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Framework
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Investigate the Pontryagin maximum principle (PMP) to
analyse optimal control problems governed by differential
models (ODEs, PDEs) with different cost functionals
(non-smooth, non-convex, discontinuous, mixed-integer,
multi-objective) and control mechanisms (distributed linear,
bilinear, on boundary, in the coefficients, relaxed, etc.).
Develop an efficient and robust PMP-based numerical strategy,
iterative, allowing point-wise (or local-wise) updates, for
solving optimal control problems of large-size.
The Sequential Quadratic Hamiltonian Method

Joint works with Stefana Anita, Tim Breitenbach, Sebastian Hofmann,
Souvik Roy, Anwesa Dey, Mario Annunziato, Francesca Cala’-Campana.
And strong support by M.I. Sumin and D. Wachsmuth.



The book and the software
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Software:
https://github.
com/alfioborzi/
SQHmethod

https://github.com/alfioborzi/SQHmethod
https://github.com/alfioborzi/SQHmethod
https://github.com/alfioborzi/SQHmethod


An optimal control problem
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Consider the following ODE optimal control problem

min J(y, u) :=
ˆ T

t0
`(t, y(t), u(t)) dt + γ(y(T))

s.t. y′(t) = f (t, y(t), u(t)), y(t0) = y0,
u ∈ Uad.

(1)

The optimal control is sought in a subset of L2 given by

Uad =
{
u ∈ L2(t0, T;Rm) : u(t) ∈ Kad a.e.

}
,

where Kad is a compact subset ofRm.

Subject to appropriate conditions (Carathéodory’s, Clarke’s, Cesari’s) this
problems admits a solution.
Extensions: Relaxed controls (Young’s measures), quasi- or suboptimal
controls (Ekeland).
Characterization: Optimality conditions (Euler-Lagrange’s, Pontryagin’s)



Euler-Lagrange’s optimality
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Subject to appropriate convexity and differentiability conditions, the EL
optimality system for a solution to (1) is given by

y′ = f (t, y, u), y(t0) = y0

−p′ = (∂y f (t, y, u))
> p− ∂y`(t, y, u), p(T) = −∂yγ(y(T))(

− (∂uf (·, y, u))> p+ ∂u`(·, y, u), v − u
)
≥ 0, v ∈ Uad.

For this system there is an equivalent hamiltonian formulation based on
the Hamilton-Pontryagin (HP) function

H(t, y, u, p) = p · f (t, y, u)− `(t, y, u). (2)

Resulting from the transformation:

L(y, u, p) = γ(y(T)) +
ˆ T

t0

(
p(t) · y′(t)−H(t, y(t), u(t), p(t))

)
dt.

Then the optimality condition above reads (∂uH, v − u) ≤ 0, v ∈ Uad .



The hamiltonian formulation
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In the ODE case, the forward and adjoint equations are written in the
following form {

y′(t) = ∂p H(t, y(t), p(t), u(t))
p′(t) = −∂y H(t, y(t), p(t), u(t))

with appropriate transversality conditions. Moreover, without control
constraints, along the optimal trajectory , it must hold:

∂u H(t, y(t), p(t), u(t)) = 0,

and
∂2
uu H(t, y(t), p(t), u(t)) < 0,

which corresponds to the Legendre’s conditions.



Pontryaginmaximumprinciple

6/27

The Pontryagin maximum principle (PMP) includes all previous results by
L. Euler, J.-L. Lagrange, K. Weierstrass, A.-M. Legendre, etc., and removes
the requirement of differentiability w.r.t. u.

It is replaced by the maximality condition

H(t, y(t), u(t), p(t)) = max
v∈Kad

H(t, y(t), v, p(t)),

pointwise, for almost all t ∈ [t0, T].

Taking the HP function H̃(t, y, u, p̃) = p̃ · f (t, y, u) + `(t, y, u), where
p̃ = −p, we have H̃ = −H, and aminimality condition.

The set Kad may not be convex: it could represent a finite set of discrete
values.

V. G. Boltyanskii, R. V. Gamkrelidze, and L. S. Pontryagin. On the theory of optimal processes.
Dokl. Akad. Nauk SSSR, 110:7–10, 1956.

