-Poisson
system. In our computations, we find that U ′(r) < 0 on ]0, 0.50[ with Σ taking its max-
imum at r ≈ 0.58. About 8 · 107 particles were used with time step ∆t = 5 · 10−4, which
yielded an error Etot(t = 20) ≈ 10−3.

For the sophisticated reader who may not be impressed by these unchanging plots, we
lastly want to investigate the evolution of a steady state on the particle level (r, w, L)
and therefore recall the characteristic system

ṙ = w, ẇ =
( L

r3
− U ′(s, r)

)
, L̇ = 0.

In Figure 3.7, we plotted the motion of about 104 randomly chosen numerical particles
at six different times, where the radius is used for the x-axis, the radial velocity w for the
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Figure 3.6: Force U ′ for (t, r) ∈ [0, 20]× [0, 3.5] with k = 0.5, l = −0.6, Q = 3.0

y-axis and the colour indicates the modulus of the angular momentum Lz. Note that the
corresponding distribution function f and the macroscopic quantities like Σ and U ′ from
Figure 3.4 are (aside from small numerical errors) constant in time. Furthermore, notice
that the moving black spiral-arms of particles appearing in Figure 3.7 do not necessarily
contradict the time independence of the mass density. This is due to the fact that the
(numerical) particles may have different (numerical) weights which they contribute to the
phase-space density f . Thus, the density of numerical particles from Figure 3.7 does not
yield in general information on the mass density. For further prospective investigations
on steady states or on the oscillating behaviour of perturbed steady states, the author
recommends to combine observations of the particle distribution function f , the motion
of particles and derived macroscopic quantities like Σ or the kinetic and potential energy.
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Figure 3.7: Motion of particles for k = 0.5, Q = 0 at t = 0, 1, 5, 10, 16, 30.
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Outlook

In [16], perturbed spherically symmetric steady states of the three dimensional gravita-
tional Vlasov-Poisson system have been investigated numerically. For different ansatz
functions, numerical evidence is given that these solutions oscillate in time. The au-
thor strongly supposes that oscillating behaviour can be found in the axially symmetric
Vlasov-Poisson system as well. With the just presented algorithm, one can properly
address this issue. Moreover, an intriguing question is how flat steady states with pos-
itive gravitational force, i.e. on some region particles are pulled away from the center
of mass, behave under certain perturbations, since this phenomenon does not exist in
three dimensional spherically symmetric Vlasov-Poisson system.

Figure 3.8: Kinetic energy for unperturbed steady state with k = 0.5, Q = 0 and with a
rather large initialization error Einit ≈ 0.01.
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