Pontryagin, Boltyanskii, Gamkrelidze, Mishchenko. The Mathematical Theory of Optimal Processes, Wiley & Sons, 1962



State-of-the-art in PMP
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Themaximum principle must be tailored and proved for the given
problem at hand.

In the case of ODEmodels, the PMP has been investigated for virtually all
kind of optimal control problems with: control constraints, state
constraints, path constraints, mixed-integer controls, relaxed controls,
etc.: Pontryagin, Boltyanskii, Gamkrelidze, Rozonoèr, Dubovitskii,
Milyutin, Dmitruk, Osmolovskii, Cesari, Sussmann, Ekeland, Vinter, Clarke,
Hartl, Halkin, Markus, etc..

In the case of PDEmodels, much less results are available: Sumin,
Plotnikov, Casas, Raymond, Zidani, Li & Yong, Suryanarayana,
Mordukhovich, etc..

H.-J. Pesch and M. Plail, The maximum principle of optimal control: A history of ingenious ideas andmissed opportunities,
Control and Cybernetics, 38 (2009), 973-995.
H.J. Sussmann and J.C. Willems. 300 years of optimal control: from the brachystochrone to the maximum principle.
IEEE Control Systems, 17(3):32-44, 1997.
A. V. Dmitruk and N. P. Osmolovskii. On the proof of Pontryagin’s maximum principle by means of needle variations.
Journal of Mathematical Sciences, 218(5):581-598, 2016.



Rozonoèr’s estimate
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Soon after the formulation of the PMP, Lev Rozonoèr (1959) proved the
following result:
Let u, v ∈ Uad with Kad compact and convex, then there exists a constant
C > 0 such that the following holds

J(yv , v)− J(yu, u) = −
ˆ T

t0

(
H (t, yu, v, pu)−H (t, yu, u, pu)

)
dt + R,

where |R| ≤ C
´ T
t0
|u(t)− v(t)|2 dt. The constant C depends on the size of

the interval and on the Lipschitz constants of f and `with respect to y.

This result and the following ones can be extended to PDE optimal control
problems in different settings.

L. I. Rozonoèr. Pontryagin maximum principle in the theory of optimum systems. Avtomat. i Telemeh., 20:1320–1334, 1959.

English transl. in Automat. Remote Control, 20 (1959), 1288–1302.



The intermediate adjoint
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Consider two admissible pairs (yu, u) and (yv , v), where u, v ∈ Uad .
The intermediate (or average) adjoint variable is the solution to the
following problem

−p̃′(t) =
(
f̃y(t, yu(t), yv(t), v(t))

)>
p̃(t)− ˜̀y(t, yu(t), yv(t), v(t)),

with terminal condition p̃(T) = −γ̃y(yu(T), yv(T)), and the functions f̃y , ˜̀y
and γ̃y are constructed as follows:

φ̃y (t, yu, yv , u) :=
ˆ 1

0

∂yφ(t, yu + s (yv − yu), u) ds.

Then the following equality holds

J(yv , v)− J(yu, u) = −
ˆ T

t0

(
H (t, yu, v, p̃)−H (t, yu, u, p̃)

)
dt.



Successive approximations schemes
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Based on the above results, it is natural to design different algorithms
based on the pointwise maximization of the HP function. These iterative
methods are called successive approximations (SA) schemes. Earlier
works: L.I. Rozonoer, I.A. Krylov and F.L. Chernous’ko, H.J. Kelley, R.E.
Kopp and H.G. Moyer.

Robustness of SA schemes was achieved by Y. Sakawa and Y. Shindo by
introducing a quadratic penalty of the control updates

Hε(t, y, u,w, p) := H(t, y, u, p)− ε |u− w|2.

In Sakawa & Shindo’s version of SA, the parameter ε is fixed andw
represents the value of the control obtained in the previous iterate.
(Connection to the works of B. Järmark, R.T. Rockafellar, etc..)
I. A. Krylov and F. L. Chernous’ko. On amethod of successive approx- imations for the solution of problems of optimal
control. Zh. Vychisl. Mat. Mat. Fiz., 1962, Vol. 2, Nr. 6, 1132-1139.
H. J. Kelley, R. E. Kopp, and H. G. Moyer. Successive approximation techniques for trajectory optimization. In Proc. IAS
Symp. on Vehicle System Optimization, pages 10-25, New York, November 1961.
Y. Sakawa and Y. Shindo. On global convergence of an algorithm for optimal control. IEEE Transactions on Automatic
Control, 25(6):1149-1153, 1980.
J. F. Bonnans. On an algorithm for optimal control using Pontrya- gin’s maximum principle. SIAM Journal on Control and
Optimization, 24(3):579–588, 1986.



The SQHalgorithm
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Input: initial approx. u0, max. number of iterations kmax , tolerance κ > 0,
ε > 0, σ > 1, η > 0, and ζ ∈ (0, 1); set τ > κ, k := 0.
Compute the solution y0 to the governing model with given data and control u0.
while (k < kmax && τ > κ ) do

1. Compute the solution pk to the adjoint problemwith given data.
2. Determine uk+1 that solves the pointwise optimization problem

Hε

(
z, yk(z), uk+1(z), uk(t), pk(z)

)
= max

w∈Kad
Hε

(
z, yk(z),w, uk(z), pk(z)

)
(where z = t, or z = x, or z = (x, t), etc.)

3. Compute the solution yk+1 to the governing model with given data and
control uk+1.

4. Compute τ := ‖uk+1 − uk‖2L2 .
5. If J

(
yk+1, uk+1

)
− J

(
yk, uk) > −η τ , then increase ε = σ ε and go to Step 2.

Else if J
(
yk+1, uk+1

)
− J

(
yk, uk) ≤ −η τ , then decrease ε = ζ ε and

continue.
6. Set k := k + 1.

end while



The SQHmethod
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The SQHmethod is a SA scheme with augmented Hamiltonian and a
mechanism that adaptively chooses ε in order to guarantee a sufficient
decrease of the value of the cost functional. In Step 2. also partial
maximization would suffice.

Theorem
Let

(
yk, uk

)
and

(
yk+1, uk+1

)
be generated by the SQH algorithm, and uk ,

uk+1 bemeasurable. Then, subject to appropriate assumptions on f and `,
there exists a θ > 0 independent of ε and uk such that for the ε > 0 currently
chosen by the SQH algorithm, the following holds

J
(
yk+1, uk+1

)
− J

(
yk, uk

)
≤ − (ε− θ) ‖uk+1 − uk‖2L2 .

In particular, it holds

J
(
yk+1, uk+1

)
− J

(
yk, uk

)
≤ −η τ

for ε ≥ θ + η, and τ = ‖uk+1 − uk‖2L2 .



Some convergence results
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Theorem
For the sequence (uk), generated by the SQH algorithm, it holds:

1. the sequence (J(yk, uk))k=0,1,2,... is monotonically decreasing and converges
to some J∗ ≥ infu∈Uad J(yu, u);

2. limk→∞ ‖uk+1 − uk‖L2 = 0.

Theorem
Let Kad be compact and convex, and assume that f and ` are continuously
differentiable with respect to u. Further, suppose that ε ≤ ε̄, for some ε̄ > 0, for all
SQH iterates. Then the sequence (uk)k=0,1,2,... generated by the SQH algorithm,
asymptotically satisfies the first-order necessary optimality conditions for the
maximisation of the HP function, in the sense that

lim
k→∞

‖uk −ΠK

(
uk + ∂uH(·, yk, uk, pk)

)
‖L2 = 0,

whereΠK(v) denotes the projection on the convex set K satisfying
|v −ΠK(v)| = dK(v) := infw∈K |v − w|, and K := Kad .



An quantum control problem
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min J (y, u) :=
1

2

n∑
i=1

(yi (T)− (yd)i)
2 +

ˆ T

0

gα,β,δ (u(t)) dt

s.t. y′ = (A+ uB) y, t ∈ (0, T) , y (0) = y0
u ∈ Uad :=

{
u ∈ L2 (0, T) | u (t) ∈ KU a.e.

}
with a discontinuous cost:

gα,β,δ (u) :=
α

2
u2 + β |u|+ δ |u|s,

and

|u|s :=

{
|u| if |u| > s
0 else

, s > 0.

Hε (t, y, u, v, p) = pT (A+ uB) y − gα,β,δ (u)− ε (u− v)2 .



Optimisation ofHε

15/27

Let β = 0 and Kad = [u, u]. If |u| ≤ s then Hε achieves it maximum at

u1 = min
(
max

(
−s,

2 ε uk + (pk)T B yk

2 ε+ α

)
, s
)
.

If u < −s or u > s, we obtain two additional points where Hε can attain a
maximum

u2 = min
(
max

(
u,

2 ε uk + (pk)T B yk + δ

2 ε+ α

)
,−s

)
and

u3 = min
(
max

(
s,
2 ε uk + (pk)T B yk − δ

2 ε+ α

)
, u
)
.

Therefore, in Step 2. of the SQH algorithm, we implement

uk+1 = argmax
w∈{u1,u2,u3}

Hε

(
t, yk,w, uk, pk

)
.



Numerical results I - SQH vs. SSN
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The case α = 10−3, β > 0, δ = 0, and Kad = [−60, 60].
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PMP test : 0 ≤ ∆H ≤ 10−` where∆H (t) := |
(
H (t, y, u, p)−maxw∈Kad H (t, y,w, p)

)
|

β N4
%
%

N5
%
%

N8
%
%

N15
%
%

CPU time/s
# it # up

SQH SSN

1 96.01 95.88 95.88 90.14 0.77 94 51 24

3 100 100 98.00 82.65 0.78 21 50 25

5 100 100 98.13 84.27 0.66 28 42 23
The number of SQH iterations is denoted with # it, and the number of sweeps of updates of the control is denoted with # up.



Numerical results II - disc. L1 cost
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In the case of discontinuous L1 costs: α = 10−2, β = 0, δ > 0, s = 10, and
Kad = [−60, 60].
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(
H (t, y, u, p)−maxw∈Kad H (t, y,w, p)

)
|

δ
N4
%
%

N5
%
%

N8
%
%

N15
%
% CPU time/s # it # up

0.5 99.63 99.63 99.63 98.88 1.5 77 58

4 98.13 98.13 98.13 98.13 0.33 16 12

5 100 100 100 100 0.17 7 7



Convergence behaviour
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Convergence behaviour of the cost functional J and of the value of ε along
the SQH iterations for Exp II.
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Elliptic optimal control problems
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The weak formulation of a semilinear elliptic optimal control problem is
as follows

min J (y, u) :=
ˆ
Ω

(
h (y (x)) + g (u (x))

)
dx

s.t. B (y, v) =
ˆ
Ω

f (x, y (x) , u (x)) v (x) dx, v ∈ V,

u ∈ Uad

For many choices of J that result in a weakly lower semicontinuous cost
functionals in the appropriate space, existence of solutions can be proved
by Tonelli’s technique of minimising sequences; see, e.g., the books: Lions
(1971), Ahmed & Teo (1981), Troeltzsch (2010).

Also in the book: different distributed controls, boundary controls, state
constraints, L1 tracking terms, discrete Kad , time-dependent parabolic and
hyperbolic optimal control problems.



PMPminimality condition
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Assuming that B is self-adjoint, we have the adjoint problem

B (p, v) =
ˆ
Ω

(∂yh (y(x)) + ∂y f (x, y(x), u(x)) p (x)) v (x) dx,

for all v ∈ V ; p denotes the adjoint variable. We introduce the HP function

H (z, y, u, p) := p f (x, y, u) + h (y) + g (u) .

Theorem
Let h and f be continuously differentiable, and let g be continuous and
convex. Furthermore, assume that f is Lipschitz in u and ∂y f be uniformly
bounded. Then any solution (y, u) to the above problem fulfils

H (x, y(x), u(x), p(x)) = min
w∈Kad

H (x, y(x),w, p(x)) , x ∈ Ω.

J.-P. Raymond and H. Zidani. Hamiltonian Pontryagin’s principles for control problems governed by semilinear parabolic

equations. Applied Mathematics and Optimization, 39(2):143–177, 1999.



Bilinear elliptic optimal control
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min J (y, u) :=
ˆ
Ω

(1
2
(y (x)− yd (x))

2
+ g (u (x))

)
dx

(∇y,∇v) + (u y, v) = (ϕ, v) , v ∈ H1
0 (Ω) ,

with target function: yd (x) := sin (2πx1) cos (2πx2) and discontinuous
cost

g (u) :=
α

2
u2 +

{
β |u| if |u| > s
0 else

,

where α = 10−10, β = 10−5 and s = 20; Kad = [0, 100]. The HP function:

H (x, y, u, p) =
1

2
(y − yd)

2
+ g (u) + pϕ− u y p.

The adjoint problem is asfollows

(∇p,∇v) + (u p, v) = (y − yd, v) , v ∈ H1
0 (Ω) .



Solution by the SQHmethod
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Minimisation of J (left) and optimal control.

Quantify the accuracy of PMP optimality:

4H (x) :=
(
H (x, y, u, p)− min

w∈Kad
H (x, y,w, p)

)
.

Report Nl
%: the percentage of the grid points at which the inequality

0 ≤ ∆H ≤ 10−l, l ∈ N, is fulfilled.
Convergence (κ = 10−8) at ktot = 1126, kup = 622, we obtain N4

%
% = 99.83,

N8
%
% = 98.16, N10

%
% = 99.14, andmaxx∈Ω ∆H (x) = 1.28 · 10−4 and



Wave stabilization
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Consider the following wave optimal control problemwith a Neumann
boundary control:

min J (y, u) :=
1

2
‖y(·, T)− yT(·)‖2L2(Ω) +

ν

2
‖u‖2L2(Σ) + γ ‖u‖L1(Σ)

s.t. ∂2
tt y(x, t)− v2 ∂2

xx y(x, t) = 0, in Q = Ω× (0, T)
y(x, 0) = y0(x), ∂t y(x, 0) = y1(x), in Ω

∂ny(x, t) = u(x, t), on Σ = ∂Ω× (0, T)
u ∈ Uad

where γ ≥ 0, and ν > 0. Set of admissible controls:

Uad =
{
u ∈ L2 (Σ) | u (x, t) ∈ Kad a.e. inΣ

}
.

B.S. Mordukhovich, J.-P. Raymond. Neumann boundary control of hyperbolic equations with pointwise state constraints.
SIAM J. Contr. Opt., 43 (2004), 1354-1372.

M. Gugat, G. Leugering, G. Sklyar. Lp-optimal boundary control for the wave equation. SIAM J. Contr. Opt., 44 (2005), 49-74.



Setting for stabilization
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The HP function is given by

H (x, t, y, u, p) = v2 p u− ν

2
u2 − γ |u|,

which is defined for the variables p and u onΣ.
A change on the boundary value can influence the solution in the entire
domain within a characteristic time t0 = L/v. It is obvious to choose
T > t0. We take L = 10 and v = 10 so that t0 = 1 and T = 4.

Initial conditions and target function:

y0(x) = sin(π x/L), y1(x) = 0, yT(x) = cos(3π x/L).

The target function is asymmetric with respect to the midpoint of the
interval [0, L].
In the cost functional, we set ν = 10−12, and γ = 2 · 10−1. The set of
admissible control values is Kad = [−0.04, 0.04].



Solution by the SQHmethod
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The values of the parameters are chosen ad-hoc to show active control
constraints. The effect of L1(Σ) penalisation is slightly visible.
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The optimal Neumann boundary control function on the left boundary point (left) and on the right boundary point. The

wave propagation driven by the optimal Neumann boundary control (left) and comparison at final time of the controlled

state with the given target function.



PMP as a sufficient condition
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In the case(s) of wave models with linear boundary control mechanisms,
the PMP condition is sufficient to characterise an optimal control.

min J (y, u) :=
1

2
‖y(·, T)‖2L2(Ω) +

1

2
‖∂ty(·, T)‖2L2(Ω) +

ν

2
‖u‖2L2(Σ) + γ ‖u‖L1(Σ)

s.t. ∂2
tt y(x, t)− v2 ∂2

xx y(x, t) = 0, in Q
y(x, 0) = y0(x), ∂t y(x, 0) = y1(x), in Ω

y(0, t) = 0, a y(L, t) + b ∂xy(L, t) = u(L, t), t ∈ [0, T]
u ∈ Uad.

At x = 0, we set homogeneous Dirichlet boundary conditions, and at
x = Lwe consider a general Robin boundary control mechanism.

In this setting, we can prove existence of a subsequence of the SQH
iterates (uk)k=0,1,2,... that converges weakly in L2 (Σ) to an optimal
control. Strong convergence can be proved in specific settings.



27/27

Thank you for your attention!
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